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Abstract: Permittivity of materials is of utmost importance for microwave applicators’ design and to
predict high-frequency dielectric heating of materials. In the case of aromatic plant biomass, however,
there are few data that help researchers design microwave applicators for microwave-assisted
extraction. In this work, the permittivity of cypress and rockrose biomass samples were measured
versus temperature, density, and moisture content. A resonant technique based on a coaxial bi-reentrant
microwave cavity was employed to obtain the complex permittivity of biomass samples as a function
of those magnitudes around the 2.45 GHz ISM frequency. The obtained measurements show that
large variations for permittivity values can be found with moisture content and density changes
for both cypress and rockrose biomass. Temperature also has effects in a lesser degree, although it
has an important influence on the cypress biomass loss factor. Polynomial expressions fitting
the experimental data were provided in order to facilitate the estimation of intermediate values,
which were not explicitly arranged in this work. As a general trend, the permittivity of cypress
and rockrose biomass increases with increasing values of moisture content and density, whereas the
biomass loss factor increases when temperature rises.

Keywords: cypress; rockrose; biomass; permittivity; resonant technique; dielectric constant; loss factor

1. Introduction

Chemical products contained in plants have been used in traditional medicine, pharmaceutic
and perfumery products, and as a source of antioxidant treatments. Essential oils (EOs) contained in
aromatic plants may, therefore, be valuable products provided that they are economically extracted.

In Spain, the biomass of common plants, such as cypress or rockrose, may be a good source of EO
extraction since they are commonly available after forest enhancement treatments, such as pruning
and clearing and sustainable logging exploitation, increasing the added value of silviculture. EO and
methanol extracted from Mediterranean cypress (Cupressus sempervirens L.) possess antimicrobial and
antibiofilm properties, and therefore can be used as natural preservative ingredients in food and/or
pharmaceuticals [1]. Rockrose (Cistus ladanifer) is also widely spread in the Mediterranean area, and
may be a good source of natural antioxidants since extracts from this plant show methanolic, phenolic,
and flavonoid contents as described in [2]
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Microwave-assisted extraction (MAE) of EOs and other valuable chemical compounds from
aromatic herbs, and its variants, has been actively investigated during the last decades since it promises
substantial cost and time savings and provides greater yields than conventional procedures. In [3,4],
for instance, MAE was applied to basil, garden mint, thyme, and other species, such as ajowan, cumin,
and star anise, without using any solvent to collect those essential oils.

MAE of phenolic substances from aromatic plants was also studied in [5] by using different
solvents. The results in this work show that time and solvent use were reduced and the extraction of
phenolic compounds was increased versus conventional techniques.

The modelling and optimization of energy consumption for conventional and different MAE
extraction procedures in many aromatic plants were proposed and tested in [6]. In this work, the authors
showed that MAE consumed less energy than conventional treatments in almost all studied cases and
that a compromise between the employed energy and extraction efficiency exists.

Microwave-assisted hydro-distillation (MAHD) was used for the extraction of essential oil from
O. vulgare L. ssp. Hirtum [7]. MAHD proved to be a technique with many advantages compared
to conventional hydro-distillation, such as a shorter extraction time, better yields of essential oil,
higher content of oxygenated compounds, and lower electrical consumption figures.

MAE processes’ efficiency greatly depends on the relative permittivity of aromatic plants and the
microwave applicator design, and therefore the characterization of the dielectric constant and loss
factor as a function of the temperature, density, and moisture content must be carried out in order to
properly design industrial microwave applicators capable of obtaining high energy efficiency values
and extraction yields.

Dielectric properties’ determination for every kind of material has been a widely researched
issue for many years in the area of microwave applications. When materials are to be treated with
microwaves for different purposes, such as drying, online moisture measurements, disinfestation,
remote sensing, and others, thorough knowledge of the material’s dielectric properties becomes
extremely important.

These measurements are commonly carried out as a function of the moisture content and
microwave frequency. Additionally, in the area of biological and organic materials, an extensive
activity, for determining dielectric properties, has been published in the literature and, specifically,
many studies are about plants [8–19].

In [8,9], an application of microwave measurement techniques for determining the permittivity
was proposed in the field of agricultural products. A similar technique is presented in [10,11] for
fresh leaves from different plant species. In [12,13], dielectric models that only require measurement
of the moisture content (MC) were investigated for alfalfa within different frequency ranges. In [14],
the dielectric response of corn leaves to water stress was analyzed for radar applications. Other plants
like wheat [15], two types of conifers [16], apples [17], and holly leaves in frozen environments [18]
have also been investigated. Other authors dealt with the issue of seasonal differences in the dielectric
properties of dwarf woody tundra vegetation [19].

For other specific plants, there are not yet many studies published about their dielectric properties.
It is, in general, the case of aromatic plants like rockrose and cypress. An application to low-moisture
rosemary can be found in [20]. Nevertheless, the extraction of EO from aromatic herbs is an industrial
process that can be conducted with the aid of microwave energy as an alternative to conventional
hydro-distillation [21], and permittivity measurements are necessary for equipment design.

