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Abstract: The control network is an important supporting environment for the control system of
the heavy ion accelerator in Lanzhou (HIRFL). It is of great importance to maintain the accelerator
system’s network security for the stable operation of the accelerator. With the rapid expansion of the
network scale and the increasing complexity of accelerator system equipment, the security situation
of the control network is becoming increasingly severe. Port scanning detection can effectively reduce
the losses caused by viruses and Trojan horses. This article uses Go Concurrency Patterns, combined
with transmission control protocol (TCP) full connection scanning and GIMP Toolkit (GTK) graphic
display technology, to develop a tool called HIRFL Scanner. It can scan IP addresses in any range
with any ports. This is a very fast, installation-free, cross-platform IP address and port scanning tool.
Finally, a series of experiments show that the tool developed in this paper is much faster than the
same type of software, and meets the expected development needs.
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1. Introduction

With the rapid development of computer technology, information networks have become an
important guarantee for social development. The Internet has become an indispensable tool for life.
Economic, cultural, social activities, and military development are strongly dependent on the Internet.
With the development of the fourth industrial revolution, network security issues have become
increasingly prominent, which not only seriously hinder the development of social informatization, but
also further affect the security and economic growth of the entire country. The security and reliability
of the network system have become a focus of the world.

Common network attacks can be divided into four types: fake message attacks, exploitable attacks,
denial of service attacks, and information gathering attacks [1]. Among them, the information collection
does not cause harm to the target itself, and such attacks are used to provide useful information for
further intrusions. Information collection technology is a double-edged sword. On one hand, an
attacker needs to collect information before an attack to carry out an effective attack. On the other hand,
a network administrator can use information collection technology to discover system vulnerabilities
and repair them in advance [2–4]. Network administrators usually do not hide their identities during
scanning. On the contrary, attackers hide their identities. The most common information collection
technology is scanning technology [5,6], which includes architecture detection and utilization of
information services.

There are 65,536 ports provided by TCP/IP protocol for an IP address in the computer [7]. Among
them, the range of Well Known Ports is from 0 to 1023, the range of Registered Ports is from 1024 to
49,151, and the range of dynamic ports is from 49,152 to 65,535. Based on the port scanning technology,
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a large number of scanners have been developed. For example, OS/MVT developed by IBM [8],
the 1100 series developed by UNIVAC [9], the SATAN commercial port scanner developed by Dan
Farmer and Weitse Ven [10], and the Nessus system developed by Tenable Network Security [11].
Angry IP scanner and Scanrand are very fast IP address and port scanners, which were written by
Anton Keks and Dan, respectively. Scanrand reduces reliability in exchange for faster scanning speed.
Other port scanning tools include unicornscan, knocker, fast port scanner, etc. At present, the most
widely used open-source scanner is Nmap [12–14], which provides a variety of scanning methods that
can group multiple target IP addresses for scanning, but the disadvantage is that the scan results of the
host can only be provided after the scan of the entire group is completed. In addition, at the Usenix
International Security Symposium held on 27 March 2015, Durumeric and others from the University
of Michigan in the United States proposed a scanner Zmap using stateless scanning technology. It can
scan all IPv4 addresses in 45 min, which is 1300 times faster than Nmap, but its disadvantage is that it
cannot find all the vulnerabilities, only one port can be scanned at a time, and it cannot cover devices
using IPv6 protocol [15,16]. Masscan, which can scan the entire network in 6 min, also has a high usage
rate and is currently the fastest port scanner [17,18]. Zmap and Masscan can be run under Linux and
Mac OS, but Cygwin, WinPcap, and other tools are required when using with Windows, which brings
difficulties to ordinary users.

Each scanner has its own advantages, but also has certain defects. Therefore, this paper combines
the traditional scanning technology with the high concurrency of the Golang language to design a
comprehensive cross-platform scanning system which can obtain more information about network
security and provide better information support.

This paper is organized as follows. Section 2 describes the Common Technology of HIRFL Scanner,
Section 3 introduces the overall architecture of the software, and the experimental results with detailed
discussion are displayed in Section 4. Finally, Section 5 concludes this paper with a discussion on the
contribution of this paper.

