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Abstract: IoT networks are increasingly popular nowadays to monitor critical environments of
different nature, significantly increasing the amount of data exchanged. Due to the huge number
of connected IoT devices, security of such networks and devices is therefore a critical issue.
Detection systems assume a crucial role in the cyber-security field: based on innovative algorithms
such as machine learning, they are able to identify or predict cyber-attacks, hence to protect the
underlying system. Nevertheless, specific datasets are required to train detection models. In this
work we present MQTTset, a dataset focused on the MQTT protocol, widely adopted in IoT networks.
We present the creation of the dataset, also validating it through the definition of a hypothetical
detection system, by combining the legitimate dataset with cyber-attacks against the MQTT network.
Obtained results demonstrate how MQTTset can be used to train machine learning models to
implement detection systems able to protect IoT contexts.
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1. Introduction

The volume of data exchanged through global networks is increasing every year, due to the
huge number of devices connected to ICT networks. Moreover, the rapid expansion of the Internet
of Things (IoT) phenomenon is considered a key factor of this high number of traffic volume [1].
Thanks to IoT, simple objects gain the ability to process and exchange information among themselves
or other entities. If we consider the nature of the applications on the Internet, the value of exchanged
information is considerable, as exchanged data are often sensitive and contain relevant information.
Such aspect is especially relevant in the IoT context, where location and nature of devices make them
exchange sensitive information on the network. In virtue of this, security of IoT environments is a
critical point and IoT systems must be secured to be able to transmit data through the Internet freely,
without being affected by cyber-attacks.

In order to protect the data exchanged in ICT networks, including IoT environments, detection and
mitigation system are employed, to counter cyber-threats. In this context, thanks to the rapid growth of
machine learning (ML) and artificial intelligence (AI) algorithms, networks monitoring and prediction
of incoming cyber-attacks is nowadays possible [2,3]. Nevertheless, it is well-known that ML and AI
systems require a large amount of well-structured data to be adopted, in order to train models used to
identify malicious situations [4]. By focusing for instance on IoT context, communication traffic of IoT
environments can be used by ML/AI algorithms to train a detection algorithm to identify running
attacks on the network.
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Notwithstanding, the field of datasets used in the IoT context is extremely limited. In particular,
general datasets used in cyber-security (e.g., KDDCUP99 [5], UNSW-NB15 [6], or NIMS [7]) are used,
although they are rarely suitable to IoT environments, due to the limited support to dedicated protocols
used in IoT networks.

Starting from the problem of the few available datasets available in the IoT context, in this paper we
introduce MQTTset, a novel dataset focused on IoT. In particular, MQTTset includes communications
based on the Message Queue Telemetry Transport (MQTT) protocol, a publish/subscribe protocol
introduced in 1999 [8] and considered an IoT standard protocol by the OASIS group [9]. Although it’s
designed to be used in IoT environments, MQTT is even adopted for applications external to IoT like
mobile health monitoring or push notification services [10–12]. MQTTset is composed of IoT devices
of different nature (e.g., temperature, humidity, motion sensors, etc.), in order to simulate a smart
home/office/building environment. In addition, MQTTset includes both legitimate and malicious
traffics. Hence, it is potentially possible to use MQTTset to train ML/AI models in order to characterize
the legitimate behavior and identify malicious situations. In this paper, we first propose the MQTTset
dataset, hence validate it by adopting known ML/AI algorithms in order to characterize legitimate
traffic and identify potential threats on the network. Finally, in order to help the research community
to investigate the growing IoT context, we publicly released the MQTTset dataset, including both
legitimate and attack traffics, expressed in form of PCAP packet capture files.

The remaining of the paper is structured as follows: Section 2 reports the related work on the
topic. Section 3 describes in detail the created dataset and the validation activities. Section 4 presents
the obtained results. Finally, Section 5 concludes the paper and reports further works on the topic.

2. Related Work

Considering the IoT security topic, several attacks against IoT networks are found in literature,
starting from the evaluation of the impact of well-know attacks applied to IoT environments [13],
up to the proposal of novel threats against IoT networks, protocols or nodes [14–16]. Protection of IoT
networks and systems from cyber-threats is an open research challenge, due to the constant appearance
of novel threats targeting such platforms.

In these years, machine learning algorithms are adopted to detect cyber-attacks against
infrastructure and networks. Particularly, deep learning approaches are adopted to detect cyber-attacks
by training the algorithm with the KDDCUP99 [17], while random forest, decision tree and gradient
boost algorithms are adopted to implement intrusion detection system with KDDCUP99 [18–20] and
naïve bayes algorithms are adopted for cyber-protection in [21]. In order to design and validate
efficient and accurate protection systems to detect ICT attacks, the availability of public datasets is a
critical point in the research world. By analyzing datasets considered in literature, although published
in 1999, the KDDCUP99 dataset is still adopted to implement detection systems by comparing different
machine learning algorithms [22], or by implementing specific algorithms such as random forest
to classify network traffic flows [23]. Notwithstanding, although KDDCUP99 is widely adopted in
cyber-security [24,25], it is not a good choice to adopt it in IoT scenarios, since it is not intended to be
used in this context, as it includes attacks on conventional ICT networks that are difficult to adapt to
IoT environments.

