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Abstract: TSCH (Time-Slotted Channel Hopping) and 6TiSCH (IPv6 over the TSCH mode of
IEEE 802.15.4e) low-power wireless networks are becoming prominent in the industrial Internet of
Things (IoT) and other areas where high reliability is needed in conjunction with energy efficiency.
Due to the complexity of IoT deployments, network simulations are typically used for pre-deployment
design and validation. However, it is currently difficult and time-consuming to simulate large-scale
IoT networks with thousands of nodes. This paper proposes TSCH-Sim: a new discrete event
simulator for IEEE 802.15.4-2015 TSCH and 6TiSCH networks. The evaluation shows that simulation
results obtained with TSCH-Sim show a good match with results from other simulators that are
commonly used to investigate TSCH networks. At the same time, TSCH-Sim is faster than these
alternatives at least by an order of magnitude, making it more practical to carry out simulations of
large networks.
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1. Introduction

The TSCH (Time-Slotted Channel Hopping) protocol [1] is suitable for wireless network
applications where high reliability and predictability is desired in conjunction with low power
consumption. These include applications in industrial IoT [2], smart homes for healthcare [3],
smart buildings [4], agricultural monitoring [5], and other areas.

Simulation is a critical step in the workflow of designing and deploying such networks. It is also
an actively used research tool. To this end, the 6TiSCH (IPv6 over the TSCH mode of IEEE 802.15.4e)
working group [6] has developed the 6TiSCH simulator [7]—a discrete event simulator that implements
the TSCH and 6TiSCH protocols. Another frequently used tool for TSCH network research and
validation is the Cooja simulator [8], which allows use of the Contiki and Contiki-NG implementations
of TSCH & 6TiSCH protocols in simulated environments. While highly useful, these simulators
have limited scalability [7] for simulations of large networks and when many scenarios need to be
investigated (Section 4). This problem is becoming more acute with each year, as IoT networks expand
in popularity and in size, and TSCH starts to get applied to LoRa-based networks [9] where large
deployments are commonplace.

This paper presents TSCH-Sim: a new discrete event simulator for TSCH and 6TiSCH networks,
available at https://github.com/edi-riga/tsch-sim. TSCH-Sim is implemented in JavaScript with
modules to facilitate extensions by users and integration with the Web. It supports the TSCH
protocol as defined in the IEEE 802.15.4-2015 standard [1], as well as aspects of the emerging 6TiSCH
standards, including integration of TSCH with IPv6 and the RPL (Routing Protocol for Low-Power
and Lossy Networks) protocol [10]. It allows the selection of multiple schedulers including the
6TiSCH minimal schedule and Orchestra [11], routing protocols (currently RPL), network connectivity
models, including the models available in 6TiSCH and Cooja, node mobility models, as well as full
control over the low-level details of the simulations such as the channel hopping sequence, queue size,
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and duration of individual timeslots. TSCH-Sim automatically collects simulation statistics for each run,
including end-to-end Packet Delivery Ratio (PDR), hop-by-hop Packet ACK Ratio (PAR), radio duty
cycle (RDC) and charge consumption for each node. The model of charge consumption is validated
with hardware measurements on a Texas Instruments CC2650 device. TSCH-Sim has an easy-to-use
web interface and uses the JSON format for configuration files. The simulator features a built-in
random number generator that allows conduct replicable experiments, and a configuration option
for running the same experiment multiple times with different random seeds, executed concurrently
in case of a multicore CPU. Most importantly, TSCH-Sim demonstrates an order of magnitude faster
execution time for medium-sized and large networks compared with other simulators evaluated in
this paper, mostly because of a high abstraction level, improved link processing, and reduced log file
sizes. In particular, in sparse networks it demonstrates approximately linear dependence between
simulation speed and the number of nodes.

The paper is structured as follows: Section 2 presents the background on the network protocols and
overviews the existing simulation options. Section 3 briefly describes the main aspects of TSCH-Sim.
Section 4 evaluates TSCH-Sim and quantitatively compares it with existing options, and Section 5
provides an application example for the simulator. Finally, Section 6 concludes the paper.

