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Abstract: Disaster robotics is a growing field that is concerned with the design and development of
robots for disaster response and disaster recovery. These robots assist first responders by performing
tasks that are impractical or impossible for humans. Unfortunately, current disaster robots usually lack
the maneuverability to efficiently traverse these areas, which often necessitate extreme navigational
capabilities, such as centimeter-scale clearance. Recent work has shown that it is possible to control
the locomotion of insects such as the Madagascar hissing cockroach (Gromphadorhina portentosa)
through bioelectrical stimulation of their neuro-mechanical system. This provides access to a novel
agent that can traverse areas that are inaccessible to traditional robots. In this paper, we present a
data-driven inertial navigation system that is capable of localizing cockroaches in areas where GPS
is not available. We pose the navigation problem as a two-point boundary-value problem where
the goal is to reconstruct a cockroach’s trajectory between the starting and ending states, which are
assumed to be known. We validated our technique using nine trials that were conducted in a circular
arena using a biobotic agent equipped with a thorax-mounted, low-cost inertial measurement unit.
Results show that we can achieve centimeter-level accuracy. This is accomplished by estimating
the cockroach’s velocity—using regression models that have been trained to estimate the speed
and heading from the inertial signals themselves—and solving an optimization problem so that the
boundary-value constraints are satisfied.
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1. Introduction

Disasters are defined as discrete meteorological, geological, or man-made events that exceed local
resources to respond and contain [1]. Disaster response is the phase of emergency management that
is focused on saving the lives of those affected by the disaster and mitigating further damage by the
disaster. Over the past 50 years, mankind has become increasingly urbanized, with roughly 55% of the
human population living in urban areas [2]. As such, it is increasingly likely that disasters will occur in
urban areas. This has led to the formation of specialized Urban Search and Rescue (USAR) teams that
are capable of responding to a wide range of disasters in urban areas [3]. Time sensitivity and operation
under harsh conditions are among the main challenges for search and rescue. USAR teams have been
called upon to conduct operations in areas of extreme heat [4] or radiation [5], as well as environments
containing explosive gases [6] or airborne pollutants such as carcinogens [7]. The aforementioned
issues have birthed an entire discipline of field robotics, coined disaster robotics (or alternatively,
search and rescue robotics) [8]. Disaster robotics is concerned with the design and deployment
of robotic agents—whether they be ground, aerial, or marine—that are capable of addressing the
challenges of disaster response.
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USAR teams often use Unmanned Ground Vehicles (UGVs) to explore areas that would be
impossible to rapidly, and safely, explore themselves. Existing robotic platforms can be used in
areas where there are several meters of clearance; however, urban ruins can contain rubble piles or
damaged buildings with voids that are several centimeters wide, with high tortuosity and verticality,
and exhibiting a wide range of surface properties. Current technology is limited in its ability to
miniaturize a robot to this scale while retaining enough mobility to traverse these environments.
A potential solution to the mobility problem comes in the form of biologically-inspired robotics [9],
a field of robotics that is interested in creating robots that mimic animal locomotion. Biomimetic modes
of motion include legged locomotion (e.g., rHex [10] and VelociRoACH [11]) and serpentine locomotion
(e.g., Active Scope Camera [12]). Research has also been conducted into creating grippers that mimic
the adhesive behavior of insects and geckos (e.g., [13,14]). Though these methods are promising, it is
still uncertain how they will be miniaturized to the centimeter scale while retaining their mobility
across a wide range of surfaces.

Researchers [15–17] have shown that it is possible to remote control a Madagascar hissing
cockroach (Gromphadorhina portentosa) via the bioelectrical stimulation of its neuro-mechanical system.
These roaches grow to be approximately 60 mm long and 30 mm wide, with a payload capacity of
approximately 15 g [15]. They use a combination of pretarsal claws and adhesive pads to cling to
and move on a wide variety of surfaces [18], with top speeds of several cm/s. Their exoskeleton is
a compliant structure, allowing them to fall from heights and squeeze under obstacles [19] without
issue. Additionally, G. portentosa has the ability to survive days without water and weeks without
food. This combination of features could make G. portentosa suitable for USAR teams in disaster
response. As shown in the literature, these cockroaches can be outfitted with various electronic sensor
payloads to be used for search, reconnaissance, and mapping tasks in urban ruins necessitating extreme
mobility [20] (see Figure 1). These agents are referred to as biological robots, or biobots. Biobots can
be used, both individually and in larger groups, to perform sensing tasks that are impractical or
impossible to accomplish by other means. Sensing modalities may include microphone arrays for
two-way audio, environmental sensors such as temperature and gas monitors, and cameras or infrared
sensors for video feed. Each biobot has wireless capabilities, and special sensor payloads can be
fabricated so that biobots can act as mobile repeaters to improve communication reliability.

Figure 1. Diagram of a biobotic network: (a) Biobots serve as above/below ground agents and can be
controlled either individually or collectively via a leader agent (in this case, a UAV). (b) Each biobot is
several centimeters in length and a United States quarter dollar is shown for scale comparison [21].
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USAR scenarios present substantial challenges for localization and mapping. Traditional techniques
for localization that rely on Global Positioning Systems (GPS) are not feasible as GPS signals may
be unavailable under the rubble. Furthermore, environmental hazards—such as fire and smoke
—make it so that many commonly used ranging techniques (e.g., LIDAR/RADAR) become unreliable.
Even vision-based techniques can fail in the presence of dirt, mud, and debris. Dirafzoon et al. [22]
have recently proposed a solution for mapping that is based on Topological Data Analysis. This method
generates a coordinate-free map of an environment using a group of biobots by keeping track of when
they come into close proximity with one another. This map can be used to track the connectivity of
a group of biobots, and given sufficient coverage of an area, it can also provide a coarse estimate of
what obstacles (e.g., voids in the environment or physical impediments) are present. Two limitations
of this approach are: first, the map does not contain accurate metric information—i.e., it cannot give
responders the location of point of interest; secondly, the algorithm requires a large number of biobotic
agents to be deployed in an area, which may not always be feasible. The two main contributions of
this work are as follows:

• Development of a data-driven model for determining the speed of a biobotic agent (G. portentosa)
based solely on inertial signals obtained from a thorax-mounted Inertial Measurement Unit (IMU).

• Design and verification of an inertial navigation system that is capable of estimating the pose of
G. portentosa without the aid of additional sensing modalities.

Our navigation system requires minimal sensing modalities and will function with a single
biobotic agent, eliminating the need for the biobot to use high-bandwidth/high-power sensors, such as
cameras, for navigation.

The remainder of the paper is as follows: Section 2 introduces the topic of inertial navigation
as well as work that is related to our system; Section 3 provides an overview and mathematical
formulation of our navigation system; Section 4 describes the details of our navigation system;
Section 5 details the experimental setup used for analysis and validation; Section 6 documents the
performance of our navigation system; Section 7 concludes the paper and discusses ongoing and
future work.

2. Related Work

A localization system that relies purely on inertial signals is known as an Inertial Navigation
System (INS) [23]. Furthermore, inertial signals are often used in conjunction with other sensing
modalities to create integrated navigation systems that are capable of localization. A brief review of
integrated navigation systems, focusing on those that use IMUs, is presented next.

The goal of a navigation system is to estimate the position and/or orientation of an agent.
When both position and orientation are tracked, the resultant system is said to estimate the pose of
an agent. In the context of this paper, we will refer to pose estimation as ’localization’. There are a
variety of sensing modalities that can be combined with inertial signals to localize an agent, one of the
most common being Global Navigation Satellite Systems (GNSS) such as GPS. Systems combining
both visual and inertial data are also becoming more common due to a combination of improved
on-board processing capabilities, lower camera costs, and increased camera resolution (e.g., [24–27]).
Other common sensors used to supplement inertial navigation systems include range finders such as
LIDAR [28–30], RADAR [31,32], and SONAR (typically for underwater applications) [33,34].

The position and orientation of an agent can be obtained through double integration of the
accelerometer and single integration of the gyroscope signals; however, IMU sensor noise renders
these results unusuable after a short period of time for all but the most precise (i.e., expensive)
IMUs. As such, navigation systems that rely solely on integrating the inertial signals are rare,
and navigation is usually achieved by supplementing inertial signals with data obtained via additional
sensing modalities. Usually, the sensor modalities are integrated using a Kalman Filter. Two common
INS/GNSS frameworks are the ’loosely-coupled’ and ’tightly-coupled’ approaches [23], which use
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GNSS position/velocity and GNSS psuedo-range/psuedo-range rate, respectively. When GNSS is
unavailable, as is the case for our application, then supplemental sensors, such as those listed in the
previous paragraph, can be used for position and/or velocity estimation.

Pedestrian Dead Reckoning (PDR) is a particular application of inertial navigation where IMUs
are used in a novel way [35]. The idea behind PDR is to use the inertial signals to determine
a person’s stride by keeping track of when the feet hit the ground, thus limiting error growth
by providing a measure of position/orientation displacement without the need to integrate the
inertial signals themselves. The event pertaining to when a foot hits the ground, known as a
zero-velocity update, can be tracked using an analytical [36,37] or a data-driven model [38–40].
Additionally, the stride lengths themselves can be determined analytically [41] or via a data-driven
approach [42]. Unfortunately, many agents do not exhibit distinctive (and consistent) events such as
zero-velocity updates. This is the root cause of the difficulty of inertial navigation in GNSS-denied
areas—a lack of sensors and/or events that can be used to reduce the growth of pose error that is caused
by noisy IMU signals [43]. As a result, machine learning techniques have been leveraged to learn
position and velocity models as an alternative to deriving them from first principles. The effect of the
IMU noise is mitigated since the noisy IMU signals are integrated into the model itself. The downside
to this approach is that navigation accuracy is directly dependent on the data used to train the model(s).
If the data used to train the model is dissimilar to the data obtained in the field, then the learned
model(s) will provide poor approximations. Nevertheless, machine learning techniques have been
successfully demonstrated for inertial navigation in areas where GNSS is unavailable.

Most inertial navigation systems track the position, velocity, and orientation, as well as the bias
terms on the accelerometers and gyroscopes. These states comprise the traditional 15-state inertial
navigation system, and it is these states that are estimated via data-derived models. Early examples of
position/velocity models can be seen in [44,45]. In both papers, the target application was land vehicle
navigation. The novelty of the papers came from using the GPS signal as the ground truth for training
two neural networks that would be responsible for position and velocity estimation when GPS was
unavailable. Under this framework, the vehicle used an INS/GPS system when GPS was available and
switched to using the neural networks when GPS was unavailable. The position displacements were
estimated using a neural network that took the INS estimates of velocity and orientation as inputs.
In [44], the velocity estimation neural network took the INS velocity estimate and time information as
inputs, whereas [45] only used the INS velocity estimate as input. Other authors have also taken the
approach of using INS estimates to learn models for position and velocity estimation (e.g., [46,47]);
however, the need to use INS estimates creates a potential problem—if GPS is lost for an extended
period of time, then the navigation system will degrade in performance since the INS estimates
will become increasingly erroneous. In [44], this problem was mitigated by creating a variant of
their system that used the output of the velocity estimation neural network as input to the position
estimation neural network instead of the INS velocity estimates. In [47], this issue was resolved by
combining random forest regression with Principal Component Regression (PCR) [48]. Other authors
have proposed using windowed inertial signals for pose estimation, thus avoiding this particular issue.
Windowed approaches can be broken into two categories: models that use Long Short Term Memory
(LSTM) neural networks [49–52] and models that use Convolutional Neural Networks (CNN) [38,53].

Some authors have created learning models that combine both LSTM and CNN approaches
(e.g., [54]) while others have favored using ensemble learning methods in lieu of neural
networks [55,56]. The majority of the models in the literature involve position or velocity estimation;
however, these are not the only quantities that can be estimated. Orientation [50,54] and speed [38]
can be estimated and the noise parameters for Kalman Filter frameworks can be learned as well [53].