The frequency range is, generally, one of the main aspects regarding dielectric measurements
of materials. The different studies mentioned range from an extremely low frequency (<1 kHz) [17],
going by 1–1000 Hz [10], 1.4 GHz [19], 2.45 GHz [20], 3.5 GHz [14,15], 5.5–7.5 GHz [21], 7.5–8.5 GHz [15],
1–10 GHz [3], 300 MHz–11 GHz [17], 300 MHz–18 GHz [12,13], 0.5–40 GHz [18], and up to 100 GHz [11].

To the best knowledge of the authors, however, there are not any works that describe the dielectric
properties of cypress or rockrose biomass as a function of the temperature, density, or moisture content.
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Therefore, in this work, we present permittivity measurements for the biomass of these aromatic plants
so that it can be further used in order to properly design efficient microwave applicators.

There are many techniques to obtain the permittivity of any kind of material. Additionally, there is
a wide extension of literature containing data with the electrical properties of materials at different
frequencies. Available techniques can be divided into resonant and non-resonant [22]. Resonant methods
can also be subdivided into resonant cavities, open resonators, and dielectric resonators [23].
Additionally, sensing electromagnetic structures can be implemented using different transmission lines.
Coaxial, waveguide, and microstrip lines are some usual examples to implement the measuring circuit [24].

Some of these techniques use open configurations, where part of the energy is radiated into the
ambient like in the free-space measurements, coaxial probes, or microstrip lines, while others show
closed configurations, where the energy is confined in the measurement device like in a waveguide
setup. Another classification can be made attending to the use of one port (reflection measurement)
or two ports (transmission measurement) [24]. In most of the cases, the sample is placed in a
holder and this requires adapting the sample, or destructing it, to exactly fit it into its dimensions.
Consequently, techniques can also be divided into destructive or non-destructive.

The rationale behind selecting one measuring technique in between the number of existing ones
lies in the working frequency, the expected electrical losses of the material under test (MUT), and its
homogeneity, shape, and adaptability to the holder. If the study must be carried out by varying the
temperature, the existing techniques must be adapted with this purpose and some of them can be more
easily adapted than others.

The conditions of the measurement process prevented authors from using other techniques like
Nicholson Ross Weir in a closed waveguide configuration or open coaxial probes with available
commercial kits from the brands SPEAG or Keysight. These last ones were unsuitable due to the
material’s shape and its heterogeneity.

The selected device for the measurements uses a resonant technique that provides results nearby
the frequency of interest, 2.45 GHz, and the sample was placed in a Pyrex vial that fits into a cylindrical
cavity. The sample can be previously heated to obtain its properties while the temperature decreases.
Resonant techniques use the frequency shift to provide the dielectric constant of the sample and the
quality factor Q to obtain the loss factor. Although this technique is usually preferred for low-loss
materials, it has been adapted, including the de-embedding of the feeding network to be suitable for
high-loss materials [23].

The obtained results show that, as a general trend, the permittivity of cypress and rockrose
biomass increases with increasing values of the moisture content and density, whereas the biomass
loss factor increases when the temperature rises.

2. Materials and Methods

2.1. Permittivity Measurement Equipment

The heterogeneous composition of the biomass used in this study (fine twigs with leaves) and its
handling limit the techniques suitable for its permittivity measurement. For instance, the coaxial probe
technique may produce important errors due to the air gaps present in the biomass composition. As
temperature variation is also important to predict the behavior of the biomass complex permittivity
during MAE procedures, waveguide techniques are complex to implement. Additionally, the impedance
technique is limited in frequency and sample thickness. Therefore, resonant procedures seem to be the
best ones to suit the conditions of heterogeneity, temperature, density, and moisture content during the
permittivity measurement of cypress and rockrose biomass.

Thus, a Dielectric Kit for Vials (DKV) from ITACA institute [25] was used to perform all the relative
complex permittivity measurements. This equipment can determine the dielectric constant and loss
factor of a wide range of liquid, granular, or powdered materials around 2.45 GHz. Its measurement
procedure is based on a resonant technique and, therefore, the real and imaginary part of the relative
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permittivity are estimated by measuring the changes of the resonant frequency and quality factor of
the instrument with and without material. This standalone equipment implements a resonant coaxial
bi-reentrant microwave cavity, where the material under test is placed inside a vial and the complex
permittivity is obtained by using numerical methods based on mode-matching and circuit analysis.
Although resonant techniques are usually preferred for low-loss materials, the technique employed by
DKV includes the de-embedding of the feeding network to be suitable for high-loss materials [22].

The DKV operates in a frequency bandwidth ranging from 1.5 to 2.6 GHz. It can provide dielectric
constant values lower than 100 and loss factor values ranging from 0.001 to 15. The accuracy for the
measurements is around 1% for the dielectric constant and a minimum of 5% accuracy is ensured for
the loss factor. Repeatability and linearity values provided by manufacturer are around 0.2%.

During the permittivity measurements of both cypress and rockrose biomass samples, the resonant
frequencies of the equipment ranged from 2.464 to 2.561 GHz and from 2.390 to 2.562 GHz,
respectively. It must be noticed that the selected device provides the permittivity result for just
one frequency nearby 2.45 GHz and cannot provide a wide-band characterization, which would be
more useful. However, since the purpose of the study was to obtain the permittivity of the material for
microwave-heating purposes at the specified ISM frequency, its use seemed reasonable.