2. Background and Related Work

2.1. TSCH and 6TiSCH

The IEEE 802.15.4-2015 standard [1] introduces several new MAC modes of operation,
including the Time-Slotted Channel Hopping (TSCH) protocol, a Time Division Multiple Access
(TDMA) MAC layer using frequency diversity via pseudo-random channel hopping. TSCH is targeted
towards applications that require high reliability and predictability. Because of channel hopping at the
MAC layer, TSCH networks are relatively immune to narrow-band interference and fading. Time in
TSCH networks (Figure 1) is divided in timeslots, and all communication takes place on scheduled cells.
A collection of periodically repeating cells is called a slotframe, and a collection of such slotframes is
called a schedule. A cell has two coordinates: time slot and channel offset. The former corresponds to
the time since the start of the network as expressed by a Absolute Slot Number (ASN). The latter is
a mapped to a physical channel via a pseudo-random network-wide channel hopping sequence (HS):

channel = HS[(ASN + ChannelOffset) mod ||HS||]
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The IETF (Internet Engineering Task Force) 6TiSCH Working Group has produced a number
of Internet Drafts and RFC that describe how to use the TSCH protocol in low-power IPv6
networks. They have published the 6TiSCH minimal schedule RFC [6] and are, at the time of
writing this, working on the Internet Draft of the Minimal Scheduling Function [12] for distributed
TSCH scheduling.

The two most commonly used simulators for these protocols in the research literature are Cooja
and the 6TiSCH simulator.

2.2. Cooja Simulator

Cooja [8] is a simulator for the Contiki [13] operating system. It is written in Java and is extensible
by users via a plugin mechanism. It is possible to run native C code in the Cooja simulator using Java
Native Interface (JNI). In particular, the complete Contiki and Contiki-NG operating system can be
executed in the Cooja simulator, thus ensuring a close match between the software used in simulations
and the software used in real-world deployments. Furthermore, using the mspsim plugin, emulation of
msp430-based hardware platforms is possible.

However, this high level of detail comes at a cost: the slow performance of the hardware-emulated
devices makes them impractical for networks with 100 or more nodes. Even when the hardware
emulation feature is not used, Cooja is only suitable for networks with up to a few hundreds of nodes.
Please note that the original Cooja paper [8] claims linear scalability with the number of nodes (N).
However, the experiments in that paper do not include any packet transmissions—a major oversight
given that the real bottleneck of Cooja’s performance is its connectivity model. In fact, it was the
realization that O(N2) algorithms are highly embedded in Cooja’s core code that first motivated the
development of TSCH-Sim.

2.3. 6TiSCH Simulator

The 6TiSCH simulator is developed by the IETF 6TiSCH working group and serves as
an experimentation ground for the standards they are developing. This simulator does not aim
to simulate execution at the level of C code or machine code; it is written in Python and simulates
time with the granularity of individual TSCH timeslots. The simulator collects summary statistics and
stores them after each run; visualization options are also available, both in the form of a web interface
and PDF files generated by Python scripts included in the source code release.

As the 6TiSCH simulator is intended to be used for experimentation with standards and proposed
standards, it is lacking any non-standard schedulers and routing protocols, and does not have
architecture that would facilitate the addition of custom extensions. While the 6TiSCH simulator
is significantly faster than Cooja due to its higher level of abstraction, its scalability is limited due to
the architectural choices made by its authors.

2.4. Other Simulators

2.4.1. OpenSim

OpenSim (https://openwsn.atlassian.net/wiki/spaces/OW/pages/13434892/OpenSim) is the
simulator of the OpenWSN [14] library, which is the de facto standard TSCH and 6TiSCH
implementation for embedded devices. OpenSim allows running of the OpenWSN firmware on
emulated devices connected over a simulated network. The main goals of OpenSim are to facilitate
experimentation with OpenWSN without a hardware device, and to allow the developers testing
their code before running it on hardware. Research claims that its scalability is rather poor [7],
since low-level details of the device are emulated. The connectivity models in OpenSim are very
simple and partially share code with the 6TiSCH simulator, as the same authors are involved in both.
Specifically, the OpenSim simulator supports the Pister-hack distance-based model, line model, and full
mesh model.

https://openwsn.atlassian.net/wiki/spaces/OW/pages/13434892/OpenSim
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OpenSim does not support trace-based simulations or explicitly configured links, therefore it is
not possible to guarantee a fair experimental comparison between it and TSCH-Sim and Cooja, as the
aim is to set up an identical physical network topology before starting the simulations.

2.4.2. ns-3

The ns-3 simulator (https://www.nsnam.org/) is the third version of the ns (“network simulator”).
ns-3 was initially released in 2008, and has grown to contain a large collection of network protocols,
topology definition tools, propagation models and other features. The simulator is written in C++ and
has a Python interface for scripting. While some research papers also report results using the ns-3
simulator, its official release does not include an implementation of TSCH or 6TiSCH.

There is an unofficial ns-3 implementation of TSCH (https://github.com/EIT-ICT-RICH/ns-3-
dev-TSCH). However, the implementation does not include all aspects of TSCH: for example, there is
no concept of joining the network and no TSCH protocol messages are implemented, including both
Enhanced Beacon and Keep-alive messages. Support of any 6TiSCH aspects is missing as well:
there is no RPL implementation in the version of ns-3 that includes the partial TSCH implementation.
These missing features make it impossible to perform an experimental comparison between the ns-3
TSCH implementation and TSCH-Sim.

