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Abstract: The concerns related to particulate matter’s health effects alongside the increasing demands
from citizens for more participatory, timely, and diffused air quality monitoring actions have resulted in
increasing scientific and industrial interest in low-cost particulate matter sensors (LCPMS). In the present
paper, we discuss 50 LCPMS models, a number that is particularly meaningful when compared to the much
smaller number of models described in other recent reviews on the same topic. After illustrating the basic
definitions related to particulate matter (PM) and its measurements according to international regulations,
the device’s operating principle is presented, focusing on a discussion of the several characterization
methodologies proposed by various research groups, both in the lab and in the field, along with their
possible limitations. We present an extensive review of the LCPMS currently available on the market,
their electronic characteristics, and their applications in published literature and from specific tests.
Most of the reviewed LCPMS can accurately monitor PM changes in the environment and exhibit good
performances with accuracy that, in some conditions, can reach R2 values up to 0.99. However, such results
strongly depend on whether the device is calibrated or not (using a reference method) in the operative
environment; if not, R2 values lower than 0.5 are observed.

Keywords: particulate matter; low cost particulate matter sensors; IoT AQ nodes; air quality;
air quality monitoring; calibration; characterization; performances

1. Introduction

The impact of anthropic activities on environmental integrity and their deleterious consequences
on human health have pushed more and more citizens, all over the world, to organize and become
informed about the quality of the air they breathe; such a change in social attitudes has been greatly
accelerated by the internet’s diffusion [1,2]. Solid matter suspended in air, known as particulate matter
(PM), is an air pollutant that has sparked the greatest concern among citizens because of its negative
effects on health [3–5]. More recently, the possible correlation between PM and the diffusion of the
COVID-19 pandemic has led, in recent months, to a further increase of interest in this topic [6–8].

This change in social attitudes has resulted in challenging tasks both for the national organizations
charged to monitor the air quality and for the governmental institutions tasked to define the operational
rules to be observed by those organizations [9,10]. At present, air quality (AQ) regulatory monitoring
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is performed similarly all over the world by means of regulatory stations (RSs). The most relevant
problem in this type of architecture is the limited number of deployed RSs, each of which usually
represents an area of tens or even hundreds of square kilometers; moreover, in general, RSs provide
pollution data only as hourly averages [11–13]. Such architecture is, therefore, clearly unable to comply
with the citizens’ requests to be promptly and locally informed on the AQ of the air they breathe unless
the RS network is better secured and technically improved.

Indoor AQ monitoring scenarios are potentially even more complex. While for an outdoor
environment, there is a shared accepted value for the harmless concentration limits of pollutants,
a similar general consensus for indoor areas does not exist [14]. This is worrying, as humans spend less
than 20% of their lifetimes in outdoor environments; thus, they are much more likely to be exposed to
dangerous pollutants when they are at the workplace or at home.

The size and cost of RSs make tightening the monitoring network impractical; therefore, the approaches
proposed to overcome this difficulty rely mainly on modeling the outdoor air composition using RS data
along with traffic and satellite observations as support [15,16]. Unfortunately, urban settlements can be very
difficult to model, as they are characterized by complex fluid-dynamics, which can rapidly change due to a
modification of meteorological conditions and/or of the poor models available for anthropic activities [17].

Several research groups have suggested that a much denser network of monitoring stations
equipped with low-cost sensing devices could support the poor granularity of the RS network.
These monitoring stations, fixed or mobile and wirelessly connected to both each other and a
main server, can act as nodes to support the RS network and provide citizens the information they
require [18]. Attention towards such nodes has recently grown due to the increasing availability of
low-cost and powerful single board computer platforms (e.g., Arduino, RasberryPi, the STm32 family,
etc.). Among other features, the battery power consumption of such computers is no longer a limit for
long-term in-field displacement, which has greatly improved the node performance.

As a result, several research and industrial projects, both public and private, have developed all
over the world to investigate the in-field operation of networks using low-cost AQ nodes that often use
RSs (or equivalent methods) [19], which are further discussed in the following Section 2 to self-calibrate
themselves throughout their operational lifetimes [20,21]. The promising results observed thus far
have fostered intense efforts to define the regulatory frame for these nodes, primarily the specifications
these nodes have to satisfy to ensure proper data quality objectives (DQO) and to what extent the
data produced can be effectively used to improve the RS monitoring network and respond to citizens’
demands [22–27].

Such low-cost nodes rely on solid-state chemical sensors for gaseous air pollution monitoring,
a class of electronic devices that has been investigated and developed since the 1960s [28–30];
these sensors also use relatively less popular low-cost PM sensors (LCPMS). This review focuses on
this latter class of sensors, which represents a new frontier in research and industrial development,
with new products being continuously proposed and investigated (briefly summarized in Table 1).
Only seven models were reported in the first review on this topic in 2017 [31], while the recent paper by
Morawska [20] reported more than 20 models. In the present review, about 50 models from 19 different
manufacturers are recognized.

For the sake of clarity, we will not discuss PM monitors as defined by McKercher and coworkers [32],
rather we will focus on the basic PM sensor devices that can be used to realize IoT AQ nodes.

Here, we review this specific class of PM sensor devices, focusing on devices that are, at present,
on the market and are suitable to be integrated into low-cost AQ nodes in a networking scenario.
We, therefore, discuss only those devices whose electronic characteristics enable their use in what is
commonly referred to as an Internet of Things (IoT) networking frame. For the sake of clarity, we will
discuss only the basic PM sensor devices that can be used to realize IoT AQ nodes.

Section 2 reports on the basic definitions related to PM and its measurements according to
international regulations. In Section 3, the device’s operating principles are discussed. Section 4 is
devoted to discussing several methodologies used by various laboratories to characterize and calibrate
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LCPMS and their possible limitations. In Section 5, we present an extensive review of the LCPMS that
are now commercially available, as well as their electronic characteristics, highlighting the factors that
make such sensors suitable for wireless network applications. Section 6 mainly discusses the physical
characteristics of the sensors presented in Section 5 to extract (from published literature or from specific
tests) the most relevant device parameters. Finally, Section 7 is devoted to a general discussion and our
conclusions. Additional metrological characteristics of the analysed PM sensors are then included in
the Supplementary Information (SI) tables.

Table 1. Low-cost PM sensor node applications, both indoor and outdoor, extracted from the scientific
literature investigations and web searches.

Indoor Outdoor

Concentration range up to thousands of µg/m3 Concentration range of 500 µg/m3

â Air purifiers
â Air cleaners
â Air quality monitors
â Air conditioners
â Ventilation systems
â Smoke fire alarms
â Consumer electronic products
â Environmental monitors
â Household air purifiers
â Automobile air purifiers
â Residential and commercial air conditioning
â HVAC systems
â IoT hardware intelligence
â Automotive applications
â All kinds of IAQ monitors
â Checking pollution “hotspots”
â Personal exposure monitoring

â Outdoor air quality monitoring
â Emissions monitoring
â Construction site monitoring
â Mining site monitoring
â Port and bulk handling terminals
â Fence line monitoring
â Brownfield developments
â IoT hardware intelligence
â Checking pollution “hotspots”
â Personal exposure monitoring

2. Particulate Matter Basics and Measurement Parameters

Ambient air usually contains a certain amount of solid matter that comes from natural sources
such as soil, wind-blown dust (aeolian processes), or anthropic activities. In indoor environments,
this solid matter can contain anthropogenic and natural biogenic materials (for example, human and
animal hair, skin cells, textile fibers, and plant pollen) and many other materials that may be found in
the local environment. In the last century, due to large-scale industrial development and the extensive
use of fossil fuels, the composition and amount of solid matter suspended in the air have started
to change, raising concerns about their impact on human health. As soon as this particulate matter
was recognized as a potential threat to public health, many countries were prompted to establish air
quality standards. In the US, the Clean Air Act established in 1970 represented a milestone. In this
act, standards for six pollutants were set, and, since then, air pollution has been regulated all over
the world through a series of laws and regulations [33]. Particulate matter is one of these pollutants
and is defined as a suspension of solid, liquid, or a combination of solid and liquid particles in the air,
classified according to the size of the particle diameter (measured in micrometers) [34]. The standards
in this act were based on the mass of the total suspended material (TSP) and set considering the
mortality associated with short-term air pollution episodes. The primary standard included both an
annual standard of 75 µg/m3 and a maximum daily average of 260 µg/m3, not to be exceeded more
than once per year. After the first data related to the influence of particle size on the lung-deposition of
inhaled PM had been collected and developed, revision work on PM criteria began. This debate was
largely focused on the specific size fraction to use. In 1980, the Council of the European Communities
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launched Directive 80/779/EEC, but the first clear definition of PM10 dates to the late 1980s when the
US Environmental Protection Agency (EPA) developed a new National Ambient Air Quality Standard
for the fraction of suspended particulate matter with an aerodynamic size below 10 µm [35] and set
the limit values. Ten years later, relying on a continuous review of scientific knowledge about the
health and welfare effects of particulate matter, the EPA promulgated a new air quality standard for
particulate matter: PM2.5 [36]. In Europe, similar measures were taken in 1996 with Directive 96/62/EC,
and monitoring of the PM2.5 fraction then began in 1999 with the first Daughter Directive (1999/30/EC).
Analogous to the PM10 definition, PM2.5 is defined as a particle fraction captured with 50% efficiency
at 2.5 µm. According to these definitions, Directive 99/30/EC establishes the methodology for the
assessment of PM10 concentrations, either through a reference method for sampling and measurement
(CEN Standard EN12341(3)) or through the use of instruments with demonstrated equivalence to a
reference instrument.

The current standards for PM exposure are summarized in Table 2 along with the WHO guideline
values. These last values are generally stricter than the comparable politically agreed-upon EU and
US standards.

Table 2. Current exposure standards to PM10 and PM 2.5 in Western and Eastern countries.

Averaging Time EU a U.S. b China c Hong Kong d Japan e Taiwan f Australia g WHO Guideline Values h

PM10 µg/m3 24 h 50 150 150 100 100 125 50 50

Annual 40 - 70 50 - 65 25 20

PM2.5 µg/m3 24 h - 35 75 75 35 35 25 25

Annual 25 12 35 35 15 15 8 10

a 2008/50/EC Directive on Ambient Air Quality and Cleaner Air for Europe. b https://www.epa.gov/pm-pollution/table-
historical-particulate-matter-pm-national-ambient-air-quality-standards-naaqs, retrieved 10 October 2019. c http:
//kjs.mep.gov.cn/hjbhbz/bzwb/dqhjbh/dqhjzlbz/201203/W020120410330232398521.pdf. d “Air Quality Objectives”.
Environmental Protection Department, Hong Kong. 19 December 2012. Retrieved 27 July 2013. Retrieved 10 October
2019. e https://www.env.go.jp/en/air/aq/aq.html, retrieved 10 October 2019. f https://taqm.epa.gov.tw/taqm/en/b0206.aspx,
retrieved 10 October 2019. g Department of the Environment (25 February 2016). “National Environment
Protection (Ambient Air Quality) Measure”. Federal Register of Legislation. Retrieved 10 October 2019. h https:
//www.who.int/news-room/fact-sheets/detail/ambient-(outdoor)-air-quality-and-health, retrieved 10 October 2019.

The limit values for PM10 and PM2.5 are derived from human epidemiological data, using laboratory
animal and in vitro data only in a supporting role [37].

When exploring health effects, not only the physical properties of particulate matter, such as
particle size and shape, but also the chemical properties (e.g., composition, redox capacity, solubility,
etc.) must be considered. Indeed, if the particle dimensions determine the degree of penetration
within the respiratory system, the chemical characteristics determine the ability of the particles to
react with other pollutants, human biological fluids, or target organs. The chemical composition of
particulate matter is extremely heterogeneous, and many of its components, such as organic and
inorganic compounds, metals, and acids, depend on the source. The average contents of inorganic ions
(such as sulfates, nitrates, and ammonium), organic carbon compounds, and elemental carbon undergo
significant variation according to the geographical features of the sampling sites and related human
activities, as reported by Snider et al. [38]. In Europe, the main sources of PM emissions (both PM10
and PM2.5) are combustion processes, such as fuel combustion (transport) and the combustion used
in commercial, institutional, and household heating [11]. This is reflected in the prevalence of black
carbon, especially in fine size fractions [39]. Vehicular particulates are, in addition, often coated
with condensed organic and inorganic compounds [40], such as the compounds from the use of
automobile catalytic converters, which employ metals that may lead to the presence of platinum (Pt),
palladium (Pd), and rhodium (Rh) in their emitted particulates [41]. Natural sources of PM, such as
volcanic eruptions, are richer in sulfur particles. Overall, each source has a peculiar emission profile
with respect to both particle size and chemical composition. In Table 3, a brief summary of the most
common sources of PM by categories is reported.

https://www.epa.gov/pm-pollution/table-historical-particulate-matter-pm-national-ambient-air-quality-standards-naaqs
https://www.epa.gov/pm-pollution/table-historical-particulate-matter-pm-national-ambient-air-quality-standards-naaqs
http://kjs.mep.gov.cn/hjbhbz/bzwb/dqhjbh/dqhjzlbz/201203/W020120410330232398521.pdf
http://kjs.mep.gov.cn/hjbhbz/bzwb/dqhjbh/dqhjzlbz/201203/W020120410330232398521.pdf
https://www.env.go.jp/en/air/aq/aq.html
https://taqm.epa.gov.tw/taqm/en/b0206.aspx
https://www.who.int/news-room/fact-sheets/detail/ambient-(outdoor)-air-quality-and-health
https://www.who.int/news-room/fact-sheets/detail/ambient-(outdoor)-air-quality-and-health
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Indoor environments are not excluded from the PM issue. Indeed, a considerable number of works
focus on characterizing the indoor sources of particulate matter. Li et al. in [42] report that smoking,
cooking, burning fuel for heating, and burning incense are among the most important internal sources.
For example, the authors report that the PM values are 287 µg/m3 and 34 µg/m3 in bars and pubs
where smoking is allowed and where it is forbidden, respectively. Cooking is another primary source
of PM in indoor environment. A study by Dacunto et al. [43] demonstrated that, under all the cooking
methods used for various foods, the aerodynamic diameter of the median mass (MMD) never exceeds
the micron. This means that the majority of the particulate matter produced in a normal kitchen is of a
fine or ultra-fine type. The results of a case study of restaurants in Turkey indicated that cooking is a
significant source of indoor particulate matter that, at selected restaurants, even resulted in exposure
to As and Cr (VI) [44]. Moreover, it was found that a simple operation like cooking popcorn in the
microwave can result in PM2.5 emissions of 1900 µg/m3 , i.e., over 50 times higher than the national
standard of ambient air for PM2.5 [45]. Another source of indoor particulates is environmental home
deodorizers (whether combustive, passive, electrical, or spray-based), which were found to produce
particles with a diameter less than 2 microns and, therefore, of a fine type that can reach the respiratory
tracts [46].

Table 3. The most common sources of PM with the types of related PM emitted. Data are adapted from [47].

Source PM Size

Beech burning PM10 TSP

Hard wood
burning PM10 TSP

Larch burning PM10 TSP

Leaves burning PM10 TSP

Biomass burning Oak burning PM10

Olive oil burning PM10 PM2.5

Pellet burning PM10 TSP

Natural gas
burning PM10 TSP PM2.5

Wood burning PM10 TSP PM2.5

Coal burning PM10 TSP PM2.5

Fossil fuels Coke burning PM10 TSP PM2.5

Boiler PM10 TSP PM2.5

Refineries PM10

Ammonium nitrate PM10 PM2.5

Ammonium sulfate PM10 PM2.5

Iron and steel prod. PM10 TSP PM2.5

Industrial Metal smelting PM10 PM2.5

Fertilizer prod. PM10 PM2.5

Cement PM10 TSP PM2.5

Ceramic PM10 PM2.5

Foundries PM10 PM2.5

Natural dust Marine aerosol PM10 PM2.5

Volcanic dust PM10 PM50

Brake dust PM10 TSP PM2.5
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Table 3. Cont.

Source PM Size

Deicing salt PM10

Diesel PM10

Road dust Exhaust PM10 PM2.5

Fuel oil burning PM10 TSP PM2.5

Gasoline exhaust PM10

Road dust PM10 TSP PM2.5

Traffic PM10 SP PM2.5

Petrochemical PM10 PM2.5

Power plant PM10 TSP PM2.5

Measurement Techniques

To correctly measure the concentration of PM10 and PM2.5, it is necessary to unambiguously
define what is meant by particle size. Irregular shapes usually characterize particles suspended in the
air. Consequently, size generally refers to the aerodynamic diameter, i.e., the equivalent diameter of a
spherical particle with a density of 1 g/cm3 that has the same settling velocity as the irregular particle.
Since PM represents a class of objects with different dimensions and size distributions, when dealing
with the total mass of particles below a nominal size, it must be considered that the particle mass grows
with the third power of the diameter. Thus, larger particles mostly determine the total measured mass
(see Figure 1).
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Figure 1. Mass particle vs. diameter for the two classes of particulate (PM2.5 (green) and PM10 (red))
in a logarithmic scale.