There are two competing paradigms on how learned models should be incorporated into
a navigation system: end-to-end frameworks and pseudo-measurements. The idea behind the
end-to-end framework is that a learned model is sufficient to output the pose of an agent given its
inertial signals. Systems utilizing the end-to-end paradigm tend to incorporate deep neural networks
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involving CNNs or LSTMs [50,51,54,57]. The primary benefit of an end-to-end framework is the ability
to implicitly model the relationship between the agent’s egomotion (measured by the inertial signals)
and its pose. As such, it becomes possible to create navigation systems using lower quality IMUs.
The major downside of this approach is that the accuracy of these models is highly dependent on
the data used to train them. Proponents of the psuedo-measurement approach argue that the best
way to incorporate learned models is by adding them as additional measurements to an existing
navigation system (e.g., a Kalman filter) [38,49,52,53,55,58]. The benefit of this approach is that the
existing navigation system is augmented rather than replaced; however, the challenge of this approach
comes from determining the details of how the learned model(s) will be integrated into the existing
system. A middle ground approach has also been used in the literature, with the idea being to use the
original navigation system when possible and the learned model(s) only when necessary [44–47,56].
A list of current trends and challenges in integrated navigation systems can be found in [59,60].

Our target application, navigation of centimeter-scale rubble stacks using biobotic agents, is a
form of terrestrial navigation in a GNSS-denied environment. It shares similarities to the pedestrian
and automobile localization problems that are commonly seen in the literature; however, there are
two key distinctions: first, there are no zero-velocity events that occur with guaranteed regularity,
and secondly, biobotic agents frequently change both their speed and their direction. To resolve these
issues, we developed an inertial navigation system that utilizes regression models for estimating
speed and heading. Speed regression was chosen as an alternative to velocity regression to simplify
the training process. Other papers, such as [38], estimate speed for zero-velocity detection; however,
these papers are concerned with determining if an agent is moving (i.e., a classification problem),
whereas we are interested in how fast an agent is moving. Our algorithm computes heading by
using a regression model to estimate the heading correction that must be applied to headings that are
computed by an Attitude and Heading Reference System (AHRS). This idea of using a data-driven
model to correct an INS output is similar to [55]; however, in that paper, the authors developed a
model for determining position error. Although our speed and heading models use windowed inertial
signals, similar to many of the papers listed in the preceding paragraphs, we explicitly extract the
features from the inertial signals [61] whereas other approaches, such as [50,54], do this implicitly.
Our models use random forests to avoid the overfitting issues that are commonly seen in neural
networks. Our approach of using random forests is similar to [46]; however, that paper proposed a
navigation system that took INS velocities as input and returned position displacements as output.
We incorporate the speed and heading models into our navigation system by using them to solve a
two-point boundary-value problem.

3. Problem Formulation

Consider the following scenario, illustrated in Figure 2: a USAR team needs to search a target area
that is not easily accessible via conventional tools (e.g., a rubble stack exhibiting high tortuosity and
centimeter-scale clearance). The team deploys a biobotic agent into the target area, where it explores
the environment while simultaneously collecting pertinent sensor data. Once the biobot enters the
target area, its pose is no longer observable; however, the biobot will eventually leave the target area,
whereby its pose will once again be observable. The goal is to reconstruct the biobot’s trajectory using
inertial data so that any signals of interest can be localized.

Our biobots use low-cost IMUs to decrease unit cost and increase scalability. These IMUs have
noisy gyroscope signals that make it difficult to accurately estimate the orientation of the biobot.
As such, the gyroscope signals must be supplemented with additional information to limit the error
growth of the orientation. We chose to use the direction of gravity [62] as the supplemental information.
A downside to this approach is that it necessitates an algorithm for determining the direction of gravity
in the body frame of the biobot. Ordinarily, this process would be accomplished using an orientation
estimate that is obtained from integrating the gyroscopes; however, this strategy is not viable due to
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sensor noise. To avoid this issue, we restrict the agent to 2D planar environments so that the direction
of gravity in the body frame is known, and we leave the extension to 3D for future work.

Figure 2. Problem Description: Suppose we want to track the trajectory of an agent over time. The agent
can be observed during the time intervals [t1, t2] and [t3, t4]; however, the agent is not observable during
the time interval (t2, t3). As such, the agent’s state is unknown during this time interval. The goal of
our algorithm is to estimate the agent’s state during the interval (t2, t3) so that the trajectory over the
interval [t1, t4] can be reconstructed. See Section 3 for a description of the agent’s state, xl .

The trajectory estimation problem can be formulated as a nonlinear two-point boundary-value
problem [63,64], where the biobot’s pose at both the entry (start state) and exit (final state) points are
known. In this boundary-value problem, the objective is to find an optimal state trajectory between
the start and end pose. Optimality is measured by how well the reconstructed state trajectory matches
the estimated speeds and headings that are obtained from the IMU mounted on the biobot.

For our application, we define a local tangent frame, l, and use it as both the reference and
resolving frames of our navigation system, where l uses Cartesian coordinates. Additionally, we define
the body frame (denoted by b) to be centered on the IMU that is mounted to the body of the biobotic
agent itself, with origin rl

lb. Note that the subscript of the term rl
lb means “frame b with respect to (w.r.t.)

frame l”, and the superscript means “resolved using frame l”. The coordinate frames are illustrated
in Figure 8.

We define the biobot’s state, xl(t), to be its position, speed, and heading:

xl(t) = [rl
lb(t), sl

lb(t), ψlb(t)]T (1)

where rl
lb = (xl

lb, yl
lb), sl

lb =
√
(ẋl

lb)
2 + (ẏl

lb)
2, ψlb, denote the biobot’s position, speed, and heading,

respectively. We assume that the biobotic agent always moves in the direction that it is facing.
Under this assumption, we can recover the biobot’s velocity, vl

lb = ṙl
lb = (ẋl

lb, ẏl
lb), by combining its

speed and heading: ẋl
lb = sl

lb · cos(ψlb) and ẏl
lb = sl

lb · sin(ψlb). Note that this model is very similar to
the Dubins car [65] and Reeds–Shepp car [66] models that are commonly used in robotics; the difference
is that those models use speed and angular rate as inputs, whereas our model defines speed to be a state
and uses specific force and angular rate as inputs (see Figure 3), denoted as fb

ib and ωb
ib, respectively.

We represent the biobot’s true trajectory as a smooth mapping in R4, xl(t) : [0, t f ]→ R4, where t f

denotes the biobot’s exit time. Our goal is to find a reconstruction of xl , x̂l(t; θ) : [0, t f ]→ R4, where θ
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denotes the set of parameters that govern x̂l . The optimal parameters are obtained by minimizing the
following cost functional:

J(θ) =
∫ t f

ts
||xl(t)− x̂l(t)||2 dt

s.t. x̂l(ts) = xl(ts) , x̂l(t f ) = xl(t f )

(2)

subject to the boundary conditions, where ts and t f denote the entry and exit times, respectively.
We pose this problem as a supervised machine learning problem, where the objective is to minimize
Equation (2) by training a model that is capable of generating x̂l(t) using inertial signals. The ground
truth values of xl(t) are obtained from video footage of the biobot.

Figure 3. System Pipeline: The algorithm is broken into two modes of operation: Training Mode and
Prediction Mode. In training mode, inertial signals are combined with video ground truth data to train
regression models that can be used to estimate the speed and heading of the agent. In prediction mode,
the trained speed/heading models are used to estimate the speed and heading from the inertial signal
input. The estimated speeds/headings are then combined to reconstruct the trajectory of the agent.
fb

ib and ωb
ib denote the specific force measured by the accelerometer and the angular rate measured

by the gyroscope, respectively—frame i denotes the Earth-centered inertial frame. ŝl
lb is the biobot’s

estimated speed, ψ̃lb is the heading estimate obtained from the AHRS, and ψ̂lb is the biobot’s estimated
heading after it has been corrected.

4. Methodology

The goal of our navigation system is to estimate a biobot’s trajectory during time intervals where it
cannot be observed. We assume that the biobot’s state is known at the beginning and end of these time
intervals, and use the inertial signals obtained from an IMU mounted on the biobot to generate a curve
that best approximates the biobot’s trajectory. Our algorithm uses machine learning to accomplish this
goal and the system pipeline is shown in Figure 3.

The models used in the algorithm are trained via supervised learning. As such, there are two
phases to our algorithm: Training Mode and Prediction Mode. In training mode, features are extracted
from the inertial signals and used to generate regression models for estimating the speed of the biobot
and correcting the heading that is obtained from an Attitude and Heading Reference System (AHRS).
In prediction mode, these two models are used to estimate the biobot’s trajectory.
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This section provides the details necessary to implement our algorithm, and is broken down
into subsections that correspond to the modules shown in Figure 3. Additionally, all models were
implemented using the MATLAB Statistics and Machine Learning toolbox [67].

4.1. Attitude and Heading Reference System (AHRS)

An AHRS is a partial INS that only tracks orientation. These systems are often used to supplement
gyroscopes that are too noisy to be used as standalone systems for computing orientation. Due to the
noise on our gyroscopes, we use the Madgwick Filter [62], an AHRS commonly used in the robotics
community, to compute the biobot’s orientation. The Madgwick Filter is a complementary filter
that combines gyroscope integration, accelerometer leveling, and magnetic heading to produce an
accurate estimate of orientation. Furthermore, the Madgwick Filter generates an orientation estimate
for each IMU sample that is given as input. Since our application is prone to magnetic interference,
we do not use the magnetic heading component of the Madgwick Filter. The Madgwick Filter and
the ramifications of excluding the magnetic heading component from it are elaborated upon next,
starting with the filter’s cost function:

f (q̂b
l , gl

b, ĝb
b) = q̂b†

l ◦ gl
b ◦ q̂b

l − ĝb
b (3)

where q̂b
l , gl

b, and ĝb
b, denote the estimated orientation (in quaternion form) of the body w.r.t. the local

tangent reference frame; direction of the body’s acceleration due to gravity (i.e., a unit vector),
resolved in the local tangent reference frame; and the estimated direction of the body’s acceleration
due to gravity, resolved in the body frame, respectively. Note that † and ◦ denote the quaternion
conjugate and quaternion product, respectively. The interested reader can learn more about using
quaternions as rotation operators in [68].

The idea behind Equation (3) is that the correct orientation estimate will be the orientation that
minimizes the difference between the direction of the acceleration due to gravity resolved in the
reference frame (in quaternion form), gl

b = [0, 0, 0,−1]T , and the direction of the acceleration due to
gravity resolved in the body frame. The underlying assumption of Equation (3) is that there exists a
means by which ĝb

b can be estimated. As mentioned in Section 3, we assume that the biobot is operating
on the plane, and under this assumption, ĝb

b = gl
b. The gradient of Equation (3) w.r.t. qb

l , denoted as
∇ f (qb

l ), is used to update the orientation of the biobot, as follows:

q̂b
l (+) = q̂b

l (−) + q̇b
l (+)∆t

q̇b
l (+) = q̇b

l (−)− β
∇ f (q̂b

l )

||∇ f (q̂b
l )||

q̇b
l (−) = 1

2 · q̂
b
l (−) ◦ [0, ωb

ib]
T

(4)

where ∆t denotes the sampling interval of the IMU, β is the gain of the filter, and (-) and (+) are used
to designate whether a term has been computed before or after the update, respectively. The derivation
of Equation (4) can be found in [62]. Since the biobot is restricted to the plane, we do not need to
worry about singular points in Euler Angle sequences. As such, we extract the estimated heading
of the biobot from the the Madgwick Filter, ψ̃lb, by converting the quaternion orientation output to
an extrinsic ZYX Euler Angle Sequence and storing the rotation around the +Z axis. The details on
converting between quaternions and Euler Angles can be found in [68], Chapter 7.

As mentioned previously, the Madgwick filter has a third component to it that involves magnetic
heading. Specifically, that term’s purpose is to create a unique orientation fix by using the direction
of the Magnetic North Pole as an orthogonal direction to the direction of gravity. Since we cannot
determine Magnetic North due to the magnetic interference that is likely present in our application,
we can only restrict the orientation to a plane that is orthogonal to the estimated direction of gravity,
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ĝb
b. As such, the orientation generated by our AHRS will drift over time. This drift is caused by the

gyroscope error and grows linearly in time, as shown in Figure 5 and discussed in Section 4.4.1.