2.4.3. OMNeT++

OMNeT++ (https://omnetpp.org/) is an extensible, modular, component-based C++ simulation
library and framework, primarily for building network simulators. OMNeT++ features a large number
of protocols, traffic models, and ability to describe the network topology with a custom language
called NED. Wireless channel and radio models are available not in the core library itself, but via other
tools and simulators that rely on the OMNeT++ platform. OMNeT++ does not include support for the
TSCH protocol.

The strengths of OMNeT++ and ns-3 lie in their ability to simulate radio reception models in
high detail, including state-of-the-art channel fading and interference models, other physical layer
details such as antenna directionality, propagation delay, as well as having a large library of common
Internet protocols and devices. However, the majority of these features are not relevant to creating
scalable TSCH and 6TiSCH simulations. TSCH-Sim does not aim to replace ns-3 or OMNeT++ with
their detailed physical layers, but provide a simple alternative for simulating one specific protocol.

3. TSCH-Sim Overview

3.1. Core Functionality

TSCH-Sim is implemented in JavaScript using classes and code separation in modules.
This language is selected to make the simulator easy-to-extend by users, as well as to facilitate
the integration with a web frontend. Table 1 shows a summary of TSCH-Sim core features and their
comparison with other simulators.

https://www.nsnam.org/
https://github.com/EIT-ICT-RICH/ns-3-dev-TSCH
https://github.com/EIT-ICT-RICH/ns-3-dev-TSCH
https://omnetpp.org/
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Table 1. TSCH simulator comparison.

TSCH-Sim 6TiSCH Cooja OpenSim

Feature Simulator

IEEE TSCH + + + +
6TiSCH partial + partial +

RPL + + + +
Mobility + − plugin −

Trace-based simulation + + plugin −
Summary statistics + + − +

Charge consumption + + − +
C code execution − − + +

Hardware emulation − − + +
GUI Web Web Java Web and Python

The TSCH-Sim code is loosely structured in three layers (Figure 2). The highest of these is the
interface layer with modules that keeps the global configuration, route web API calls, and perform
logging. A web GUI frontend is available (Figure 3). The intermediate is the network layer,
which implements the upper half of the core simulator functionality. Multiple link connectivity options
are available, including models that estimate packet reception probability and RSSI (Received signal
strength indication) based on the distance between nodes, models that emulate options available
on Cooja and the 6TiSCH simulator, and a trace-based model. Similarly, line mobility and
random-waypoint mobility models are available. Finally, the device layer implements the state
of a network node, including the IEEE TSCH protocol state machine. This layer also features
multiple routing and scheduling options, which can be selected via configuration. Besides RPL,
a simple leaf-and-forwarder routing is available. In terms of schedulers, Orchestra, leaf-and-forwarder
scheduler, and the 6TiSCH minimal scheduler are currently implemented.
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Figure 3. TSCH-Sim web interface.

The JavaScript language includes a random number generator (RNG). However, this RNG is
not suitable for simulation purposes, as JavaScript does not allow seeding of its RNG from user
code, making it impossible to conduct repeatable simulations. TSCH-Sim features a custom random
number module that uses the multiply-with-carry algorithm. This RNG algorithm characterized
by fast execution speed and ability to pass statistical tests of randomness very well [15]. However,
the multiply-with-carry algorithm generates uniform random numbers, and for some aspects of
simulation the Gaussian distribution is required: for example, RSSI on communication links is
characterized by additive white Gaussian noise. The random number module computes the Box-Muller
transform [16] to convert uniform random numbers to the Gaussian distribution.

The TSCH-Sim simulator does not impose any specific slotframe structure: this depends in
the scheduler. By default, TSCH-Sim has the Orchestra scheduler enabled. This scheduler adds
three slotframes: one for node-specific unicast cells, one for sending and receiving Enhanced Beacon
messages, and one called “common default”, shared by all nodes in the network and used for broadcast
messages, such as RPL DIO messages. See Duquennoy et al. [11] and Elsts et al. [17] for the details.

3.2. Modeling Packet Transmissions and Collisions

The discrete nature of TSCH slotframe simplifies packet transmission modeling as packets may
only be sent at a specific point in each timeslot. In each TSCH timeslot, all nodes in the network are
processed and a scheduling decision made for each node. These decisions are possible: (1) transit
a packet; (2) listen for a packet; (3) sleep. Nodes that transmit their packets do that by going through
their links, checking whether the potential receiver is listening for packets and is on the right channel.
If these preconditions are true, the link model is queried for transmission success probability between
the transmitter and receiver nodes, a random number between 0 and 1 generated to determine the
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success for the packet, and the packet added on the receiver node: either to potentially received packets
if the transmission is successful, or to interfering packets if it is not.