2. The Common Technology of HIRFL Scanner

2.1. High Concurrency of Golang Programming Language

Golang is an open-source programming language that makes it easy to build simple, reliable,
and efficient software. It is a statically strongly typed, compiled language developed by Robert
Griesemer, Rob Pike, and Ken Thompson of Google. It can check the most hidden program problems
during compilation. Golang can be directly compiled into machine code without relying on other
libraries. It uses a multi-thread model. In more detail, it is a two-level thread model. The main reason
why we chose Golang to develop HIRFL Scanner is its high concurrency. Concurrency means that two
or more tasks are executed within a period of time. We do not care whether these tasks are executed at
a certain point in time; these tasks may or may not be executed at the same time. We only care about
whether two or more tasks are solved in a short period of time (one second or two seconds). Parallel
(parallelism) means that two or more tasks are executed at the same time. Concurrency is a logical
concept, while parallel emphasizes the physical running state, so concurrency includes parallelism.

Go implements two forms of concurrency [19,20]. The first is multi-threaded shared memory,
similar to programming languages such as Java or C++. The other is the communicating sequential
processes (CSP) concurrency model. This article uses the CSP model for development, which uses
communication to share memory.

Goroutine and channel are the key components of concurrency in the CSP model. Golang
encapsulates system threads (kernel-level threads) and exposes a lightweight coroutine named
goroutine (user-level threads) for users. Golang’s runtime is responsible for scheduling user-level
threads to kernel-level threads. The advantage of goroutine is that the context switching is performed
in the complete user mode, and there is no need to switch between the user mode and the kernel
mode as frequently as threads, which saves resource consumption. Golang provides a keyword “go”
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to create a Golang coroutine. The Go coroutine is started when we add a keyword “go” before the
function or method, and thus the function or method will be Run in Go coroutines. The channel is a
communication channel between various concurrent structures in the Golang language, similar to the
channel in Linux. As shown in Figure 1, in the communication process of two goroutines, the buffered
channel is generally used for data transmission.
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2.2. GTK

The GIMP Toolkit (GTK) is an open-source, multi-platform-oriented GUI toolkit whose source
code is distributed under the LGPL license agreement. It was originally developed by Peter Mattis
and Spencer Kimball for the GNU Image Manipulation Program (GIMP) to replace the paid Motif.
At present, it is one of the mainstream development tools for GUI development and has been applied to
more and more programs. Unlike other GUI tools such as Qt, wxWidgets, and FLTK, GTK is completely
implemented in C language.

GTK+ can be considered as the latest version of GTK. GTK contains three sets of function libraries,
including libglib, libgdk, and libGTK. These libraries do not use an object-oriented mechanism, so
components cannot be reused, and the message mechanism is implemented using a standard callback
mechanism, while the current GTK+ uses a signal mechanism.

GTK+ is also implemented in C language; however, in terms of design, object-oriented design
(OOD) is adopted flexibly. The program interface written in GTK+ is similar to Motif, which is an
industry-standard GUI [21,22]. GTK+ contains many frequently-used widgets, such as file selection,
color selection components, and so on. In addition, GTK+ provides some unique components, such as
buttons with sub-component instead of labels, and almost any widget can be placed on such buttons.
GTK+ allows software developers to show what they want in a simple way. GTK+ provides a good
processing tool for the internationalization (i18n) and localization (i10n) of the application, which
allows the program to be edited without modification, and only needs to switch the language data files
required by different languages. Therefore, it can be used by people of different languages.

As the developer of GTK+, the GNU organization allows anyone to use all its features for free.
GTK+ is portable and has multiple language front ends, such as C++, Perl, Python, TOM, Ada95,
Free Pascal, Eiffel, JAVA, and C#, etc. In this article, we use GTK+3.6 to develop the display interface
of the HIRFL Scanner.

2.3. ICMP Protocol

ICMP is the abbreviation of the Internet Control Message Protocol. It is a sub-protocol of the
TCP/IP protocol suite and is used to transfer control messages between IP hosts and routers, including
reporting errors, exchanging restricted control, status information, and so on. The ICMP protocol is a
connection-free network layer protocol, which is extremely important for network security. When the IP
data cannot access the target or the IP router cannot forward the data packet at the current transmission
rate, it will automatically send the ICMP message. When we want to evaluate the network connection
status, ICMP is a very useful protocol.