The UNI EN 12341: 2014 and EPA 40 CFR PART 50 standards regulate the reference measuring
methodology. This method basically consists of using a sampling head to select the PM according to its
size fraction (PM10 or PM2.5), using a filtering system for the collection of particulate matter, followed by
gravimetric mass determination of the collected particulate matter. The overall measurement system is
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composed of two main parts: the sampling system and the analysis and control system. The sampling
head draws in environmental air and, by relying on fluido-mechanical techniques such as direct impaction,
virtual impaction, cyclonic filtering, etc., separates the particulate matter fractions. An example of an air
sampler is presented in Figure 2. The airflow throughout the sampling system is regulated via suitable
control devices that set the flow rates and maintain the operating ranges. The geometry of the sampling
head is regulated internationally and is able to select powders with an aerodynamic diameter of less than 10
or 2.5µm with an efficiency of 50%. A known volume of air is then aspirated for 24 h through the membrane
by means of high or low volume sampling systems (i.e., from ≈60 to 1 m3/h). The filter membranes
have suitable porosity and are made of different materials (quartz, glass fiber, Teflon, cellulose esters, etc.)
depending on the type of chemical characterization required for the PM sample. The final concentration
of the particulate material is then obtained in the laboratory. After filter conditioning under controlled
temperature (20 ◦C ± 1) and humidity (50 ± 5%), the filter is weighed on an analytical weighing balance,
and the change in the mass of the filter divided by the volume of the aspirated gas under reference
conditions results in the measurements expressed in µg/m3.
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Figure 2. Schematic of a standard low-vol PM10 inlets aspirating at 16.7 lpm (actual conditions). On the
right the schematic of a sampling head equipped with PM2.5 aerosol fractionation using a well impactor
ninety-six (WINS).

According to the experience gathered over the recent decades of PM monitoring, PM2.5 measurements
may suffer from variability, even when using this standard equipment. This variability can be ascribed to
the different sampling system set-ups, but one of the most important problems is the peculiar chemical
composition of PM2.5 compared to PM10. The fine-size particle fraction is especially enriched in semivolatile
particulate matter (e.g., ammonium nitrate and organic compounds). Hence, problems with losses of
semivolatile matter can occur with PM2.5 sampling and could be more pronounced than the losses for
PM10 measurements [48].

The main drawback of gravimetric methodology is that it provides a measurement of the
particulates every 24 h, although it may be important to instead obtain real-time information.
Automatic methodologies to enable continuous measurements have been explored, and numerous
techniques have been developed and tested, but few techniques have demonstrated equivalence to the
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reference method described above. The equivalent methods using gravimetric determinations include
tapered element oscillating microbalance (TEOM) and beta ray attenuation (BAM, which is not strictly
gravimetric but assimilated as such).

For equivalent methods, the sampling system uses the same size-selective PM10 or PM2.5 inlets
used for the reference method. Therefore, in the following sections, only the measuring systems will
be considered.

A TEOM makes use of a microbalance system. The tapered element consists of a filter cartridge
mounted on the tip of a hollow glass tube. The base of the tube cannot move, while the tip is free to
vibrate at its natural frequency (much like the tine of a tuning fork). As particulate matter in the air
stream gathers on the filter cartridge, the tube’s natural frequency of oscillation decreases. The mass
change detected by the sensor is then the result of measuring the change in frequency: the electronic
circuitry senses this change and calculates the particle mass rate from the magnitude of the frequency
change. The element is periodically cycled to return it to its natural frequency. To account for humidity
or volatile PM components in the sampled air, a filter dynamic measurement system (FDMS) is usually
added. This system considers the dynamics of PM deposited on a chilled filter and how that material
behaves over time. The flow alternates between base and reference sample periods through switching
valves. Since TEOM monitors rely on the frequency of a sensitive oscillating element, mechanical noise
may interfere with the calculations. Additionally, dramatic temperature fluctuations can also cause
errors due to microbalance.

A Beta Attenuation Monitor (BAM) uses the principle of β-ray attenuation to measure the mass
concentration of PM in ambient air. The air is drawn at 16.7 L per minute (l p m) through a PM10
inlet, followed by using a Very Sharp Cut Cyclone (VSCC) particle size separator to remove particles
greater than 2.5 µm for PM2.5 monitoring. The sample stream then passes through a glass fiber filter
tape. A carbon-14 (14C) element above the filter tape constantly emits β particles, which are detected
and counted by a scintillation detector underneath the filter tape. At the beginning of each sampling
period, the BAM counts the β-rays attenuated by a fresh, unsampled spot of filter tape. The sample
stream is then filtered through that spot of tape. At the end of the sampling period, the BAM counts
the β-rays attenuated by the spot of filter tape loaded with the sampled PM. The difference in the
degree of attenuation between the pre- and post-sampled filter tape is directly proportional to the mass
of PM in the sampled air. The mass concentration in µg/m3 is then obtained by dividing the PM mass
by the total volume of air sampled.

Beta attenuation analysis also uses an equivalent PM monitor, which combines field-proven
sequential sampling technology with BAM measurement principles. The peculiarity of this type of
instrument is the presence of two separate inlets and two flow lines with filter holders, which are
independently controlled and operated simultaneously. This configuration allows one to sample PM2.5
and PM10 (or PM10-2.5) and yield PM concentration results every hour.

Another equivalent PM measurement method is the Synchronized Hybrid Ambient Real-Time
Particulate Monitor (SHARP), which combines the accuracy of β-ray attenuation monitors with the
high time resolution of nephelometers. In this hybrid system, the sample stream first passes through
the nephelometer where a sensor measures the light scattering caused by the particulate matter aerosol
as it passes through an 880 nm illumination beam. Next, the aerosol is deposited onto a filter tape.
Here the instrument measures particulate concentrations by passing radiation through a known sample
area to the detector, similar in principle to the BAM, while referencing the β counts according to a
reference standard.

Light scattering is another important technique usually used to measure the particle size
distribution of fine particulate material. This technique is used to perform equivalent real-time
PM measurements with the precision and accuracy of an FEM instrument. This technique and its
underlying principles will be outlined more fully in Section 3 because they form the fundamental
principles for LCPMS.
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An accurate list of reference and equivalent instruments for PM measurements can be found
in [49]. For SI, Table 3 lists the tools officially recognized by the EPA in 2019.

3. Low Cost PM Sensors (LCPMS)

As mentioned in the previous section, the measurement methods analyzed so far require the
collection of PM for a period of at least 24 h. As reported in the introduction, over the past few
decades, there has been a growing public demand for a more personal, near-real-time monitoring of
air quality. As a result, an increasing number of low-cost particulate matter sensor devices suitable for
developing IoT tools has appeared. According to the definition introduced by the United States EPA,
low-cost PM sensors are characterized by a cost less than USD 1000 and equipped with miniaturized
electronics [50]. Due to their low cost, these sensors are poorly documented and not certified. This lack
of information has engendered interest in the scientific literature on the capability of such classes of
sensors to measure PM. Consequently, several scientific articles have evaluated the properties of such
sensors. Table 4 provides an up-to-date list of worldwide LCPMS manufacturers and the number
of different PM sensor models they provide, together with the number of scientific papers that have
investigated their performance, either in laboratory conditions or in the field. Section 6 reports on the
results of this experimental activity to extract a roadmap to better understand the uses and capabilities
of these types of devices for the rapid assessment of air quality.

Notably, all the LCPMS reported above are optical sensors based on an operating mechanism that
is different from the sensors analyzed in the previous section. Therefore, to understand the limits and
capabilities of this class of devices, we must first clarify how their results can be compared to/refer
to the standard measurement systems reviewed above. LCPMS are an evolution/miniaturization of
Optical Particle Counters (OPCs) that use light scattering to measure the particle size distribution of
materials consisting of fine particles, according to Mie’s theory [51]. Below, the physical operating
principles behind all these sensors are discussed, and the OPCs are described.

3.1. Light Scattering: Mie Theory

When a particle passes through a light beam, part of the light deviates from the original path,
producing a phenomenon known as scattering; this phenomenon can be exploited to detect the passage
of particles provides the foundation of OPCs’ operating mechanisms.

Scattering is a conservative process resulting from three cumulative effects: reflection, refraction,
and diffraction. Several theories proposed during the 1800s tried to explain the dispersion of light
but were valid only for particles of certain sizes and shapes and were applicable only in certain
media. In 1906, Gustav Mie developed a general theory that rigorously described the light–particle
interactions for spherical particles of all sizes dispersed in any medium. The characteristic intensity of
scattered light vs. angle variations is precisely predicted by this theory and is called the scattering
pattern; by analyzing this feature, the particle size distribution can be determined. The theoretical and
experimental constraint assumptions are listed below:

• Light is assumed to be monochromatic and composed of plane waves.
• The particle is spherical and isotropic.
• Both scattering and absorption are considered.
• Light scattered from one particle to another is negligible: this is undoubtedly true if the particle

concentration is low.
• The scattering characteristics under consideration are independent of the motion of the particle.
• No quantum effects are considered.
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Table 4. Worldwide LCPMS manufacturers, the number of different PM sensor models they offer, and the number of scientific papers that have investigated their
performance, either in laboratory conditions or in the field.

Manufacturer Number of
Sensor Models

References in
This Review Manufacturer Number of

Sensor Models
References in
This Review Manufacturer Number of

Sensor Models
References in
this Review

Alphasense 3 12 Honeywell 3 3 Sharp 2 10

Amphenol Advanced Sensors 6 NA NanoSense 1 NA Shinyei 5 3

Bjhike 1 NA Inovafitness 2 3 Tianjin Figaro-isweek 1 NA

Cubic Sensor and Instrument Co,
Ltd. 11 NA Panasonic 2 NA Winsen 3 2

EcologicSense 1 NA Plantower 3 9 Yaguchi Electr. Corp. 1 NA

Elitech 1 NA Samyoung S&C 2 1

Grove Studio 1 NA Sensirion 1 1
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In Figure 3, the possible light beam–particle interactions are schematically reported in terms of the
relative distance between light beams and particles. More specifically, except for absorption (which is
considered a separate phenomenon in the following), the light beam continues its path unaltered if it
is far enough from the particle; as the distance decreases, the deviation becomes increasingly more
pronounced, passing from a deflection of a few degrees up to an inversion at 180◦.
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Figure 3. The potential interaction between a light beam and an isolated spherical particle. When the
ray and the particle are far enough away, there is no interaction; interaction with the edge of the particle
leads to diffraction. When the ray intersects the particle, other phenomena occur, such as refraction,
reflection (both internal and external), and transmission. The interaction is considered conservative
because there is no absorption (image reprinted with permission of the authors in [52], provided by
Micromeritics Instrument Corp.).

The intensity of the scattered light is a function of the wavelength λ, the dispersion angle θ
(measured with respect to the incident light direction), the particle size d, and the relative refractive
index n of the particle and the medium:

Isc = Isc(θ,λ, d, n) (1)

Once the angle is fixed and the particle refractive index is known, Mie theory precisely
describes scattering.

Due to the complexity of the relationship between the involved parameters, a simplified form is
generally preferred, depending on the size of the particle relative to the wavelength of the incident
light [53].

Introducing the size parameter α, defined by

α =
πd
λ

(2)

We can distinguish three distinct scattering regimes:
In the case of α ∼ 1, we fall in the Mie Solution regime, and a detailed approach is necessary [54].

The most notable features of these results are the Mie resonances with sizes that scatter particularly
strongly or weakly.

If α � 1, we are in the presence of Rayleigh scattering, which describes scattering by particles
much smaller than the wavelength of the incident light. In this approximation,

Isc = Iinc
1 + cos2θ

2R

(2π
λ

)4( n2
− 1

n2 + 1

)2(d
2

)6

(3)
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where Isc is the scattered intensity, Iinc is the incident intensity, θ is the scattering angle, and R is the
distance between the particle and the light beam. The previous expression returns a dependence on
the sixth power of the diameter in this regime.

Lastly, when α� 1, we are in presence of simplified geometric scattering:

Isc = IincK(n,θ)d2 (4)

Relying on this theoretical background, and to ensure that the intensity of the light scattered is
proportional to the particle diameter (0.1–100 µm), optical particle counters are generally designed to
operate in the visible or near-infrared range (usually 600–1100 nm).

3.2. OPC

The introduction of OPCs began approximately in the mid-20th century but accelerated in the
1960s after the invention of lasers. The initial goal of particle counting in clean rooms [55–57] was
subsequently extended to the assessment of air quality and industrial hygiene [58]. This category of
instruments uses a light source, typically a focused incandescent lamp or a laser source, to sample a
small volume of fluid. It is important to circumvent the simultaneous presence of more than one particle
in the same volume to avoid generating errors. Generally, commercial instruments can work with a
maximum concentration of 106 particles/liter. For higher concentrations, sample dilution is mandatory,
even if this dilution reduces the accuracy of the concentration determination. In practical applications,
the particle size distribution is determined by comparing the luminous intensities generated by
the passage of each individual particle through a small illuminated area, with a standard curve
calibrated using a set of uniform particles with known diameters. To assess the particle concentration,
the volume of sampled air is simultaneously measured. Various instrumental configurations are
available, thus yielding wide range of instruments; however, the most common configuration involves
perpendicular scattering geometry since the perpendicular positioning of the photodetector (θ = 90◦)
limits the effects of stray light inside the device. Briefly, in a laser aerosol spectrometer, a sample of air
is drawn into a narrow inlet that limits rogue particles. Then, a collimator generates a laser curtain
perpendicular to the inlet stream. When the infrared laser light illuminates particles in the air sample
stream, a scattering signal is produced and detected at an angle of 90◦ by a photo diode (see Figure 4).
In accordance with Mie theory, each measured pulse height is correlated to the particle size.
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Figure 4. Generic scheme of an OPC: the particle crossing the illumination zone (viewing volume) generates
a diffraction pattern at a 360◦ angle. The corresponding impulse recorded by the photodiode is shown in
the inset; the intensity of the signal depends on the particle size, while its width is correlated to the viewing
volume (image reprinted with permission of the authors in [59] provided by Wiley—VHC Publisher).
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Part of the scattered light at a certain acceptance angle is collected by a photodiode. The amplitude
of the detected signal is then compared to the standard calibration curve obtained from the known
particle sample.

As an example, the calibration curves calculated by Aladar Czitrovszky [59] using Mie theory for
different scattering and integration angles are shown in Figure 5. From these curves, the relationship
between the size and the scattered intensity in certain size ranges is shown to be nonuniform. For back
scattering, long-period oscillations are prominent in the sub-micrometric range, whereas for forward
scattering, these oscillations are pronounced in the 1–3 µm range. Once again, perpendicular scattering
is confirmed to be the best geometric configuration, with short period and small intensity oscillations
confined in the 2–5 µm range.
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Figure 5. Calculated calibration curves for different scattering angles and integration ranges for
polystyrene latex: in the case of forward and back-scattering, the relationship between size and
scattering intensity in some size intervals, namely the 0.4–1 µm range for back-scattering and the 1–3 µm
range for forward scattering, is not uniform. In the case of perpendicular scattering, shorter oscillations
are observed in the range of 2–5 µm; this latter geometry is preferable both for its dimensional
distribution and because it has less dependence on the refractive index of the particles (image reprinted
with permission of [59] provided by Wiley—VHC Publisher).

The output of an OPC is a signal monitored over time, composed of a sequence of pulses;
the intensity of each pulse represents the light scattered by a particle passing through the OPC and
is related to its dimension through a calibration curve, while the FWHM of the signal is associated
with the volume of the instrument viewing region [60,61]. The particles are counted and tabulated
into standardized counting bins. In this way, by considering the air flowing through the OPC,
the concentration of particles in the air and their dimensions can be determined.