If the receiver node only has a single potentially received packet and no interfering packets
in a given timeslot, the one packet is simply received. If there is more than one packet,
Algorithm 1 implements reception with the capture effect [18]. In the algorithm’s pseudo-code,
functions DBM_TO_MW() and MW_TO_DBM() refer to conversion between RSSI, as commonly given
in decibel-milliwatts, and transmission power in milliwatts. The goal is to determine whether any of
the packets can still be received, which is the case if the strongest RSSI is more than the sum of the other
RSSI minus the hardware-specific co-channel rejection threshold (by default −3 dBm in TSCH-Sim).

Algorithm 1 Packet reception with collisions.
1: function RECEIVEPACKET(potential_packets, inter f ering_packets)
2: best_packet← SELECTBYSTRONGESTRSSI(potential_packets)
3: best_packet_signal_mW ← DBM_TO_MW(best_packet.rssi)
4: other_packet_signal_mW ← 0
5: for packet ∈ potential_packets do
6: if packet 6= best_packet then
7: other_packet_signal_mW ← other_packet_signal_mW+ DBM_TO_MW(packet.rssi)
8: end if
9: end for

10: for packet ∈ inter f ering_packets do
11: other_packet_signal_mW ← other_packet_signal_mW+ DBM_TO_MW(packet.rssi)
12: end for
13: if MW_TO_DBM(best_packet_signal_mW) >
14: MW_TO_DBM(other_packet_signal_mW) − co_channel_rejection then
15: return best_packet
16: else
17: return NULL
18: end if
19: end function

3.3. Achieving High Performance

The TSCH-Sim connectivity model only considers packet reception possible if there is an existing
link between the transmitter node and receiver node. The existence of these links is precalculated at the
start of the simulation by the link model (Section 3.5) and these links are kept in a cache for fast access.
Due to this optimization, the execution time of TSCH-Sim simulations does not grow quadratically
with the number of nodes (N), but linearly with the number of links (L). This is important in particular
for sparse networks where L� N2, as this property enables scaling up the network size as long as the
number of potential connections per node remains small.

Cooja and the 6TiSCH simulator use similar strategies; however, the details are different.
Cooja also caches the links in a hash table, but updates the links from a particular device whenever
its radio is turned on or off. In a heavily duty-cycled protocol such a TSCH this creates a large
overhead. The 6TiSCH simulator uses a N2 connectivity matrix to provide fast access for all connections.
The drawback of this approach is that whenever a transmission is done, all O(N) listening nodes need
to be processed to the ones able to hear the packet, instead of iterating through the list of links from
the transmitter with O( L

N ) expected size.
The second main performance optimization included in the TSCH-Sim is related to the collection

of simulation results. The 6TiSCH simulator and Cooja use a two-step approach for result collection:
during the simulation run, unstructured or loosely structured results are logged in an output file.
After the simulation is completed, the file needs to be analyzed with a script to produce summary
metrics. To reconstruct the main performance metrics (Section 4.2), heavy log output is required;
this takes a lot of disk space, and a lot of the runtime is spent waiting for I/O. The 6TiSCH
simulator in particular creates files larger than a gigabyte for the 300 node simulations (Section 4.3).
TSCH-Sim is able to generate detailed log files as well; in fact, the main performance metrics
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(Section 4.2) were reconstructed from these log files for a fair comparison with the other simulators.
However, the TSCH-Sim code itself can collect all the required statistics during a simulation run,
and report it immediately after the simulation is completed. This allows fully disabling of the log
output and achievement of faster execution time without losing essential information about the results.

3.4. User Workflow

The main task of the user is to prepare a configuration for simulation runs. The configuration
can be prepared either using the web interface or by directly writing the values in a JSON file; see the
Listing 1 for an example. Example files are available along the source code of the simulator (Section 3.7).

Listing 1: TSCH-Sim configuration file example.

1 {
2 "MAC_HOPPING_SEQUENCE": "TSCH_HOPPING_SEQUENCE_4_4",
3 "LOG_FILE": "simulator.log",
4 "NODE_TYPES": [
5 {
6 "NAME": "gateway",
7 "START_ID": 1,
8 "COUNT": 1
9 },

10 {
11 "NAME": "node",
12 "START_ID": 2,
13 "COUNT": 5,
14 "ROUTING_IS_LEAF": true
15 }
16 ]
17 }

Sensible default values for all settings are provided, with the exception of the number of nodes
and their types. The configuration file is only required to contain values that differ from these defaults.
The following information can be specified in the configuration file:

• Simulation duration, simulation seed, the size of the simulated area;
• Log file name and logging levels, including module-specific levels;
• Link connectivity and node mobility models to use;
• Routing protocol and scheduler to use;
• Application-layer settings, such as the data packet size and generation period;
• Link model settings, such as the transmission range;
• Explicit link quality to use between specific nodes, if not covered by a distance-based link model;
• Mobility model settings, such as the speed of nodes;
• Routing protocol settings, such as the RPL packet periods, the lifetime of routes, whether to use

the leaf mode, and whether to use RPL probing;
• Scheduler settings, such as the TSCH slotframe size and timeslot duration;
• MAC-layer settings, such as the number of retransmissions, queue size, TSCH Enhanced Beacon

period, TSCH keep-alive packet period, and so on;
• Node types (see below).