If we consider instead datasets used for detection of attacks against IoT, UNSW-NB15 and
NIMS are combined in [26] with simulated IoT sensors, in order to identify running attacks. Although
authors consider HTTP, DNS and MQTT protocols, the MQTT traffic generated by the IoT sensors is not
publicly available, while the other traffics are. Ref. [27] makes instead use of a custom dataset created by
combining commercial IoT solutions (like Echo Dot, Belkin NetCam, Hive Hub, Samsung Smart Things
Hub) with different communication protocols (Wi-Fi, ZigBee and Bluetooth Low Energy) to classify
cyber-attacks. Ref. [28] combines instead simple IoT sensors, like temperature, motion, air pressure
sensors, to validate machine learning algorithms (one-class classification, Isolation forest (iForest),
Local Outlier Factor (LOF)), while Ref. [29] focuses on a real IoT industrial scenario by designing an
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intrusion detection system based on machine learning to detect cyber-attacks against an industrial
networks. Another dataset adopted to compare the effectiveness of classification algorithms on IoT
malware infections and IoT benign traffic by using IoT-23 dataset is investigated in [30]. This dataset
contains DNS traffic focused on Mirai, Torii, IoT Trojan, Kenjiro, Okiru, Haji me and other botnet.
N-BaIoT is another dataset used to detection and mitigate botnet attacks in the IoT context [31] focused
on Wi-Fi communication. Although the adopted datasets are in this case particularly interesting and
variegate, authors did not release them publicly. Hence, the possibility to exploit them for research
purposes is extremely limited.

By focusing specifically on MQTT, different research works implement detection algorithms based
on MQTT dataset. In this context, a variant of the KDDCUP, called NLS-KDD, is adopted in [32] to
implement an artificial neural network (ANN) able to prevent attacks against MQTT. Nevertheless,
by analysing the adopted dataset, it does not include MQTT application data, by focusing just on
TCP transport layer packets. Therefore, in this scenario, a specific MQTT attack may not be detected,
if exploiting the application layer protocol. Ref. [33] builds instead an MQTT dataset for detection
approach based on machine learning called TON_IoT. Although publicly available, TON_IoT does not
include all MQTT packets send/received during a connection: in particular, the authentication phase
for both MQTT and TCP, involving the sensor and the broker, is not found in the dataset. Similarly,
disconnections are not present. As authentication and disconnection phases are a critical aspects
of IoT devices’ communications, the dataset is considered incomplete. In addition, the TON_IoT
dataset includes a single TCP connection for all the nodes, hence making it particularly difficult to
distinguish different nodes, for instance at transport layer. MedBIoT is another dataset related to IoT
botnet focused on the detection of botnet attacks as Mirai, Yakuza and Torii [34] but in this dataset
the authentication phase is not present. Another IoT dataset is BoT-IoT [35]. Such dataset has been
adopted for different applications, such as to train deep learning based intrusion detection systems [36]
or to train a C5 classifier and a One Class Support Vector Machine classifier to detect cyber-threats on
the network [37]. In BoT-IoT, MQTT is exploited for communications with AWS services. Nevertheless,
the raw PCAP traffic data related to MQTT was not released. As previously anticipated, considering
previous works on the topic, different custom datasets are build and adopted to design protection
systems, by also considering the MQTT protocol. Particularly, in literature, data of DHT11 temperature
sensors connected to MQTT public services are adopted [38], as well as temperature, inRow and coolant
sensors [39]. Although such works are promising, related datasets are not publicly available. Instead,
concerning datasets of devices such as sensors and actuators proposed in [40], they have been publicly
released, although not representative of a real network. In particular, in this case, data regarding the
authentication phase are missing. In addition, raw PCAP files are also not available.

If we consider the adoption of deep learning methods for cyber-protection purposes, Ref. [41]
analyses and reports the most adopted datasets in this context. Particularly, as author reported, the only
dataset available including MQTT traffic is BoT-IoT [35], although, as mentioned before, it does not
include raw and extracted network data related to MQTT.

A summary of the dataset available and their missing aspects, compared to the proposed work,
is reported in Table 1.

Unlike presented related works on the topic, in this paper we introduce MQTTset, a dataset
including raw traffic data related to the MQTT protocol, widely adopted in IoT environments. It is
important to consider that many datasets publicly available, like KDDCUP99, are released as a
set of comma separated values (CSV) files. Hence, a pre-processing of raw data is accomplished,
before releasing the dataset. Instead, MQTTset is released both as CSV and PCAP raw data, in order to
let the possibility to manually process raw information and produce different CSV files, according to
the need. Particularly, the proposed dataset contains both legitimate and attack traffic, by considering
all the data of the communications on the reference scenario (e.g., authentications, disconnection, etc.).
We also validate the possibility to identify anomalous traffics by using the dataset to train ML/AI
algorithms, for anomaly detection purposes. Finally, in order to help the scientific community to
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investigate the IoT topic and to adopt ML/AI algorithms on the presented dataset, in order to identify
running threats, we publicly released the proposed MQTTset dataset.