Obviously, this becomes a disadvantage if the characterization for other interesting ISM frequencies
like 915 or 27 MHz is needed. In this case, another measuring alternative should be evaluated.

2.2. Biomass Sample Preparation

Two sorts of biomass were studied in this work: Mediterranean cypress and rockrose plants collected
in the province of Soria (Spain). For each kind of plant, the samples were prepared by introducing a
biomass of cypress or rockrose ranging from 1 to 1.8 g in 6-mL quasi-cylindric polypropylene test tubes
(Deltalab Ref. 400400) with an internal diameter of 10.3 mm and a height of 96.9.

Biomass materials (twigs) were collected manually and were prepared by milling 10 kg in a
hammermill with a screen pore size of 10 mm.

Each sample of cypress and rockrose biomass contained leaves, small limbs, stalks, etc. in a
heterogeneous mixture, where the largest pieces had a length of up to 40 mm and the shortest pieces
did not even reach 2 mm. In order to avoid the uncertainty generated by this heterogeneity and to
reduce airgaps, the largest pieces were chopped in pieces with a maximum length of 5 mm as shown in
Figure 1 and then introduced in the polypropylene tubes. This sample conditioning is a compromise
between the biomass milling process carried out before the microwave-assisted hydro-distillation
process and the granulate specifications of the DKV instrument.
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Figure 1. Cypress biomass before (left) and after (right) being chopped.

For each biomass sample, three different permittivity measurements were carried out and the
average value of the three measurements was used as the valid measurement. This procedure was
done in order to reduce the uncertainty of the procedure.
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Additionally, the permittivity measurements depending on the temperature, moisture content,
and density were carried out by averaging the results of three different samples as explained in the
next sections.

2.3. Measurement Procedure for Temperature Dependence of Biomass Complex Permittivity

The procedure for measuring the permittivity of biomass samples as a function of temperature is
similar to the one described in [26]. Figure 2 shows a scheme of the setup employed for measurements.
The sample to be measured was introduced in a 150-mL glass of water and then was heated in a
conventional microwave oven until the water boiled.
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Figure 2. Setup used for measuring the permittivity complex dependence on temperature.

The polypropylene test tube was then rapidly dried in order to avoid any presence of little drops
on its external surface that might ruin the measured dielectric properties and then it was introduced in
the sample container of the DKV. An optical fiber was then introduced in the biomass sample in order to
collect the temperature data. A Labview program was used to control the TempSens thermometer from
OpSens and to collect both the biomass temperature and time data [27]. The TempSens temperature
accuracy is equal to ±0.8 ◦C or better for temperatures higher than 45 ◦C and equal to ±0.3 ◦C or better
for temperatures lower than 45 ◦C.

At the same time, the DKV saved the relative complex permittivity and the time data in a txt file.
Both temperature and permittivity text files were processed in Matlab to assign the dielectric properties
to the measured temperature data by comparing temperature and permittivity time vectors. It must be
remarked that data from the three tests for every biomass sample were collected and averaged for each
complex permittivity value.

The sample temperature was measured following Newton’s law of cooling and therefore more
permittivity data were obtained for lower temperatures than for higher ones since the sampling rate for
DKV cannot be modified and temperature decreases faster for higher temperatures. Therefore, in order
to average the permittivity measurements with the similar temperature, we grouped the biomass
permittivity data obtained for the 9 tests, corresponding to 3 samples and 3 tests per sample, within 1 ◦C
ranges and averaged them in each temperature range.

For both cypress and rockrose biomass measurements, the first temperature measurement group
was contained between 84.5 and 85.5 ◦C and the averaged obtained values were assigned to 85 ◦C,
and the final temperature group was contained between 29.5 and 30.5 ◦C and the averaged values
were assigned to 30 ◦C.

The moisture content and the density of all samples were kept constant during these measurements.
For the cypress biomass permittivity measurements depending on temperature, the dry-basis moisture
content for samples was around 100% and the density was close to 0.34 g/cm3. In the case of the
rockrose permittivity measurements depending on temperature, those values were 100% and 0.3 g/cm3

for the moisture content (dry basis) and density, respectively.
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2.4. Measurement Procedure for Biomass Permittivity Variation Versus Density

The variation of the cypress and rockrose permittivity versus density was also studied in this
work. The volume of biomass for all samples was kept constant while the mass ranged from 1 to
1.8 g. The mass sample was measured by means of a weighing scales from GRAM, model SV, with an
accuracy of 0.1 g. The sample volume of 4.17 cm3 was obtained considering a cylindrical volume of a
10.3 mm diameter (the test tube specification) and a filling height of 4.8 cm.

The test tubes were filled slowly with biomass driblets while shaking the tube after each load in
order to reduce as many air gaps within the sample as possible. The first set of samples had 1 g of
mass, and some pressure was applied on them until their filling level reached a mark on the test tube,
matching the required initial density of 0.24 g/cm3. Higher densities were sequentially achieved by
increments of 0.2 g and compacting the biomass until reaching the same height level as before, so its
volume was kept constant.

The studied values of density for both cypress and rockrose biomass are shown in Table 1.