The configuration key “NODE_TYPES” is expected to contain an array defining node types to be
included in the simulation. Each node type must have the following parameters: its name and the
number of nodes of this type. It can also contain the starting ID of the first node of this type, the data
packet generation frequency and the destination ID for data packets, as well as all other configuration
parameters whose values are different from the top-level configuration values or the default settings.
Consider an example: a network with two types of devices: full-functionality devices capable of routing
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and forwarding, and reduced functionality devices capable of connecting as leaf nodes. The latter are
going to have “ROUTING_IS_LEAF” set to true in the configuration of their node. In contrast, the former
may leave this key unspecified, as its default value is false.

There is a constant packet rate model, configurable from the JSON and implemented the
“PacketSource” class. The user can attach a packet source to a node or a group of nodes and configure
parameters such as the application warm-up time, packet frequency, packet size, and packet destination.
It allows simulation of data collection, data dissemination, and data query applications.

Once the configuration is ready, the user may start the simulation, either by pressing the “Start”
button in the web interface, or by running the simulator from command line with the configuration file
name as a command-line parameter. As the simulation is executed, the output from the logging module
is printed both to the standard output and to a log file. At the end of the simulation, summary metrics
are calculated and saved in a JSON file, both for each node and for the simulation as a whole.
Unless otherwise specified, the results are stored in the results directory under the simulator’s
installation path.

3.5. Link and Mobility Models

All links in TSCH-Sim are unidirectional. This allows the creation of simulations with asymmetric
communication: for example, there may be a good link from node A to node B, perhaps because A
has high transmission power, but a lossy or no link from B to A. Unless a link is explicitly configured,
its quality and signal strength depends on the distance between the source and destination nodes.

3.5.1. Explicitly Configured Links

For some radio links, their quality and other parameters may be fixed by the configuration.
These are called “fixed” links in TSCH-Sim. The main options are link quality and the average RSSI.
The link quality denotes the probability of a successful reception. There are two options for the format
of this setting. First, it can be a number between 0 and 1.0, with the default value of 1.0. Second,
it can be a dictionary with numerical keys corresponding to channel numbers in the TSCH channel
hopping sequence, and a single value for each key, between 0 and 1. The latter allows the configuring
of per-channel link qualities.

3.5.2. Unit Disk Graph Model

The unit disk graph model is the default propagation model used in Cooja and in other
simulators. The unit disk graph radio signal propagation model uses circle centered at the transmitting
mode to simulate radio coverage. The reception success probability normally depends on the
distance d between the transmitting and the receiving node, and is calculated using the formula
P(success) = 1.0− d2 · (1.0−UDGM_RX_SUCCESS), where UDGM_RX_SUCCESS is a configuration
value. However, if UDGM_CONSTANT_LOSS configuration setting is enabled, the reception success
probability is constant everywhere in the unit disk.

3.5.3. Logistic Loss Model

The Logistic Loss radio signal propagation model uses circle centered at the transmitting mode to
simulate radio coverage. The main role of Logistic Loss model is to serve as a more realistic replacement
for the unit disk graph model.

The signal strength at the receiving node is determined using exponential free-space loss formula,
on which Additive White Gaussian Noise (AWGN) is overlaid. The packet reception probability is
modeled using the logistic function from the signal strength:

PRR(rssi) =
1

1 + exp(−(rssi− rssi50 %))
, (1)
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where rssi is the transmit power minus the path loss. To model the path loss PLdBm(d) we use the
log-distance path loss model [19]:

PLdBm(d) = PL0 + 10 · α · log10
d
d0

+N (0, σ), (2)

where by default the transmission range d0 = 200 m, PL0 = −100 dBm [20], rssi50% = −96 dBm, α = 3,
and σ = 3 [19].

3.5.4. Pister-Hack Model

The Pister-hack model is the default propagation model used both in the 6TiSCH simulator and
in OpenWSN OpenSim. The “hack” in the name refers to the property of the model is used to tune the
RSSI levels to better match empirical results: namely the RSSI is randomly selected to be between the
value predicted by the Friis model and to a value 40 dB below the Friis model.