Table 1. Available IoT datasets adopted in detection approach.

Dataset Lacks

KDDCUP99 Not focused on IoT context
UNSW-NB15 Not focused on IoT context

NIMS Not focused on IoT context
NLS-KDD Not focused on IoT context
N-BaIoT Focused on Wi-Fi communication
IoT-23 Focused on DNS traffic for IoT context

MedBIoT Authentication phase not found, no MQTT attacks
TON_IoT Authentication and disconnection phase not found
BoT-IoT raw PCAP traffic data related to MQTT was not released

Custom datasets PCAP or raw traffic missing

3. MQTTset Dataset

This work aims to create MQTTset, an IoT dataset focused on MQTT communications. MQTTset
was built by using IoT-Flock [42], a network traffic generator tool able to emulate IoT devices and
networks based on MQTT and CoAP protocols. IoT-Flock provides the ability to configure the network
scenario, in terms of nodes (e.g., sensor type, IP addresses, listening ports, etc.) and communications
(e.g., time interval used for communications between the sensors and the broker). In addition, the tool
implements different cyber-threats against the MQTT and CoAP: publish flood, packet crafting attacks,
segmentation fault attack against CoAP (making use of a null Uri-path), and memory leak attacks
against CoAP (by using invalid CoAP options during packets forging).

In order to create a dataset representative of a real network, in our scenario, we deployed different
IoT sensors connected to an MQTT broker. Particularly, such broker is based on Eclipse Mosquitto
v1.6.2, while the network is composed by 8 sensors. The considered scenario can be assimilated to a
smart home environment, where sensors, uniquely identified by an IP address, retrieve information like
temperature, light intensity, humidity, CO-Gas, motion, smoke, door opening/closure and fan status
at different temporal intervals. According to Figure 1, sensors are located into two separated rooms.

Figure 1. The scenario considered in MQTTset

The sensors network is implemented in a limited access area (both physically and virtually)
where sensors communicate with the broker. In the network, no additional components (e.g., firewall)
are installed. Indeed, the traffic is captured from the broker itself. Instead, during the attack phases,
the malicious node is directly connected to the broker in order to execute the cyber-attacks. The position
of the attacker node inside the network is not relevant since its aim is to attack the MQTT broker due
to the nature of the selected attacks.
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Each sensor is configured to trigger communication at a specific time, depending on the
nature of the sensor. For instance, a temperature sensor may send information on the measured
temperature on the environment at predefined time intervals, e.g., every hour. Instead, a motion sensor
communicates on the network only when a movement is detected. Hence, in this case, since a “periodic”
communication is not suitable, a “random” one was adopted, by simulating motions at random times.
The communication behaviour is reported in Table 2 in the type column, where periodic indicates
the sending of a periodic message (sent every n seconds, with n reported in the messages frequency
column) and random indicates that sending is accomplished at random periods, every a random m
value, with m ≤ n, with n defined previously. By analyzing communication aspects, the dataset
simulate a real behavior of a home automation since sensors communicate based on their functionality.

Each sensor is set up with a data profile and a topic used by the MQTT broker. The data profile
consists of the type of data used by the sensors, such as the ranges used by temperature or humidity
sensors, or the commands adopted by door lock sensors. Instead, the topic is the identifier of the
channel used to publish or receive information. In our scenario, the MQTT broker, identified by the IP
address 10.16.100.73, is listening on plain text port 1883. Information on all the involved sensors are
shown in Table 2. Furthermore, some of the sensors connected to the network, in addition to sending
information, also have subscriber functions, to retrieve the data exchanged on the network.

Table 2. IoT sensors adopted in the MQTTset scenario.

Sensor IP Address Room Type Messages Topic Data ProfileFrequency (s)

Temperature 192.168.0.151 1 Periodic 60 Temperature Temperature
Light intensity 192.168.0.150 1 Periodic 1800 Light intensity Light intensity

Humidity 192.168.0.152 1 Periodic 60 Humidity Humidity
Motion sensor 192.168.0.154 1 Random 3600 Movement Movement

CO-Gas 192.168.0.155 1 Random 3600 CO-Gas CO-Gas
Smoke 192.168.0.180 2 Random 3600 Smoke Smoke

Fan speed controller 192.168.0.173 2 Periodic 120 Fan speed Fan speed
Door lock 192.168.0.176 2 Random 3600 Door lock Door lock
Fan sensor 192.168.0.178 2 Periodic 60 Fan Fan

Motion sensor 192.168.0.174 2 Random 3600 Movement Movement

The MQTTset dataset includes network traffic related to MQTT version 3.1.1. Authentication is
not enabled, hence, no username and password exchange is required to authenticate clients to the
broker. In addition, only plain text communications are included. Although this may represent a limit
of the proposed dataset, it provides packets inspection capabilities [43], as well as the possibility to
consider a wider set of parameters included in network packets.