4.2. Feature Extraction

Inertial Measurement Units produce specific force and angular rate readings, [fb
ib, ωb

ib]
T ,

at a specified sampling rate. Authors commonly use these inertial signals in their direct form
(i.e., specific force/angular rate) or integrated form (e.g., velocity/orientation) when adding machine
learning to an INS. Our speed estimation (Section 4.3) and heading correction (Section 4.4) models use
time-domain features extracted from windowed inertial signals. This section describes the process of
generating the inputs to our models from the calibrated inertial signals themselves.

Our model is trained using the dataset, D :=
[
{d(τk), sl

lb(τk), ψlb(τk)}k=1..n

]
, where n denotes the

number of data points in the dataset. The kth feature vector is denoted as d(τk), where τk denotes
the timestamp associated with the kth data point. Henceforth, “IMU sample” will refer to the IMU
readings themselves, and “data point” will refer to the elements ofD, unless explicitly stated otherwise.

Each data point is computed from a window of inertial data. We use a one-second sliding
window with 50% overlap. This particular configuration was chosen based on empirical evidence
that was shown in [61]. The goal of that paper was to recognize when biobots were exhibiting
various motion-based activities using inertial signals obtained from an IMU mounted on their
thorax. Speed regression and heading correction are also motion-based, hence we chose this particular
configuration for the sliding window.

Each data point is timestamped using the timestamp of the first video frame in the window.
The ground truth speed and heading that are associated with each data point are obtained via an
algorithm that corrects the ground truth video frames so that the ground truth speeds and headings
integrate to match the ground truth positions. This corrective algorithm is detailed in Section 4.6.

Each feature vector consists of 60 time-domain features shown in Table 1 that are extracted from
the windowed IMU data. These features are commonly used for activity recognition using wearable
sensors and were shown in [61] to also be useful for classifying motion-based activities for biobots.
We also normalize the features to have zero mean and unit variance—this is commonly done to prevent
features from having undue influence due to their relative magnitude to other features. By extracting
features from the windowed IMU data, we reduce the dimensionality of our model input to 60,
irrespective of window size. Furthermore, the extracted features increase our models’ robustness to
noise and reduce their susceptibility to spurious IMU readings (e.g., outliers and/or missing data).

Table 1. Feature vector.

Feature Name # Features

Mean 6

Variance 6

Skewness 6

Kurtosis 6

Cross-Correlation between Sensors 15

Range (Max Value–Min Value) 6

Mean Absolute Deviation 6

Interquartile Range 6

Gyroscope Energy 3
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4.3. Speed Estimation Model

The goal of our speed estimation model is to estimate the speed of the biobot, ŝl
lb, using feature

vectors created from windowed inertial data. There are two components to the speed estimation
model: a classification model that can detect when the biobot is stationary, denoted asMz, and a
regression model that can estimate the speed of the biobot when it is not stationary, denoted asMs.
Explicitly, the structure of the speed estimation model is given by this equation:

ŝl
lb(τk) =

{
0 , Mz(d(τk)) = 1

Ms(d(τk)) , Mz(d(τk)) = 0
(5)

where τk denotes the timestamp of the kth feature vector, as discussed in Section 4.2.

4.3.1. Speed Regression

Biobots (G. portentosa) exhibit a tripod gait and preliminary analysis [69] has shown that it is
possible to directly estimate a biobot’s speed from its inertial signals, as opposed to integrating the
signals over time, as a result of the wobbling motion that is induced by the tripod gait. Using these
findings, we designed Ms : RF → R, i.e., ŝl

lb(τk) := Ms(d(τk)), where F denotes the number of
features;Ms is only used when the biobot is moving, as described in Equation (5).

Ordinarily, speed is estimated by integrating the accelerations that are extracted from the IMU’s
specific force readings; however, this is not feasible for low-cost IMUs because sensor noise renders
these values unusable after a brief period of time. The error characteristics of our IMU (see Table 5)
place it into this category. Furthermore, this issue is exacerbated by the lack of consistent measurements
(e.g., zero-velocity updates) that can be used to curtail error growth, thus limiting our ability to apply
traditional INS frameworks such as Kalman Filters. Fortunately, by usingMs, the biobot’s speed can
directly estimated from its inertial signals, thus eliminating the linear error growth over time that
occurs when obtaining the speed from integrating the acceleration. We realizedMs using a random
forest [70] of regression decision trees [71,72]. Specifically, we used the Classification and Regression
Tree (CART) proposed in [73]. Random forests are a type of ensemble learner [74,75] that utilize a
collection of decision trees as base learners. Random Forests are widely used for their intepretability,
strong dataset generalization abilities, and computational efficiency. We use 100 trees in our model.
This number was chosen by analyzing the error of our model as the number of trees was varied
(see Figure 4). Our decision trees are grown until the leaf nodes have partitions of, at most, five data
points each. The average speed of each leaf node is given by:

sl
lb = 1

n

n

∑
i=1

sl
lbi

(6)

where sl
lbi

denotes the speed of the ith data point in the node, n denotes the number of data points in

the node, and sl
lb is the coefficient used to fit a piecewise-constant approximation of the biobot’s speed.

Each decision tree is trained using approximately 27% of the training data, obtained via bagging,
and 20 of the 60 possible features, chosen randomly. We use the mean squared residual, denoted as Qs,
as the splitting criterion of our decision trees:

Qs =
1
n

n

∑
i=1

(sl
lbi
− sl

lb)
2. (7)

More information on splitting criteria for decision trees can be found in [74], Chapter 5. The speed
of the biobot is determined by traversing each regression tree in the random forest down to a leaf node,
obtaining that leaf node’s corresponding sl

lb value, and averaging the results of each of the decision
trees as follows:
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ŝl
lb(τk) =

1
m

m

∑
j=1

sl,(j)
lb (τk) (8)

where sl,(j)
lb denotes the average speed computed by the jth decision tree, and m denotes the number of

trees in the random forest (100 in our case). The hyperparameters forMs are shown in Table 2.

Table 2. Random forest model hyperparameters.

Parameter Names Ms Mz Mψ

Model Type Regression Classification Regression

Tree Type CART CART CART

Regression Function Piecewise-Constant N/A Piecewise-Constant

Splitting Criterion Mean-Squared Residual Gini Index Mean-Squared Residual

# Trees 100 100 100

% Training Data per Tree ≈ 27% ≈ 5% ≈ 31%

# Features per Tree 20 8 20

# Data Points per Leaf Node 5 1 5

% GT samples to flag d(τk) as stationary N/A 100% N/A

Figure 4. Analysis on Number of Trees: The Root Mean Square Error (RMSE) of the speed of the biobot
is shown as a function of the number of trees in the random forest speed regression model,Ms. We use
100 trees for our speed regression model because the RMSE does not decrease if additional trees are
added. Four trials were used to train the random forest regression model and the errors are reported
for both the training data and the test data. Each trial is approximately 30 min long.

4.3.2. Stationarity Detection

Zero-Velocity detection is commonly used in INS applications. It was shown in [61] that the
zero-velocity (i.e., zero-speed) state could be accurately tracked in biobots using a random forest
model. We used a similar model to construct a stationarity detector Mz : RF → {0, 1}, where F
denotes the number of features. The goal of Mz is to assign one of two labels to each feature
vector, denoting whether the biobot is moving (Mz(d(τk)) = 0) or stationary (Mz(d(τk)) = 1).
These labels are used in Equation (5) to estimate the biobot’s speed. Mz is very similar toMs and the
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hyperparameters for it are shown in Table 2. The primary differences betweenMz andMs stem from
the fact thatMz is a binary classifier. As such, classification decision trees are used and the splitting
criterion of the decision trees is different. Specifically, we use the Gini Index, denoted as Qz:

Qz =
2

n2

( n

∑
i=1
I(sl

lbi
= 0)

)
·
( n

∑
i=1
I(sl

lbi
6= 0)

)
(9)

where I(·) denotes the indicator function, sl
lbi

denotes the speed of the ith data point in the node,
and n denotes the number of data points in the node. The stationarity of the biobot is predicted by
taking the majority vote of the decision trees inMz.

Since d(τk) is associated with a window of data, multiple ground truth video frames could fall
within the window. As such, the number of zero-speed video frames needed to flag d(τk) as stationary
is a parameter. We flagged data points as stationary when 100% of their video frames were stationary.

4.4. Heading Correction Model

Our AHRS generates estimates of heading for each IMU sample, denoted by ψ̃lb; however,
these estimates have an error that increases linearly in time, as discussed in Section 4.1. Our heading
correction model resolves this issue and has three goals: first, it detrends the error in ψ̃lb;
secondly, it averages ψ̃lb to produce a heading for each data point, ψlb(τk); finally, it corrects ψlb(τk) to
generate a more accurate estimate of heading of the biobot. Succinctly, this process can be written as:

ψ̂lb(τk) = ψlb(τk) +Mψ(d(τk)) (10)

where ψ̂lb(τk) denotes the final heading estimate that is outputted by the heading correction model and
Mψ : RF → R, ∆̂h(τk) :=Mψ(d(τk)), where F denotes the number of features. Mψ is a regression
model that corrects ψlb(τk), where ∆̂h is the estimated heading correction. Equation (10) is solved by
splitting the heading correction model into two submodules. The first submodule detrends the AHRS
output and averages it to generate ψlb(τk); the second submodule isMψ, and it applies the corrective
term needed to generate ψ̂lb(τk), as mentioned previously. The hyperparameters forMψ can be found
in Table 2.

4.4.1. Detrending the Heading Error

The actual and estimated headings of the biobot are known at the entry and exit times,
denoted as [ψlb(ts), ψlb(t f )] and [ψ̃lb(ts), ψ̃lb(t f )] , where ts and t f denote the entry and exit times,
respectively. Using this information, we create a linear model L(t):

L(t) =
( E(t f )−E(ts)

t f−ts

)
· t + E(ts) (11)

where the heading error is defined as, E(·) = ψlb(·)− ψ̃lb(·). L(t) is then used to detrend the heading
error in ψ̃lb.

The heading associated with the kth feature vector, ψlb(τk), is computed by averaging the AHRS
output for that window:

ψlb(τk) =
1
nk

nk

∑
i=1

(
ψ̃lb(ti) + L(ti)

)
(12)

where nk denotes the number of IMU samples in the kth data point’s window, and i denotes the AHRS
output for the ith IMU sample in the window. Figure 5 shows the effect of detrending the heading
error on a biobot dataset. In this figure, the detrending algorithm reduces the linear error growth to a
constant error that fluctuates due to sensor noise.
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Figure 5. Detrending AHRS Output: The unwrapped heading of the biobot is shown for a 30-min
trial. The top graph shows the heading in radians and the bottom graph shows the original error
between the estimated and ground truth headings as well as the error after detrending the AHRS
output. The dashed line represents a heading error of 10◦. Notice how the error of the detrended AHRS
does not grow over time.

4.4.2. Learning Heading Corrections

We designedMψ to be a random forest of CART regression trees, similar toMs. The goal of
Mψ is to correct the data point’s heading estimate using d(τk). This heading correction, denoted as
∆h = ψlb − ψlb, is needed to remove the error that is introduced as a consequence of averaging
the original AHRS estimates. Mψ approximates ∆h using a piecewise-constant function, where the
coefficient associated with each leaf node is computed from the average of that particular leaf node’s

data points, ∆h = 1
n

n
∑

i=1
∆hi

. The mean-squared residual is used as the splitting criterion:

Qψ = 1
n

n

∑
i=1

(∆hi
− ∆h)

2 (13)

where i denotes the ith data point in the node and n denotes the number of data points in the node.
∆h is predicted by averaging the predictions of each of the decision trees inMψ:

∆̂h(τk) =
1
n

n

∑
j=1

∆hj
(τk) (14)

where ∆hj
denotes the average heading correction computed by the jth decision tree, and n denotes the

number of trees in the random forest (100 in our case). The estimated heading of the biobot at time τk,
ψ̂lb(τk), is computed using Equation (10).