3.5.5. Trace-Based Simulation

Packet reception traces allow the input of real-world radio link dynamics in simulated network.
This can significantly improve the fidelity of simulations to real-world testbed. However, trace-based
simulation is still no replacement for real-world experiments, as short-term dynamics are typically
missed by the trace preparation process. The TSCH-Sim simulator uses a trace file format from the
6TiSCH simulator called “K7”. Both plaintext files and compressed files (with gzip) are support.
The latter are expected to have .gz extension.

3.5.6. Mobility Support

Two mobility models are supported in TSCH-Sim:

• Random-waypoint mobility model: a node generates a random point in the mobility range and
moves towards that point. Once the point is reached, the mode repeats the process.

• Line-based mobility model: a node moves along a single line segment. Once one end of the
segment is reached, the node starts moving backwards, towards the other end, and so on.

Different mobility parameters can be enabled for different node types. For example,
single simulation may combine static nodes, slow randomly moving nodes, fast randomly moving
nodes, and nodes moving along multiple predefined lines.

3.6. Charge Consumption Model

When a simulation is executed in TSCH-Sim, the simulator keeps track of a number of statistics,
including the number of slots used on each node. For the benefit of the user, at the end of the simulation,
these slot-usage statistics are translated into charge consumption, which in turn can be used to estimate
the battery lifetime on each node.

The charge consumption values used in the TSCH-Sim code are based on hardware measurements
obtained using a RocketLogger device [21] on a Texas Instruments CC2650 [20] board. We measure
the current consumption profiles of individual TSCH timeslots 100 times for each of the following:
transmission of 50, 75, 100, and 123 byte sized packets (123 being the maximal MAC-layer payload)
and reception of 50, 75, 100, and 123 byte sized packets, as well as idle listening slots. IEEE 802.15.4
standard encryption is enabled for all packets, and the CC2650 hardware acceleration for AES-128 is
turned on.

Based on the results (Figure 4), we run linear regressions to estimate the charge consumption
for packet sizes not directly measured. The regressions show very good fit, with R2 = 0.93 for
transmissions with ACK and R2 > 0.96 for each of the three other experiments (Figure 5). The results
allow a conclusion that this is a reasonably accurate method for estimating charge consumption in
TSCH networks.



Sensors 2020, 20, 5663 11 of 18

Sensors 2020, 20, 5663 11 of 19

0 1 2 3 4 5 6 7 8 9
ms

0

2

4

6

8

10

12

14
m
A

Init
radio

Wait
Rx Rx packet

Turn off
radio

(a) Reception, without ACK

Tx ACK

0 1 2 3 4 5 6 7 8 9
ms

0

2

4

6

8

10

12

14

m
A

Init
radio Rx packet

Prep.
ACK

Turn off
radio

Wait
Rx

(b) Reception, with ACK

0 1 2 3 4 5 6 7 8 9
ms

0

2

4

6

8

10

12

14

m
A

Init
radio

Load
packet Tx packet

Turn off
radio

(c) Transmission, without ACK

0 1 2 3 4 5 6 7 8 9
ms

0

2

4

6

8

10

12

14

m
A

Init
radio

Load
packet Tx packet Rx ACK

Wait
ACK

Turn off
radio

(d) Transmission, with ACK
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TSCH-Sim calculates the charge consumed by a given node by accounting all packets that it
has sent and received, as well as all slots it has spent in idle listening and scanning the channel.
Depending on whether a packet is received or transmitted, and whether it has an ACK or not,
the simulator selects one of the previously determined regression equations. Then, the charge
for the packet is calculated by applying the selected regression equation on the size of the packet.
To calculate the total charge of idle listening, a hardware-validated constant value is used as the charge
of each idle listening slot, multiplied by the number of such slots. All these charges are summed up
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and reported as the total charge consumed by the node, both in microcoulumbs and converted to
milliampere-hours (mAh).

3.7. Examples

The simulator comes with a number of examples demonstrating specific network topologies and
features of the simulator. It also includes a number of regression tests for all main simulation features.
The following examples are included:

• Demos with star, mesh, line and grid networks, all under examples
• Demo with a two-hop hierarchical network: examples/hierarchical
• Demo with a large network with 1000 nodes: examples/large-network
• Demo that demonstrates parallelization of multiple simulation runs: examples/multirun
• Demo that demonstrates control of a simulation with a user-defined script: examples/scripting
• Demo that launches the web interface backend: examples/web
• Demo with comparative simulation runs and result visualization using matplotlib with Python:

examples/result-visualization

4. Evaluation

4.1. Experimental Setup

All experiments described in the paper are run on a Lenovo X1 Carbon laptop with Intel i7-10710U
CPU and 16 GB of RAM. The following software is used:

• OS for all simulators: Ubuntu 20.04.1 LTS, Linux kernel version 5.4.0-42-generic SMP x86_64.
• TSCH-Sim: Node.js v10.19.0 (Node.js v8 is the minimum required).
• Python 3.8.2 for the 6TiSCH simulator (Version used available at https://bit.ly/3hPpyg1).
• Cooja: Contiki-NG Docker image with OpenJDK Runtime Environment (version 1.8.0_222),

Contiki-NG v4.5 (Version used available at https://bit.ly/351SZrO).