The generated MQTT traffic is represented as a packet capture (PCAP) file, captured during the
generation of MQTTset data. Capture time refers to a temporal window of one week (from Friday at
11:40 to Friday at 11:45). The dataset is publicly available (More information are available in Section 6)
and it is represented by 11,915,716 network packets and an overall size of 1,093,676,216 bytes.

Starting from MQTTset, several possible intrusion detection and traffic characterization
applications related to the MQTT protocol may be implemented. Particularly, as previously mentioned,
to the best of our knowledge, a comprehensive and publicly available dataset focused on IoT protocols
like MQTT is missing. In addition, MQTTset includes not only legitimate traffic, but also malicious
one, we will now briefly introduce the considered threats. In this scenario, we integrated popular
and easy to detect cyber-attacks against MQTT but it is possible to integrate more complex attacks
such as zero-day [37] or innovative attacks against MQTT such as SlowITe [14] which is characterized
by a particularly low attack band since it is a slow dos attack, the computational capabilities and
bandwidth required to perform this attack are very low making it difficult to identify and mitigate.
Being publicly accessible, researchers will be able to integrate their attacks with the dataset for
analysis/detection/mitigation purposes. Referring to such attacks, we will now briefly introduce them.
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3.1. Considered Cyber-Attacks

As previously anticipated, MQTTset includes real attacks implemented to target the considered
MQTT network, in order to include in the dataset additional PCAP files which could be adopted,
for instance, to validate detection algorithms. Particularly, the following attacks are part of MQTTset
and summarized in Table 3.

Table 3. Attacks executed in the testbed.

Attack PCAP Size (bytes) Number of Packets Time (mm:ss)

flooding denial of service 49,875,539 130,223 05:00
MQTT Publish flood 8,212,656 613 05:00

SlowITe 972, 272 9202 10:00
malformed data 1,038,590 10,924 06:00

brute force authentication 1,397,132 14,501 30:00

3.1.1. Flooding Denial of Service

Denial of service attacks are executed to prevent the service to serve legitimate clients [44]. In this
case, the MQTT protocol is targeted with the aim to saturate the broker, by establishing several
connections with the broker and sending, for each connection, the higher number of messages possible.
In order to implement this attack, we adopted the the MQTT-malaria tool [38], usually adopted to test
scalability and load of MQTT services.

3.1.2. MQTT Publish Flood

In this case, a malicious IoT device periodically sends a huge amount of malicious MQTT data,
in order to seize all resources of the server, in terms of connection slots, networks or other resources
that are allocated in limited amount. Differently on the previous attack, this attack tries to saturate the
resources by using a single connection instead of instantiate multiple connections. This attack was
generated in this case by using a module inside the IoT-Flock tool [42].

3.1.3. SlowITe

The Slow DoS against Internet of Things Environments (SlowITe) attack is a novel denial of service
threat targeting the MQTT application protocol [14]. Particularly, unlike previous threats, being a Slow
DoS Attack, SlowITe requires minimum bandwidth and resources to attack an MQTT service [45–47].
Particularly, SlowITe initiates a large amount of connections with the MQTT broker, in order to seize
all available connections simultaneously. Under these circumstances the denial of service status would
be reached.

3.1.4. Malformed Data

A malformed data attack aims to generate and send to the broker several malformed packets,
trying to raise exceptions on the targeted service [48]. Considering MQTTset, in order to perpetrate a
malformed data attack, we adopted the MQTTSA tool [49], sending a sequence of malformed CONNECT
or PUBLISH packets to the victim in order to raise exceptions on the MQTT broker.

3.1.5. Brute Force Authentication

A brute force attack consists in running possible attempts to retrieve users credentials used by
MQTT [50]. Regarding MQTTset, the attacker’s aim is to crack users’ credentials (username and
password) adopted during the authentication phase. Also in this case, we used the MQTTSA tool [49].
Particularly, in order to recall to a real scenario, we adopted the rockyou.txt word list, that is considered
a popular list, widely adopted for brute force and cracking attacks [51]. For our tests, the credentials
are stored on the word list used by the attacker.
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3.2. MQTTset Validation

After we defined the sensors included in the network and generated the dataset, we decided to
use MQTTset to provide a publicly available dataset to be used for detection purposes. As mentioned
above, MQTTset embeds IoT related traffic, in particular, MQTT communications. In order to validate
MQTTset, we designed an intrusion detection system, hence applied on the dataset, combining
legitimate MQTT traffic with different cyber-attacks (mentioned above) targeting the MQTT broker
of the network. Both legitimate and attack traffics are part of MQTTset. Subsequently, the different
datasets referring to legitimate and malicious situations were mixed together and used to carry out
training and prediction of our algorithms, to validate the possibility to use MQTTset to test and
implement a novel intrusion detection algorithm.