Table 1. Biomass density dependence on mass in the test tubes.

Mass (g) Density (g/cm3)

1 0.24
1.2 0.29
1.4 0.34
1.6 0.38
1.8 0.43

The minimum density obtained for both cypress and rockrose samples was 0.24 g/cm3, whereas the
maximum density was 0.43 g/cm3. The permittivity versus density results were computed as the
average of three samples per density value and three measurements per sample.

During density-dependent measurements, the sample temperature was fixed to 28 ◦C
(environment temperature). The dry-basis moisture content was 100% for both cypress and rockrose
during all measurements.

2.5. Measurement of the Influence of Moisture Content over the Biomass Permittivity

Another study carried out in this work consisted of measuring the dielectric properties versus the
moisture content of biomass samples. In order to reduce the moisture content, three biomass samples
of both cypress and rockrose with densities of 0.43 gr/cm3 were introduced in test tubes and then they
were gradually dried.

The process of drying was accomplished as follows: All biomass samples were introduced in
a traditional electrical oven during one hour at a fixed temperature of 105 ◦C. After each drying
period, we extracted the samples and waited until they reached the room temperature of 28 ◦C.
Then, the mass of each sample was weighted in order to know the amount of evaporated water and the
dielectric properties were measured in the DKV. This procedure was repeated until all test tubes were
completely dried, i.e., the mass of each test tube was the same after two consecutive drying periods in
the traditional oven. The dry mass of each sample was then obtained as the last sample mass measured
in this procedure.

In this work, the moisture content, X, was expressed as a dry basis as shown in Equation (1):

X(%) = 100·
mw −md

md
(1)

where mw (gr) is the sample mass with some moisture inside and md (gr) is the mass of the dried sample.
Please be aware that mw −md represents the mass of the water content, and therefore X accounts for
the mass water versus the dried solid mass.
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The results of the permittivity values as a function of the moisture content were computed using
the averaged values from three samples of each biomass type (cypress and rockrose) with a density of
0.43 g/cm3.

3. Results

3.1. Cypress Biomass Permittivity Measurements

The obtained measurements for cypress biomass permittivity are shown in this subsection.
The permittivity dependence on temperature, density, and moisture content for cypress biomass
samples are shown and discussed in the next sections. Blue circles (•) are used in the figures for
representing the average measured data of the dielectric constant and red triangles (I) for the loss
factor average measurements.

3.1.1. Permittivity Dependence on Temperature

Figure 3 shows the average behavior of the dielectric constant and loss factor of cypress biomass
samples versus temperature in the range 30–85 ◦C. The density of all cypress samples was 0.34 g/cm3

and the average dry-basis moisture content was around 100%. As it can be observed from the obtained
results, the dielectric constant increases with increasing sample temperatures as well as the loss factor.
The increment of the dielectric constant is around 4.8% and the increment of the loss factor is around
8.8% for the whole temperature range. This implies an average relative increase of 0.09% per ◦C for the
dielectric constant and 0.16% per ◦C for the loss factor. Thus, temperature affects the material losses
more in this case.
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The cypress biomass permittivity dependence on temperature was modelled by fitting the
polynomial expressions to the experimental data, and in this way, we obtained Equations (2) and (3)
for the dielectric constant and loss factor temperature dependence, respectively:

ε′r(T) = 3.4 + 0.04·T − 0.0006·T2 + 2.8·10−6
·T3 (2)

ε′′r (T) = 0.96− 0.016·T + 0.0003·T2
− 1.65·10−6

·T3 (3)

where T is the biomass sample temperature expressed in ◦C. The root mean square error (RMSE) for
the dielectric constant and loss factor fit is, respectively, 0.004 and 0.0043.
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3.1.2. Permittivity Dependence on Sample Density

Figure 4 shows the behavior of the cypress biomass permittivity versus density. As it can be
observed, the higher the density, the higher the values of both the dielectric constant and loss factor,
as expected. High variations with density were detected for both the dielectric constant and loss
factor (i.e., a variation above 48% for the dielectric constant and a variation above 91% for the loss
factor), with its influence being much more important than temperature. Therefore, the absorption of
microwave energy can be modulated by pressing or not the biomass product inside the microwave
applicators and can be used as a design parameter.
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Figure 4. Dielectric properties for cypress depending on the sample density and polynomial fit at room
temperature (28 ◦C) and an average moisture content equal to 100%.

The continuous variation of both the dielectric constant and loss factor versus density was also
modelled by fitting two polynomic expressions to the experimental data, thus obtaining Equations (4)
and (5), respectively:

ε′r(ρ) = 3.75− 5.96·ρ+ 22.83·ρ2 (4)

ε′′r (ρ) = 0.65− 2.05·ρ+ 6.92·ρ2 (5)

where ρ is the sample density expressed in g/cm3. The RMSE for the dielectric constant and loss factor
fit is, respectively, 0.05 and 0.01.