4. LCPMS Characterization and Calibration

In recent years, different scientific works have contributed to evaluating the operation of several
LCPMS devices. The increasing numbers of these types of sensors and the various evaluation techniques
proposed for their parameters raised doubts about how to evaluate and define their performance.
Only two years ago, in 2018, the EPA finally defined the characteristic parameters for this class of devices
(see SI). Since then, several papers have reported on LCPMS calibration and characterization using
different types of setups, including laboratory conditions, partially controlled conditions, and field
deployment conditions. In the following section, a review of several of these relevant works is provided.
Section 4.1 focuses on laboratory and partially controlled setup characterizations, while Section 4.2
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addresses field characterizations. Finally, in Section 4.3, publications about calibration techniques and
their results are specifically reviewed.

4.1. Laboratory Characterization

The deployment of affordable PM sensors requires a great deal of effort to assure their data
reliability. These sensors must be calibrated using reference instruments and fully characterized under
different environmental conditions. Accordingly, the development of characterization chambers in
the laboratory is crucial to facilitate realistic testing in a controlled environment. The characterization
phase in the laboratory, under controlled environmental conditions and pollution levels, allows the
performance assessment of low cost sensors before their field deployment and the evaluation of
possible differences in their responses within the same family of LCPMS, the latter being of particular
relevance to their application in sensor networks [62].

In general, an aerosol chamber consists of three principal sections: a test chamber (TC), which is
isolated from the external environment and equipped with a PM reference instrument and humidity
(RH) and temperature controls; a purified air system, which is necessary to provide clean reference
air in the TC; a PM generator that ensure a controllable PM concentration inside the test chamber.
A general schematic of an aerosol chamber for PM measurement is depicted in Figure 6.
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Over the last few years, several types of test chambers have been proposed. One of the earliest
test chambers was realized by Yang Wang in 2015 [63]. As shown in Figure 7, a custom-built acrylic
glass chamber was assembled (58 × 58 × 28 cm, chamber volume of 94.19 L) with its edges sealed using
rubber strips to avoid PM losses.
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Figure 7. Schematic of the chamber for particle measurements and the arrangement of particle
sensors, developed by Wang Yang (2015). A SidePak Personal Aerosol Monitor AM510 (TSI Inc.),
a scanning mobility particle sizer (SMPS, TSI Inc.), and an Air-Assure PM2.5 Indoor Air Quality Monitor
(TSI Inc.) were used to provide reference measurement results to evaluate the performance of the
sensors (image reprinted with permission provided by Taylor and Francis and Copyright Clearance
Center—License Number 4836480810613).
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The authors positioned three LCPMS (Samyoung DSM501A, Shinyei PPD42NS, Sharp GP2Y1010AU0F)
onto each vertical wall to minimize the spatial differences in PM concentration. Particles were produced
from NaCl, sucrose (C12H22O11), and NH4NO3 aqueous solutions, and atomized by an aerosol generator
(Model 3076, TSI Inc.) and the burning of incense (Sandalum Agarbathi Cones, Cycle Brand). The particles
were dried, sent to the test chamber, and suspended through fans. The apparatus was equipped with a sensor
probe and a thermocouple for controlling the temperature and humidity during the test. A SidePak-TSI
Inc. (St. Paul, MN, USA), a scanning mobility particle sizer (SMPS-TSI Inc.), and an AirAssureTM PM2.5
(TSI Inc.) were used as reference instruments and located outside the test chamber. All three LCPM
sensors showed high linearity against SidePak with incense particles up to a 0–300 µg/m3 concentration
range. In particular, the authors obtained a correlation coefficient R2 of 0.9525 for Shinyei PPD42NS,
0.9755 for Samyoung DSM501A, and 0.9746 for Sharp GP2Y1010AU0F. Moreover, this work showed
how the humidity and particle size/composition affected the sensor performance, which did not happen
with temperature.

That same year, Austin et al. built a small airtight box (6 × 21 × 8 cm, Total Volume 1 L), which was
further reduced by placing a fixed baffle along the box, as reported in Figure 8 [64]. Four LCPM sensors
(Shinyei PPD42NS) were placed in this box. Monodisperse polystyrene spheres and polydisperse dust
(ASHRAE test dust #1) were used as the particulate sources and were nebulized before entering the
chamber. Dry filtered air was used as the baseline for the measurements. Particulate aerosol was
injected using steel tubes into the first chamber, where the particulates were suspended by four mixing
fans. Then, the particulates were sucked towards the sensors using the internal pump of the TSI APS
(Aerodynamic Particle Sizer), the reference instrument, in series with the Shinyei sensor chamber.
Aerosol was generated until the particulate concentration achieved a specific value. Then, the aerosol
injection ceased along with the decay of the particles measured using both the APS and the sensors
in series. This comparison demonstrated that the precision of the Shinyei sensors compared to the
APS can reach as high as 0.99 R2 for monodisperse aerosols in a concentration range of 0–50 µg/m3.
The authors concluded that the Shinyei PPD42NS sensors have appropriate sensitivity for mono
disperse aerosol, but in cases of polydisperse aerosols with unknown composition, the conversion to
mass was possible only using a gravimetric method.
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Figure 8. Schematic of the experimental set-up realized by Austin’s group. The blue circles indicate
the location of the mixing fans inside the chamber (2015) (image reprinted under the terms of the
Creative Commons Attribution License which permits unrestricted use; PLoS ONE 10(9), e0137789,
doi:10.1371/journal.pone.0137789).

The next year, Thomas Peters’ group [65] developed a more complex system to evaluate low-cost
sensor performance under high particle concentrations related to occupational applications (up to
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6500 µg/m3). In the experimental setup depicted in Figure 9a, a single chamber was divided by a
perforated plate into two distinct zones: a mixing zone (64 × 64 × 66 cm3) and a sampling zone
(53 × 64 × 66 cm3, V 224 L). The perforated plate (600 holes with a diameter of 0.6 cm)) ensured a
uniform distribution of the particles. Zero air (air cleaned through HEPA filters) diluted the generated
aerosol. Particles were put under laminar flow (0.01m/s), and three DC1700 sensors, two Sharp
sensors (Sharp GP and Sharp DN), and one pDR-1500 photometer were placed in the sampling zone.
The laboratory analytical instruments located outside the chamber included a condensation particle
counter (CPC; 3007, TSI Inc., particle diameter ≤0.3 µm) and an aerodynamic particle sizer (APS; 3321,
TSI Inc., particle diameter ≥1 µm). In addition, a sequential mobility particle sizer (SMPS-C 5.402,
GRIMM) ensured that the particle generation was monodispersed. The authors tested the four particle
types (Arizona dust, salt, diesel exhaust, and welding fumes), which were generated in different ways
(Figure 9B). In detail, the salt droplets were obtained through a Carefusion nebulizer, a fluidized bed
generator (3400A, TSI Inc.) produced an aerosol of Arizona dust, diesel waste fumes were derived
from a diesel generator, and welding fumes were extracted from a welding apparatus. The LCPM
sensors compared to the photometer (pDR-1500) showed a high correlation coefficient (R2 > 0.97) and
high precision (<8%).Sensors 2020, 19, x FOR PEER REVIEW  18 of 66 
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Papapostolou et al. developed the test chamber represented in Figure 10 [56]. This chamber
demonstrates the possibility to introduce several gases at the same time; this chamber also controls
the temperature, pressure, and relative humidity and uses a constant particle concentration. Dry,
particle-free systems are used to generate the reference air. Specifically, the equipment consists
of two chambers: the outer chamber and the inner chamber. The former is a stainless steel
rectangular (volume around 1300 L) measurement box featuring LCPM sensors and reference instruments
(GRIMM (EC180-FEM), TSI (Model 3321-BAT), and TSI (Model 3091-BAT)). The inner chamber is a
Teflon-coated stainless-steel cylinder (volume 110 L) used for gas sensor monitoring. This configuration
allows the direct comparison between the LCPM sensors and the reference instruments during the
measurement. Two different aerosol generators were introduced to generate ultrafine/fine particles
(model AGK 2000, PALAS, Karlsruhe, Germany) and fine/coarse particles (model SAG 410/U, TOPAS,
Dresden, Germany). The authors conducted experiments to demonstrate the system’s ability to realize
stable and reproducible aerosol and gaseous atmospheres under a wide range of temperature (T) and
relative humidity (RH) conditions.
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Figure 10. Schematic of the chamber system developed by Papapostolu et al. (2017) (image reprinted
with ELSEVIER PERMISSION—License Number 4833500101157).

This chamber is used by the well-known South Coast AQMD (Air Quality Management District)
research center, which set up the programme AQSPEC (Air Quality Sensor Performance Evaluation
Center) [66]. The main aim of this programme is to inform the general public about the effective
performance of low-cost environmental sensors, that can be easily found on the market, by clarifying
their actual performance both in the laboratory and on field (see next paragraph for the related protocol).
Moreover, the programme aims to highlight the advantages and possible limitations that low cost
sensors could have. As already said, the chamber gave results for the LCPMS, in which 3 units of
the same sensor are inserted into the chamber to obtain as much statistical information as possible,
in particular on the degree of correlation with the reference instruments and their reproducibility.

Subsequently, Hapidin’s group achieved the experimental setup reported in Figure 11 [67].
The authors adopted an exponentially decaying particle concentration to evaluate three commercial
PM sensors (Sharp GP2Y1010AU0F, Winsen ZH03A, and Novafitness SDS011), as already seen in
Wang’s work [63]. The authors noted that, compared to other test methods that use constant particle
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concentrations, this concentration condition can considerably reduce the testing time [56,64,65],
as this apparatus is equipped with further output airflow to accelerate the PM concentration decay.
The aerosol chamber was custom-built in acrylic material (with a volume of 70.53 L). In the test
chamber, two reference instruments (a CPC-TSI, model 3025A and a factory-calibrated particle sensor,
Honeywell, model HPMA115S0-XXX) were located next to three LCPM sensors (Sharp GP2Y1010AU0F,
Winsen ZH03A, and Novafitness SDS011). The aerosol was generated by burning incense and sent to
the test chamber until reaching a 1000 µg/m3 concentration (the HPMA detection limit). In this system,
a pump with silica gel and HEPA filters ensured a dry and clean input airflow. The results showed
good linearity towards the HPMA reference monitor, with R2 values of 0.999 for the Novafitness
SDS011 at a low particle concentration (0–400 µg/m3). In addition, the Winsen ZH03A sensor and
Novafitness SDS011 sensor presented coefficients of variation below 10%, which is within the precision
envelope set by the EPA standards.Sensors 2020, 19, x FOR PEER REVIEW  20 of 66 
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In the work by Kim et al. [68], two types of test systems (Figure 12) were employed. One used a 
mixing chamber (50 L), where particles were mixed with clean air, and the overall airflow velocity 
was carefully adjusted to ensure that the dust sensor would function properly (Figure 12A). In the 
second test system, an exponentially decaying particle concentration was realized in a low air-speed 
duct (Figure 12B). Particles generated by an atomizer were first introduced to a particle mixing 
chamber until the particle concentration reached its proper level. Then, the particle inlet was closed, 
and clean air was supplied to the particle mixing chamber. A 5 wt% potassium chloride (KCl) solution 
was used to generate particles through an atomizer for both test systems. The reference instrument 
for measuring the size distributions was a Grimm 1.209 dust monitor (Model 1.209, Grimm Aerosol 
Technik Company). Large-scale comparison work was then carried out. The authors tested about 264 
LCPM sensors and classified them into four different groups (Classes 1, 2, 3, and 4), depending on 
their performance with respect to the reference instrument. Most of the sensors showed very good 
linearity (slope of concentration measurement data) with the reference data. About one quarter of the 
tested sensors satisfied the Class 1 acceptance limit. However, accurate PM10 measurements were 
rarely achieved, likely because of the difficulty in transporting large particles to the detection zones.  

Figure 11. Experimental setup to characterize the aerosol chamber and evaluate the PM sensors of Hapidin
(2019) (image reprinted under the terms of the Taiwan Association for Aerosol Research and Aerosol and
Air Quality Research. All articles published on this site use the Creative Commons Attribution 4.0 License
(CC BY 4.0); Aerosol and Air Quality Research, 19: 181–194, 2019; doi:10.4209/aaqr.2017.12.0611).

In the work by Kim et al. [68], two types of test systems (Figure 12) were employed. One used a
mixing chamber (50 L), where particles were mixed with clean air, and the overall airflow velocity was
carefully adjusted to ensure that the dust sensor would function properly (Figure 12A). In the second
test system, an exponentially decaying particle concentration was realized in a low air-speed duct
(Figure 12B). Particles generated by an atomizer were first introduced to a particle mixing chamber
until the particle concentration reached its proper level. Then, the particle inlet was closed, and clean
air was supplied to the particle mixing chamber. A 5 wt% potassium chloride (KCl) solution was used
to generate particles through an atomizer for both test systems. The reference instrument for measuring
the size distributions was a Grimm 1.209 dust monitor (Model 1.209, Grimm Aerosol Technik Company,
Ainring, Germany). Large-scale comparison work was then carried out. The authors tested about
264 LCPM sensors and classified them into four different groups (Classes 1, 2, 3, and 4), depending on
their performance with respect to the reference instrument. Most of the sensors showed very good
linearity (slope of concentration measurement data) with the reference data. About one quarter of the
tested sensors satisfied the Class 1 acceptance limit. However, accurate PM10 measurements were
rarely achieved, likely because of the difficulty in transporting large particles to the detection zones.
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Following Papapostolu’s measuring method, Omidvarborna et al. designed an environmental-
pollution chamber to test LCPMS performance under a controlled temperature and relative humidity 
(RH). Different particle types and pollution gas concentrations could be generated in this chamber [69]. 
The authors constructed the test chamber (50 × 50 × 50 cm3, V 125 L) from acrylic sheets sprayed with 
Teflon isolated by 100 mm of Styrofoam (Figure 13). The sheets were used to minimize the surface 
reactions for the gaseous and aerosol experiments. The interior edges of the chamber were sealed 
with rubber strips to prevent leakage. The environmental chamber was connected to a 
humidifier/dehumidifier system, a heat pump, a particulate matter (PM) generator, a gaseous air 
pollutant supply (ozone (O ), NO, NO , SO , hydrogen sulphide (H S)), and reference measuring 

Figure 12. Schematics of low-cost dust sensor evaluation systems: (A) chamber test; (B) low-speed
duct test (image reprinted under the terms of the Creative Commons Attribution 4.0 License (CC BY
4.0); Indoor air, 30(1), 137–146, doi:10.1111/ina.12615).

Following Papapostolu’s measuring method, Omidvarborna et al. designed an environmental-
pollution chamber to test LCPMS performance under a controlled temperature and relative humidity
(RH). Different particle types and pollution gas concentrations could be generated in this chamber [69].
The authors constructed the test chamber (50 × 50 × 50 cm3, V 125 L) from acrylic sheets sprayed with
Teflon isolated by 100 mm of Styrofoam (Figure 13). The sheets were used to minimize the surface
reactions for the gaseous and aerosol experiments. The interior edges of the chamber were sealed with
rubber strips to prevent leakage. The environmental chamber was connected to a humidifier/dehumidifier
system, a heat pump, a particulate matter (PM) generator, a gaseous air pollutant supply (ozone (O3),
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NO, NO2, SO2, hydrogen sulphide (H2S)), and reference measuring instruments (a Vaisala HMT120
temperature/RH sensor and an optical particle counter, Grimm EDM 107). This chamber was able to
reproduce both outdoor and indoor environmental conditions (a temperature range from 5 to 40 ◦C and
an RH from 10% to 90%) and stable pollutant concentrations. After comparing the results obtained with
the temperature/RH sensors and the HPMA115S0 Honeywell particulate sensor to those obtained by the
reference equipment, the authors found good correlation, with R2 values above 0.96, 0.99, and 0.97 for
temperature, RH, and PM2.5, respectively. The results, according to the authors, showed that this chamber
could be particularly interesting for its affordable cost, small size, light weight, and ease of operation.
This chamber generated similar environments and pollutant concentrations to evaluate the performance of
LCPMS under various conditions.

Sensors 2020, 19, x FOR PEER REVIEW  22 of 66 

Sensors 2020, 19, x; doi: FOR PEER REVIEW  www.mdpi.com/journal/sensors 

 

instruments (a Vaisala HMT120 temperature/RH sensor and an optical particle counter, Grimm EDM 
107). This chamber was able to reproduce both outdoor and indoor environmental conditions (a 
temperature range from 5 to 40 °C and an RH from 10% to 90%) and stable pollutant concentrations. 
After comparing the results obtained with the temperature/RH sensors and the HPMA115S0 
Honeywell particulate sensor to those obtained by the reference equipment, the authors found good 
correlation, with R2 values above 0.96, 0.99, and 0.97 for temperature, RH, and PM2.5, respectively. 
The results, according to the authors, showed that this chamber could be particularly interesting for 
its affordable cost, small size, light weight, and ease of operation. This chamber generated similar 
environments and pollutant concentrations to evaluate the performance of LCPMS under various 
conditions.  