For validation of potential intrusion detection systems, we considered the following algorithms:
neural network [52], random forest [53], naïve bayes [54], decision tree [55], gradient boost [56] and
multilayer perceptron [57]. In each case, a data pre-processing phase is carried out, with the aim of
extracting the necessary features able to characterize anomalous, hence attack, traffics/connections.
This phase is extremely crucial, as, depending on the selected features, the adopted algorithm may
lead to different results. Moreover, the selected features have to be picked up accurately, as they have
to represent and characterize a specific category of network traffic [3].

All available features able of describing a connection were then recovered directly from the raw
network data. Features are extracted and filtered in order to focus on the most relevant ones able to
characterize potential attacks and our legitimate traffic. In particular, the features removed are:

• Source/destination addresses and ports: such features are removed in order to allow detection to
be more independent on networking configuration details (useful for DoS/DDoS attacks)

• Communication times: such features are removed since the identification of attacks must not be
dependent on times or schedules

• tcp.stream: such parameter are related to a single execution, not useful for detection
• tcp.checksum: it is a unique value for each packet of the communication
• MQTT clientId, password, username and related lengths: such parameters are related to a single

execution and configuration and can be easily altered by an attacker
• MQTT topic: such parameter, easy to tune by the attacker, could be adopted to discriminate

legitimate and malicious behaviour
• iRTT: a dedicated parameter used from Wireshark to define time between packets, not related to

a connection
• tcp.window_size_value: it is a parameter related to a single packet

The full list of selected features extrapolated and provided by MQTTset is reported in Table 4.
Such features were extracted both for the legitimate and the malicious cases.

A summary of the workflow of the proposed work is reported in Figure 2: starting from raw
network traffics provided by MQTTset, features extraction is accomplished. Hence, data are combined
to mix legitimate and malicious traffics. Since the features extracted are time-independent, the mix of
legitimate and malicious traffic is executed with a random approach but with a fixed seed (with value 7)
in order to replicate the dataset easily. On the mixed traffic generated, we adopt different detection
algorithms, with the aim to identify anomalies on the generated traffic data.
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Table 4. The list of extrapolated features.

No Name Description Protocol Layer

1 tcp.flags TCP flags TCP
2 tcp.time_delta Time TCP stream TCP
3 tcp.len TCP Segment Len TCP
4 mqtt.conack.flags Acknowledge Flags MQTT
5 mqtt.conack.flags.reserved Reserved MQTT
6 mqtt.conack.flags.sp Session Present MQTT
7 mqtt.conack.val Return Code MQTT
8 mqtt.conflag.cleansess Clean Session Flag MQTT
9 mqtt.conflag.passwd Password Flag MQTT
10 mqtt.conflag.qos QoS Level MQTT
11 mqtt.conflag.reserved (Reserved) MQTT
12 mqtt.conflag.retain Will Retain MQTT
13 mqtt.conflag.uname User Name Flag MQTT
14 mqtt.conflag.willflag Will Flag MQTT
15 mqtt.conflags Connect Flags MQTT
16 mqtt.dupflag DUP Flag MQTT
17 mqtt.hdrflags Header Flags MQTT
18 mqtt.kalive Keep Alive MQTT
19 mqtt.len Msg Len MQTT
20 mqtt.msg Message MQTT
21 mqtt.msgid Message Identifier MQTT
22 mqtt.msgtype Message Type MQTT
23 mqtt.proto_len Protocol Name Length MQTT
24 mqtt.protoname Protocol Name MQTT
25 mqtt.qos QoS Level MQTT
26 mqtt.retain Retain MQTT
27 mqtt.sub.qos Requested QoS MQTT
28 mqtt.suback.qos Granted QoS MQTT
29 mqtt.ver Version MQTT
30 mqtt.willmsg Will Message MQTT
31 mqtt.willmsg_len Will Message Length MQTT
32 mqtt.willtopic Will Topic MQTT
33 mqtt.willtopic_len Will Topic Length MQTT

Figure 2. Considered workflow for MQTTset validation.

Obtained results will be presented and discussed in the next section.
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4. Testbed and Obtained Results