3.1.3. Permittivity Dependence on Dry-Basis Moisture Content

Figure 5 shows the cypress biomass permittivity evolution versus the dry-basis moisture content
for samples with an initial density of 0.43 g/cm3. All measurements were carried out at 28 ◦C. From the
obtained results, one can conclude that for moisture content values below 70%, both the loss factor and
the dielectric constant continuously decrease with decreasing moisture content values, whereas for
values above 70%, a stabilization for those magnitudes occurs. The RMSE values obtained for the
polynomial fit are higher than in the previous measurements and this might be explained because of
the heterogeneous composition of biomass samples, which might cause different drying rates in their
components. The fact that drying shrinks the stems, leaves, and sprouts at different velocities can also
be an additional explanation for this higher data dispersion.

An important conclusion for microwave-processing protocols is that higher absorption rates and
efficiencies will be obtained when the cypress biomass has higher moisture content levels and drying
processes due to storage have not occurred yet.
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Figure 5. Dielectric properties of cypress biomass depending on the dry-basis moisture content for a
0.43 g/cm3 initial density and room temperature (28 ◦C).

Quadratic polynomials were used to interpolate the experimental data of both the dielectric
constant and loss factor of cypress biomass versus the dry-basis moisture content. Equations (6) and
(7) show the obtained polynomials for both magnitudes:

ε′r(X) = 1.11 + 6.4·X − 1.96·X2 (6)

ε′′r (X) = 0.02 + 1.48·X − 0.42·X2 (7)

where X is the moisture content in dry basis. The RMSE values for the dielectric constant and loss
factor fitting are, respectively, 0.27 and 0.04.

3.2. Rockrose Biomass Permittivity Measurements

The obtained results for rockrose biomass permittivity are shown in this subsection versus
temperature, density, and moisture content variations. The results are discussed and compared to the
cypress biomass data.

3.2.1. Permittivity Dependence on Temperature

Figure 6 shows the variation of the permittivity versus the temperature for the rockrose biomass
samples from 30 to 85 ◦C. The dielectric constant hardly varies for the whole range of temperatures.
The loss factor, however, shows a clear increasing trend, as happened with the cypress biomass
measurements. Its values range from 0.74 to 0.86, which implies a 16% increment for the whole
temperature range and an average relative increase of 0.29% per ◦C. The density of the samples was
0.3 g/cm3 and the moisture content (dry basis) was around 100% during these measurements.

Equations (8) and (9) show the polynomial fit to the permittivity data versus temperature (T, ◦C)
for the rockrose biomass samples:

ε′r(T) = 4.65 + 0.02·T − 0.0003·T2 + 1.8·10−6
·T3 (8)

ε′′r (T) = 0.77− 0.0047·T + 0.0001·T2
− 8·10−7

·T3 (9)

where the RMSE values for the dielectric constant and loss factor are, respectively, 0.0048 and 0.0039.
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3.2.2. Permittivity Dependence on Sample Density

Figure 7 shows the rockrose biomass permittivity dependence on density. The measurements
were carried out at room temperature and for a moisture content equal to 100%. One can conclude from
the obtained results that the bigger the density, the higher the values for both the dielectric constant
and loss factor. This behavior is very similar to the one observed for the cypress biomass samples.
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Figure 7. Dielectric properties’ measurements and polynomial data fit for rockrose depending on the
sample density. Carried out at 28 ◦C and a moisture content (dry basis) of around 100%.

Very important permittivity variations with density were detected as in the case of cypress biomass
(i.e., a variation of around 125% for the dielectric constant and 200% for the loss factor), with its
influence being much more important than temperature. The behavior is very similar to that of cypress
biomass, although, in this case, the dielectric constant and loss factor values are larger than those
for cypress.

Equations (10) and (11) show, respectively, the polynomial fit for the rockrose biomass dielectric
constant and loss factor as a function of the sample density:

ε′r(ρ) = 4.38− 17.59·ρ+ 63.74·ρ2 (10)
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ε′′r (ρ) = 1.05− 6.42·ρ+ 18.08·ρ2 (11)

where the RMSE value for the fitting of the dielectric constant is 0.09 and the loss factor one is 0.02.

3.2.3. Permittivity Dependence on Dry-Basis Moisture Content

Figure 8 shows the rockrose permittivity dependence on the dry basis moisture content at room
temperature. The initial density of all samples was around 0.43 g/cm3. One can conclude from the
results that both the dielectric constant and loss factor increase their values with increasing moisture
content levels. Data dispersion was also observed, although in a lower degree (lower RMSE values)
than in the case of cypress. A very important variation of the dielectric constant and loss factor was
found when varying the dry basis moisture content from 100% to 0%. The dielectric constant varied in
a range from 8.7 to 1.8 whereas the loss factor varied from 1.65 to 0.2.
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Figure 8. Dielectric properties for rockrose depending on the moisture content (dry basis) for a
0.43 g/cm3 initial density and room temperature (24 ◦C).

The measured rockrose biomass permittivity values were close to those ones obtained from the
cypress biomass samples. Again, for microwave-assisted extraction purposes, it seems more convenient
for efficient processing to irradiate the biomass samples with a higher moisture content since microwave
absorption will be higher. However, this can be a setback when driving big payload volumes, so the
penetration depth can be managed by handling biomass samples with a lower moisture content.