The ping program uses the ICMP protocol to detect whether the hosts can communicate with
each other. If the ping cannot reach a host, it indicates that it cannot establish a connection with this
host. It sends an ICMP echo request message to the destination host. The destination host must return
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an ICMP echo response message to the source host. If the source host receives a response within a
certain time, the destination host is considered reachable. It works as follows:

(1) The ping command will build a fixed format ICMP request packet, and then the ICMP protocol
will hand this packet to the IP layer protocol along with the destination host’s IP address. Ping can
calculate the RTT (round trip time), which inserts the sending time in the data part of the packets.

(2) The IP layer protocol takes the local IP address as the source address, appending some other
control information, and constructs an IP packet. After finding the MAC address corresponding
to the destination IP address in a mapping table, the packet will be handed over to the data link
layer. If the destination host and the source host are not in the same network segment, this will
turn to the routing process.

(3) Construct a data frame at the data link layer, along with some control information. The destination
address is the MAC address passed from the IP layer, and the source address is the physical
address of the machine. Then, transfer them out according to the media access rules of Ethernet.

(4) After receiving the data frame, the destination host first checks its destination address and
compares it with the physical address of the machine. If it matches, the data frame will be
received; otherwise, the data frame will be discarded. After receiving, the destination host will
check the data frame, extract the IP data packet from the frame, and give it to the local IP layer
protocol. Similarly, after checking at the IP layer, the useful information is extracted and handed
over to the ICMP protocol. After the latter process, the ICMP response packet is immediately
constructed and sent to the source host.

2.4. TCP Full Connection Port Scanning Technology and Classification

Port scanning scans a section of the target host’s port or any designated ports one by one to
determine which ports of the target host are open [23–27]. Through the open port, we can find possible
vulnerabilities in the target host and fix them in time. Therefore, the scan of the host port can help us
better understand the target host and is the first step to doing a good job of strengthening security.

In this paper, TCP full connection technology is adopted to achieve port scanning [28,29].
The scanning host attempts (using TCP three-way handshake) to establish a regular connection with
the designated port of the destination host, as shown in the following Figure 2.
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(1). When establishing a connection, the client sends a syn packet (syn = j) to the server and enters
the SYN_SEND state, waiting for the server to confirm. When the server receives the syn packet,
it must confirm the client’s ACK (ack = j + 1), and also send a SYN packet (syn = k), that is,
the SYN+ACK packet. After this process, the server enters the SYN_RECV state. If the port is
closed, the RST packet will be returned.

(2). The client receives the SYN+ACK packet from the server and sends an acknowledgment packet
ACK (ack = k + 1) to the server. After the packet is sent, the client and server enter the
ESTABLISHED state to complete the connection establishment.
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We use the dial method in the standard library of the net package to connect. The connection
is started by the system call connection. For each listening port, the correct connection is returned if
the port is open, otherwise a connection error is returned, indicating that the port is not accessible.
In order to further improve the scanning rate, this article uses the high concurrency feature of GO to
program. When using the Dial function to establish a network connection, the DialTimeout function
provided by the net package will actively pass additional timeout parameters to establish a connection.
In HIRFL Scanner, we set the timeout of TCP connection to 100 ms.

According to different classification standards, the port scanning technology can have
different classifications, such as classification according to protocol type and classification by port
allocation [30–32]. This paper classifies the port scanning technology according to the scanning method:

(1). Horizontal scanning: For a specific port, scan different target hosts, as shown in Figure 3 below.
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(2). Vertical scanning: Scan different ports for a specific host as shown in Figure 4 below.
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(3). Block scanning: Block scanning is a combination of horizontal and vertical scanning. It scans
multiple times for different ports of different hosts, as shown in Figure 5 below.
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3. Structure of the HIRFL Scanner

HIRFL Scanner is implemented in CS architecture, which is conducive to guarantee the safety and
response speed of the system. The main interface of the system is shown in Figure 6 below, which is
developed using GTK+3.6. It can be divided into three sub-modules: the parameter input module,
function selection module, and result output module.