After pre-processing and features extraction stages has been accomplished, and data are
combined/mixed to generate a single dataset including both legitimate and malicious traffic data,
the aim is now to validate all the intrusion detection algorithms we selected above. Selected algorithms
are implemented in Python programming language, by using well known machine learning and
artificial intelligence libraries and tools such as Sklearn [58], Tensorflow [59] and Keras [60]. All the
algorithms have been tested on the same (mixed) dataset generated and on the same host (in details,
a MacBook pro 2017 with a 2.5 GHz Intel Core i7 dual-core, 16 GB of RAM and 512 GB SSD
disk), to avoid potential deviations referred to hardware or data changes. In this way, we keep
consistency on tests and results. Since the MQTTset is composed of different types of MQTT traffic
(see Section 3), the detection system must solve a multi-classification problem as it must not only
identify an attack but, based on the training phase of the system, also predict the nature and type of
attack. The multi-classification approach is considered since in a real scenario, a system could be target
for cyber-attacks with different behaviour, payload and characteristics. A detail detection could be
important in order to mitigate efficiently the identified threats. Based on this real scenario, an intrusion
detection system should be able to identify malicious behaviours, in order to protect the system
from attacks. For these reasons, we have implemented and validated intrusion detection algorithms
able to make multi-class predictions [61], as our aim is to classify multiple threats. The decision tree
(DecisionTreeClassifier) is implemented with gini criterion, best splitter and maximum depth set until
all leaves are pure, while the random forest classifier (RandomForestClassifier) is tested with the default
configuration. Instead, the gradient boost (GradientBoostingClassifier) is configured with maximum
20 estimator. Regarding the deep learning approach, the multilayer perceptron (MLPClassifier) is
configured with a max iteration set to 130, a batch size to 1000, an activation function set to relu and
with adam solver. The neural network, instead, is implemented by using the sequential algorithm with
Kers (Sequential) with the first hidden layer consisting of 50 nodes, the second of 30, the third of 20
and finally the last with 6 nodes relating to the 6 classes. The hidden layer are characterized by a relu
activation function and a normal kernel initializer except the last hidden layer since it is set with a
softmax activation function. Finally, the na’́ive bayes approach is configured by using a Gaussian Naive
Bayes (GaussianNB). In order to replicate the tests, we have set a seed with a value of 7 adopted in
the algorithms.

In order to test the selected intrusion detection algorithms, the dataset has to be splitted into
two parts: training (70% of traffic data, in terms of generated records) and test (the remaining 30%
of traffic data). Hence, as for other similar approaches [62], after training is accomplished, the test
phase is perpetrated. Table 5 shows the results obtained for each of the selected algorithms, in terms of
accuracy, F1 score [63] and execution time.

Table 5. Obtained results from the MQTT dataset.

Algorithm Accuracy F1 Score Training Time (s) Testing Time (s)

Neural network 0.99326833989724 0.9932468365565741 262.8857 74.2051
Random forest 0.9942991408704308 0.9943007213915611 1375.6648 35.8725

Naïve bayes 0.9879035395431919 0.9897062545007078 45.02647 7.1440
Decision tree 0.9779726992251886 0.9850216439428234 88.7153 1.2932

Gradient boost 0.9911319662528564 0.9916394826795836 1584.3016 10.6267
Multilayer perceptron 0.9468814683726754 0.963694302875892 3024.1888 18.4380

Accuracy is the ratio of number of correct predictions to the total number of input samples.
Instead, the F1 score is the harmonic mean of precision and recall, where precision is the number
of true positives divided by the number of all positive results, while recall is the number of true
positives divided by the number of all tests that should have been positive (i.e., true positives plus
false negatives) [64].
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By analyzing in detail obtained results, by focusing on artificial neural network algorithms,
the neural network provided an accuracy of 0.993 with an F1 score equal to 0.993, while the multilayer
percetron resulted in 0.946 of accuracy and 0.963 of F1 score. Instead, by analyzing decision tree
algorithms, random forest results gave us an accuracy value equal to 0.994 with an F1 of 0.994,
while decision tree analysis reported an accuracy equal to 0.977 and an F1 score equal to 0.985 and the
gradient boost obtained both accuracy and F1 score near to 0.991. Finally, for the part of supervised
learning, the naïve bayes obtained accuracy of 0.987 and F1 score of 0.989. In order to better analyze
the results, the confusion matrix are calculated and reported in Tables 6–11.

Table 6. Confusion matrix neural network.

Predicted

Bruteforce DoS Flood Legitimate Malformed SlowITe

Bruteforce 3198 167 0 559 2 425
DoS 287 28,050 0 10,740 0 0

Actual Flood 3 17 29 124 11 0
Legitimate 6443 83 0 3,568,146 43 0
Malformed 2226 77 0 566 29 380

SlowITe 1437 0 0 802 6 516

Table 7. Confusion matrix random forest.

Predicted

Bruteforce DoS Flood Legitimate Malformed SlowITe

Bruteforce 3195 375 0 212 560 9
DoS 191 32,812 0 5997 76 1

Actual Flood 1 0 89 93 1 0
Legitimate 1632 7278 0 3,565,038 712 55
Malformed 943 142 0 427 1757 9

Slowite 150 360 0 1136 302 813

Table 8. Confusion matrix naïve bayes.

Predicted

Bruteforce DoS Flood Legitimate Malformed SlowITe

Bruteforce 961 40 10 3411 9 20
DoS 112 27,866 0 11,004 0 95

Actual Flood 2 0 88 92 1 1
Legitimate 12,051 0 0 3,550,861 0 11,803
Malformed 44 90 27 2449 443 225

Slowite 17 0 0 2331 8 405

Table 9. Confusion matrix decision tree.