Equations (12) and (13) show, respectively, the polynomial fit of the dielectric constant and loss
factor data of rockrose biomass samples as a function of the moisture content:

ε′r(X) = 1.64 + 14.81·X − 7.71·X2 (12)

ε′′r (X) = 0.18 + 3.1·X − 1.56·X2 (13)

where X is the dry-basis moisture content of the rockrose samples. The RMSE values for the dielectric
constant and loss factor fitting are 0.16 and 0.03, respectively.

4. Discussion

Permittivity measurements for biomass samples of cypress and rockrose were presented in
this work. They were carried out with resonant techniques near the 2.45 GHz ISM frequency.
The dependence of both the dielectric constant and loss factor versus temperature, density, and
moisture content was shown.
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The obtained results for both rockrose and cypress biomass samples indicate that temperature has a
limited influence on the dielectric constant, at least for temperatures ranging from 30 to 85 ◦C. However,
the loss factor of both cypress and rockrose biomass increases around 8.8% and 16%, respectively, in
that temperature range with increasing temperatures.

It must be remarked that this behavior is different from that measured for pure water as shown
in [28]. Whereas pure water shows decreasing values for its dielectric constant and loss factor when
temperature increases, the cypress biomass dielectric constant increases and the real part of rockrose
biomass permittivity stays constant. Additionally, the loss factors of both kinds of biomass increase
with rising temperatures.

The explanation for this behavior can be found in [29,30]: When temperature increases, free water
is released from its bound state inside the biomass cells and, therefore, the dielectric constant and,
specially, the loss factor increase their values. Therefore, the increased mobility of water within plants
due to higher temperatures compensates for the effect that temperature has on pure water.

Density has a much more important influence on both the dielectric constant and loss factor
values. Dielectric constant variations range from 48% to 125% for cypress and rockrose, respectively,
whereas the loss factor variations versus density range from 91% to 200% for cypress and rockrose,
respectively. Therefore, density should be carefully considered when designing an MAE applicator
since it can largely affect its efficiency and temperature distribution.

High density values for cypress or rockrose biomass will ensure high loss factor values and,
therefore, a high capacity for microwave absorption. This usually leads to high power efficiency values
of the microwave applicator and high heating rates. However, the penetration depth will decrease
with increasing the density values and therefore uniform heating will be more difficult as the density
grows since most microwave energy will dissipate near the biomass surface. Therefore, a compromise
between microwave absorption and uniform heating patterns should be considered when choosing
the biomass density.

Moisture content also has a remarkable impact on the permittivity values. At least, two important
conclusions can be obtained from the results: The first one is that higher moisture contents provide
higher microwave absorption rates since the loss factor grows with increasing moisture content values.
However, high moisture contents will lead to low penetration depth values and this will hinder uniform
heating in the biomass volume. Therefore, there must be a compromise between microwave absorption
and uniformity similar to that described for the biomass density of cypress and rockrose.

Additionally, some dispersion of the experimental data was observed when the moisture content
changed and this might be explained due to the fact that the drying rates for stems, leaves, or tree
branches are different and the composition of biomass is very heterogeneous.

Although the conclusions for biomass permittivity evolution versus temperature, density,
and moisture content should be considered valid only around the 2.45 GHz ISM frequency, most of
them will also reproduce at lower and higher microwave frequencies, where dipolar rotation is the
driving mechanism for dielectric losses.

It is more complex is to consider the combined effect of different parameters. For instance,
when samples lose moisture, it is expected that the sample density will also change with respect to
the initial value that has been taken in each set of measurements. Therefore, the real variation of the
permittivity determined by the combined effect of both parameters should be assumed to be different
than that shown for each individual parameter. This is so because the variation in moisture for the
cypress or rockrose is not independent of its mass density. A mutual relationship between temperature,
moisture, and density determines the expected values for permittivity and future works are envisaged
in that direction.

The estimation of the actual distribution of permittivity of the cypress or rockrose biomass within
the microwave cavity in MAE processes is a complex task since the biomass will be pressed by blades
and other transport elements and thus its density will vary evenly along the microwave applicator.
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Additionally, the moisture content and temperature distributions will vary during the microwave
irradiation process.

However, for microwave applicator designing processes knowing the limits of biomass permittivity
is often enough to provide good power efficiency levels, above 90%, and uniform temperature profiles.
In this case, designers can test the best and worst cases and the response of the applicator both in terms
of power reflection and the expected heating patterns

Finally, the obtained values of permittivity for both rockrose and cypress biomass show that these
materials can be irradiated with microwave energy in order to extract profitable chemical substances.
The irradiation would be more efficient for higher values of moisture content and density, although a
compromise between the absorption and power efficiency should be taken into account when designing
MAE applicators.

Implications for Sensor Design

The permittivity measurements carried out in this work for cypress and rockrose biomass
will be useful for sensor design since the correlations of biomass permittivity with temperature,
moisture content, and density are very clear.

The loss factor increases versus temperature with a biunivocal relationship in the range 35–85 ◦C
for both cypress and rockrose biomass samples. This indicates that it would be possible to estimate the
plant temperature increase due to undesired fire spots, ray strokes, or problems in greenhouses by
using directive radio links since a temperature increment would lead to an important attenuation rise
and a decrease in the received power.