 
Figure 13. Schematic of the chamber system with the main components developed by Omidvarborna 
et al. (2020) (image reprinted with ELSEVIER PERMISSION—License Number 4834170480943). 

In one of the most recent works, Cox et al. applied an exponentially decaying particle 
concentration with PM2.5 median peak concentrations <40 μg/m3 using two different pollution 
sources to test 40 LCPM sensors (produced by five manufacturers) [70]. The PM from incense stick 
burning, was sent to the chamber through dry, filtered air (5 L/min flow) using 1179A MFC (Figure 14), 
while the PM generated by candle burning was sent into the chamber wall via an angled chimney. 
This chimney was kept sealed for all the remaining time. The authors used a 1 m3 Perspex/stainless 
steel chamber framed by aluminum profiles. Fans ensured air mixing within the chamber. A walk-
in, temperature controlled room (Viessmann A/S; setpoint within 25.9 and 28.7 °C) contained the 
chamber, while the RH was varied between 55% and 90% within the chamber through the modulated 
introduction of filtered air, dry air, or humidification via a Nafion membrane MFCs (MKS type 1179A 
20 L/min plus type 1579a 100 L/min). The chamber pressure was left to reach equilibrium prior to 
start each test. The authors characterized eight different LCPMS models for each of the five different 
manufacturers: Honeywell HPMA115S0, Alphasense OPC-R1, Novafitness SDS018, Sensirion 
SPS030, and Plantower PMS5003. Eventually, the sensor performance was evaluated through the 
reference measurements obtained by a DustTrak DRX 8533 Desktop device (TSI Inc., Shoreview, MN, 
USA), an Optical Particle Sizer OPS 3330 (TSI Inc.), and an Aerasense Nanotracer (Oxility BV, Best, 
Netherlands). Using this test system, the authors highlighted the different behaviors of the tested 
LCPMS under different PM types and relative coefficients of variation based on their responses to 
peaks or stable concentrations of particles. The results allowed the authors to compare the 
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et al. (2020) (image reprinted with ELSEVIER PERMISSION—License Number 4834170480943).

In one of the most recent works, Cox et al. applied an exponentially decaying particle concentration
with PM2.5 median peak concentrations <40µg/m3 using two different pollution sources to test 40 LCPM
sensors (produced by five manufacturers) [70]. The PM from incense stick burning, was sent to the
chamber through dry, filtered air (5 L/min flow) using 1179A MFC (Figure 14), while the PM generated
by candle burning was sent into the chamber wall via an angled chimney. This chimney was
kept sealed for all the remaining time. The authors used a 1 m3 Perspex/stainless steel chamber
framed by aluminum profiles. Fans ensured air mixing within the chamber. A walk-in, temperature
controlled room (Viessmann A/S; setpoint within 25.9 and 28.7 ◦C) contained the chamber, while the
RH was varied between 55% and 90% within the chamber through the modulated introduction of
filtered air, dry air, or humidification via a Nafion membrane MFCs (MKS type 1179A 20 L/min plus
type 1579a 100 L/min). The chamber pressure was left to reach equilibrium prior to start each test.
The authors characterized eight different LCPMS models for each of the five different manufacturers:
Honeywell HPMA115S0, Alphasense OPC-R1, Novafitness SDS018, Sensirion SPS030, and Plantower
PMS5003. Eventually, the sensor performance was evaluated through the reference measurements
obtained by a DustTrak DRX 8533 Desktop device (TSI Inc., Shoreview, MN, USA), an Optical Particle
Sizer OPS 3330 (TSI Inc.), and an Aerasense Nanotracer (Oxility BV, Best, The Netherlands). Using this
test system, the authors highlighted the different behaviors of the tested LCPMS under different PM
types and relative coefficients of variation based on their responses to peaks or stable concentrations of
particles. The results allowed the authors to compare the performance of different LCPMS models.
The coefficient of variation reached higher values when comparing responses to peak values rather
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than comparing the stable concentrations of particulates for all sensors. Alphasense OPC-R1 produced
the highest coefficients of variation under both peak and stable conditions. However, all sensors
showed better performance when dealing with candle-generated PM. In particular, the Sensirion
SPS030 and Plantower PMS5003 obtained similar scores regardless of the rate of concentration change
(either peak or stable concentrations). The remaining three sensor models presented lower scores for
stable concentrations, indicating better performance under peak concentration regimes. The authors
concluded that the Sensirion SPS030 obtained the lowest coefficients of variation among all models of
sensors, irrespective of the testing scenario.
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Figure 14. Schematic showing the arrangement of the test chamber and the supporting equipment
(image reprinted under the terms and conditions of the Creative Commons Attribution (CC BY 4.0)
license—License MDPI, Basel, Switzerland Sensors 2020, 20, 2219; doi:10.3390/s20082219).

In all the above-mentioned works, the production of particulates and their injection into a test
chamber are key issues. To create a uniform environment in terms of concentration and composition,
controlled systems are generally used. Indeed, some authors use completely automated aerosol
generators to obtain stable and reproducible particulate environments [56,64]. In one case, an automated
aerosol generator (TOPAS SAG 410) was coupled with an aerosol wind tunnel [71]. In this study,
the particulate was maintained in a flow at low-wind speeds (below 0.5 m/s) to reproduce values
typical of most occupational environments. The wind tunnel was 1.22 × 1.22 × 6 m3, with the sampling
zone possessing a length of approximately 3 m and the airflow through the wind tunnel was generated
by four fans. This work showed that the fan speed directly influenced the particle concentrations:
the higher the fan speed was, the higher the chance of a particle hitting the chamber walls, leading to
lower aerosol concentrations.

Other authors proposed homemade systems to obtain PM from more easily accessible materials.
In Ristovski’s lab, cigarette and e-cigarette smoke was studied as an indoor particulate source [72,73].
In other works, various indoor deodorants, such as aroma diffusers, Armenian paper, incense, candles,
and instant or automatic sprays, were used [74]. Incense burning is a particularly useful particulate
source since it produces a monodispersed aerosol suitable to represent PM2.5 [63,67,75,76].

In addition to particulate production, several methods were proposed to introduce the PM to the
chamber test. Zamora’s group used three different methods according to the PM source. For incense,
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a stick was lit and situated inside a holder until the required concentration was obtained. Then,
the stick was removed, and the decrease in the concentration was observed; talcum powder was also
investigated after being dispersed with filtered air and injected into the test chamber. Sodium chloride
(NaCl) and oleic acid were also used in a collision nebulizer (CH Technologies, Westwood, NJ, USA)
(shown in Figure 15). In this case, the filtered air flowed through the nebulizer, which was filled with
either a NaCl water solution or pure oleic acid until reaching the desired concentration of NaCl or oleic
acid; then, the input air flow was turned off [77].

Sensors 2020, 19, x FOR PEER REVIEW  24 of 66 

Sensors 2020, 19, x; doi: FOR PEER REVIEW  www.mdpi.com/journal/sensors 

 

In addition to particulate production, several methods were proposed to introduce the PM to 
the chamber test. Zamora’s group used three different methods according to the PM source. For 
incense, a stick was lit and situated inside a holder until the required concentration was obtained. 
Then, the stick was removed, and the decrease in the concentration was observed; talcum powder 
was also investigated after being dispersed with filtered air and injected into the test chamber. 
Sodium chloride (NaCl) and oleic acid were also used in a collision nebulizer (CH Technologies) 
(shown in Figure 15). In this case, the filtered air flowed through the nebulizer, which was filled with 
either a NaCl water solution or pure oleic acid until reaching the desired concentration of NaCl or 
oleic acid; then, the input air flow was turned off [77]. 

 
Figure 15. Schematic diagram of collision nebulizer (reprinted with ELSEVIER PERMISSION—
License Number 4834190009888). 

Some authors also proposed to use commercial pressurized metered dose inhalers (pMDIs), such 
as Atrovent and Ventolin. By pressing the bottom of the canisters of such inhalers, a well-defined 
drug dose is released. The canister contains the drug in a powdered form dispersed in a liquid 
propellant with other additives [78]. The authors evaluated the particle dimension by means of the 
MMAD (Mass Median Aerodynamic Diameter): when the bottom is pressed, a mixture of the drug 
and aerosol is formed, whose particle diameter depends on the propellant evaporation and the 
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Figure 15. Schematic diagram of collision nebulizer (reprinted with ELSEVIER PERMISSION—License
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Some authors also proposed to use commercial pressurized metered dose inhalers (pMDIs), such as
Atrovent and Ventolin. By pressing the bottom of the canisters of such inhalers, a well-defined drug
dose is released. The canister contains the drug in a powdered form dispersed in a liquid propellant
with other additives [78]. The authors evaluated the particle dimension by means of the MMAD
(Mass Median Aerodynamic Diameter): when the bottom is pressed, a mixture of the drug and aerosol
is formed, whose particle diameter depends on the propellant evaporation and the distance from the
outlet. At the outlet, the particle diameter is 30–40 µm including the aerosol cloud surrounding the
particles, while at a distance of approximately 10 cm from the valve, the diameter decreases to 2–3 µm
(Figure 16).
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Figure 16. Diagram of a typical pressurized metered dose inhaler showing the mechanism of particle
formation (MMAD = mass median aerodynamic diameter). Adapted from Figure 1 in [78].

To use this system for particle production, several boundary conditions need to be assessed in
the overall context of the experiment. Rui Zhang investigated the effect of environmental conditions
(temperature and humidity), flow rate, and device temperature on the size the measurement of particles
emitted through pMDI [79].

4.2. Field Characterization

LCPMS field characterization is a fundamental operation, even when preceded by laboratory
characterization. Even with the best technologies available, one of the main problems is replicating
real conditions since the diversity of the chemical–physical compositions of particulates can only be
definitively evaluated in the field.

For field characterization, after performing tests in the laboratory as mentioned above, the authors
in [77] tested their sensors in an indoor environment (an apartment of 1000 ft2; in particular, the campaign
monitored a kitchen) using a pDR-1200 (TEOM) as a reference. For the outdoor measurements,
the LCPMS network was placed at the University of Baltimore MDE at an important intersection at a
height of 5 m; in this location, about 50,000 vehicles pass every day. The measurements were obtained
in the summers of 2016 and 2017 and applied both a gravimetric system and a BAM (FEM), reaching a
linear correlation coefficient R2 of 0.92 with the PM reference measurements.

In [80], Plantower sensors were tested at an important road junction near Salt Lake City. The sensors
used a sampling frequency of 1 min and, depending on whether they were compared to an FEM or
FRM, the data were averaged over 1 or 24 h. The results showed that the linear correlation coefficients
with the FRM vary widely depending on the seasons, reaching their minimum in spring (0.185 for
PMS1003 and 0.419 for PMS5003), while the maximum correlation was observed in winter, at which
time the R2 rose to 0.972 and 0.971, respectively. Moreover, the authors indicated a significant drift
after 3 months when using the pms1003.

The authors in [81] developed a one-year comparison between four different LCPMS
(Alphasense OPC-N2, Plantower 5003, Plantower 7003, and Honeywell HPMA115S0), which were all
placed near two schools in Southampton, with respect to a reference British station (AURN). The nearest
AURN PM2.5 monitoring station was located in Portsmouth, 40 km to the East, and was equipped
with FDMS 8500 and TEOM 1400ab Ambient Particulate Monitors, which reported the hourly PM2.5
concentrations along with the volatile and nonvolatile PM2.5. The comparison shows that the two
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Plantower sensors exhibited coefficients of linear correlation (R2) always greater than 0.8, while for
OPC-N2, the R2 was always less than 0.7.

In [82], a six-month measurement campaign was performed with four LCPMS (SDS011, ZH03A,
PMS7003, and OPC-N2) at the Meteorological Observatory of the Department of Climatology and
Atmosphere Protection of the University of Wrocław. The reference systems provided by this site
were TEOMs. In this work, the Plantower again showed the best linear correlation with respect to the
reference instrument, reaching an R2 of 0.93 when its raw data were averaged over 24 h. The authors
analyzed how the correlation coefficient varies according to the measurement range for the Novasense
and Plantower by dividing the latter into three zones: (1) 20 µg/m3, (2) 20–60 µg/m3, and (3) 60 µg/m3.
Surprisingly, at very low concentrations and in the first zone, no sensors were able to reach a linear
correlation coefficient of 0.6 (both with 15 min and 1 h averages).

In [83], Alvarado et al. sought to characterize a low-cost dust sensor (Sharp GP2Y10) in an
unusual way. The authors installed two sensors on two different UAVs (on the fixed and rotary
wings), where the air suction and exhaust were modified to obtain controlled flow inside the sensor.
Bench tests were conducted using incense burning, and nonlinear regression was used to calibrate
and assess the potential correlation between the sensors and a commercial industrial grade analyzer
(DustTrack 8520) at very high concentrations (0–120 mg/m3), resulting in relative errors ranging from
12% to 22%. After a careful analysis to filter the noise produced by switching the electric motors of
the UAV, the authors performed controlled operative condition tests to reconstruct the 3D particulate
concentration fields. One of these tests included pumping talcum powder with a garden blower, so the
sensors were recalibrated to handle the composition of these new particulates. The authors concluded
that the integration of air quality sensors and autopilot data is potentially feasible and would allow
one to determine the distribution of airborne particulates in time and space. However, the authors
advocated for using novel optical sensors with higher sensitivity and calibrations that can exclude
cross contamination for more realistic concentration scenarios.

As stated in the previous paragraph, AQ-SPEC provides evaluations for LCPMS operating on
field, in addition to the ones they provide for laboratory setup. In the former, the low-cost sensors are
compared with FRM or FEM monitoring instruments, usually used for the detection of pollutants for
regulatory and legislative purposes. In particular, for PM detection, the research center uses a GRIMM
EDM180, which is a PM meter based on an optical system (like most of the LCPMS); it is considered
as a FEM by EPA, and provides for real time particulate concentration measurements. In addition,
they also rely on two MET ONE 1020 (one for the PM2.5 and one for the PM10), which are beta ray
attenuators providing hourly averages of the concentration of particles in the air [84]. For on field
evaluations, the AQ-SPEC researchers refer to a strict protocol, in which, after verifying the correct
match between the ‘bench’ test and the documentation (power supply specifications, evaluation of the
data acquisition method), the LCPMS are inserted in the monitoring station for 30-60 days. The sensors
are checked to be functioning and recording with a weekly basis [85]. The tests, reported in [86],
show (1) sensor picture, (2) producer and model of the sensor, (3) price, (4) tested pollutant (PM2.5,
PM10, etc.), (5) coefficient of determination R2 on the field, (6) coefficient of determination R2 in
laboratory, and (7) a summary report which provides the link of each specific sensor. Their efforts,
along with those of other organization such as EPA [87], for building a crystal-clear picture of the
effective performances of PM monitors and LCPMS both on field and in laboratory, using top category
reference instruments, is paramount for the general public to understand real world capabilities of
these tools and for practitioners while challenged by the choice of (low-cost) instruments for the
environmental control. More important, their work is supportive for other researchers regarding
the realizations of test chambers for environmental sensors and the development of a measurement
protocol for evaluations on field.

All the papers indicate fundamental differences between laboratory tests and field tests. In a
field characterization, infrastructure that can record data for several months with the instruments left
unattended for several days or weeks is necessary. The results of these long-term characterizations
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depend on their correlation with a reference instrument, but the accuracy is difficult to estimate since it
depends on the relative position between the LCPMS and the reference instrument.

4.3. Calibration of a Low-Cost PMS

Calibration of the LCPMS is a crucial and mandatory operation. Indeed, all LCPMS do not
directly measure size-partitioned mass concentrations but rely, instead, on basic a priori assumptions
of particle size and distribution to derive their estimations. Whenever these initial assumptions are not
met (for example, due to exposure to a different particulate composition), the LCPMS are expected to
express low accuracy, low precision, and nonlinearity effects when estimating particle concentrations.
However, the validity of these assumptions depends on the particular field conditions of the operative
environment, which can constrain their usage. As a further example, operational upper measurement
level limits in the range of 5 to 10 hundreds of µg/m3 are usually required, which practically rules out
several cities that often report higher PMx concentrations [88]. It is also important to note that LCPMS
are usually provided with very limited information, if any, regarding their factory calibration schemes.