Predicted

Bruteforce DoS Flood Legitimate Malformed SlowITe

Bruteforce 3286 358 0 211 496 0
DoS 229 32,798 0 5992 57 1

Actual Flood 1 0 89 93 1 0
Legitimate 52,541 8967 0 3,505,850 7290 67
Malformed 1013 140 1 426 1695 3

Slowite 193 371 0 1091 293 813
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Table 10. Confusion matrix gradient boost.

Predicted

Bruteforce DoS Flood Legitimate Malformed SlowITe

Bruteforce 1787 67 506 1579 411 1
DoS 29 15,744 9666 6403 0 7235

Actual Flood 2 0 0 182 0 0
Legitimate 20 1385 0 3,573,310 0 0
Malformed 557 18 308 1393 987 15

Slowite 123 0 398 1720 123 397

Table 11. Confusion matrix multilayer perceptron.

Predicted

Bruteforce DoS Flood Legitimate Malformed SlowITe

Bruteforce 3568 209 5 179 49 341
DoS 391 32,874 0 5788 12 12

Actual Flood 11 11 56 91 15 0
Legitimate 329 175,806 0 3,394,175 3817 588
Malformed 2121 165 5 460 277 250

Slowite 1045 10 0 799 12 895

All the algorithms have obtained an accuracy level above 98%, while the F1 score is found to
always be above 97%. On the basis of the confusion matrices, the multilayer perceptron classifies most
traffic well while gradient boost is the best for classifying legitimate traffic. In particular, on the basis
of all the matrices and algorithms, flood, malformed data and SlowITe attacks are complex to identify,
since most of the times they are classified as a different scenario.

Despite the difficulty of the algorithms to classify attacks properly, the accuracy and F1 score
values are high. This consideration is due to the number of records relating to legitimate traffic, since it
is composed by a much greater number of records than the sum of the records of all malicious traffics.
In fact, the order size of legitimate traffic is in the billion while that of malicious traffic is in the order of
thousands. In particular, the sum of malicious traffics is 165,281 and the legitimate traffic is 11,915,716.
More details are available in Section 3.

Therefore, data related to legitimate traffic greatly influence the calculation of the metrics. Based on
this concept, a balancing about legitimate and malicious dataset is needed, in order to calculate more
precise accuracy and F1 score metrics.

Additional Tests

In order to implement a more balanced dataset, we elaborated the dimensions of the single
datasets going to balance the reports since, as shown in Section 3, the legitimate traffic was much larger
than the sum of the malicious traffic and the relative results were influenced by this value. For this
reason, we have revisited the size of the individual traffic data related to the malicious scenarios,
by replicating each threat, in order to have a final size in the same order of magnitude of the data
related to the legitimate scenario. In particular, we have set the size of the dataset at ten million records
and increased each single traffic to two million records (as we have five traffic scenarios). In this way,
the sum of the malicious traffic is balanced with the legitimate traffic. Once we created this extended
dataset, we ran the same algorithms and calculated accuracy and F1 score. The results obtained are
reported in Table 12.



Sensors 2020, 20, 6578 12 of 17

Table 12. Obtained results from the MQTT dataset with balanced dataset.

Algorithm Accuracy F1 Score Training Time (s) Testing Time (s)

Neural network 0.9044728333333333 0.9023636467243322 778.1805 144.2180
Random forest 0.9159708333333333 0.9140355032443288 2298.2762 125.8504

Naïve bayes 0.643889 0.6872843841719165 85.2840 13.7836
Decision tree 0.9159608333333333 0.9140241688909468 148.8115 2.3031

Gradient boost 0.8795693333333333 0.8727044450930602 8840.0049 18.1375
Multilayer perceptron 0.9038521666666667 0.9018922771095824 5714.4811 27.2843

By comparing Table 5 and Table 12, obtained results are clearly different in terms of accuracy
and F1 score. The algorithms have an accuracy and F1 score between 87% and 91%, except the naïve
bayes algorithm, where the results are around 64% in accuracy and 68% in F1 score. In order to
compare confusion matrices between balanced and unbalanced datasets, we report in the following the
results obtained for random forest, neural network and naïve bayes confusion matrices in Tables 13–15,
in order to report one matrix for each algorithm approach (artificial neural network, decision tree and
probabilistic classifiers).

Table 13. Confusion matrix neural network with augmented and balanced traffic.

Predicted

Bruteforce DoS Flood Legitimate Malformed SlowITe

Bruteforce 500,368 26,869 1369 1158 70,236 0
DoS 8816 525,989 6494 49,950 8751 0

Actual Flood 1200 4800 457,200 133,200 3600 0
Legitimate 324 13,019 37,366 2,948,060 1231 0
Malformed 175,020 20,280 1680 7800 395,220 0

Slowite 0 0 0 0 0 600,000

Table 14. Confusion matrix random forest with augmented and balanced traffic.