4.5. Trajectory Estimation

Thus far, we have discussed how to obtain an estimate of the biobot’s heading, ψ̂lb(τk), and speed,
ŝl

lb(τk), for each feature vector, d(τk). In this section, we will discuss how to use these estimates to
obtain an estimate of the biobot’s position, r̂l

lb. Furthermore, we will explain how to estimate the
biobot’s state trajectory, T (t), which tracks the biobot’s state over the time interval, t ∈ [ts, t f ], where ts

and t f denote the biobot’s entry and exit times, respectively. Before we begin, we need to introduce the
terminology needed to describe T .
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We define a trajectory segment to be the state trajectory over a time interval t ∈ [tsi , t fi
].

Until now, we have described a biobot as having a singular entry point and a singular exit point;
however, this needn’t be the case. It is possible for a biobot to have multiple entry and exit points
over the course of its trajectory—for example, the biobot could repeatedly enter and leave a rubble
stack. The ith entry/exit point is used to define the time bounds of the ith trajectory segment, and the
trajectory segments are concatenated in a piecewise fashion to obtain the estimate of the biobot’s
state trajectory:

T (t) :=



x̂l
1(t) , t ∈ [ts1 , t f1)

...

x̂l
n−1(t) , t ∈ [tsn−1 , t fn−1)

x̂l
n(t) , t ∈ [tsn , t fn ]

(15)

where n denotes the number of entry/exit points, and the subscript of x̂l
i(t) is used to emphasize the

fact that the estimated state trajectory is only valid for the ith trajectory segment, which is denoted as
Ti. Additionally, we require that the biobot’s state at the entry point of the ith trajectory segment be
identical to its state at the exit point of the previous trajectory segment. This means that tsi = t fi−1

and
xl(tsi ) = xl(t fi−1

). This requirement ensures that T is an approximation of xl .
The estimated state, x̂l

i(t), requires the evaluation of r̂l
lbi
(t), ŝl

lbi
(t), and ψ̂lbi

(t). We can compute

ŝl
lbi
(t) and ψ̂lbi

(t) by linearly interpolating the speed (Section 4.3) and heading (Section 4.4) estimates
obtained from data points that fall within the time bounds of Ti. In order to satisfy the constraint
that r̂l

lbi
(t fi

) = rl
lbi
(t fi

), the estimated and actual velocity trajectories need to have the same area under

their curves:
∫ t fi

tsi
v̂l

lbi
(t) dt =

∫ t fi
tsi

vl
lbi
(t) dt. This is unlikely to happen as it would require the expected

error of v̂l
lbi
(t) to be zero—in other words, both ŝl

lbi
and ψ̂lbi

, the signals that are used to construct

v̂l
lbi
(t), would need to have expected errors of zero. To resolve this issue, we perturb the speed

and heading trajectories with piecewise-cubic splines (described in Section 4.5.1) so that r̂l
lbi
(t fi

) =

rl
lbi
(t fi

). The perturbed speed and heading trajectories are denoted as ŝl∗
lbi

and ψ̂∗lbi
, respectively, and are

generated as follows:

ŝl∗
lbi
(t) = ŝl

lbi
(t) + Ssi (t)

ψ̂∗lbi
(t) = ψ̂lbi

(t) + Sψi (t)
(16)

where Ssi (t) and Sψi (t) denote the speed and heading perturbation splines, respectively. The perturbed
speed and heading trajectories, illustrated in Figure 6, are then used to compute r̂l

lbi
(t):

r̂l
lbi
(t) = rl

lbi
(tsi ) +

∫ t

tsi

v̂l
lbi
(t) dt

v̂l
lbi
(t) =

[
ŝl∗

lbi
(t) · cos

(
ψ̂∗lbi

(t)
)

, ŝl∗
lbi
(t) · sin

(
ψ̂∗lbi

(t)
)]> (17)

where r̂lbi
(t) and v̂lbi

(t) denote the estimated position and velocity trajectories of x̂l
i(t), respectively.

To summarize, the biobot’s estimated trajectory, T (t), consists of a set of trajectory segments,{
x̂l

i(t)
}

1..n
, where the ith trajectory segment is constructed by using splines to perturb its speed and

heading trajectories so that r̂l
lbi
(t fi

) = rl
lbi
(t fi

).
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Figure 6. Perturbation Splines: A two-minute section of a biobot’s estimated speed trajectory is shown.
The interpolated speed trajectory, ŝl

lb(t), is shown in blue. The perturbed speed trajectory, ŝl∗
lb (t),

is shown in orange. ŝl∗
lb (t) and ŝl

lb(t) are magnified in the inset picture to highlight the fact that the
trajectories are different. The knot locations of the speed perturbation spline are marked with magenta
squares. Additionally, data points that have zero speed are marked with red x’s. Notice how ŝl∗

lb (t) is
zero during the stationary sections of ŝl

lb(t)—this behavior is achieved by using the algorithm discussed
in Section 4.5.3.

4.5.1. Perturbation Spline Construction

Ss(t) and Sψ(t) are the speed and heading perturbation splines that are needed to correct the speed
and heading for a trajectory segment so that the boundary condition, r̂l

lb(t f ) = rl
lb(t f ), is satisfied—this

process was described in Equation (16). The index i is reused in this section to indicate the ith spline
piece of a particular trajectory segment. The speed and heading perturbation splines of a trajectory
segment are clamped piecewise-cubic splines that have the following form:

Si(t) = ci1(t fi
− t)3 + ci2(t− tsi )

3 + ci3(t− tsi ) + ci4(t fi
− t), t ∈ [ai, bi] (18)

where ai denotes the start time of the spline, bi denotes the end time of the spline, and {cij}4
j=1 are the

four coefficients of Si. The spline pieces are concatenated to form the entire perturbation spline:

S(t) :=



S1(t) , t ∈ [a1, b1)
...

Sn−1(t) , t ∈ [an−1, bn−1)

Sn(t) , t ∈ [an, bn]

(19)

where n denotes the number of pieces in the spline, Si takes the form described by Equation (18),
a1 := ts, bn := t f , and ai = bi−1 for i = 2..n. The duration of each spline piece, ∆t := bi − ai, is one of
the four hyperparameters of the trajectory estimation algorithm, shown in Table 3.

Each of the spline pieces has a set of four coefficients that can be modified to alter the shape of
the spline. Since we are interested in using the splines to perturb the speed and heading trajectories,
it makes sense to define the coefficients of Equation (18) in terms of the spline piece’s knot locations,
denoted as y, as these locations will control how much the speed and heading are perturbed at specific
times. Each spline piece has two knot locations, obtained by evaluating the spline piece at the start and
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end times, and denoted as yi := {Si(ai), Si(bi)} = {yi0, yi1}. Additionally, to ensure that the spline
pieces fit together, we will also need to consider the first time derivative of Si(t):

The first time derivative evaluated at the knot locations is denoted as mi := {S′i(ai), S′i(bi)} =
{mi0, mi1}. Evaluating Si(t) and S′i(t) at the knot locations generates the following four Equations:

Si(ai) = yi0 := ci1(∆t)3 + ci4∆t (20)

Si(bi) = yi1 := ci2(∆t)3 + ci3∆t (21)

S′i(ai) = mi0 := −3ci1(∆t)2 + ci3 − ci4 (22)

S′i(bi) = mi1 := 3ci2(∆t)2 + ci3 − ci4 (23)

where ∆t := bi − ai. Equations (20)–(23) can be solved to find the coefficients of each spline piece:

ci1 =
ci3 − ci4 −mi0

3(∆t)2 ,

ci2 =
mi1 − ci3 + ci4

3(∆t)2 ,

ci3 =
−3yi0 + 6yi1 − ∆t(mi0 + 2mi1)

3∆t
,

ci4 =
6yi0 − 3yi1 + ∆t(2mi0 + mi1)

3∆t
.

(24)

Each spline piece has its own set of yi and mi parameters; however, there are two restrictions that
limit the values that these parameters can take. The first restriction is that the perturbation spline must
be zero at a trajectory segment’s entry and exit points because those states are known and should
remain unaltered. The implication of this is that y10 = yn1 = 0, where n denotes the final spline piece
of S(t). The second restriction is that the perturbation spline and its first derivative must be continuous.
This necessitates that the following two statements be true: yi0 = yi−1,1 and mi0 = mi−1,1. These two
restrictions mean that each perturbation spline will have 2n degrees of freedom, where n is the number
of spline pieces in S. As such, each trajectory segment will have 4n optimizable parameters since each
trajectory segment contains both a speed perturbation spline and a heading perturbation spline:

dSi(t)
dt

= −3ci1(t fi
− t)2 + 3ci2(t− tsi )

2 + ci3 − ci4. (25)

Table 3. Trajectory estimation hyperparameters for varying trajectory segment lengths.

Name Description 2-min. Ti 7-min. Ti 14-min. Ti 28-min. Ti

∆t Duration of the perturbation spline pieces (in seconds). 2 7 14 28

Ws Weight on the cost associated with speed perturbation. 1 1 1 1

Wψ Weight on the cost associated with heading perturbation. 1 1 1 1

Wr Weight on the cost associated with end point, r̂l
lb(t f ). 120 420 840 1680

4.5.2. Perturbation Spline Optimization

We denote the 4n optimizable parameters of a trajectory segment’s perturbation splines as
θ = [θs, θh], where θs are the parameters associated with the speed perturbation spline and θh are the
parameters associated with the heading perturbation spline.

Recall that the goal of our navigation system is to solve the two-point boundary problem
introduced in Equation (2). The cost functional itself, J(θ), measures the distance between the true and
estimated state trajectories. The estimated speed and heading trajectories, ŝl

lb and ψ̂lb, were constructed
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by linearly interpolating the estimates obtained via Equations (5) and (10). These estimates represent our
best guess of the actual speed and heading trajectories since they are constructed from models trained to
minimize the error in the speed and heading estimates, as described in Equations (7), (9), and (13).
Additionally, we know that r̂l

lb(t) can be constructed by combining ŝl
lb and ψ̂lb as described in

Equations (16) and (17). This means that we already have the x̂l(t) that minimizes J(θ), sans the
constraints. We also know the biobot’s state at the entry and exit times. This means that we can define
ŝl

lb(ts) := sl
lb(ts), ψ̂lb(ts) := ψlb(ts), ŝl

lb(t f ) := sl
lb(t f ), and ψ̂lb(t f ) := ψlb(t f ) so that all constraints

involving speed and heading are satisfied. Additionally, since the biobot’s state is known at the
time of entry, we can define r̂l

lb(ts) := rl
lb(ts) so that the the starting position constraint is satisfied.

As a result of these manipulations, all of the constraints are satisfied except for the end position
constraint, r̂l

lb(t f ) = rl
lb(t f ). This endpoint constraint is the reason why we require the speed and

heading perturbation splines, and the rest of this section discusses how to optimize these perturbation
splines so that the end position constraint is satisfied.

We define a surrogate cost functional for each trajectory segment, denoted as J̃, which aims to
minimize the perturbation of our estimates, ŝl

lb and ψ̂lb, by placing a weighted cost on the amount of
speed and heading perturbation. Additionally, we incorporate the trajectory segment’s end position
constraint into J̃ as a weighted penalty term, ensuring that the end position constraint can be satisfied
to an ε amount. The cost J̃ has the following form:

J̃(θ) =
∫ t f

ts

(
Ws · Ss(t; θs)

2 + Wψ · Sψ(t; θh)
2
)

dt + Wr ·
∣∣∣∣∣∣rl

lb(t f )− r̂l
lb(t f ; θ)

∣∣∣∣∣∣2. (26)

The first term is obtained by numerically integrating the integrand using a sampling rate of
30 Hz. Ws, Wψ, and Wr are weights that adjust the impact of the amount of speed perturbation,
amount of heading perturbation, and end position constraint violation, respectively. These weights
are hyperparameters for the trajectory estimation algorithm and the values that we used can be found
in Table 3.