LCPMSs rely on the particle density hypothesis to translate the particle size and count
measurements in mass concentration estimations. As noted, the estimation of size-partitioned
particle concentrations involves several physical and chemical factors that may affect the accuracy and
precision of the data. Moreover, these effects strongly depend on the characteristics of the LCPMS and
specifically on the peculiarities of the general sensing mechanism itself. Among the different factors,
Lewis et al. [89] focused on chemical composition and reactivity, refractive index, temperature/humidity
gradients along the sampling path, and shape and size distribution. Particle size distribution may also
significantly affect accuracy due to size detection limits. This may severely hamper the particle count
of small (<500 nm) particles (see also Figure 1), thereby underestimating the mass concentration in the
lowest partition bin (e.g., PM2.5 or PM1), which is usually related to ultrafine particle measurements
that are increasingly relevant in urban environments, where a significant fraction of particle pollution
is derived from car traffic. Furthermore, size distribution may be affected by the actual sampling setup,
such as the use of long or bended manifolds.

The application of an ad-hoc calibration function is as follows:

conc = f (s, i) (5)

where s is the raw sensor response data, and i provides information on the interferent factors that may
help correct for both non linearities and environmental/confounding influences. f itself may be based
on a physically rooted model or, more commonly, on empirical evaluations (e.g., linear models) or
even black-box models shaped by sample-based knowledge (e.g., machine learning models). The latter
knowledge can be gained in a laboratory-based, controlled setup or via field recordings. Aiming to
characterize and calibrate the Shinyei PPD42NS particle counter in a controlled laboratory setting,
Austin et al. [64] showed how the counter’s response is affected by the particle size composition,
further indicating a nonlinear response curve. The authors concluded that the sensitivity of this sensor
is appropriate for most outdoor locations but is not adequate for indoor scenarios where extremely
high concentrations are expected, such as in smoker’s homes or in places where biomass is a source of
energy for heat or cooking. It is important to remember that this sensor is a particle counter, and in
cases of exposure to polydispersed aerosols of unknown composition, conversion to mass may be
difficult without the availability of a concurrent gravimetric method.

Environmental interference, a very well-known issue for low cost chemical sensing, was reported
by several authors. Wang et al. studied and lab-calibrated a set of LCPMS, including Shinyei PPD42NS,
Samyoung DSM501A, and Sharp GP2Y1010AU0F [63]. Their environmental control setup was able to
stimulate responses induced by PM and nontarget interferents. The authors found that the responses
were affected by particle size distribution and composition and, to a more limited extent, temperature.
Relative humidity was also found to affect the sensor responses for concentrations ranging from 0 to
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1000 µg/m3. The authors also concluded that all sensors showed saturation effects at 4 mg/m3 and that
the noise of such sensors at low concentrations may hamper their ability to work in clean environments.
Algorithm improvements, including averaging, may ameliorate performance in these scenarios.

During a very short-term deployment (8 days, 16–23 April 2013, Oakland, CA, USA), Holstius et al. [90]
tested several LCPMS in outdoor conditions for the first time, collocated with regulatory grade analyzers.
This study included a custom Shinyei PPD42NS-based monitor and a Dylos 1700 monitor, among others.
The authors proposed a field calibration strategy at two different averaging periods (1 and 24 h) for PM2.5
concentration estimation. Several Shinyei-based LCPMS were tested, showing a highly correlated response
among them, with the Pearson correlation factor approaching 0.95 with the Dylos device (0.93 < r < 0.95).
The correlation factor with regulatory grade data was found to be in excess of 0.74 but never reached 0.8 for
the Shinyei-based devices, with results that were comparable to those of the Dylos device. Once calibrated
using regulatory grade reference data, the RMSE was found to be 3.5 µg/m3 for each of the tested devices,
showing impressively uniform capabilities. The authors reported only a slight capability of humidity to
predict the LCPMS signal, suggesting a limited influence of humidity and no influence of temperature.
However, these results might be due to the limited deployment time and subsequent scarcity of high
humidity events. The authors concluded that device- and site-specific calibrations could help low-cost
sensors yield data of comparable quality to more costly portable nephelometers.

Indeed, according to Reece et al. [91], high humidity events may cause catastrophic disruption to
sensors’ capabilities when LCPMS are operated outdoors for long periods. Aimed at demonstrating
the high spatial variance of air pollution levels, this study’s distributed deployment lasted for 5 months
in Puerto Rico (Tallaboa-Encarnacion, Penuelas). The authors reported the complete or extreme
loss of signals for a set of sensors (Aplhasense OPC-N2) exposed to repeated high relative humidity
events. Some of these sensors never recovered until an operator power-cycled them. The authors
highlighted how understanding sensor limitations is relevant for low-cost sensor deployment to
advance a community’s understanding of pollutant dynamics. Shinyei PPD42NS was at the core of the
study conducted by Gao et al. [92] in Xi’an, the capital of Shaanxi province in China. A network of these
LCPMS-based sensor systems was deployed and colocated along with several instruments, including a
TSI DustTrak II, an Airmetrics MiniVol Tactical Air Sampler, and an E-BAM instrument. The main
aim of this study was to capture the expected high space–time variability across the monitored areas
with different uses. The authors first calibrated the TSI DustTrack II with miniVol data and used the
calibrated device as a reference for the Shinyei-based device. Based on the evidence of a nonlinear
sensor response at middle to high concentrations, the authors chose a polynomial multivariate regressor
(>4th grade, including temperature and humidity as predictors) for a calibrated estimation of mass
concentration. The model was tuned using 4 days of TSI DustTrack II colocation data (16–20 December
2013) sampled at a 1 h maximum rate. After the calibration process, the system was able to provide
performance comparable to that obtained by Holstius et al. [90]. Practically, the 24 h averaged data from
the calibrated LCPMS monitors were compared to the Airmetrics MiniVol TAS data when deployed
in the field at several locations (9–16 December 2013). The R2 was found to be about 0.53 for all the
LCPMS, with standard regression errors ranging from 16 to 39 µg/m3. The authors noted that the
devices dealt with substantially higher concentrations that regularly exceeded 300 µg/m3, while the
temperature and relative humidity were substantially different from those encountered during the
calibration phase. The authors ultimately advocated for additional calibration studies under varying
meteorological conditions in different regions but highlighted the potential usefulness of LCPMS to
increase the space–time measurement resolution in health-related studies.

In 2015, Crielly et al. [93] field-evaluated the OPC-N2 sensor system. In this mid-term colocation
experiment (5 months total), the performance was reported to be strongly nonlinearly affected by
relative humidity events. These events triggered high water content in the sampled particles, which is
expected to negatively affect OPCs. The authors applied k-Kholer theory to correct for humidity’s
effects by field-calibrating the relevant parameters using field-recorded humidograms. The suggested
approach indicated a significant performance improvement. This approach, however, which involves
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applying a correction factor to the derived PM values, is equivalent to a uniform reduction in particle
number concentration over the entire particle size spectrum. In [94], instead, the authors proposed an
algorithm to correct for the changes in individual particle sizes due to water uptake under high RH
conditions that reflect the hygroscopic properties of real-world particles. This algorithm provides an
adjusted particle size distribution that does not involve simple scaling and was used to correct the
PM values estimated by the low cost OPC (Alphasense OPC-N2), thereby improving the correlation
with a reference OPC (Palas Fidas200 S) over a six-week period (23 May 2017 to 31 May 2017 and
17 December 2017 to 16 January 2018). Nonetheless, the corrected algorithm parameter value depends
on the particle chemical composition and, particularly, the different organic/inorganic composition
ratios since these fractions show different hygroscopicity levels [95]. The authors ultimately warn
the reader about possible changes to the parameter value due to seasonality effects and advocate for
seasonal recalibrations. Zheng et al. (2018) [96] also reported a significant nonlinear influence of relative
humidity (>70%) on several Plantower PMS3003 sensors deployed in India (Kanpur) and North Carolina
(Dhuram) over several weeks of colocation (across the monsoon and post-monsoon season) using
research and regulatory grade instruments. Whenever accurate and precise reference measurements
were available, they showed the emergence of nonlinear behavior from the factory-calibrated sensors
when the concentration values exceeded an empirically determined threshold (e.g., 125 µg/m3 for
PM2.5). This behavior was better accounted for by a quadratic function based on the initial linear
univariate calibration. The best results, however, were obtained by empirical and nonlinear approaches
correcting for humidity interference. In some cases, a limited influence of temperature was also
recorded. In summary, the authors advocated the use of nonlinear multivariate field calibrations for
correcting nonlinear target and nontarget (interferents) responses, demonstrating the ability of these
field calibration procedures to express a relative error less than 10%.

As a counterexample, during the mid-term deployment (6-months) of several LCPMSs,
Feinberg et al. reported that the RH was not a significant predictor for hourly concentration estimations
obtained with Alphasense OPC-N2 sensor PM2.5, thus removing these estimations from their linear
calibration functions [97]. Notably, the events that resulted in high concentration estimations
(200 µg/m3) were already removed from the relevant dataset based on previously reported associations
with high RH events when the OPC-N2 was deemed unreliable [91,98]. Furthermore, only sensor
pods that exhibited a coefficient of determination (R2) greater than 0.5 during the colocation period
(6 out of 17 sensor pods with the coefficient of determination value R2 ranging from 0.5 to 0.81),
underwent further linear regression calibrations that permitted their use in a source apportionment
geospatial analysis. The authors concluded that linear recalibration was able to remove the appreciable
slope and bias differences observed in several sensors.

During a nearly one-year long colocation deployment, Bulot et al. [81] reported that their LCPMS
(Plantower PMS5003, Plantower PMS7003, Honeywell HPMA115S040, and Alphasense OPC-N2)
performance varied with different observed PM sources and background concentrations. The deployed
low-cost sensors showed general agreement with the variability measured at low PM concentrations.
The authors remarked that the LCPMS might be affected differently by varying temperature and
humidity and highlighted the potential need for different correction methods. The authors eventually
advised against individual deployment, instead favoring redundant deployment, which may help
reduce outliers and variance by averaging. In [55], the feasibility of a low-cost PM monitor based on
Plantower PMS 7003 was evaluated in indoor and roadside outdoor microenvironments in colocation
with TEOM (outdoor) and Grimm (indoor) reference instruments during a short-time period (2–4 days).
This study focused on the linearity of the response, the precision of the measurements, and the influence
of humidity using two new performance parameters. Their results show that the Plantower-based
monitors work better in indoors than outdoors environment, achieving an R2 = 0.72− 0.78 in outdoor
tests and R2 = 0.95− 0.96 in indoor tests for PM2.5.

M. Jovašević-Stojanović et al. [72] calibrated a DYLOS 1700 monitor for PM10 and PM2.5 against a
reference instrument (GRIMM Model 1.108 monitor) operated by the Serbian Environmental Protection
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Agency (SEPA) as part of the national AQ monitoring network. The authors first processed the Dylos
1700 response via smoothing algorithms and a count to mass conversion algorithm based on the
literature data [99]. The authors reported an improved correlation coefficient among the reference and
LCPMS sampled data due to the smoothing process. Finally, the authors used a data-driven tuning
process for a first-degree polynomial calibration function, obtaining very low error rates with 1 h
averaged data recordings that were usually comparable to the reference data. Based on their results,
the authors concluded that appropriate data collection and processing infrastructure and quality
assurance and control procedures are paramount to facilitate the wider use of such devices.

A study conducted by Hojaiji et al. analyzed and compared the performance of a Dylos DCS1100
monitor with OPC-N2 as the reference data provider for an LCPMS system assembled around
a Sharp p2y1010au optical particle counter [100]. The experiments were conducted in different
indoor and outdoor setups. Although short-term, the campaign offered useful insights into the
influence of temperature and humidity on sensor responses by using a linear multivariate calibration
(temperature and humidity correction included) procedure. Cavaliere et al. calibrated and evaluated a
low-cost AQ station equipped with several gas sensors and PM sensors based on a Novasense SDS011
PM detector [57]. The calibration was conducted in a laboratory using the DustTrak DRX model 8533 as
a reference instrument for PM2.5 and PM10. Then, the AQ station was placed outside the institute in a
dedicated space while the same sampled air was simultaneously injected into the reference instruments
through Teflon tubes. Several linear and nonlinear models were applied to the calibration procedure,
and the results showed that for both sensors (PM2.5 and PM10), robust linear regression using the
Talwar M-estimator was the best model. After the calibration process, the AQ system was validated
on-site against a fixed AQ station ARPAT from 1 November 2016 to 15 April 2017. This validation was
conducted by comparing the lab calibration with other calibration techniques. The obtained results
show that the best performance for the adopted coarse 24 h resolution was obtained after a laboratory
calibration of each sensor against a light-scattering meter.

Borrego et al. [101] compared several commercial and research-designed AQ multisensor
devices and used machine learning approaches to calibrate the environmental gas, PM, and weather
microsensors against standard reference methods through an experimental urban air quality monitoring
campaign. Several calibration techniques were compared, including the linear calibration, feed forward
neural network (FFNN), and random forest (RF) algorithms. For PM10, the results indicate a good
overall correlation between the reference and the available measurements. A correlation coefficient of
R = 0.91 was the maximum value achieved with the use of RF, while a coefficient of R = 0.88 was the
minimum value. On the other hand, a correlation coefficient of R = 0.84 was the maximum value and
R = 0.7 was the minimum value achieved with FFNN. For PM2.5, the results indicate that both RF and
FFNN improved the correlation coefficient from R = 0.53 to R = 0.63 compared to the best coefficient
achieved with basic calibration (ranging from R = 0.36 to R = 0.53). In [102], an empirically designed
two-layer FFNN model was used to calibrate the low-cost PM sensors, compensating for the effect
of environmental factors. The field experiment collected experimental data from 20 March to 6 May
2018 in central Taiwan. The results showed that the machine-learning method based on nonlinear
multivariate regression improved the accuracy of the PM sensors from R2 = 0.618 to R2 = 0.905.

Short time drift effects were reported by Budde et al. when calibrating a Sharp GP2Y1010 indoors
over a few days against a TSI Dust Track particle counter with a chalk dust burst generator [103].
The drift effects were then confirmed outdoors against a regulatory grade instrument. The authors
proposed correcting for short term drift using repeated recalibration with higher accuracy devices
for on-the-fly calibration [104–106]. In their experiments, the authors reported results simulating
on-the-fly calibration over a limited timespan (7 days) with regulatory grade instrument data points
used to correct for bias drift. Although the error results were attractive (down to 5 µg/m3 for a 24 h
average PM concentration estimation against regulatory data), this approach is based on very high
quality calibration data that are rarely available to correct for significant short term drift. Furthermore,
the timespan was too limited to draw decisive conclusions. Long term drift effects may become apparent
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when calibration is performed across different seasons. Zheng et al. [96] also reported an appreciable
baseline drift when comparing two univariate models computed using monsoon and post-monsoon
season data. However, the authors did not analyze the reasons for this effect, which may be due
to a more general conceptual drift for change effects caused by the target/environment/interference
(i.e., a different calibration regime), as the target concentration distribution significantly differed in the
two timeframes.

In [107], the authors introduced a simultaneous Gaussian process regression (GPR) and simple
linear regression pipeline to calibrate wireless LCPMS networks placed in the field on-the-fly.
The network was based on Plantower PMS7003 sensors (≈USD 25; dimension: 4.8 cm × 3.7 cm
× 1.2 cm) to measure PM1, PM2.5, and PM10 mass concentrations and an Adafruit DHT22 sensor to
measure temperature and relative humidity. The proposed method evaluated Delhi, where 22 reference
and 10 LCPMS were available from 1 January 2018 to 31 March 2018 (the global average of the 3-month
mean PM2.5 among the 22 reference stations: 138 ± 31 µg/m3) using leave-one-out cross validation
(CV) over the 22 reference nodes. The results demonstrated that their approach can achieve excellent
robustness and good accuracy, as underscored by the low variability in the GPR model 20 parameters
and the model-produced calibration factors for low-cost nodes, as well as the overall 30% prediction
error (equivalent to an RMSE of 33 µg/m3) at a 24 h scale over the 22-fold CV.