This temperature-driven loss factor increment is directly correlated with the conversion of bound
water into free water and therefore it could be related to the dehydration of the plants and their health.
Thus, transmission-based microwave sensors could also measure the temperature stress resistance of
cypress and rockrose plants, even for different varieties of the same species.

There is also a biunivocal relationship between the density and permittivity. In fact, both the
dielectric constant and loss factor continuously increase as the density rises. Since density affects both
the microwave power absorption capacity and penetration depth, it would be important to control this
parameter when feeding microwave applicators. In this case, several possibilities can be implemented,
such as resonant sensors or devices based on the reflection and/or transmission of microwave energy.

A sensor indicating the moisture content of biomass would also be useful in order to introduce
the biomass into the microwave applicator at the optimal state for microwave-assisted extraction
in terms of the penetration depth and microwave energy absorption. Obviously, controlling the
moisture content of biomass would provide repeatability and the possibility to optimize the MAE
process. Again, resonant techniques or sensors based on transmission/reflection configurations could be
implemented since both the loss factor and the dielectric constant monotonously grow with increasing
values of the moisture content.

Another application of density and moisture monitoring would be the estimation of the number of
plants per square meter in a forest, which could be carried out with directive antennas. The attenuation
of the radio link will be directly linked to the forest density and moisture content of the plants.

Future work is envisaged in this direction in order to correlate permittivity measurements to
different biomass parameters and to develop non-invasive microwave sensors.
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7. Drinić, Z.; Pljevljakušić, D.; Živković, J.; Bigović, D.; Šavikin, K. Microwave-assisted extraction of O. vulgare
L. spp. hirtum essential oil: Comparison with conventional hydro-distillation. Food Bioprod. Process.
2020, 120, 158–165. [CrossRef]

8. Kraszewski, A.; Nelson, S. Microwave Permittivity Determination in Agricultural Products. J. Microw. Power
Electromagn. Energy 2004, 39, 41–52. [CrossRef]

9. Nelson, S. Dielectric Properties of Agricultural Products: Measurements and Applications. Electr. Insul.
IEEE Trans. On 1991, 26, 845–869. [CrossRef]

10. Bano, N.; Hashmi, R.A. Electrical studies of leaves over wide frequency range. IEEE Trans. Dielectr.
Electr. Insul. 1996, 3, 229–232. [CrossRef]

11. Matzler, C. Microwave (1–100 GHz) dielectric model of leaves. IEEE Trans. Geosci. Remote Sens.
1994, 32, 947–949. [CrossRef]

12. Shrestha, B.L.; Wood, H.C.; Sokhansanj, S. Modeling of Vegetation Permittivity at Microwave Frequencies.
IEEE Trans. Geosci. Remote Sens. 2007, 45, 342–348. [CrossRef]

13. Shrestha, B.L.; Wood, H.C.; Sokhansanj, S. Microwave Dielectric Properties of Alfalfa Leaves From 0.3 to
18 GHz. IEEE Trans. Instrum. Meas. 2011, 60, 2926–2933. [CrossRef]

14. Emmerik, T.V.; Steele-Dunne, S.C.; Judge, J.; Giesen, N.V.D. Dielectric Response of Corn Leaves to Water
Stress. IEEE Geosci. Remote Sens. Lett. 2017, 14, 8–12. [CrossRef]

15. Ulaby, F.T.; Jedlicka, R.P. Microwave Dielectric Properties of Plant Materials. IEEE Trans. Geosci. Remote Sens.
1984, GE-22, 406–415. [CrossRef]

16. Franchois, A.; Pineiro, Y.; Lang, R.H. Microwave permittivity measurements of two conifers. IEEE Trans.
Geosci. Remote Sens. 1998, 36, 1384–1395. [CrossRef]

17. Hart, F.X.; Coleman, W.P. Time-domain dielectric spectroscopy of apples. IEEE Trans. Electr. Insul.
1989, 24, 627–634. [CrossRef]

18. Kou, X.; Chai, L.; Jiang, L.; Zhao, S.; Yan, S. Modeling of the Permittivity of Holly Leaves in Frozen
Environments. IEEE Trans. Geosci. Remote Sens. 2015, 53, 6048–6057. [CrossRef]

19. Romanov, A.N.; Ulanov, P.N. Seasonal Differences in Dielectric Properties of Dwarf Woody Tundra Vegetation
in a Microwave Range. IEEE Trans. Geosci. Remote Sens. 2019, 57, 3119–3125. [CrossRef]

20. Navarrete, A.; Mato, R.B.; Dimitrakis, G.; Lester, E.; Robinson, J.R.; Cocero, M.J.; Kingman, S. Measurement
and estimation of aromatic plant dielectric properties. Application to low moisture rosemary Ind. Crops Prod.
2011, 33, 697–703. [CrossRef]

21. Urvashi, Z.; Daya, K.S.; Doneria, P. Measurement of Dielectric Properties of Biological Materials Using
Co-Axial Fork-Type Probe. IEEE Sens. J. 2019, 19, 10482–10489. [CrossRef]