Predicted

Bruteforce DoS Flood Legitimate Malformed SlowITe

Bruteforce 529,389 25,547 769 1158 43,137 0
DoS 7797 523,910 7640 50,153 10,500 0

Actual Flood 1200 3600 453,600 140,400 1200 0
Legitimate 340 11,707 28,546 2,957,346 2061 0
Malformed 142,380 15,300 2760 8040 431,520 0

Slowite 0 0 0 0 0 600,000

Table 15. Confusion matrix naïve bayes with augmented and balanced traffic.

Predicted

Bruteforce DoS Flood Legitimate Malformed SlowITe

Bruteforce 591,126 0 0 8874 0 0
DoS 169,475 430,045 70 250 160 0

Actual Flood 300,000 0 292,800 6000 0 1200
Legitimate 1,106,594 0 28,643 1,864,763 0 0
Malformed 477,060 16,620 7740 13,980 84,600 0

Slowite 0 0 0 0 0 600,000

By analyzing the confusion matrices, it can be seen that datasets are balanced. In particular,
such balancing ensures the values of the most real metrics and not influenced by a specific value.
By analyzing the matrices in detail, it can be seen how the neural network correctly classifies legitimate
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traffic while the random forest identifies flood and malformed traffic and finally the naïve bayes
algorithm classifies bruteforce attacks. Instead, all algorithms are able to identify the SlowITe attack
very precisely. These results could be considered more precisely and accurate since the dataset is
balanced in order to perform balanced tests on the dataset. Moreover, the algorithms shown some lack
in terms of detection of the attacks since sometimes the classification process is not able to identify the
correct traffic.

As we have shown, MQTTset provides the possibility to analyse MQTT traffic and to implement
and validate intrusion detection systems algorithms able to detect threats targeting MQTT networks.

5. Conclusions and Future Works

In this work we presented MQTTset, a legitimate dataset related to the MQTT protocol,
widely adopted in IoT networks. The dataset was built from a network of IoT sensors of different
nature (temperature, motion sensor, humidity, door locker, etc.), able to communicate on the network
in order to simulate different contexts such as home automation, monitoring of critical infrastructures
or industrial contexts. In order to validate this approach, legitimate traffic was combined with different
malicious/attack traffics targeting the MQTT network. From the raw network traffic generated by
MQTTset sensors and cyber-attacks against MQTT, we extracted features necessary to implement a
possible detection system. Moreover, in order to validate the dataset, we implemented and compared
different machine learning algorithms widely adopted in the cyber-security field (neural network,
random forest, naïve bayes, decision tree, gradient boost and multilayer perceptron) by using different
balancing approach of the dataset. By comparing balanced and unbalanced dataset, the results reported
a high accuracy and F1 score for the unbalanced dataset due to the high number of records for the
legitimate traffic that affect the final results. Instead, the balanced dataset reported a low metrics results
but a correct distribution of data in the confusion matrices. We learned the importance of a balanced
dataset to obtain more realistic results. Finally, basing the evaluation in terms of accuracy and F1 score,
results obtained for the considered machine learning algorithms were evaluated, demonstrating how
MQTTset can be used for a possible detection system related to the MQTT protocol.

Future work will be related to the application and validation of this dataset to detect attacks
against MQTT against an industrial scenario, such as a smart building or an industrial IoT network
(Industry 4.0). Based on the obtained results, a future work will be focused on the tuning of the
hyperparameters of the machine learning algorithms in order to ensure the accuracy and F1 score
about the balanced dataset and to define the best characteristics of the algorithms. Another work
may be focused on the extension of MQTTset to integrate other innovative attacks against IoT based
protocols and to add more complex data in the scenario, to keep the detection system updated and
able to validate/identify threats in real time. Moreover, the dataset will remain totally public so that
researchers can use it as a basis to integrate other attacks by extracting their features, implementing
their algorithms and combine the dataset with their traffics. In this direction, the dataset could be
indeed adopted, for instance, to validate novel threats not included in the dataset, to consider different
versions of the MQTT protocol, or to extend MQTTset with different communications protocols or
sensor nodes. Moreover, a features selection and statistical analysis approach will be evaluated in order
to highlight most relevant features and to train machine learning models with right characteristics.
Furthermore, if needed, researches can combine this dataset with other to increase the number of
packets and communication traffic. Another interesting future work is to integrate other sensors with
different nature (e.g., smart bulbs, smart speakers, etc.) in order to create a more complex ecosystems.
Finally, a possible extension on the topic may be directed to the application of the dataset in the field
of data analytics, to compare MQTT traffic between networks applied in different contexts (such as
medical, smart cities, critical infrastructure) with the MQTT network under analysis. Subsequently,
other possible features can be integrated such as encrypted traffic via TLS or using advanced versions
of the MQTT protocol, in this case the MQTT 5 version.
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6. Dataset

The aim of this work is to create a dataset for MQTT available to the research and industrial
community to provide a support or starting point for using data analysis techniques or machine
learning/artificial intelligence in the IoT context. For this reason, we have decided to make the
dataset public and available on the web. The dataset is available at the following address: https:
//www.kaggle.com/cnrieiit/mqttset.
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