In [108], several LCPMS monitors based on the Shinyei PPD42NS were calibrated by colocation
with a BAM-1020 particulate monitor. This setup was used for long-term measurements, which were
actually started in December 2015 and ended May 2017 at Nanjing University of Information Science
and Technology. Linear regression (LR), power linear regression (PLR), and artificial neural networks
(ANNs) were selected as the calibration function models. The highest correlation between the calibrated
low-cost sensor estimates and the BAM-1020 PM2.5 measurements (R2 = 0.84) was obtained by the ANN
model, which also scored the lowest in MNB (12.66%) and MNE (29.71%). Nonetheless, unsatisfactory
performance was obtained when handling low concentrations (i.e., concentrations below 35 µg/m3)
and very humid environments (i.e., RH > 75%) suggesting a significant influence of humidity on sensor
performance. Indeed, the authors reported that the use of relative humidity and temperature as further
inputs for the calibration models improved the results of the calibration methods. The authors argued
that the proposed multivariate connectivity approach can be used to accurately calibrate LCPMS
monitors. In the long-term, particularly starting from 18 months after the calibration, clear sensor
performance degradation was observed. The authors concluded that these sensors must undergo
recalibration procedures when aiming at long-term optimal performance. The authors ultimately
advocated for individual calibration of the sensors. Their calibrated PM2.5 estimation models appeared
to be sensor-specific, as the application of a single calibration model obtained for a specific sensor to all
the other sensors yielded only moderate to poor performance.

In [109], a new combined calibration method was introduced to increase LCPMS accuracy during
a field colocation experiment. Specifically, a multisensor platform was developed and colocated with
the governmental BAM at the government station (Dongjak-gu, Seoul, Korea) to evaluate low-cost light
scattering PM2.5 sensors (Beijing Plantower PMS7003). The data were collected for around 7.5 months
(15 January 2019 to 4 September 2019). The combined calibration method (SMART calibration) was
compared to other calibration techniques, and the results showed increased correlations (R2) between
the low-cost sensors and the BAM output—specifically, 0.41 (raw signal), 0.82 (LR), 0.84 (MLR),
0.83 (MLP), and 0.89 (SMART calibration).

Most of the reviewed works relied on simple linear calibration method with mixed results that
have been detailed above. Many of those, however reported nonlinear and nonselective behaviors and
improved performance through the use of nonlinear or upgraded approaches like

• NNs ([101,109]);
• Random forest [101];
• Polynomial regression [72];
• Piecewise, multivariate, power, or robust linear regression ([57,96,100,108], respectively);
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• GPR [107].

Similarly, nonlinear calibration models (exp, log, quad) have been found to be applied in field
calibration experiments in technical reports published by AQ regulatory monitoring institutions, e.g.,
AQ-SPEC a lab center of South Coast AQMD in United States [66] or EPA [87]. In these reports’
focus, several complete PM monitors based on different LCPMS and sensor technologies are colocated
in the field together with reference stations providing high valued performance assessment in real
world conditions.

Very recently, more advanced calibration models have been tested. A few months ago, Zaidan et
al., have proposed and tested more modern approaches like NARX (nonlinear autoregressive with
exogenous input neural networks) and even deep learning models (LSTM—Long Short Term Memory)
comparing them to conventional approaches in a transfer learning setup [110]. However, they reported
no performance advantage in using LSTM with respect to the NARX approach that scored the best.
At the same time, Si et al. have tested the modern XGBoost approch as a data driven calibration
function but again no performance advantage has been recorded in a 4 months deployment in Calgary
with respect to a conventional feed forward neural network (FFNN) based calibration [111]. Finally,
in September 2020, Wang et al., confirmed the validity of RF calibration as opposed to SVR and linear
approaches in an attempt to correct the response of LCPMS while field deployed [112].

In summary, the available literature shows that the combined effects of interferents and
hypothesized size/mass distribution dependencies make multivariate calibration a key element
for the optimal operation of LCPMS. Furthermore, several authors reported nonlinear behaviors in
both the target and interferent responses. The latter must be correctly accounted for using nonlinear
calibration models. Multivariate nonlinear field calibrations may thus help achieve a relevant DQO
by correcting ab-initio hypotheses and accounting for the influence of interferents, provided one
has access to high quality data on the real concentrations and environmental conditions. However,
the reviewed body of knowledge indicates that these corrections may only be valid within similar
particle mass/size distribution and chemical composition conditions. The resulting sensitivity of
the obtained calibration function to local effects means that the user should be careful in choosing
calibration conditions that reflect those expected in the final operative scenario [106]. Despite ensuring
the target and interference concentration distributions, degradation or changes in the residual sensor
properties (sensor drift effects) may still negatively affect long-term performance. For this problem
to be fully rectified, a network using on-the-fly continuous calibration should be applied. However,
longer-term deployment experiments are still needed to ensure the performance of such devices.
A final note on performance evaluation should be made. Many reviewed papers relied on R2 as a sole
measure of sensor accuracy. R2 has been designed as an indicator of “goodness of fit”, and, for example,
has limited capability in capturing and communicating the presence of (corrected) biases. In order to
improve the community evaluation capability, a more complete set of absolute and scaled indicators
should be always reported including one or more among MSE (mean squared error), RMSE (root mean
squared error), CRMSE (centered root mean squared error), MAPE (mean absolute percentage error),
MAE (mean absolute error).

5. LCPMS Basic Device Characteristics and Electronic Interfaces

In this section, we list technical and commercial information for LCPMS devices selected from
among market products that have already been used and investigated by some research groups,
as indicated in Table 4 above. In the Supporting Information, we include a table containing the same
information but for all the sensor devices listed in Table 4, even those not yet investigated in a scientific
peer-reviewed paper.

This classification is intended to serve as an instrument to help designers find aggregated
information to choose particulate sensors for both mobile and fixed installation development. At the
same time, a number of LCPMS operating parameters, often referred to in commercial datasheets,
are explained under possible application scenarios.
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LCPMS devices are classified by their metrological and technical characteristics obtained from the
official manufacturers’ websites and freely available technical sheets. The operating parameters and
technical characteristics are reported as stated in the official documents or extracted from use cases.

The metrological characteristics mainly refer to elements of LCPMS operating performance,
such as the measurement range, indication errors, minimum and/or maximum particle diameter,
concentration resolution, etc. Technical characteristics mainly include electric and electronic device
properties but also some other device characteristics, such as the designs, weights, and dimensions
than can affect specific application developments.

Notably, most of the LCPMS manufacturers below are located in Asia: three are in China
(Inovafitness, Plantower, and Winsen), two are in Japan (Sharp, Shinyei), one is in the US (Honeywell),
and two are in Europe (Sensirion and Alphasense).

5.1. Metrological Characteristics

In Table 5, the metrological characteristics are reported. Together with the manufacturer’s name,
the first column reports the device model and the reference numbers to the papers that discuss applications
based on that particular sensor model. For instance, INOVAFITNESS/SDS011/ [57,67,82,113] in the first line,
refers to LCPMS device model SDS011, manufactured by INOVAFITNESS (CHN), whose performance
was investigated in [57,67,82].

Column two reports the device’s basic operating mechanism (which is generally related to laser-based
particle scattering) along with the main application scenario, as indicated by the manufacturer or discussed
in the related papers. The sensor application is, in general, related to the specific device calibration,
as indicated in the “Manufacturer Calibration (or other Laboratory tests)”, where information on the
calibration method is provided (reference sensors, composition of particulates, etc.), as specified in the
relevant datasheets. In column 10, a summary of this information is reported.

Column three reports the device output. Although the usual output is PM concentration for most
of the devices manufactured, either in µg/m3 or in pcs/L, devices developed for specific applications,
such as clean room monitoring or cigarette smoking detection, can return the smoke concentration or
class identification. This means that the device can provide the concentration output of small particles
in the cigarette smoke separated from larger house dust via the pulse pattern of the signal output.

Columns four, five, and six report, respectively, the measurement range and its resolution in units
corresponding to the device output and the indication error, which is the relative error (%) and/or
absolute error related to the device output. Notably, some devices are characterized by the possibility
to further divide the measurement range into subranges for more resolved measurements.

Columns seven and eight, respectively, provide the sensor’s operating temperature range and
relative humidity operating range. As also mentioned in previous sections, very low temperatures
and/or high humidity levels can affect sensor performance because of possible coalescing phenomena,
resulting in anomalous increases in particle size. Notably, for other gaseous interferents whose effects
are known, the specific model datasheets generally provide the necessary measures to account
for their influence (e.g., Sharp DN7C3CA007 [107]). Some more sophisticated sensors mount
additional sensors or use more accurate internal controls (e.g., temperature, humidity, fan tachymeters,
and laser power feedback) to handle data validation/correction information and sensor anomaly
conditions (e.g., Alphasense N2/R1/N3 [114–116], EcologicSense NextPm [117], Sensirion SPS30 [118],
Cubic PM2008 [119] /PM2009 [120], etc.). Since particle size is mainly determined by analyzing the
amplitude (referred to as the thresholds) of an optical signal, these features can be affected by poor
values of the signal-to-noise ratio as a result of limited source intensity or poor receiver sensitivity;
they can also be affected by noise related to the acquisition electronic chain. The “concentration
resolutio” and “indication error” concentrations in the various dimensional bins of the output signal
(PM1, PM2.5, and PM10 concentrations) are partly due to this effect.

Column nine reports the minimum detectable value of the particle size for each of the sensors
discussed. This value is usually determined by the wavelength of an optical signal source. Dueto the
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signal weaknesses near this minimum, poorer performance in particle detection can be observed,
which is often described as a “counter efficiency effect” in the datasheets.

Other effects that can result in errors in the estimation of concentrations are due to incorrect
assumptions of the density of the particles related to the calibrations performed under different
conditions than the actual operating ones (different types and compositions of the particulates compared
to the calibration ones). Some manufacturers use various strategies to overcome this effect, such as
using special algorithms to better estimate the concentration (e.g., Cubic PM3006T [121]), providing a
correction parameter that is editable by the user so that ad-hoc calibrations can be implemented
(e.g., Alphasense N2/R1/N3 [114–116], Honeywell HPMA115 series [122], Cubic PM3006T [123]
/PM2009 [120], etc.), or performing multiple types of calibrations with different operating conditions
and particulates, leaving the user to choose the best compromise (e.g., Plantower PMS7003 [124]
/PMS1003/PMSA003 [125], Grove HM3301, Cubic PM2008 [119] /PM2009 [120], etc.). Near the upper
bound of the concentration range, a typical error source is given by the proximity/shadowing phenomena
in the sample volume being tested. For high values of PM concentration, the probability increases that
two very close small particles will give a signal similar to a larger particle or that, vice versa, a large
particle will somehow influence the pattern of a smaller one. For all sensors that automatically use
separate bins for different concentrations, this effect is limited by the use of more accurate waveform
processing with ad-hoc algorithms (e.g., Amphenol SM-PWM-01C, Plantower PMS7003 [124], etc.).

As discussed above, factory calibration operates directly on the raw sensor response, generally
obtaining a calibration curve for a given specific application. The possibility to access raw data is,
therefore, of great relevance for investigating sensor performance in applications different from those
indicated by the manufacturer or when different calibrations are applied. For each model, column 11
reports the possibility to access the raw data.

5.2. Technical Characteristics

Table 6 reports the technical characteristics of LCPMS, a group of parameters that can be used as a
reference to optimize the design of the monitoring system based on the application scenario.

The first column reports, as in Table 5, the device model, the manufacturer’s name, and the
numbers related to the papers that discuss applications based on that sensor model.
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Table 5. Metrological characteristics, obtained from the official manufacturers’ websites and freely available technical sheets. The first column refers to the
manufacturer’s name, the device model, and the papers and refers to applications based on that sensor model. Column two reports the device’s basic operating
mechanism and its main application scenario. Column three reports the device output in µg/m3 or pcs/L. Columns four, five, and six report, respectively,
the measurement range and its resolution in units corresponding to the device output, as well as the indication error related to the device output. Columns seven and
eight are, respectively, the sensor operating temperature range and the RH operating range, respectively. Column nine reports the minimum detectable value of the
particle size for each of the sensors discussed. Column 10 reports information on device calibration and the way it was performed. In column 11, the possibility to
access raw data is shown.

Manufacturer/
Model/Ref

Type/Main
Application

Main Measured
Output Data

Measurement
Range (µg/m3)

Concentration
Resolution (µg/m3)

Working
Temperature
Range (◦C)

Working Humidity
Range (%RH

Noncondensing)
Error

Particle Diameter
Resolution or
Range (µm)

Manufacturer
Calibration (or Other

Laboratory Tests)
Raw Data Availability

Alphasense/OPC/N2/
[81,82,93,94,97,98,114,

126–128]

Particulate
monitor/outdoor

PM1, PM2.5,
and PM10

10000
(particles/second) 0.01 −20 to +50 0–95% NA 0.38–17

Method defined by
European

Standard EN
481/TSI3330-GRIMM1.108

comparison

16 bins/1.4 to 10
µm/modifiable particle

density value

Honeywell/
HPMA115S0-XXX/

[67,122,129,130]

Laser-based
light scattering

particle sensing/
indoor-automotive

PM2.5 PM10 0–1000 1 −20 to +50 0–95%

PM2.5: 0–100 ±
15 µg/m3

PM2.5: 100–1000
µg/m3

± 15%

NA NA Customer adjustment
coefficient

Inovafitness/SDS011/
[57,67,82,113]

Laser based
PM2.5;10

sensor/indoor
PM2.5, PM10 0–1000 0.3 −10 to +50 0–70%

Maximum
between ± 15%
and ± 10 µg/m3

0.3–10 NA NO

Plantower/PMS 1003/
[80,131]

Laser based
particle

concentration
sensor/indoor

PM 1, PM2.5,
PM10 0–500 1 −10 to +60 0–99%

100-500 µg/m3

± 10%
0–100 ±

10 µg/m3

0.3
Standard

particles/atmospheric
environment

6 bin particle number;
standard particles

concentration
atmospheric
environment
concentration

Plantower/PMS 7003/
[55,81,82,124,129]

Laser based
particle

concentration
sensor/indoor

PM 1, PM2.5,
PM10 0–500 1 −10 to +60 0–99%

100–500 µg/m3

± 10%
0–100 ±

10 µg/m3

0.3
Standard

particles/atmospheric
environment

6 bins particle number;
standard particles
conc/atmospheric
environment conc

Plantower/PMS A003/
[76,125]

Laser based
particle

concentration
sensor/indoor

PM 1, PM2.5,
PM10 0–500 1 −10 to +60 0–99%

100–500 µg/m3

± 10%
0–100 ±

10 µg/m3

0.3
Standard

particles/atmospheric
environment

6 bin particle number;
standard particles
conc/atmospheric
environment conc

Sensirion/SPS30/
[118,132]

Particulate matter
sensor/indoor–outdoor

PM1.0, PM2.5,
PM4, PM10 0–1000 1 10 to +40 20–80%

PM1, PM2.5:
0–100 ±

10 µg/m3

100–1000 µg/m3

± 10%
PM4, PM10:

0–100 ±
25 µg/m3

100–1000 µg/m3

± 25%

0.3

PM2.5 mass
concentration calibrated

to TSI DustTrak™
DRX 8533 Ambient Mode

PM2.5 number
concentration calibrated

to TSI OPS 3330

5 bin particle number
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Table 5. Cont.

Manufacturer/
Model/Ref

Type/Main
Application

Main Measured
Output Data

Measurement
Range (µg/m3)

Concentration
Resolution (µg/m3)

Working
Temperature
Range (◦C)

Working Humidity
Range (%RH

Noncondensing)
Error

Particle Diameter
Resolution or
Range (µm)

Manufacturer
Calibration (or Other

Laboratory Tests)
Raw Data Availability

Sharp/GP2Y1010AU0F/
[63,65,67,83,133–136]

Led based dust
sensor/indoor PM10 0–500 Noise lim −10 to +65 NA NA NA

Cigarette smoke
reference: dust monitor

(P-5L2: manufactured by
SHIBATA SCIENTIFIC
TECHNOLOGY LTD)

NA

Shinyei/PMS1/
[98,137]

Particulate
sensor/- PM 2.5 0–200 NA −10 to +45 20–85% NA 0.3 NA NA

Shinyei/PPD20V/
[138,139] /indoor PM10 (pcs/liter) 0–30,000 (pcs/l) NA 0 to +40 0–95% NA 1

Cigarette smoke,
concentration reference:

Rion Kc01/drop test,
vibration, high

temperature and
humidity endurance

Yes

Shinyei/PPD42NJ/
[63,138,140]

Particle sensor
unit/indoor PM2.5, PM10 0–8000 (pcs/283

ml = 0.01cf) NA 0 to +45 0–95% NA 1

Cigarette smoke, weight
concentration reference:

sibata LD5 reference,
concentration reference:

Rion Kc01/drop test,
vibration, high

temperature and
humidity endurance,

NA

Shinyei/PPD60PV-T2/
[139,141]

Particulate
sensor/indoor

PM10 (pcs/l)
detects air borne

particles from
cleanliness class
100000–1000000

0–20000 (pcs/283
mL(0.01 cf) (0.5

um range
particle))

NA 0 to +45 0–95% NA 0.5

Cigarette smoke,
concentration reference:

Rion Kc01/drop test,
vibration, high

temperature and
humidity endurance

Yes

Winsen/ZH03/
ZH03A/ZH03B/

[67,82,142]

Particle sensor
PM2.5 dust

sensor/indoor

PM1.0, PM2.5,
PM10 0-1000 NA −10 to +50 0–85% NA 0.3 NA NA
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Table 6. Technical characteristics. The first column reports, together with the manufacturer’s name, the device model, and the numbers related to the papers that
discuss applications based on that sensor model. Column 2 refers to the LCPMS dimension and weight. Column 3 is related to the power supply required by the
device and indicates the power input required to properly supply the sensor. In column 4, the maximum absorption of current during normal device operations is
reported. In column 5, the current in mA consumed by the sensor when in sleep mode (if applicable) is shown. Column 6 reports the ability to regulate the power of
the laser source, providing a chance for the designer to regulate the power consumption of the entire system. Column 7 reports the “Response/warm up time” for the
various devices listed. This parameter indicates the minimum time required by the sensor to give a response after a query. Column 8 reports information related to
the “Output interface (Bus type)/Level”. Column 9 reports the “Flow type/inlet-outlet position” parameter, which indicates how sampled air is able to enter into
the detection chamber. Column 10, “Lifetime/ageing phenomena”, reports data related to the device’s lifetime reliability to provide information related to system
maintenance. The last column, “Approximate Cost range”, shows the price range (synthetic parameter) at the time of this review (approximately low ≤ 15 EUR;
15 EUR < mid < 60 EUR; high ≥ 60 EUR) to outline, along with the other parameters, the quality/price ratio of each sensor.