The parameter input module mainly enables users to input various parameters used in port
scanning according to their needs. For example, regarding the number of coroutines, each goroutine
occupies 2 KB of memory by default. On 32-bit processors, the maximum number of Go programs
is about 80,000, but on 64-bit processors, the Go program has no limit on the number of coroutines
created. In this way, the user can reasonably enter the number of coroutines based on the number of
scan tasks.
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The second parameter is the number of times the program repeats the ping process when the first
ping scan fails. The default value of the program is 2 times. This value will also affect the scan time.
Num of Port is the port number to be scanned. The program will automatically calculate the required
number of TCP connections. In order to increase the speed of large-scale IP address and port scanning,
the timeout period of TCP connections is 100 ms by default in this system. The function selection
module is the core of this system, and it mainly includes IP address online scanning, port scanning,
and mixed scanning (ip + port scanning). The user can complete the task of scanning by selecting
different functions. When the system is scanning, the scanned results will be displayed in real-time in
the result output module. After completing the scanning task, the system will inform the user of the
final result of the scan in the form of a dialog box.

The main program is developed with go1.13.4, and the core packages are net, sync, icmp, and ipv4.
Package net provides a portable interface for network I/O, including TCP/IP, UDP, domain name
resolution, and Unix domain sockets. We use the DialTimeout method in the net package to receive the
protocol, IP address, port number, and the timeout period. Package sync provides basic synchronization
primitives such as mutual exclusion locks. Mutex is used to solve the problem of data competition,
while WaitGroup solves the problem of coroutine synchronization. Package icmp provides basic
functions for the manipulation of messages used in the Internet Control Message Protocols, ICMPv4
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and ICMPv6. The ipv4 package is used to implement the IP level socket option for the Internet Protocol
version 4. Other packages used in the development of HIRFL Scanner include bufio, os, errors, fmt,
time, etc.

Figure 7 shows the workflow of the system. Due to the separate design of the front and back end,
the system first loads the GTK GUI graphic display file. In the process of parameter and IP address
verification, a return represents that the user needs to check the input parameters or IP address. The IP
address of this program is read from the TXT file.
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4. Experiment and Result

4.1. Data Description and Preprocess

In order to verify the scanning rate and correctness of the HIRFL Scanner system, we conducted a
series of experiments on the Lanzhou heavy ion accelerator control network and compared it with
the industry-renowned scanning software Nmap and Masscan scanners. As shown in Table 1, the IP
addresses to be scanned come from the HIRFL control network. There is a total of 13,915 IP addresses
in 55 VLANs, excluding network addresses, broadcast addresses, and gateways. The IP address is
exported from the MYSQL database to a TXT file for the scanner to load. The operating system of the
HIRFL Scanner and Nmap is windows 7 64-bit, and the CPU is Intel Core I7-6567U 3.3 GHz, with 16GB
memory. Masscan uses the same hardware environment, and the operating system is Centos 7. In order
to improve the accuracy of the test results, all experimental results are the average values of the three
tests, which were conducted under different network load periods. We use Nmap with a graphical
interface Zenmap 7.80, and the version of Masscan is 1.0.6.
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Table 1. All IP addresses used in port scanning.

VLAN IP Address VLAN_DESC VLAN IP Address VLAN_DESC

10 10.10.2.0/24 Central room 107 10.10.107.0/24 CSRm
14 10.10.14.0/24 Single particle 108 10.10.108.0/24 CSRm
15 10.10.15.0/24 Single particle 109 10.10.109.0/24 CSRm
16 10.10.16.0/24 SSC 110 10.10.110.0/24 CSRm
17 10.10.17.0/24 SSC 111 10.10.111.0/24 CSRm
41 10.10.41.0/24 T128 112 10.10.112.0/24 CSRm
42 10.10.42.0/24 T128 113 10.10.113.0/24 Langdao North
43 10.10.43.0/24 T128 114 10.10.114.0/24 Langdao North
45 10.10.45.0/24 SFC 115 10.10.115.0/24 Langdao North
46 10.10.46.0/24 SFC 116 10.10.116.0/24 Langdao South
48 10.10.48.0/24 SFC 117 10.10.117.0/24 Langdao South
51 10.10.51.0/24 HIRFL 118 10.10.118.0/24 Langdao South
52 10.10.52.0/24 HIRFL 119 10.10.119.0/24 Langdao South
53 10.10.53.0/24 HIRFL 120 10.10.120.0/24 RIBLL2
54 10.10.54.0/24 HIRFL 121 10.10.121.0/24 RIBLL2
90 10.10.90.0/24 HIRFL 122 10.10.122.0/24 RIBLL2
91 10.10.91.0/24 HIRFL 123 10.10.123.0/24 RIBLL2
92 10.10.92.0/24 HIRFL 124 10.10.124.0/24 RIBLL2
95 10.10.95.0/24 HIRFL 125 10.10.125.0/24 RIBLL2
96 10.10.96.0/24 HIRFL 126 10.10.126.0/24 CSRe
99 10.10.99.0/24 RIBLL1 127 10.10.127.0/24 CSRe