J̃(θ) is optimized using the fminunc function of the MATLAB Optimization toolbox [76].
This particular function uses the Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm ([77], Chapter 6),
where the line search ([77], Chapter 3) is performed via a cubic interpolation function. It should be noted
that none of the parameters in θ are shared between trajectory segments. This means that each trajectory
segment in T can be optimized in parallel, which will increase the algorithm’s computational efficiency.

4.5.3. Handling Stationary Points on the Perturbation Spline

The perturbation splines should not alter the biobot’s speed and heading trajectories when the
biobot is stationary. To guarantee this, the perturbation splines must be zero when the biobot is
stationary. This can be accomplished by first creating the perturbation spline that is described in
Equations (18)–(25). The resulting perturbation spline, S(t), is then modified using the following steps:

1. Stationary points are defined to be points where ŝl
lb(τk) = 0. Stationary intervals occur whenever

there are two, or more, consecutive stationary points. Find all stationary points and stationary
intervals in S(t).

2. Each interval of stationary points will become its own spline piece with coefficients equal to zero:
yi = mi = 0. The new spline piece will start and end at the first and last points of the stationary
interval, respectively.

3. Stationary points will become the ends of spline pieces, and the knot location and knot derivative
at the stationary points will be zero. This is accomplished by:

(a) Any spline piece that falls entirely within a stationary interval is removed from S(t).
(b) Any spline piece that ends at a stationary point has coefficients: yi1 = mi1 = 0.
(c) Any spline piece that begins at a stationary point has coefficients: yi0 = mi0 = 0.
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(d) Any spline piece that contains stationary intervals and/or stationary points is split into
multiple spline pieces such that the new spline pieces terminate on a stationary point:

i. If both ends of a spline piece are stationary points, then the spline piece will take
the form described in step 2.

ii. If one end of the spline piece is a stationary point, then it will take the form of 3b
or 3c, depending on whether the stationary point is at the beginning or end of the
spline piece.

Once S(t) has been altered, the remaining optimizable coefficients can be optimized using
Equation (26), as described in Section 4.5.2. A positive side effect of this algorithm is that it can
reduce the total number of optimizable parameters in S(t) when the biobot is stationary for prolonged
periods of time.

4.6. Enhancing the Ground Truth

Our trajectory estimation algorithm (Section 4.5) uses two random forest regression models to
estimate a biobot’s speed (Section 4.3) and heading (Section 4.4). These models are only as good as
the ground truth data that is used to train them, so it is imperative that we use ground truth speeds
and headings that are as accurate as possible. A key component of this is ensuring that the ground
truth speeds and headings integrate to match the ground truth positions. We use video recordings to
obtain the ground truth state, xl , and the specifics of this are detailed in Section 5.4.1. In this section,
we will present the algorithm that we use to ensure that the ground truth speeds and headings are
correct—that they integrate to match the ground truth positions obtained from the video data.

The ground truth video data give us a discrete set of ground truth speeds and ground truth
headings. We linearly interpolate these discrete speeds and headings to generate continuous speed
and heading trajectories for the ground truth, denoted as sl

lb and ψlb, respectively. We will use the same
notation as in Equation (16) to differentiate the original interpolated trajectories from their perturbed
counterparts. We compute the ground truth speeds and headings using the same approach that was
used for trajectory estimation. First, we split the ground truth state trajectory into a series of trajectory
segments, as described in Equation (15), which we shall denote as TG(t). The starts and ends of the
trajectory segments in TG are arbitrary—we use trajectory segments that are one minute each, but this
needn’t be the case. Once TG has been created, we define the perturbed ground truth speeds and
headings for each trajectory segment as sl∗

lbi
and ψ∗lbi

, respectively, using a similar form to Equation (16):

sl∗
lbi
(t) = sl

lbi
(t) + SGsi

(t)

ψ∗lbi
(t) = ψlbi

(t) + SGψi
(t)

(27)

where the only difference is that we are now using interpolated ground truth speeds and headings as
opposed to interpolated estimates of the ground truth speed and heading. The ground truth perturbation
splines of the ith trajectory segment, denoted as SGsi

(t) and SGψi
(t), are piecewise-cubic perturbation

splines that take the same form as the perturbation splines described in Equations (18)–(25). Additionally,
the coefficients of SGsi

(t) and SGψi
(t) take the form of Equation (24). Finally, we use an almost identical

variant of the algorithm defined in Section 4.5.3 to ensure that the ground truth perturbation splines
do not alter the ground truth speed and heading trajectories when the biobot is stationary. The only
difference in the algorithm is that the stationary points are determined by using the ground truth speeds
obtained from the video frames, denoted as sl

lb, instead of the speed estimates, ŝl
lb.
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Using this information, we define a cost functional for each ground truth trajectory segment,
J̃G, which has a form similar to Equation (26):

J̃G(θG) =
∫ t f

ts

(
WGr1

∣∣∣∣∣∣rl
lb(t)− r̃l

lb(t; θG)
∣∣∣∣∣∣2 + WGs · SGs(tj; θG,s)

2 + WGψ
· SGψ

(t; θG,h)
2
)

dt

+ WGr2

∣∣∣∣∣∣rl
lb(t f )− r̃l

lbi
(t f ; θG)

∣∣∣∣∣∣2,
(28)

where r̃l
lbi

is the perturbed ground truth obtained by integrating sl∗
lb(t) and ψ∗lb(t). The only difference

between Equations (28) and (26) is the introduction of the
∣∣∣∣∣∣rl

lbi
(t)− r̃l

lbi
(t; θG)

∣∣∣∣∣∣2 term, which tracks
how much the perturbed ground truth position differs from the original ground truth position that is
obtained from linearly interpolating the video frames, rl

lb(t). The end position constraint is retained as a
weighted penalty term because the ground truth trajectory, TG(t), must be continuous. WGr1 , WGs , WGψ

,
and WGr2 are weights that adjust the emphasis that is placed on matching the ground truth position
trajectory, amount of speed perturbation, amount of heading perturbation, and end position constraint
violation, respectively. These weights are hyperparameters for the ground truth optimization algorithm
and the values that we used can be found in Table 4.

Table 4. Hyperparameters for Ground Truth Optimization.

Name Description Value

∆t Duration of the perturbation spline pieces (in seconds). 2

WGr1 Weight on cost associated with matching rl
lb(t) 1

WGs Weight on the cost associated with speed perturbation. 1

WGψ
Weight on the cost associated with heading perturbation. 1

WGr2 Weight on the cost associated with end point, r̂l
lb(t f ). 60

5. Experimental Setup

This section details the experimental setup that we used to test and verify our algorithm.
The hardware and software that we used are listed, and details are provided as to how we constructed
our experimental testbed, as well as the biobots themselves. The section concludes with the
experimental procedure that we used to collect data, including how we extracted the video ground
truth from the video data.

5.1. Hardware

We use a MetaMotion C sensor board (Mbientlab Inc., San Francisco, CA, USA). The MetaMotion
C sensor board, shown in Figure 7, is a circular system-on-chip that weighs 3 g and measures 24 mm
diameter × 6 mm height. The board has 8 MB of onboard flash storage and is powered by a 3V CR2032
200mAH Lithium coin-cell battery. The board has a 16-bit BMI160 IMU (Bosch GmbH, Reutlingen,
Germany) that contains a three-axial accelerometer and a three-axial gyroscope. Processing is handled
by a 32-bit Arm Cortex M4F CPU and communication is accomplished via a 2.4 GHz transceiver that
uses Bluetooth 4.2 Low Energy. The performance of the BMI160 IMU is shown in Table 5.

We chose the MetaMotion C for two main reasons: first, it is small enough to fit over the
thorax of a biobot (see Figure 7), ensuring that it does not alter the biobot’s center of mass;
secondly, the MetaMotion C is light enough to not interfere with the biobot’s locomotion. In this
study, we just needed to localize the insect; therefore, we did not need the custom backpacks we
designed previously for biobotic control of insects (e.g., [17,69,78]).
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Figure 7. MetaMotion C Sensor Board: From left to right: (1) Coordinate frame of MetaMotion C sensor
board (this is the body frame of our algorithm); (2) 3D-printed MetaMotion C case; (3) MetaMotion
C PCB; (4) The IMU (inside the case) is mounted to the thorax of the biobot with the +Y direction of the
IMU facing in the direction of the biobot’s antennae.

Table 5. BMI160 specifications and performance *.

Name Accelerometer Gyroscope

Range ±2 g ±500◦/s

Sensitivity 16384 LSB/g 65.6 LSB/◦/s

Sampling Rate 100 Hz 100 Hz

Sensor Noise (
√

PSD) 180 µg/
√

Hz 0.007◦/s/
√

Hz

Sensor Noise @100Hz (RMS) ≈1.3 mg ≈0.05◦/s

Sensor Bias (@25 ◦C) ±40 mg ± 3◦/s

Sensor Bias Temperature Drift ±1 mg/K 0.05◦/s/K

Sensor Sensitivity Temperature Drift ±0.03%/K ±0.02%/K

* All quantities were obtained from the BMI160 datasheet.

5.2. Arena

All data were taken inside of a circular arena with a diameter of 115 cm, shown in Figure 8.
This circular arena is inscribed inside of a 48” (approx. 122 cm) square of plywood with 155 mm
high walls made of poster board. The walls were coated with petroleum jelly to prevent the biobot
from climbing on them. Weights were placed at the corners of the plywood base to ensure that the
arena did not shift relative to a LifeCam HD-3000 (Microsoft, Redmond, WA, USA) that was mounted
74” (approx. 188 cm) off the ground via a tripod. A laptop was connected to the camera to stream
1280 × 720 resolution video at 30 frames per second.

The reference frame for the system has its origin at the center of the arena, and is aligned with the
four points that are numbered in Figure 8. The aforementioned four points were used for computing
the homography to convert image space (pixels) to the local tangent reference frame (centimeters),
which forms our physical space. The four points form two diameters, and the intersection of these
diameters was used to find the center of the circular arena in the physical space. Figure 8 highlights
the important components of the arena and includes both a perspective view of the setup and a
camera view.

5.3. Biobotic Agent

The biobot is a non-instrumented (see Section 5.1) adult female Madagascar hissing cockroach
(Gromphadorhina portentosa) that measures roughly 60 mm length × 30 mm width (see Figure 7).
The roach was taken from a colony that we have raised at NC State since 2013. Additionally, the biobot
was kept near room temperature, 75–80 ◦F, and fed a diet of dog treats.
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Figure 8. Experimental Setup: Circular arena of 115 cm diameter. Camera and perspective views are
presented. The blue object on top of the roach is the IMU. The local tangent reference frame (frame l)
and roach body frame (frame b) are also illustrated. Note that the roach body frame is centered on
the IMU and the local tangent reference frame has its origin at the center of the circular arena—these
frames have been shifted in this figure for illustration purposes only.

5.4. Data Collection

The MetaMotion C board (Firmware version 1.3.7) was mounted on the thorax of a biobot as
shown in Figure 7. The biobot was then placed inside the arena as shown in Figure 8 and allowed
to move around inside the arena for 30 min while accelerometer and gyroscope data was logged to
the MetaMotion C’s internal storage. The accelerometer and gyroscope ranges were set to ±2 g and
±500 ◦/s, respectively (see Table 5). These values were chosen because the biobot’s movement never
exceeded these sensor limits. Both sensors were sampled at 100 Hz, which is consistent with the IMU
sampling rate used in [69]. The IMU was interfaced via Mbientlab’s MetaBase app (version 3.3.0 for
Android) on an Android 6.0.1 device.

Video data were used to determine the ground truth position, speed, and heading of the biobot and
this is discussed further in Section 5.4.1. The IMU data and video data were synchronized by tapping
the IMU three times before the experiment and three times after the experiment. The synchronization
taps could be located in both the video feed and the inertial signals, allowing us to map the video
time (measured in seconds) to the IMU time (measured in Unix Epoch time). We found that a linear
mapping was sufficient to align the IMU and video data to within one video frame. The coefficients of
the line were found using a least-squares optimization.