Manufacturer/
Model/Ref

Dimension (mm)
and Weight(g)

Power
Supply (V)

Working
Current (mA)

Sleep Current (mA)/Low
Power Operating

Modalities

Laser Power
Regulation

Response/Warm
up Time (s)

Output Interface
s/Level

Flux Type/Inlet-Outlet
Position Lifetime/Ageing Phenomena Approximate

Cost Range

Alphasense/OPC/N2/
[81,82,93,94,97,98,114,126,

127,129]
64 × 75 × 60 /105 4.8–5.2 175 95 mA/laser at minimum

power; fan off
Yes 1.4/10 SPI/- FAN/opposite sides NA High

Honeywell/
HPMA115S0- XXX/

[67,122,129,130]
43 × 3600 × 23.7/- 5 80 20 mA No 6/- UART/- FAN 10y Mid

Inovafitness/SDS011/
[57,67,82,113] 71 × 70 × 23/100 4.7–5.3 70

4 mA/laser and fan
sleep/low power
operating mode

Laser sleep 1/10 UART, PWM/3.3V FAN/opposite side Service life is up to 8000 h Mid

Plantower/PMS 1003/
[80,131] 65 × 42 × 23/- 5–5.5 100 <1 mA/adaptative

acquisition frequency No 1–10/- UART/3.3V FAN/opposite side MTTF ≥ 3 Year Mid

Plantower/PMS 7003/
[55,81,82,124,129] 48 × 37 × 12/- 5–5.5 100 <1 mA/adaptative

acquisition frequency On/off 1–10/- UART/3.3V FAN/same side MTTF ≥ 3 Year Mid

Plantower/PMS A003/
[76,125] 35 × 38 × 12/- 5–5.5 100 <1 mA/adaptative

acquisition frequency No 1–10/- UART/3.3V FAN/same side MTTF ≥ 3 Year Mid

Sensirion/SPS30/
[118,132]

40.6 × 40.6 ×
12.2/26 4.5–5.5 80 <50 µA/Sleep-Mode–

Idle-Mode NA 1/30 UART, I2C/- FAN

>10 y/maximum long-term number
concentration precision

limit drift
20 to 1000 #/cm3

± 12.5 #/cm3/year
1000 to 3000 #/cm3

± 1.25% m.v./year

High

Sharp/GP2Y1010AU0F/
[63,65,67,83,134–136] 46 × 30 × 17.6/16 5 40 No EXT 0.001/- Analog/- No/opposite side Laser diode: 50% degradation/5

years Low

Shinyei/PMS1/
[98,137]

71.4 × 76.4 ×
36.7/130 12 380 NA NA NA Ethernet/- Heater NA NA

Shinyei/PPD20V/
[138,139] 88 × 60 × 20/38 5 160 NA No -/60 PWM/- Heater 7y NA

Shinyei/PPD42NJ/
[63,138,140] 59 × 45 × 22/24 5 90 NA No -/60 PWM/- Auto suction by a

built-in heater resistor 7y NA

Shinyei/PPD60PV-T2/
[138,141] 88 × 60 × 22/- 5 140 NA No -/60 PWM/- Heater 3y NA

Winsen/ZH03/
ZH03A/ZH03B/

[67,82,142]
50 × 32.4 × 21/- 5 120 <10 mA NA -/45 PWM/- FAN/opposite site 3y in the air Mid
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The second column refers to the dimension and weight of the LCPMS. In many applications where
the sensor must be compact and light (i.e., IoT portable devices), this factor is a key issue, while in other
applications, such as fixed measurement stations, dimension and weight are often less relevant. For all
the devices listed, the device volumes range from around 20 cm3 (the Plantower and Sensirion families)
to about 150 cm3 for the Shinyei family. The weight ranges from 16 g for Sharp/GP2Y1010AU0F [136]
to 130 g for Shinyei [137].

The third column is related to the device’s power supply and shows the power input required
to properly supply the sensor. Depending on the application, the designer should choose a sensor
while taking into consideration the other devices present on the acquisition board and all the operating
voltages required, included that of the sensor.

In the fourth column, the maximum absorption of current during normal device operation is
reported. This parameter is useful for two reasons: the designer can use it estimate the overall
absorption of the acquisition system (especially in presence of low power constraints), and by knowing
the correct operating conditions of the sensor, it is possible to properly dimension the protection
devices of the electronic board and quickly detect any failures due to the sensor.

The fifth column reports the current in mA consumed by the sensor while in sleep mode
(if applicable). Typically, in low power applications, it is useful to put the sensor into a low power state
when it is not in use. Some sensors also allow one to activate a low power acquisition mode; the notes
in this column also report this possibility.

The sixth column reports the possibility to modify the laser power absorption, providing a chance for
the designer to tune the power consumption of the entire system. For many applications, especially those
related to IoT, metering devices are powered by batteries. Thus, a reduction of energy consumption is
a powerful tool to ensure a reasonable operational lifetime of a system. Of course, when laser power
regulation is active, the measurement output will, in general, depend on the laser intensity.

The seventh column reports the “response/warm up time” for the various devices listed.
This parameter indicates the minimum time required by the sensor to give a response after a
query. Some of the sensors may introduce some latency into the response due to on-sensor elaboration,
whose knowledge is required to properly select the sampling frequency. Indeed, latency can impose
limits on the maximum sampling frequency that the designer can select, but in the majority of
applications investigated so far, the sampling time is not this critical. The warm up time field is mainly
affected by the laser startup, that is, the time required by the laser to become stable enough to properly
work and the time the fan (if any) needs to reach its working speed.

The eighth column reports information related to the “Output interface (Bus type)/Level”. When in
the operating mode, the information related to the number of suspended particles in the air needs to be
transferred and further processed by other components of the monitoring system to obtain meaningful
information. Each sensor has its own interface, either an analog output or a digital bus, which can
transfer data to a microcontroller. Knowledge of this interface type is important to select an acquisition
board or vice-versa. In practical applications, when the sensor outputs a digital number representative
of the measurement, the sensor itself includes an embedded analog to digital converter. This type of
converter is useful because it avoids the need for a further acquisition device on the control board but,
on the other hand, generally suggests that the ADC resolution cannot be modified. If the device output
is analog, the designer has more flexibility in choosing the resolution of the ADC and using some
electronics useful to condition the analog output signal. The designer can also apply oversampling
techniques to reduce the noise, improve signal resolution, and optimize the final measurement errors
and resolution of the acquired signal. The “Level” section shows the voltage levels available for the
physical layer of the serial interface of the sensor.

The column “Flow type/inlet-outlet position” indicates how sampled air enters into the detection
chamber. The way the air is sampled affects the quality of the measurement since the particle
concentration is computed while relying on the volume of the sample of air being examined.
Some sensors are passive in the sense that they simply let air freely flow into the detection chamber
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(Cubic PM1006K [143], Sharp GP2Y1010AU0F [136]). Other sensors use heaters to induce forced air
convection (Amphenol SM-PWM-01C [144] /SM-PWM-01S [145], Cubic PM1003 [146], Panasonic PM2.5
Sensor [147], SAMYOUNG S&C PMSU [148] /PMSL [148], Shinyei PPD series ([139–141,149]), and Winsen
ZPH01 [150] /ZPH02 [142]). Still others use a fan that forces a constant air flow to enter into the detection
chamber (Alphasense OPC N2/R1/N3 [114–116], Amphenol SM-UART-01D [151] /SM-UART-01L+ [152]
/SM-UART-04L [153], Bjhike HK-A5 [154], Cubic PM2008 [119] /2008M [155] /2009 [120] /PM2107 [156]
/PM2105M [157] /PM2012 [158] /PM3015 [159] /PM3006T [160] /PM5000 [161], Grove HM3301 [162],
Honeywell HPM Series [122], NanoSensePM2036 [163], Inovafitness SDS011 [113] /SDS018 [164],
Panasonic SN-GCJA5 [165], Plantower PMS7003 [124] /1003 [131] /A003 [125], Sensirion SPS30 [118],
Sharp DN7C3CA007 [166], Shinyei PMS1 [137], TianjinFigaro-isweek TF-LP01 [167], Winsen ZH06 [168]
/ZH03 [142], and YAGUCHI ELECTRIC CORP. SDS021 [169]). In the latter case, the sensor results are less
affected by possible environmental effects. Furthermore, when the fan is associated with a tachymeter
(or another equivalent flow control tool), the accuracy of the measurement is considerably increased.

The 10th column, “Lifetime/ageing phenomena”, reports data related to the device’s lifetime
reliability to highlight information related to system maintenance.

The last column, “Approximate Cost range”, shows the price range of the devices (an approximate
synthetic parameter) at the time of this review.

5.3. Applications

Considering the information provided by the datasheets and listed in Tables 5 and 6 (as well as in
the extended Table reported in the SI), the reviewed LCPMS models can be classified by their suitability
under four general application scenarios:

1. IoT distributed applications. These applications require the use of devices that have low average
consumption during the acquisition phase, can be placed into a low power state, and allow the
regulation of the intensity of the laser. Depending on the application, the devices in this group
can match the low power requirements if properly managed.

2. Sensor flexibility. Some applications require the device to operate under conditions that could
differ from those used to calibrate the sensor. This group includes devices that are claimed to
be endowed with one or more of the following characteristics: high quality factory calibration,
the ability to regulate the calibration, the availability of raw data, and a number of bins for the
output data.

3. On board integration complexity. This parameter is related to the complexity of the integration
process of the sensor on a custom acquisition board or equipment. For example, some sensors
require the output signal to be conditioned by custom hardware, while others are provided with
embedded signal conditioning hardware. In the former case, the designer has more flexibility,
but additional hardware is required; in the latter, less effort is required for the integration
of the device on the acquisition board. It is also important to choose a proper sensor while
considering the environment in which it will be deployed since some factors can negatively
affect the measurements, such as droplets, fog, vibrations, wind, direct light, dew, temperature,
humidity, soot, grit, air-flow rate obstruction, the mounting environment, the mounting position,
and orientation. In this area, the availability of advanced sensor cases is often a key issue.
In general, the main parameters required to choose a sensor in this group are the presence
of a fan, the presence of signal conditioning hardware, case completeness, factory calibration,
and additional onboard sensors (e.g., temperature/humidity sensors and a fan tachometer).

4. Applications that require advanced metrological properties. This group includes sensors that can
provide thorough information on measurement errors, resolution, and the range of concentrations
that can be detected.

In Table 7, the reviewed LCPMS are grouped according to the four application scenarios defined
above for the devices listed in Table 4.
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Table 7. LCPMS grouped according to the four application scenarios defined for the devices listed in
Table 4.

Sensors Output Flexibility Integration Complexity IoT
Applications that

Require Advanced
Metrological Properties

Alphasense OPC/N2 [114] • • •

Alphasense OPC/N3 [116] • • •

Alphasense OPC/R1 [115] • •

Amphenol Telaire
SM-PWM-01C [144]

Amphenol Telaire
SM-PWM-01S [145] •

Amphenol Telaire
SM-UART-01D [151] •

Amphenol Telaire
SM-UART-01L+ [152] •

Amphenol Telaire
SM-UART-04L [153] • •

Amphenol Telaire Telaire
DSF Series [170] • •

bjhike HK-A5 [154] •

Cubic Sensor and
Instrument Co,Ltd

PM1003 [146]
•

Cubic Sensor and
Instrument Co,Ltd

PM1006K [143]
•

Cubic Sensor and
Instrument Co,Ltd

PM2008 [119]
• • •

Cubic Sensor and
Instrument Co,Ltd

PM2008M [155]
• • •

Cubic Sensor and
Instrument Co,Ltd

PM2009 [120]
• • •

Cubic Sensor and
Instrument Co,Ltd

PM2012 [158]
• • • •

Cubic Sensor and
Instrument Co,Ltd

PM2105M [157]
• • •

Cubic Sensor and
Instrument Co,Ltd

PM2107 [156]
• • •

Cubic Sensor and
Instrument Co,Ltd

PM3006T [160]
• •

Cubic Sensor and
Instrument Co,Ltd

PM3015 [159]
• •

Cubic Sensor and
Instrument Co,Ltd

PM5000 [161]
•



Sensors 2020, 20, 6819 39 of 56

Table 7. Cont.

Sensors Output Flexibility Integration Complexity IoT
Applications that

Require Advanced
Metrological Properties

EcologicSense
NEXT-PM [117] • •

Elitech PM-900M [171] •

Grove Studio Laser PM2.5
Sensor (HM3301) [162] • •

Honeywell
HPMA115C0-003 [122] • • •

Honeywell
HPMA115C0-004 [122] • •

Honeywell
HPMA115S0-XXX [122] • •

NanoSense PM2036 [163] • • •

Inovafitness SDS011 [113] • •

Inovafitness SDS018 [164] • • •

Panasonic LED Type
PM2.5 Sensor [147] •

Panasonic SN-GCJA5
Laser Type PM

Sensor [165]
•

Plantower PMS 1003 [131] • • •

Plantower PMS 7003 [124] • • •

Plantower PMS A003 [125] • • •

SAMYOUNG S&C
PSML [148]

SAMYOUNG S&C
PSMU [148]

Sensirion SPS30 [118] • • • •

Sharp GP2Y10
10AU0F [136]

Sharp DN7C3CA007 [166]

Shinyei PM sensor [137] •

Shinyei PPD20V [139]

Shinyei PPD42NJ [140]

Shinyei PPD60PV-T2 [141]

Shinyei PPD71 [149]

tianjinFigaro-isweek
TF-LP01 [167] •

Winsen ZPH01 [150]

Winsen
ZH03/ZH03A/ZH03B [142] • •

Winsen ZH06-I [168] • •

YaguchiElectric Corp.
SDS021 [169] • •
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6. LCPMS Performance Literary Review

6.1. Methodology

This section reports the performance exhibited by the LCPMS that were investigated in the
scientific literature (Scopus, keywords: (particulate AND matter OR PM) AND (low-cost OR personal
OR pervasive OR sensor *) in “Title”). The sensors are classified by a number of characteristic
parameters, mostly derived from the EPA definitions (see Section 3) and more extensively reported in
the SI.

Some of the most meaningful parameters are summarized in Table 8, where the columns refer to
the quality indicators which were reported by authors to evaluate the performance of their sensing
apparatus in comparison with a reference instrument, which is reported in the last column.

• Accuracy: A measure of the overall agreement of a measurement with a known value
(i.e., an accepted reference value). Along with bias, the R2 coefficient of a regression model
predictions, hereby listed, is a generally accepted measure of the calibrated instrument potential
accuracy. Its value may range from −∞ to 1.

• Precision: A measure of the agreement among repeated measurements of the same property
under identical or substantially similar conditions, calculated either as the range or as the
standard deviation.

• Bias: The systematic or persistent distortion of a measurement process that causes errors in
one direction.

• Completeness: A measure of the amount of the valid data that needs to be obtained from a
measurement system.

• Detection limit: The lowest analyte level that can be confidently identified.
• Measurement range: The minimum to maximum concentration range that the instrument is

capable of measuring.