100 10.10.100.0/24 RIBLL1 128 10.10.128.0/24 CSRe
101 10.10.101.0/24 RIBLL1 129 10.10.129.0/24 CSRe
102 10.10.102.0/24 CSRm 130 10.10.130.0/24 CSRe
103 10.10.103.0/24 CSRm 131 10.10.131.0/24 CSRe
104 10.10.104.0/24 CSRm 998 172.16.110.0/24 virtualization
105 10.10.105.0/24 CSRm 999 172.16.100.0/24 virtualization
106 10.10.106.0/24 CSRm

4.2. The Comparisons of IP Address Online and Port State Independent Detection

We first divide all the IP addresses on the accelerator into 6 groups by number for the ping scan
test. In this experiment, Nmap was scanned in three time modes: T3 (normal), T4 (aggressive), and T5
(insane); the sP parameter is used to perform a ping scan without further testing, such as for port scans
or operating system scans. Then we conducted port scanning 6 times for a server with IP address:
10.10.100.125. The number of scanning coroutines of HIRFL Scanner is 3000. The number of ping
repetitions is 3, and the timeout period is 100 ms. The IP scanning results are shown in Table 2. HS Time
represents the scanning time used by the HIRFL Scanner. As the number of scanning ports increases,
the scanning time of the HIRFL scanner and Nmap is increasing. For Nmap, we can see that T5 mode
can take the least amount of time to complete the scan. The HIRFL Scanner can complete the scanning
of all IP addresses in about 44 s, and the scanning speed is significantly faster than Nmap, which
finished the scanning process after 378.5 s. When the number of IPs is 2530, the HIRFL scanner is
93.19% faster than Nmap using T5 mode. Judging from the scanning results, the scanning results of
the HIRFL scanner and Nmap are basically the same, and the maximum deviation is 4. This maximum
deviation refers to the number of inconsistencies between the HIRFL scanner and Nmap scanning
results, mainly the number of false positives.

In the vertical scanning experiment, Nmap was scanned in sS (TCP SYN) and sT (TCP connect)
modes, respectively, and the time template was T5. For HIRFL Scanner, the coroutine is set to 3000
and the timeout is 100 ms. Table 3 shows the vertical scanning results of the HIRFL Scanner and
Nmap Port Scanner. The data shows that the accuracy of the two port scanners is basically the same,
and the deviation may be caused by packet loss. For Nmap, sS mode is significantly faster than sT.
The scanning speed of the HIRFL Scanner is also better than that of Nmap. In the small-scale port
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scanning, the maximum speedup ratio is 98.33%, while in the full port scanning, the speed is increased
by 44.68%.

Table 2. Scanning results of HIRFL Scanner and Nmap IP Scanner.

Num of IP HS Time (s)
Nmap Time (s)

HS Result
Nmap Result

T3 T4 T5 T3 T4 T5

253 4.12 21.83 21.53 20.77 47 47 47 47
2530 5.98 102.85 96.77 87.75 201 201 201 201
5060 11.45 184.58 175.52 159.10 442 441 441 441
7590 16.57 267.90 247.58 228.15 657 656 656 656

10,120 30.42 329.27 311.39 286.92 843 839 840 841
13,915 44.08 436.21 415.03 378.50 1143 1140 1139 1140

Table 3. The vertical scanning results of HIRFL scanner and Nmap.