4.2. Simulation Fidelity

First, the TSCH-Sim simulator is compared with Cooja and the 6TiSCH simulator to validate the
fidelity of its simulation results. Several connected multihop networks with 30 nodes are randomly
generated. The links of these networks are hard-coded in the simulator configurations, using the
TSCH-Sim configuration files, the DirectedGraphMedium plugin of Cooja, and the k7 trace files of the
6TiSCH simulator. A simple configuration supported by all three simulators is used: the 6TiSCH
minimal schedule (with slotframe size 13) and the RPL routing protocol with the OF0 objective function,
with the parameters from Table 2; these parameters are also used for all subsequent experiments
described on this paper. The application packet size as given in Table 2 includes IP layer headers,
but not MAC or PHY layer headers. To the author’s surprise, the 6TiSCH simulator implements
a non-standard network joining algorithm; to minimize the discrepancy of the simulation results due
the difference in joining times, for this evaluation we modified the 6TiSCH simulator by extending it
with the standard IEEE 802.15.4 EB generation algorithm.

The performance of various metrics is evaluated on 10 randomly generated networks, with three
different random seeds on each network. Figure 6 shows the quantitative comparison results;
the distributions show aggregate results from the 3× 10 = 30 simulations. Overall, the results support
the hypothesis that TSCH-Sim approximates the results of Cooja and the 6TiSCH simulator with high
fidelity. There is a good match between the three simulators with little systemic differences. For most
of the metrics, the inter-simulator variance of that metric does not exceed the intra-simulator variance.

https://bit.ly/3hPpyg1
https://bit.ly/351SZrO
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Table 2. Experimental parameters.

Parameter Value

Traffic type data collection
Application packet interval 60 s

Queue size 8 packets
Number of channels 4 channels
Simulation duration 1 h

EB period 16 s
Keep-alive period disabled

MAC retransmissions 7
Application packet size 100 bytes
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Figure 6. Comparison of results of 1 h long simulations in random 30-node networks.

Figure 7 shows two routing tree topologies created in different simulation runs. While the
topologies are not identical, they have high similarity. By counting the number of nodes with a different
parents in Figure 7a,b, one can obtain a tree-similarity metric: tree edit distance. It is just 2 for in
this case.

Figure 8 shows the histogram of the tree edit distances between the different simulation runs
executed on the same underlying link topologies. The median distance between different TSCH-Sim
runs is slightly larger than 5, demonstrating that RPL networks do not usually converge to the same
routing tree. The median distance between TSCH-Sim and Cooja run is slightly smaller than that of
TSCH-Sim itself, indicating that there are no systemic differences between the different simulators in
this aspect. A t-test shows that the difference in the results is not statistically significant. The same
goes for TSCH-Sim and the 6TiSCH simulator.
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Figure 7. Different routing trees are created by the RPL protocol in different simulation runs.
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Figure 8. Similarity of the routing tree topologies.

4.3. Simulation Speed and Scalability

4.3.1. Comparison with Other Simulators

To compare TSCH-Sim speed with Cooja and the 6TiSCH simulator, we generate random
connected multihop networks with up to 300 nodes per network and measure the speed it takes
to execute an hour long simulation depending on the network size. The results show that TSCH-Sim is
approximately an order of magnitude faster than the 6TiSCH simulator and approximately two orders
of magnitude faster than Cooja. This speedup by a factor obviously translates to an increased amount
of wall-clock time as the simulation duration increases. In Figure 9, simulation execution time can be
measured depending on network size.

We note that the 6TiSCH simulator speed could be greatly improved by disabling or partially
disabling logging. However, due to the fact that summary metrics in this simulator are generated
indirectly, from log files of simulation runs, doing so would make the simulator impossible to compare
in terms of fidelity, rendering the comparison unfair.
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Figure 9. Simulation execution time depending on network size, 1 h simulations in random networks.