The MetaMotion C sensor board does not start/stop the accelerometer and gyroscope at the same
time. As such, there is a slight offset in the timestamps associated with these two sensors. To address
this, we manually aligned the accelerometer and gyroscope signals to each other by looking at their
IMU times (Unix Epoch Time) and discarding any readings before their first shared sample time
and any readings after their last shared sample time. This alignment ensured that the number of
accelerometer and gyroscope samples was identical. Furthermore, we used the timestamp of the
accelerometer to mark the IMU samples (i.e., the timestamp for the ith accelerometer/gyroscope
reading was defined to be the ith accelerometer timestamp). This alignment method allowed us to
align the IMU sensors to within two milliseconds of each other. The two millisecond misalignment
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between the accelerometer and gyroscope was acceptable because our video ground truth was only
accurate to one video frame (1/30 s). The protocol for data collection is as follows:

1. Start the MetaBase app and configure the MetaMotion C board to log data internally.
2. Attach the MetaMotion C to the thorax of the biobot.
3. Start the video recording and place the biobot in the arena.
4. Start IMU data logging via the MetaBase app and tap the IMU three times in succession.
5. Let the biobot move in the arena for 30 min.
6. Tap the IMU three times in succession.
7. Stop IMU data logging via the MetaBase app and stop video recording.
8. Retrieve the data from the MetaMotion C via the MetaBase app.

This protocol was used to create a dataset consisting of nine trials. The same biobot was used
for each of the nine trials and the biobot was allowed to rest for at least 24 h between trials. By doing
this, we ensured that the biobot was fully rested between trials, thereby eliminating any effects that
exhaustion could have on the biobot’s movement.

5.4.1. Video Ground Truth

The ground truth state of the biobot was obtained from the biobot’s video footage.
Specifically, we placed an elliptical bounding box around the biobot and used it to compute the
biobot’s position, speed, and heading. To accomplish this, we placed blue tape over the MetaMotion
C case (see Figure 9) and used the following approach (summarized in Algorithm 1) to compute the
biobot’s pose for each video frame:

Figure 9. Video Tracker Output: Left Image: Biobotic agent inside the arena. The video frame number
is shown in the upper left corner of the image. The center of the IMU is marked as a green square
and the heading of the biobot is shown with a blue arrow. Right Image: Close-up shot of the biobot.
The green square denotes the center of the IMU and the blue arrow denotes the biobot’s heading.
Additionally, the contour of the biobot’s body is highlighted with a red ellipse and the center of the
biobot’s body is marked with a magenta square. All of the aforementioned elements were obtained
using the computer vision algorithm described in Section 5.4.1.

1. Compute a background image for the video that excludes the biobot and convert the image to the
HSV color space.

2. For each video frame:

(a) Isolate the elements of the video frame that differ from the background: (i) Convert
the video frame to the HSV color space and subtract the background image from the
video frame. This generates a difference image. (ii) Define a set of thresholds applied
to the S and V channels of the difference image to identify the parts of the image that
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differ substantially from the background image. As such, the only nonzero pixels in the
thresholded difference image will be those of the MetaMotion C and the biobot.

(b) Find the Meta Motion C by applying a color threshold to the HSV image. In our setup,
we applied a color threshold to isolate blue-colored objects since this was the color of the
MetaMotion in the video feed (see Figure 9).

(c) Generate an edge image by applying a Canny edge detector [79] to binary detections of
the MetaMotion C and the biobot. Set the pixel locations of the MetaMotion C in the edge
image to be zero. The only non-zero pixels in the edge image will belong to the body of
the biobot.

(d) Fit an ellipse to the elliptical edge (i.e., body of the biobot) in the edge image and store the
ellipse’s center and orientation in pixel coordinates. This ellipse is the elliptical bounding
box that will be used to compute the ground truth state for the video frame.

Algorithm 1 Pose Algorithm.

Input: video F , thresholds used to detect agent tag, thresholds used to detect MetaMotion tmm
Output: P , the set of biobot poses

1: bhsv ← CREATEBACKGROUNDIMAGE(F ,’HSV’)
2: for each video frame f ∈ F do
3: fhsv ← CONVERTIMAGE( f ,’HSV’)
4: dhsv ← REMOVEBACKGROUND( fhsv ,bhsv)
5:

6: mag ← FINDAGENT(dhsv ,tag)
7: mmm ← FINDMETAMOTION(dhsv , fhsv ,tmm)
8:

9: eag ← GENERATEEDGEIMAGE(mag ,’CANNY’)
10: ebb ← REMOVEMETAMOTION(eag ,mmm)
11:

12: L← FINDELLIPSE(ebb)
13: [rl

lb, ψlb]← EXTRACTPOSE(L)
14: Store pose in P
15: end for
16: return P

We applied a homography to convert the biobot’s elliptical bounding box from image space (pixel
coordinates) to physical space (centimeter coordinates)—the reference points used in the homography
are shown in Figure 8. The biobot’s heading, ψlb, was defined to be the direction of the major axis of
the elliptical bounding box. The biobot’s position, rl

lb, was defined to be the center of the elliptical
bounding box. The speed was determined by computing the biobot’s position displacement over
time. Additionally, we used a speed threshold to determine when the biobot was stationary. This was
necessary because the biobot’s speed could fluctuate over time when it was stationary due to pixel
differences in the biobot’s position between video frames.

The procedure for computing the ground truth does not guarantee that the biobot’s ground truth
speed and heading trajectories will integrate to match the biobot’s ground truth position trajectory.
We resolved this by using the algorithm discussed in Section 4.6 to refine our ground truth.

6. Results and Discussion

We analyzed our navigation framework using a dataset that consists of nine trials. Each trial is
approximately 30 min and the trials were conducted using the procedure described in Section 5.
The first four trials were used for training and the remaining five trials were used for testing.
The hyperparameters for the speed and heading correction models were set to the values specified
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in Table 2. The hyperparameters for the trajectory estimation algorithm can be found in Table 3 for
varying trajectory segment lengths. Ground truth refinement was performed using the hyperparameter
values in Table 4 and trajectory segments of one-minute length. All other results were obtained using
trajectory segments of two-minute length, unless explicitly stated otherwise. Finally, data points were
obtained by using a one-second sliding window with 50% overlap.

6.1. Speed Regression

The performance of our speed estimation model is shown in Table 6. Figure 10 highlights a section
of trial #7’s estimated speed curve as well as the overall distribution of speed errors in the test set.
As expected, the training set error is lower than the test set error because the random forest model was
trained to minimize the errors in the training data.

Figure 10. Test Set Speed Errors: (Left Plot) A five-minute section of Trial #7’s speed curve is shown,
where the estimated and ground truth speeds are compared. (Right Plot) Distribution of the speed
errors between the estimated and ground truth speeds. Each bin has a width of 0.4 cm/s.

Table 6. Performance of speed estimation model.

Trial RMSE (cm/s) Mean Signed Error (cm/s)

Trial #5 0.7719 0.3219

Trial #6 0.8101 0.0961

Trial #7 0.8711 0.0122

Trial #8 0.8929 −0.1040

Trial #9 0.8411 0.0720

Test Data (Trials 5–9) 0.8387 0.0794

Training Data (Trials 1–4) 0.4034 0.003

Overall, our model is able to track the ground truth speeds, with an RMSE of less than 1 cm/s
for each of the trials (see Table 6). With that said, our model underestimates speeds that have large
magnitude. The reason for this is the lack of training samples that have large speeds, as shown in
Figure 11. Interestingly, our model has a very low mean signed error, which means that underestimates
in the speed are counteracted by overestimates in other data points. The implication of this is that the
estimated and true trajectories have comparable lengths.

Lastly, we would like to highlight trial #5 in Table 6, which has a mean signed error that is much
larger than the other trials. The reason for this is that trial #5 is abnormally slow, as shown in Figure 11.
Specifically, it has a large number of speeds that are 2–4 cm/s, which incidentally happens to be a
speed range that is not largely sampled in the training set. This highlights the limitation of the machine
learning approach to inertial navigation that was mentioned in Section 2, namely that machine learning
approaches depend on having test set data that is similar to the training set data. If we had added trial
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#5 to the training data, we could have improved the performance of the test set data, especially trial #8,
which has a similar speed distribution to trial #5.

Figure 11. Ground Truth Speed Distributions: Each bin has a width of 1 cm/s. Note that the negative
speeds are a result of the perturbation that occurs in the ground truth refinement algorithm. (Top Plot)
Speed distribution of the training data (trials 1–4). (Middle Plot) Speed distribution of trial #5. Trial #5
has a large number of data points in the 2–4 cm/s range, which isn’t well-sampled in the training data;
this has an adverse effect on its estimated speed. (Bottom Plot) Speed distribution of trials 6–9.

6.2. Stationarity Detection

The confusion matrix for our stationarity detector can be found in Table 7, where “Stationary” is
the positive class and “Moving” is the negative class. Additionally, several performance metrics are
shown in Table 8.

Table 7. Test set confusion matrix for stationarity detection.

Predicted
Stationary Moving

Tr
ue Stationary 708 162

Moving 193 16887

Table 8. Performance of stationarity detector.

Trial Accuracy (%) Precision (%) Recall (%) F1 Score MCC

Trial #5 97.32 77.78 86.82 0.8205 0.8075

Trial #6 98.86 87.37 74.77 0.8058 0.8026

Trial #7 98.72 72.41 74.12 0.7326 0.7260

Trial #8 97.45 86.72 80.20 0.8333 0.8203

Trial #9 97.80 64.38 83.74 0.7279 0.7234

Test Data (Trials 5–9) 98.02 78.58 81.38 0.7995 0.7893

Training Data (Trials 1–4) 100 ∼ ∼ ∼ ∼
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The performance metrics show that our stationarity detector has a high accuracy rate; however,
this is misleading because the biobot is much more likely to be moving than stationary, as shown
in the confusion matrix. As a result, the Matthews Correlation Coefficient (MCC), which shows the
correlation between the predicted and true outputs, is a better indicator of the stationarity detector’s
performance. Since the MCC is high, we can conclude that the stationarity detector is working.
Furthermore, the false-positives and false-negatives are the results of ambiguities and choices in our
annotation, which is discussed next.

Each data point’s label is created from the video frames that fall within its window, as stated in
Section 4.3.2. As a result, the percentage of video frames needed to flag a data point as stationary is a
hyperparameter. We set this percentage to be 100% (i.e., all of the video frames need to be stationary).
Figure 12 shows two things: first, the overwhelming majority of the false-positive data points have
zero-speed; secondly, most of the false-positive data points have at least 96% of their video frames as
stationary. Since we are using data points that are one second long, with a video frame rate of 30 fps,
this means that most of the false-positive data points have 28/30 video frames as stationary. Dropping
the number of video frames needed to flag a data point as stationary to 28, instead of 30, would remove
most of the false-positive samples. Trial #9, in particular, had a large number of false-positive data
points, so making this change would increase its performance.

Figure 12. Speed Distribution of False-Positive Stationary Samples: (Left Plot) Ground truth speeds for
samples falsely flagged as stationary. Bin width of 0.1 cm/s. (Right Plot) Percentage of video frames
that are labeled as stationary in false positive data points. Bin width of 2%. Many false-positives are
caused by data points that have most, but not all, of their video frames flagged as stationary—altering
the video frame threshold in the stationarity detector would resolve this issue.

Our stationarity detector only considers when an agent has zero-speed. As a consequence,
when the biobot is rotating in place, the biobot is still flagged as “stationary”. This is the cause of most of
the false-negative data points, as shown in Figure 13. Figure 13 reveals that the overwhelming majority
of false-negatives are indeed zero-speed. Furthermore, the speed distribution of the false-negative
data points is similar to the speed distribution of the true-positive data points. Figure 13 also shows us
that the reason why false-negatives occur is because the biobot is rotating in place, as evidenced by the
gyroscope energy. A solution to this issue would be to separate the current stationary label into two
labels: “stationary” and “rotating in place”. This would resolve most of the false negatives, and would
be especially useful in trials 6–7, which have a large number of instances where the biobot is rotating
in place (i.e., false-negatives).
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Figure 13. Missed Stationary Samples: (Top Left Plot) Ground truth speeds for samples falsely flagged
as moving. Bins have widths of 0.04 cm/s. (Bottom Left Plot) Ground truth speeds for samples falsely
flagged as moving. (Top Right Plot) Gyroscope energy in stationary samples for training data. Bins
have width of approximately 7.6 deg/s. (Middle Right Plot) Gyroscope energy in correctly predicted
stationary samples. (Bottom Right Plot) Gyroscope energy in missed stationary samples. This shows
that false-negatives occur when the biobot is rotating in place (i.e., high gyroscope energy).