Num of Ports HS Time (s)
Nmap T5 Time (s)

HS Result
Nmap T5 result

sS sT sS sT

1000 0.31 18.77 65.10 9 9 9
10,000 4.12 21.36 251.92 12 12 12
20,000 7.32 23.68 456.72 11 12 12
30,000 10.84 27.18 662.92 13 13 13
40,000 14.99 29.00 868.51 15 15 15
65,535 20.65 37.34 1391.98 16 17 17

4.3. The Comparisons of Scanning Results of IP Devices with Different Port Numbers in Accelerator
Control Network

We scanned each port of all devices in the accelerator experiment. A total of 912 million ports
of 13,915 devices were scanned. For Nmap, we choose T5 and sS parameters to accelerate scanning.
The coroutines and timeout of the HIRFL scanner are set to 3000 and 50 ms, respectively. Table 4
summarizes the statistical results of the top ten services running on each port in this experiment.
When using Nmap to scan, it took a week to complete all port scans, while the HIRFL Scanner shortened
the time to 38.65 h. It can be seen from Table 4 that there are many services of HIRFL system equipment
running on non-standard ports, and Nmap only scans ports from 1 to 1024 by default, and those
services running on non-standard ports cannot be accurately identified. Similarly, it can be observed
that the port scanning statistics of HIRFL Scanner and Nmap have deviations. The maximum deviation
is 7, which may be caused by the scanning time period. The error between them is mainly based on
false positives.

Table 4. The block scanning results of HIRFL Scanner and Nmap.

Port Service HS Count Nmap Count Variance

80 http 262 256 6
3389 ms-wbt-server 155 148 7
445 microsoft-ds 143 147 4
22 ssh 139 143 4

111 rpcbind 107 110 3
49,152 unknow 106 110 4

23 telnet 102 107 5
49,153 unknow 99 101 2
5064 channel access 92 97 5

59,110 ni-psp 80 83 3
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4.4. The Comparison of Hit Rate when Using the Shodan Dataset

In this experiment, we use the scanning results of Shodan [33,34] as the standard to scan devices
in the Shodan database that provide FTP, SSH, Telnet, SMTP, HTTP, and POP3 services in China.
According to the data in the Shodan database on 5 June 2020, there are 1,037,806 devices providing FTP
services in China. We chose 10,000 of them to perform the scanning experiment, so the denominator is
10,000, and other protocols also use this configuration. The hit rate is used to evaluate the accuracy of
the scanner, its definition is as follows:

Hit rate =
total number detected by the scanner

10000
(1)

Because the scanning process is performed via the Internet, there may be situations such as
network congestion that affect the scanning results, so we continue to adopt the method of taking the
average of three tests. The hit rate of each scanner is shown in Figure 8. For Nmap, we continue to
select T5 and sS parameters to speed up the scanning. The coroutines and timeout of HIRFL Scanner are
set to 3000 and 100 ms, respectively. Masscan’s packet sending speed is set to 1000 packets per second,
and it has the best scanning speed performance, but the scanning accuracy is quite low. The scanning
accuracy of HIRFL Scanner is basically consistent with Nmap, and the maximum error of the hit rate is
0.07. The inconsistency may be caused by network packet losses.
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5. Conclusions

Port scanning is very useful for defensive penetration testing of HIRFL devices. Scanning
HIRFL devices can determine which services are exposed to the network, therefore we can check
the configuration of each device in a targeted way. In addition, we can take preventive measures
to reduce the losses caused by malicious attacks. Based on the high concurrency characteristics of
the Golang language, this paper develops a large-scale IP address and port scanning tool: HIRFL
Scanner. The scanner adopts CS architecture and employs GTK to develop the front-end GUI interface,
so as to achieve the purpose of separating the front end and back end. The most important feature
of this tool is the cross-platform and user-friendly operation interface. It allows the user to specify
an IP range or port number (comma separated list), and the number of goroutines the user wants to
create at runtime. We used the HIRFL control network and Shodan data sets to verify the accuracy
and scanning rate of the HIRFL Scanner system. Comparative experiments show that the system’s
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scanning rate is significantly superior to the Nmap scanner, and the accuracy is basically the same as
Nmap, which meets our application needs.
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