22. Gutiérrez-Cano, J.D.; Plaza-González, P.; Canós, A.J.; García-Baños, B.; Catalá-Civera, J.M.; Peñaranda-Foix, F.L.
A New Stand-Alone Microwave Instrument for Measuring the Complex Permittivity of Materials at Microwave
Frequencies. IEEE Trans. Instrum. Meas. 2020, 69, 3595–3605. [CrossRef]

http://dx.doi.org/10.1186/1472-6882-14-179
http://www.ncbi.nlm.nih.gov/pubmed/24890383
http://dx.doi.org/10.1007/s11130-010-0168-2
http://www.ncbi.nlm.nih.gov/pubmed/20455024
http://dx.doi.org/10.1016/j.chroma.2004.05.083
http://www.ncbi.nlm.nih.gov/pubmed/15330107
http://dx.doi.org/10.1080/08327823.2004.11688514
http://www.ncbi.nlm.nih.gov/pubmed/16480156
http://dx.doi.org/10.1016/j.lwt.2007.04.013
http://dx.doi.org/10.1016/j.fbp.2019.11.018
http://dx.doi.org/10.1016/j.fbp.2020.01.011
http://dx.doi.org/10.1080/08327823.2004.11688507
http://dx.doi.org/10.1109/14.99097
http://dx.doi.org/10.1109/94.486774
http://dx.doi.org/10.1109/36.298024
http://dx.doi.org/10.1109/TGRS.2006.886175
http://dx.doi.org/10.1109/TIM.2011.2121270
http://dx.doi.org/10.1109/LGRS.2016.2606662
http://dx.doi.org/10.1109/TGRS.1984.350644
http://dx.doi.org/10.1109/36.718840
http://dx.doi.org/10.1109/14.34197
http://dx.doi.org/10.1109/TGRS.2015.2431495
http://dx.doi.org/10.1109/TGRS.2018.2881048
http://dx.doi.org/10.1016/j.indcrop.2011.01.012
http://dx.doi.org/10.1109/JSEN.2019.2928117
http://dx.doi.org/10.1109/TIM.2019.2941038


Sensors 2020, 20, 4684 15 of 15

23. Krupka, J. Frequency domain complex permittivity measurements at microwave frequencies.
Meas. Sci. Technol. 2005, 17, 55–70. [CrossRef]

24. Baker-Jarvis, J.R.; Janezic, M.D.; Riddle, B.F.; Johnk, R.T.; Holloway, C.L.; Geyer, R.G.; Grosvenor, C.A.
Measuring the Permittivity and Permeability of Lossy Materials: Solids, Liquids, Metals, Building Materials,
and Negative-Index Materials; NIST Technical Note—1536; National Institute of Standards and Technology:
Boulder, CO, USA, February 2005.

25. Dielectric Kit for Vials, Scientific and Industrial Microwaves in ITACA. Available online: https://itacadimas.
wordpress.com/dielectric-kit-for-vials/ (accessed on 20 May 2020).

26. Fayos-Fernandez, J.; Monzó-Cabrera, J.; Mato, R.; Cocero, M. Low-cost setup for the characterization of the
dielectric properties of materials versus temperature. In Proceedings of the 15th International Conference
on Microwave and High Frequency Heating (AMPERE 2015), Kraków, Poland, 14–17 September 2015.
[CrossRef]

27. TempSens signal conditioner for temperature measurement, Opsens Industrial. Available online: https:
//opsens-solutions.com/products/signal-conditioners-oem-boards/tempsens/ (accessed on 20 May 2020).

28. Ellison, W.J. Permittivity of Pure Water, at Standard Atmospheric Pressure, over the Frequency Range
0–25THz and the Temperature Range 0–100 ◦C. J. Phys. Chem. Ref. Data 2007, 36, 1. [CrossRef]

29. Marques Duarte da Paz, A.M. Water Content Measurement in Woody Biomass Using Dielectric Constant at
Radio Frequencies. Ph.D. Thesis, Mälardalen University Press, Västerås, Sweden, 2008.

30. Geissen, A.; Torgovnikov, G.I. Dielectric Properties of Wood and Wood-Based Materials. Holz als
Roh-und Werkstoff 1994, 52, 86. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1088/0957-0233/17/6/R01
https://itacadimas.wordpress.com/dielectric-kit-for-vials/
https://itacadimas.wordpress.com/dielectric-kit-for-vials/
http://dx.doi.org/10.13140/RG.2.2.11332.83843
https://opsens-solutions.com/products/signal-conditioners-oem-boards/tempsens/
https://opsens-solutions.com/products/signal-conditioners-oem-boards/tempsens/
http://dx.doi.org/10.1063/1.2360986
http://dx.doi.org/10.1007/BF02615471
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Permittivity Measurement Equipment 
	Biomass Sample Preparation 
	Measurement Procedure for Temperature Dependence of Biomass Complex Permittivity 
	Measurement Procedure for Biomass Permittivity Variation Versus Density 
	Measurement of the Influence of Moisture Content over the Biomass Permittivity 

	Results 
	Cypress Biomass Permittivity Measurements 
	Permittivity Dependence on Temperature 
	Permittivity Dependence on Sample Density 
	Permittivity Dependence on Dry-Basis Moisture Content 

	Rockrose Biomass Permittivity Measurements 
	Permittivity Dependence on Temperature 
	Permittivity Dependence on Sample Density 
	Permittivity Dependence on Dry-Basis Moisture Content 


	Discussion 
	References