6.3. Ground Truth Refinement

The ground truth refinement algorithm, discussed in Section 4.6, is an optimization algorithm
that perturbs the speeds and headings obtained from each video frame (Section 5.4.1) such that they
integrate to match the positions in those video frames. Table 9 and Figure 14 show the results of
the ground truth refinement algorithm. Table 9 shows the L2 error—that is, the distance between
the true position trajectory that is obtained from the video frames and the position trajectory that
is integrated from the speeds and headings—where the “baseline” method refers to the speeds and
headings that are obtained from the video frames themselves, and the “refined” method refers to the
perturbed speeds and headings that are obtained from the ground truth refinement algorithm. We see
that the ground truth refinement algorithm is required because the position trajectory obtained from
the baseline method does not track the true position trajectory. This error occurs because the speed and
heading of each video frame is slightly off from the true speed and heading. Furthermore, since this
error is uncorrected, it causes the position error to grow linearly over time, as shown in Figure 14.
By contrast, the refined speeds and headings obtained from the ground truth refinement algorithm are
perturbed so that the position error does not grow over time. Figure 14 also shows what the ground
truth trajectory looks like after refinement.
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Table 9. L2 Error (cm) for ground truth positions.

Trial Baseline: Mean Error (Error Std. Dev.) Refined: Mean Error (Error Std. Dev.)

Trial #1 35.34 (20.87) 0.255 (0.332)

Trial #2 184.05 (136.61) 0.269 (0.281)

Trial #3 37.97 (40.59) 0.214 (0.256)

Trial #4 60.51 (61.32) 0.235 (0.261)

Trial #5 69.68 (55.51) 0.253 (0.380)

Trial #6 59.08 (21.25) 0.278 (0.464)

Trial #7 146.94 (84.72) 0.241 (0.261)

Trial #8 74.82 (44.09) 0.273 (0.281)

Trial #9 87.29 (43.33) 0.262 (0.313)

Average 83.96 (56.48) 0.253 (0.314)

6.4. Heading Correction

The heading correction model is broken into two components, as discussed in Section 4.4: the first
component detrends the error in the AHRS output, and its results were shown in Figure 5; the second
component is a regression model that estimates the heading correction needed to align the AHRS
output with the refined ground truth headings. The second component is what is presented in
this section and the performance of the heading correction regression model is shown in Table 10.
Additionally, a sample of a heading correction curve is shown in Figure 15 where the distribution of
the heading correction errors are also displayed. Table 10 reveals that our heading regression model
reduced the heading error in 58.24% of the data points in the test set. Furthermore, the heading
regression model reduced the average heading error of the test set by 16.65%, where the percentage
improvement over using only the detrended AHRS outputs was calculated as follows:

% Improvement =
(

1− Avg. Heading Error with Heading Corrections
Avg. Heading Error without Heading Corrections

)
× 100 (29)

Figure 14. Ground Truth Refinement: (Left Plot) Refined Ground Truth Trajectory. Red Line: The position
trajectory obtained from the video frames themselves. Blue Line: The position trajectory obtained by
integrating the speeds and headings that have been refined via the ground truth refinement algorithm
(Section 4.6). (Right Plot) Ground Truth Position Errors. The figure shows the distance between the
position trajectory obtained from the video frames and the position trajectory that is integrated from
the speeds and headings. Red Line: The original speeds and headings that are obtained from the video
frames themselves. Blue Line: The refined speeds and headings that are obtained from the ground truth
refinement algorithm. The ground truth refinement algorithm corrects the speeds and headings obtained
from the video frames so that the position error does not grow over time.
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Figure 15. Test Set Heading Correction Errors: (Left Plot) A five-minute section of Trial #7’s heading
correction curve is shown, where the estimated heading correction (Green line) is compared against the
ground truth heading correction (Blue line). (Right Plot) Distribution of the heading correction errors
between the estimated and ground truth heading corrections. Each bin has a width of 0.17 radians.

The underlying premise of the heading correction regression model is that heading corrections
are independent of the heading trajectory itself; instead, they are determined by the egomotion of the
biobot. As evidence in support of this hypothesis, we observed that the distribution of the heading
corrections is almost identical between the training and test datasets, even though these datasets
comprise nine different heading trajectories.

Furthermore, the similarity between the heading corrections in the training and test datasets
explains the consistency in the performance of the heading correction regression model, as shown in
Table 10. The only outlier is trial #6, which has a larger error than the other trials because the biobot
attempted to climb on the arena wall during the trial.

Lastly, we want to highlight the fact that the mean signed heading correction error is very
close to zero for the trials. The implication of this is that overestimates in the heading correction
are counteracted by underestimates in other data points, similar to what happened with the speed
regression model. As such, the estimated heading trajectory will end near the true heading, even before
the estimated heading trajectory is perturbed via the heading perturbation spline.

Table 10. Performance of heading correction model.

Trial RMSE Mean Signed % of Data Points Trial’s Heading
# (rad) Error (rad) with Improved Heading Improvement (%)

Trial #5 0.1363 0.0122 57.67 17.25

Trial #6 0.4846 0.0692 50.14 3.82

Trial #7 0.1451 −0.0052 65.16 27.54

Trial #8 0.1341 −0.0140 66.63 29.12

Trial #9 0.1407 0.0242 50.80 7.09

Test Data (Trials 5–9) 0.2482 0.0168 58.24 16.65

Training Data (Trials 1–4) 0.0589 −1.4996× 10−4 84.04 67.67

6.5. Trajectory Estimation

The purpose of the trajectory estimation algorithm is to reconstruct the biobot’s state trajectory
over a period of time. We have already reported the results pertaining to the speed and heading
states, so we will focus on the position trajectory in this section. There are several ways to incorporate
the heading correction and speed estimation models, so we will analyze the trajectory estimation
algorithm’s performance for these different configurations, which are as follows:
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• Configuration C0: The baseline configuration. This configuration uses the detrended AHRS
outputs, but includes neither the heading correction regression model nor the stationarity detection
component of the speed estimation model.

• Configuration Cψ: This configuration includes the full heading correction model (i.e., detrended
AHRS outputs and heading correction regression model) but does not include the stationarity
detector component of the speed estimation model.

• Configuration Cψ,zideal : This configuration includes the full heading correction model and the
ground truth stationarity labels—in other words, the stationarity detector is assumed to be an
ideal classifier.

• Configuration Cψ,z: This configuration includes the full heading correction model and estimated
stationarity labels.

Table 11 shows the results of the trajectory estimation algorithm for the four configurations under
the following conditions: (1) using ground truth (GT) speeds and GT headings obtained from the GT
refinement algorithm; (2) using GT speeds and headings that are estimated from the heading correction
model; (3) using estimated speeds and GT headings; and (4) using estimated speeds and headings.

Table 11. Test Set: L2 Position Errors (cm) for Varying Algorithm Configurations.

Config GT Speed/GT Heading GT Speed/Est. Heading Est. Speed/GT Heading Est. Speed/Est. Heading
ID Mean (Std. Dev.) Mean (Std. Dev.) Mean (Std. Dev.) Mean (Std. Dev.)

C0 1.64 (1.13) 6.63 (6.87) 4.80 (3.82) 8.44 (7.23)

Cψ 1.64 (1.13) 5.40 (6.37) 4.80 (3.82) 7.57 (6.88)

Cψ,z 1.64 (1.14) 5.40 (6.37) 4.81 (3.84) 7.57 (6.88)

Cψ,zideal 1.64 (1.13) 5.39 (6.35) 4.76 (3.82) 7.54 (6.87)

Note that, when using a GT speed or GT heading, we replace any estimate coming from the
AHRS or after applying a correction with the corresponding GT signal. In particular, the C0 and Cψ

configurations are identical when using the GT heading. Table 11 shows that configuration C0 is
the worst performing configuration when using estimated headings; however, the table also reveals
that stationarity detection offers no performance improvement. With that said, stationarity detection
provides the ability to reduce the number of optimizable coefficients in the trajectory estimation
algorithm. Therefore, an efficient use of the stationarity detector would be to restrict its usage
to areas where the biobot is stationary for prolonged periods of time. Furthermore, the average
position error of the test set in configuration Cψ and Cψ,z when using the estimated speeds and
headings (“Est. Speed/Est. Heading” column) is 10.31% lower than the position error obtained using
configuration C0. These two points illustrate the benefit of incorporating the heading correction
regression model.

The position errors for trial #7 are shown in Figure 16 for each of the trajectory segments. In this
figure, we see that C0 has noticeably worse performance for most of the trajectory segments, once again
illustrating the importance of the heading correction regression model. It is noteworthy that C0

outperforms the other configurations in trajectory segment #4. This occurs because almost all of
the heading corrections in trajectory segment #4 are overestimates. This issue could be resolved by
improving the quality of the heading correction regression model. Estimated position trajectories for
trial #7 are shown in Figure 17. This figure provides an illustration of how the position trajectories
look for various two-minute trajectory segments. Appendix A provides more numerical details on the
analysis for Trial #7.

Table 12 shows the results of the trajectory estimation algorithm as the trajectory segment length
is varied from 2 min to 28 min. This table reveals that the position error increases as the trajectory
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segments get longer; however, this is to be expected as longer trajectory segments mean that there
are less ground truth states that can be used to correct the biobot’s estimated state. It is interesting to
note that trial #8 has less average error for 14-min trajectory segments than it does for 7-min trajectory
segments. This occurs because trial #8 has an abnormally high heading error in the 22–26 min range,
which happens to encompass most of the corresponding 7-min trajectory segment (21–28 min range).
This 7-min trajectory segment has 57.1% of its data points taken from this time range, making it more
susceptible to the erroneous headings than the 14-min trajectory segment, which only has 28.5% of its
data points taken from this window. The other peculiarity in Table 12 comes from trial #6, which has
abnormally large position errors. These errors are caused by the biobot attempting to climb on the wall,
as discussed in Section 6.4. When this event occurred, the assumption that we made on the direction
of gravity in the body frame (see Section 3) became invalid, causing the AHRS readings to become
erroneous. If the trajectory segments are short enough (e.g., 2-min trajectory segments), then these
erroneous headings are corrected with a subsequent ground truth state before the position error grows
too large. If, however, the trajectory segments are too long, then the erroneous AHRS outputs will
cause a large position error, hence the abnormally large position errors for trial #6 in Table 12 for
trajectory segments that are longer than two minutes.

We analyzed the runtime of our navigation system due to the time-sensitive nature of urban
search and rescue. The results are shown in Table 13 for Trial #7 and were obtained in MATLAB 2018b
using a desktop computer with the following specifications: Intel Core i7-7700k CPU, Nvidia GeForce
GTX Titan X GPU, 64GB RAM, and 64-bit Ubuntu 16.04.6 LTS operating system. We found that our
entire algorithm is capable of being executed—from feature extraction to trajectory estimation—in less
than two minutes for two-minute trajectory segments. Additionally, since each trajectory segment is
parallelizable, it is possible to estimate the entire trial in less than two minutes, assuming that a machine
is used that can handle the parallelization without a degradation in performance. Our results were
recorded in a video that can be found online at the following URL (https://youtu.be/pgcds0RNqas).

Table 12. Test Set: L2 Position Errors (cm) for Configuration Cψ,z using Est. Speed & Est. Heading.