4.3.2. Scalability in Hierarchical Networks

To further show the scalability of TSCH-Sim, we analyze the simulation performance in even
larger networks. The focus of these simulations is on sparse networks where the number of actual links
is much lower than the number of potential connections. Commonly used scheduling options such as
Orchestra or the 6TiSCH minimal scheduler are not appropriate for networks with thousands of nodes.
To work around this limitation, we select a simpler two-hop hierarchical topology instead of random
multihop networks. Each network with this topology has a large number of leaf nodes NL, much fewer
forwarder nodes (NF ≈

√
NL), and a single gateway node. Each leaf node is only connected to a single

forwarder, and each forwarder is connected to the gateway. A leaf-and-forwarder routing mechanism
is used instead of RPL (both are available as options in the TSCH-Sim configuration), as well as
a leaf-and-forwarder schedule. In this schedule, the gateway and forwarder nodes listen for potential
packets in every slot, while leaf nodes only have two active slots per slotframe: one for broadcast
packet exchange, and one for unicast data transmission to their associated forwarder nodes.

Networks with up to 10,000 nodes are simulated with these settings (Figure 10). It takes 11
min and 22 s to simulate an hour of the 10,000 node network operation, i.e., speedup of a factor of
5 compared to the wall-clock time. The expected slowdown when more nodes are added is slightly
worse than linear, as can be seen from the regression line in the Figure 10. This suggests that even
larger networks could be easily simulated.
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Figure 10. Simulation speed of 1 h long simulations in hierarchical networks.

4.3.3. Impact of Mobility

TSCH-Sim keeps a precalculated cache of links that speed up packet transmission success rate
calculations. The cache is periodically updated for links to and from mobile nodes (Section 3.3).
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Shorter update period leads to more accurate results, but reduces the simulation speed. The default
setting of 10 s allows for maximally fast simulations that are only accurate if the nodes are moving
slowly. Figure 11 shows that increasing the update frequency up to 10 times per second does not
significantly slow the simulations down; however, update frequency of 100 times per second does
slow the simulation down more than twice. Updating the links more frequently than is currently not
possible: as the default TSCH slot size is 10 ms, and packet transmissions can only happen at specific
points in the slot, the accuracy gains would be small.
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Figure 11. Impact of mobility on speed. 300 node mesh network; all nodes except the root are mobile.

5. Application Example

The network stack of TSCH & 6TiSCH protocols has a large number of configurable parameters.
The selection of these MAC-layer parameters has a significant impact on the network performance.
Different parameters may be optimal for different deployments, depending on the application,
the network topology, and the radio environment. Applications also impose constraints: the minimum
and maximum acceptable parameter values. While some of these parameters can be found analytically,
this is not always the case. As a result, experimental approach is often required [22]. A commonly used
experimental strategy is called parameter sweep. It is a technique where a large number of simulations
or pilot deployments are performed with different values of parameters in order exhaustively go
through all potential parameter settings.

To put it more formally, let us consider a vector of parameters p = (p1, . . . , pn) and define an
optimization problem with constraints:

maximize (m1(p), . . . , mk(p))

subject to m1(p) ≥ c1, . . . mk(p) ≥ ck,

where m1, . . . , mk are the performance metrics to optimize, and c1, . . . , ck the set of constraints to satisfy.
For the sake of an example, we show how to use TSCH-Sim for such a parameter selection via

the parameter sweep technique. We assume that the data collection application (with packet period,
packet size and other parameters specified in Table 2) needs to be deployed in a 300-node mesh
network. For simplicity, we vary just a single parameter—the slotframe size s f : p = (s f ), and look
at the following metrics: PDR (m1) and battery lifetime (m2). More parameters and metrics can be
easily added. We generate a random network topology with 300 nodes, and run the simulation ten
times on this network, changing the slotframe size from 3 to 19 with a step of 2. To estimate the
battery lifetime m2(p), we assume a 2600 mAh battery budget, common for off-the-shelf AA batteries.
The results (Figure 12) show that longer slotframes are associated with monotonically increasing
network lifetime, while also leading to monotonically decreasing PDR. Given a specific network
optimization goal, the network designer can now use the results to select an appropriate combination
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of parameters. For example, if the goal is to optimize the battery lifetime while maintaining at least
95% PDR (c1 = 95%), then slotframe size of 9 is the best option (Figure 12).
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Figure 12. Parameter sweep results.

6. Conclusions

This paper describes and evaluates TSCH-Sim, a new discrete event simulator for TSCH and
6TiSCH networks. Besides the core protocol, the simulator has support for multiple link connectivity
models, mobility models, multiple TSCH schedulers including Orchestra, and the RPL routing
protocol. The simulator comes with a module for summary metrics and a web interface for control and
visualization. The evaluation shows that the simulator is an order of magnitude faster than existing
alternatives without losing simulation accuracy, and that it can scale up to large networks, mostly due
to a high abstraction level, improved link processing, and reduced log file sizes. In particular,
we demonstrate faster-than-real-time simulations of a 10,000 node network on a regular PC.
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