Trial 2-min. Ti 7-min. Ti 14-min. Ti 28-min. Ti

# Mean (Std. Dev.) Mean (Std. Dev.) Mean (Std. Dev.) Mean (Std. Dev.)

Trial #5 9.23 (5.20) 10.39 (5.73) 12.83 (7.24) 14.56 (8.89)

Trial #6 9.62 (11.66) 23.36 (31.13) 40.71 (38.82) 66.68 (38.32)

Trial #7 6.10 (3.88) 10.39 (7.69) 14.90 (9.59) 16.03 (9.52)

Trial #8 6.07 (4.65) 9.39 (6.00) 8.84 (5.51) 20.31 (10.01)

Trial #9 6.73 (4.49) 11.00 (5.31) 15.70 (8.69) 37.28 (20.65)

Average (with trial #6) 7.55 (5.98) 12.91 (11.17) 18.60 (13.97) 30.97 (17.48)

Average (without trial #6) 7.03 (4.56) 10.29 (6.18) 13.07 (7.76) 22.05 (12.27)

Table 13. Trial #7: Algorithm runtime (s) for two-minute trajectory segments.

Process Name Entire Trial Avg. Time Per Segment

Feature Extraction 23.13 1.65

Madgwick Algorithm 8.79 0.63

Regression Models 0.976 0.07

Trajectory Estimation 1521.8 108.7

Total Runtime 1554.7 * 111.05

* Assumes the trajectory segments are optimized sequentially.

https://youtu.be/pgcds0RNqas
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Figure 16. Trial #7 Position Errors: Distance between the ground truth and estimated position
trajectories for varying algorithm configurations. Ti denotes the ith trajectory segment. Configuration
C0: Detrended AHRS output, no heading correction regression model, and no stationarity detection.
Configuration Cψ,z: Full heading correction model and estimated stationary labels.

Figure 17. Estimated Trajectory Segments for Trial #7: Estimated position trajectories under varying
conditions for Configuration Cψ,z. Each row is a two-minute trajectory segment and each column is a
condition. The start point of the trajectory segment is denoted by a black ’x’ and the end point of the
trajectory segment is denoted by a black diamond. The horizontal and vertical axes are in centimeters.
Red Line: Ground truth trajectory. Blue Line: Estimated trajectory.
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6.6. Discussion

We mentioned in Section 6.2 that it may be advantageous to alter the definition of stationarity to
only include data points that have both zero-speed and zero-rotation. Making this distinction could
allow us to identify data points where the biobot is rotating in place, which would make it possible
to prevent speed perturbations while allowing heading perturbations. This would remove situations
where the agent moves in a circular arc rather than rotating in place—an example of this behavior can
be seen at the start of the T1 trajectories in Figure 17.

Figure 16 shows us that the trajectory estimation algorithm can exhibit large position errors towards
the center of the trajectory segments. Since this also occurs when ground truth speeds and headings are
used, it cannot be explained away by inaccuracies in the regression models. One explanation is that
our perturbation splines do not have a sufficient degree of freedom to track the speed and heading
trajectories that are far away from the end points. Evidence for this comes from the fact that our cubic
splines have four degrees of freedom, and all four of those degrees of freedom are used to satisfy
the constraints needed for continuity of the derivatives. As such, each spline piece has coefficients

that affect every subsequent spline piece—this can be seen by deriving the
∂Sj
∂mi

and
∂Sj
∂yi

terms using
Equation (18) and Equations (20)–(24). This issue could be resolved by using a quartic spline. The extra
degree of freedom would give each spline piece more flexibility to track the speeds and headings.
Furthermore, if quartic Bézier curves are used as spline pieces, then continuity of the derivatives can be
obtained using only the first two and last two control points. This limits the effect of a spline piece’s
coefficients to its immediate successor. Additionally, each spline piece will have one free control point
that will not affect any subsequent spline pieces; this control point is free to take any value, altering the
shape of the spline piece while retaining the spline’s continuity of the derivatives.

The generalization capabilities of our speed and heading correction regression models are
dependent on the data that they are trained on. As we have seen with the speed regression of
trial #5, sparsity in the training data can lead to underestimates and/or overestimates in the regression
models. This problem can be mitigated by increasing the variety of the speeds and heading corrections
in the training data. Additionally, it may be possible to improve the performance of our regression
models by incorporating spectral and/or wavelet features, such as the features presented in [61].
Finally, we do not attempt to denoise the IMU signals before sending them through our system.
This was sufficient for our data; however, using denoised IMU signals may improve the performance
of our models.

As a last point, we’d like to emphasize that our results, while promising, were obtained from a
flat circular arena that was devoid of obstacles and other agents. This setup was sufficient to illustrate
the principles of our navigation system; however, additional work is required to determine the efficacy
of our algorithm in complex environments that are more reminiscent of disaster scenarios.

7. Conclusions and Future Work

In this paper, we presented a machine-learning framework for performing inertial navigation
using low-cost IMUs. The algorithm posed the navigation problem as a two-point boundary value
problem where the goal was to reconstruct an agent’s state trajectory between the start and end points.
This was accomplished through the use of models that were capable of estimating an agent’s speed
and heading. These speed and heading estimates were then perturbed so that the estimated state
trajectory satisfied the boundary conditions. The navigation framework was tested using a biobotic
agent in a 2D homogeneous environment. We believe that this new framework would provide the
missing localization capability for insect biobots, which is essential for their potential use in USAR
applications in the future.

Our algorithm is restricted to 2D environments because we have not implemented a method
to determine the direction of gravity that is needed to run the AHRS. As such, an extension to the
algorithm would be to design a method (e.g., a regression model) for determining the direction
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of gravity in the body frame of the IMU, thus allowing the INS to operate in 3D environments.
Another extension would be to incorporate the sensors on the biobot that allow it to detect other
biobotic agents. These sensors could be used to reduce the error in a biobot’s estimated trajectory
by incorporating information about its proximity to other agents. A final extension could be the
incorporation of a terrain detector for detecting different types of terrains. Such a system could be of
use in non-homogeneous environments, since it would allow our INS to detect the type of terrain and
switch to the appropriate regression model(s). Alternatively, the training data could be extended to
include varying terrain types. We plan to pursue these extensions in future work.
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Abbreviations

The following abbreviations are used in this manuscript:

AHRS Attitude and Heading Reference System

GNSS Global Navigation Satellite System

GPS Global Positioning System

LIDAR Light Detection and Ranging

IMU Inertial Measurement Unit

INS Inertial Navigation System

RADAR Radio Detection and Ranging

SONAR Sound Navigation and Ranging

UAV Unmanned Aerial Vehicle

UGV Unmanned Ground Vehicle

USAR Urban Search and Rescue

Appendix A. Additional Results for Trial #7

The position errors for varying trajectory segment lengths are shown for trial #7 (configuration
Cψ,z) in Table A1 and Figure A1. Additionally, Table A2 shows the performance of the trajectory
estimation algorithm in trial #7 for configuration Cψ,z. We see that the average across the trajectory
segments is in line with the results that we see across all of the test data sets (Table 11).

It may be noticed that the standard deviation of the position errors for trial #7 in Table 12 differs
from the average standard deviations for trial #7 that are reported in Table A1. This occurs because
the standard deviation in the former table is for the error over the entire trial, whereas the standard
deviation in the latter table is the average of the standard deviations for each of the specified time
ranges. This shows that different time ranges can have very different errors, especially as the trajectory
segment length increases. More interestingly, the position errors are corrected over time using only
the starting and ending ground truth states of the trajectory segments, as evidenced by the behavior
of the position errors in Figure A1. An explanation for this comes from the fact that the perturbation
splines are penalized when they don’t follow the speeds/headings and when the estimated end state
does not match the ground truth state. As such, when the estimated position deviates from the true
position—which occurs when there are erroneous speeds and/or headings—the trajectory estimation
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algorithm optimizes subsequent spline pieces so that future speeds and headings are followed while
ensuring that the final estimated state matches the true end state. The resulting effect is that the
estimated position trajectory corrects itself over time.

Table A1. Trial #7: L2 Position Errors (cm) for Configuration Cψ,z using Est. Speed and Est. Heading.

Time (s) 2-min. Ti 7-min. Ti 14-min. Ti 28-min. Ti

[Start,End] Mean (Std. Dev.) Mean (Std. Dev.) Mean (Std. Dev.) Mean (Std. Dev.)

0–120 5.37 (3.33) 10.97 (5.55) 11.59 (6.44) 12.10 (6.67)

120–240 3.77 (2.33) 26.15 (3.79) 32.04 (4.61) 33.58 (3.63)

240–360 4.16 (2.48) 22.55 (4.75) 35.03 (2.79) 35.86 (3.20)

360–480 9.46 (4.76) 4.12 (4.25) 23.72 (4.73) 22.72 (3.34)

480–600 7.55 (3.50) 10.86 (3.60) 14.33 (5.19) 13.62 (4.09)

600–720 4.83 (3.21) 15.93 (4.10) 14.97 (2.68) 9.88 (3.70)

720–840 7.21 (3.43) 11.37 (4.38) 11.56 (4.73) 13.97 (3.98)

840–960 2.85 (1.26) 3.58 (1.64) 4.95 (2.39) 16.80 (2.89)

960–1080 4.87 (1.82) 6.91 (2.04) 8.91 (3.16) 8.25 (3.91)

1080–1200 5.12 (2.83) 5.61 (3.64) 12.00 (2.87) 10.46 (4.17)

1200–1320 7.42 (3.66) 4.93 (3.36) 10.32 (2.88) 10.44 (5.11)

1320–1440 6.90 (4.46) 9.02 (3.42) 10.44 (3.20) 16.19 (4.29)

1440–1560 7.64 (2.69) 5.29 (2.76) 8.89 (3.37) 10.72 (4.32)

1560–1680 8.18 (5.45) 8.17 (5.60) 9.80 (6.29) 9.79 (6.35)

Average 6.10 (3.23) 10.39 (3.78) 14.89 (3.95) 16.03 (4.26)

Figure A1. Trial #7 Position Errors (Varying Trajectory Segment Length): Distance between the ground
truth and estimated position trajectories for configuration Cψ,z are shown for varying trajectory segment
lengths. The Ti terms denote the ith trajectory segment for the two-minute case.
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Table A2. Trial #7: L2 Position Errors (cm) for Configuration Cψ,z—Ti’s are two minutes each.

Segment GT Speed/GT Heading GT Speed/Est. Heading Est. Speed/GT Heading Est. Speed/Est. Heading
# Mean (Std. Dev.) Mean (Std. Dev.) Mean (Std. Dev.) Mean (Std. Dev.)

1 1.29 (0.73) 1.62 (0.73) 5.37 (3.21) 5.37 (3.33)

2 2.13 (1.03) 4.01 (2.27) 3.52 (1.68) 3.77 (2.33)

3 3.19 (1.54) 3.51 (1.70) 3.49 (1.70) 4.16 (2.48)

4 1.77 (1.08) 6.59 (3.72) 3.40 (1.59) 9.46 (4.76)

5 1.10 (0.62) 5.22 (2.37) 3.34 (1.48) 7.55 (3.50)

6 1.22 (0.59) 4.71 (3.01) 1.90 (1.54) 4.83 (3.21)

7 1.42 (0.67) 3.27 (1.15) 4.48 (2.38) 7.21 (3.43)

8 1.50 (0.98) 4.02 (1.47) 2.27 (1.32) 2.85 (1.26)

9 1.31 (0.80) 4.21 (1.93) 1.67 (0.78) 4.87 (1.82)

10 1.16 (0.53) 4.55 (3.43) 2.37 (1.44) 5.12 (2.83)

11 1.36 (0.89) 5.64 (2.55) 4.75 (2.38) 7.42 (3.66)

12 1.00 (0.49) 5.48 (2.49) 4.07 (2.15) 6.90 (4.46)

13 1.92 (1.00) 7.38 (3.37) 2.66 (1.54) 7.64 (2.69)

14 1.77 (0.90) 8.32 (5.94) 1.97 (1.14) 8.18 (5.45)

Average 1.58 (0.85) 4.89 (2.58) 3.23 (1.74) 6.10 (3.23)
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