When different reference instruments are used, a direct comparison among reported performance
levels requires caution. Some works compare the concentration estimations of low-cost devices with
those of measurement methods that are officially recognized by government agencies, i.e., those based
on different measurements principles such as FRM and FEM, as discussed in Section 2. A relevant
example is found in the work of Sayahi et al. [80], who tested two LCPMS produced by Plantower with
a gravimetric FRM and a TEOM (FEM) over a period of 320 days. Due to the long sampling time of
FRM and FEM, the comparison was performed by considering the average of the measurement periods
that became comparable to those of the reference instruments. In other investigations, LCPMS were
compared to certified OPCs used as reference instruments. These comparisons were implemented
mainly under laboratory conditions with controlled setups, although several papers report field
deployment performance. The high temporal resolution of OPCs, which is comparable to that of
LCPMS, provides more accurate information on the quality of the measurements from low-cost devices.
For example, Feinberg et al. [98] compared the performance of LCPMS with a Grimm 180 EDM,
and Han et al. [172] used a Grimm 11R as a certified tool for comparing devices over a duration of
12 days.

Several works rely on both types of reference tools to achieve an even broader comparison.
For example, Crilley et al. [93], in addition to a TEOM (FEM) used two certified OPCs (a TSI3330 and
a Grimm Pas1.108) as reference tools, and Mukherjee et al. [126] used a BAM- 1020 (FEM) and an
OPC Grimm-11R.

6.2. Performance Review Results

Below we summarize the results for the most representative LCPMS families.
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Table 8. The most meaningful LCPMS parameters. The columns report the quality parameters used to evaluate performance compared to a reference instrument,
which is reported in the last column.

Ref Test Year PM Class Accuracy Completeness Detection Limit Measurement Range Precision Reference Instrument

R2 Bias µg/m3 µg/m3 µg/m3 %

* Tested in a
laboratory setup

Plantower
PMS A003 [76] 2018 2.5 0.91 0–49 12 PDR-1200

Plantower
PMS 1003 [80] 2019 10 0.91 Gravimetric FRM

Plantower
PMS 5003 [80] 2019 10 0.7 Gravimetric FRM

Plantower
PMS 1003 [80] 2019 2.5 0.88 56.9% Gravimetric FRM

Plantower
PMS 5003 [80] 2019 2.5 0.89 11.6% PartisolTM 2025i

Sequential Air Sampler)

Plantower
PMS 7003 [55] 2019 2.5 0.96 16–75 16 TEOM SEMC/

GRIMM 1.108

Plantower
PMS 7003 [55] 2019 10 0.97 16–75 14 TEOM SEMC/

GRIMM 1.109

Novasense
SDS011 [57] 2018 2.5 0.96 3–79 TSI DustTrak DRX

Novasense
SDS012 [57] 2018 10 0.91 3–90 TSI DustTrak DRX

Alphasense
OPCN2 [93] 2018 2.5 0.9 0–300 Grimm1.108

Alphasense
OPCN2 [93] 2018 10 0.84 0–350 Grimm1.108

Alphasense
OPCN2 [129] 2019 2.5 0.50 0–35 TEOM AURN

Honeywell
HPMA115S0 [129] 2019 2.5 0.77 0–35 TEOM AURN

Plantower
PMS 5003 [129] 2019 2.5 0.76 0–35 TEOM AURN

Plantower
PMS 7003 [129] 2019 2.5 0.73 0–35 TEOM AURN
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Table 8. Cont.

Ref Test Year PM Class Accuracy Completeness Detection Limit Measurement Range Precision Reference Instrument

ZH03A (Winsen) [82] 2018 2.5 0.81 3.27 0–120 25 TEOM 1400a

Alphasense
OPCN2 [82] 2018 2.5 0.61 8.36 0–120 37 TEOM 1400a

Plantower
PMS 7003 [82] 2018 2.5 0.89 3.36 0–120 11 TEOM 1400a

Novasense
SDS011 [82] 2018 2.5 0.9 4.76 0–120 12 TEOM 1400a

Alphasense
OPCN2 [98] 2018 2.5 0.2 82.00% grimm edm 180

Alphasense
OPCN2 [98] 2018 10 0.46 82.00% grimm edm 18

Shinyei
PMS-SYS-1 [98] 2018 2.5 0.52 92.00% grimm edm 180

Alphasense
OPCN2 [126] 2017 10 0.81 0.32 0–250 Bam 1020

Alphasense
OPCN2 [126] 2017 10 0.84 2.83 grimm11R

Alphasense
OPCN2 [126] 2017 2.5 0.43 1.92 grimm11R

Alphasense
OPCN2 [81] 2019 2.5 0.45 0–100 TEOM AURN

Plantower
PMS 5003 [81] 2019 2.5 0.7 0–100 TEOM AURN

Plantower
PMS 7003 [81] 2019 2.5 0.77 0–100 TEOM AURN

Alphasense
OPCN2 [97] 2019 2.5 0.81 0–146 teom

Honeywell
HPMA115S0 [130] 2019 2.5 0.58 0–72.9 grimm edm 180

Honeywell
HPMA115S0 [67] 2019 2.5 0.99 TSI-3025A

Novasense
SDS011 [67] 2019 2.5 0.90 * TSI-3025A
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Table 8. Cont.

Ref Test Year PM Class Accuracy Completeness Detection Limit Measurement Range Precision Reference Instrument

ZH03A (Winsen) [67] 2019 2.5 0.98 TSI-3025A

sharp GP2y [67] 2019 2.5 0.96 TSI-3025A

Alphasense
OPCN2 [94] 2018 2.5 0.78 0–70 Palas Fidas 200

PPD42NS [138] 2018 2.5 0.8 9.1 0–500 TSI DustTrak

PPD20V [138] 2018 2.5 0.98 4.6 0–500 TSI DustTrak

PPD60PV [138] 2018 2.5 0.87 29 0–500 TSI DustTrak

sharp
GPD2y1010AU0F [134] 2018 2.5 0.99 0–8000 TSI AM510 ‘Sidepak’

sharp
GPD2y1010AU0F [135] 2017 2.5 0.99 * 10.93 0–1000 Alphasense OPC-N2

sharp
GPD2y1010AU0F [63] 2015 2.5 0.99 * 26.9 0–5000 TSI AM510 ‘Sidepak’

Shinyei PPD42NS, [63] 2015 2.5 0.95 6.44 0–300 TSI SidePak

Samyoung
DSM501A [63] 2015 2.5 0.98 11.4 0–300 TSI SidePak

sharp
GPD2y1010AU0 [136] 2012 10 0.99 0–3000 TSI AM510 ‘Sidepak’

sharp
GPD2y1010AU0F [83] 2015 2.5 0.98 * 0–140 Dusttrak 8520

sharp
GPD2y1010AU0F [83] 2015 10 0.91 * 0–120 Dusttrak 8520

sharp
GPD2y1010AU0F [65] 2016 2.5 0.95 30–6300 <6% SMPS/CPC(GRIMM)-APS

3321

Sensirion SPS30 [132] 2019 2.5 0.83 * ? ?% Grimm1.108

Alphasense
OPC-N2 [127] 2016 2.5 0.99 * 10–10,000 4.2–16% SMPS/CPC(GRIMM)-APS

3321
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6.2.1. Alphasense N2

As shown in Table 7, this is the PM sensor most commonly tested by the scientific community.
Among low cost sensors, this is one of most expensive and is able to measure PM1, PM2.5, and PM10
concentrations since it can count particles with dimensions between 0.3 and 25 µm, dividing this range
into 16 dimensional bins.

Crilley et al. tested this sensor through field evaluations compared against two different reference
systems for a period of two weeks [93]. The two reference systems were a Grimm PAS-1.108, which is
a certified optical particle counter, and a TEOM, which is an FEM recognized by the EPA. In this work,
the authors discuss issues related to humidity interference, highlighting that for all the sampling points
obtained over the two weeks, the R2 values reached 0.72 for both the Grimm and the TEOM when
measuring PM2.5, with 0.67 for the TEOM and 0.68 for the Grimm when measuring PM10. However,
these correlation coefficients increased significantly, in all cases exceeding 0.8, when only sampling
points with measured relative humidity lower than 85% were taken into account. This confirms that
humidity is one of the most important interferents for this kind of device.

Jhonston et al., as part of an IoT project, aimed at creating an Air Quality Monitor with the use
of an LCPMS. The authors tested various sensors in the field, particularly in the surroundings of
two schools, over two weeks in June 2018 [129]. The authors compared their data with data from
the AURN stations, which is the official reference method used in the UK. For PM2.5 measurements,
Alphasense N2 obtained the worst R2 of 0.5, compared to the values greater than 0.7 measured on
other LCPMS, such as Plantower PMS 5003, Plantower PMS 7003, and Honeywell HPMA115S0.

Additionally, Badura et al. [82] tested this LCPMS in the field together with three other devices,
thereby comparing them with a TEOM over a 6 month measurement campaign. The novelty of this
work is its comparison between the LCPMS and the reference instrument using different averaging
times (1 min, 15 min, 1 h, and 24 h). As expected, better results were obtained for all devices when
increasing the sampling time. As in [98], the N2 provided the worst results, reaching a maximum R2

value of 0.69.
In [98], Feinberg et al. tested several environmental sensors in the field, not only for PM but also

for gases, over a period of 6 months between the end of 2017 and the beginning of 2018. The authors
used a Grimm EDM180 as a reference for PM, with a sampling time of 1 min. In this work, the authors
obtained the worst overall result for the Alphasense N2, reaching only 0.2 for the correlation index R2

for PM2.5and 0.46 for PM10.
Mukherjee et al., in a work describing a 3-month campaign in the field, estimated the effects

of wind on the measurement of particulate matter using these devices [126]. The authors used two
different reference devices, one with the same physical principles as the LCPMS, the Grimm-11R,
and the other with a different physical principle, the BAM-1020 (FEM). As result, they obtained an R2

equal to 0.84 for the PM10, indicating good performance, but the R2 dropped dramatically to 0.43 in
the best case, compared to the Grimm, for PM2.5.

Bulot et al. tested four LCPMS sensors, including an Alphasense N2, over two months in two
schools in the UK, using the official government system as a reference (AURN) [81]. Among the sensors
tested, N2 again offered the worst performance for PM2.5 with a maximum correlation coefficient of
0.45. This value is very low compared to that obtained using Plantower, which exceeded 0.7 for R2.

In [97], Feinberg et al. compared 20 different units of Alphasense OPC-N2 with a TEOM for about
6 months. In this work, the R2 values of the various units were very scattered, reaching a maximum of
0.81 but below 0.5 for most units.

Di Antonio et al. calibrated the N2 in the field using as a Palas Fidas 200 as a reference.
This reference device is a certified instrument based on optical light scattering [94]. The authors showed
that, after the calibration, the R2 increased from a value of 0.34 to a much more acceptable value of 0.78
by correcting the data based on the relative humidity recorded. This once again confirmed that this
device suffers under particularly high humidity levels.
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In [127], Sousan et al. calibrated their sensor in a laboratory and not in the field (i.e., they used
a controlled environment with a particulate concentration up to 10,000 µg/m3). This value is much
larger than the dust regimes found in the field, which barely exceed 100 µg/m3. In this case, the R2

reached 0.99 for both PM10 and PM2.5. The authors concluded that at high concentrations and under
controlled conditions, the performance of this device is excellent.

Finally, despite its price (which is the highest among the LCPMS), N2 provides the worst
performance in the field, as indicated in the literature. N2 is one of the first LCPM sensors that appeared
on the market and was provided with a detailed datasheet reporting relevant laboratory tests. Its strong
points include its hardware and firmware, which allow one to gather detailed information not only
on PM measurements but also on the particle bin counts and their specificity for PM2.5. However,
N2 underperforms in low concentration ranges and is one of the most bulky devices.

6.2.2. Plantower Family

Plantower (models PMS1003, PMS3003, PMS5003, PMS7003, and PMS-A003) offers a large variety
of sensors with a lower price than other manufacturers.

Zamora et al. tested the PMS-A003 both in the laboratory under an internal environment and in
the field, comparing the data with a gravimetric reference instrument, the pDR-1200, for the evaluation
of PM2.5 [76]. In the laboratory, the correlation coefficient was 0.97 when using incense fumes as a
source of particulate matter. For the indoor environment, the R2 was 0.92 when using kitchen smoke,
while for the outdoor evaluation, the R2 was 0.91 and reached 0.93 when the sensor was calibrated.
Moreover, the influences of temperature and humidity were corrected.

In [80], Sayahi et al. tested both PMS1003 and PMS5003 in the field with a 320-day campaign in
which a gravimetric FRM with a 24-h sampling period and a TEOM (FEM) with a 1-h sampling period
were used as reference systems. The authors sorted the results by different seasons and showed that
the results were generally much worse in the spring than in the other seasons. The authors achieved
the best results in winter, obtaining an R2 of 0.97 for PM2.5 with both devices. During the winter,
for PM10, the authors also found a correlation coefficient of 0.91 for the PMS1003, and 0.7 for the
5003. When comparing 1 h sampling data (i.e., the TEOM results with LCPMS results for PM2.5),
the Plantower devices showed comparable performance, reaching 0.88 for 1003 and 0.89 for 5003.

Wang et al. [55] tested the recently produced 7003 sensor by Plantower in the field. The authors
evaluated the performance for both PM10 and PM2.5 using two different reference devices, a TEOM
and an OPC (the GRIMM 1.108). For TEOM, the correlation coefficient for PM2.5 was 0.78, while that
for PM10 was 0.73. These values grew significantly, both exceeding 0.96, compared to the OPC, which is
based on the same physical principles of the sensor under evaluation.

Compared with the AURN control units, in [129], the correlation coefficients for two sensors of
this family (PMS5003 and PMS7003) for PM2.5 were 0.76 and 0.73, respectively.

Along with the Alphasense N2, Badura et al. [82] field-tested the PMS7003 and evaluated the
responses at different sampling times. The correlation results for the PM2.5 measurements yielded an
R2 of 0.69 for the Alphasense N2 and 0.93 for the PMS7003, calculated with respect to a 1400a TEOM.

In [81], two devices of the Plantower family, the PMS5003 and the PMS7003, were tested in the
field using an AURN station as a reference. From the comparison of PM2.5 the authors obtained
correlation coefficients of 0.7 and 0.77.

To summarize, this review focused on Plantower sensors. Despite their cheaper price, these sensors
provide good performance and good quality fabrication.

6.2.3. Novasense SDS011

Another notable competitor is Novasense SDS011, a meter for PM2.5 and PM10 with an affordable
cost of around USD 20.

In [57], Cavaliere et al., after calibrating their device in the laboratory (there device was inserted
into an IoT infrastructure together with other gas sensors for complete monitoring of environmental
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pollutants), compared their results with an ARPAT control unit (the official measurement method
in Italy) over a campaign that lasted about 6 months. This device exhibited excellent performance,
providing R2 values of 0.96 and 0.91 for PM2.5 and PM10, respectively.

Badura et al. (who tested the Plantower PMS7003 and the ALphasense OPC-N2), also tested a
Novasense device [82]. This device provided performance comparable with the Plantower, reaching a
correlation coefficient of 0.90 for PM2.5.

Hapidin et al. tested their sensor in a laboratory in a special chamber for the evaluation of low
cost devices to measure particulates [67]. In these conditions, the Novasense device provided an R2 of
0.994 for PM2.5.

Despite the small number of scientific works examining the Novasense SDS011, the consistency of
the results among the various tests seems to indicate that this device is one of the best performing
options in the laboratory and in field tests.

6.2.4. Sharp GPD2y1010AU0F

In [133], Li et al. compared the Sharp GPD2y1010AU0F with a TSI SidePark in a carpentry shop to
evaluate its performance in the workplace by inserting the sensor itself into an IoT infrastructure with
the support of an Arduino and a RaspberryPi. In an indoor carpentry shop where the concentration of
dust was high, the sensor obtained a correlation of 0.99 using the reference instrument.

Marinov et al. tested a battery of these sensors in the laboratory using the Alphasense OPC-N2
as a reference device [134]. High concentrations reached 1000 µg/m3; for the best performance,
the correlation index was 0.99.

Wang et al. also tested this device in the laboratory [55]. Referring to an OPC certified by a TSI
SidePark, this sensor reached a correlation coefficient very close to 1 for PM2.5.

In [65], Sousan et al. performed a laboratory test for this sensor, finding results in agreement with
the previous ones and a correlation coefficient of 0.95.

Olivares et al. tested this sensor together with a Sidepark in a house to measure PM10 [135].
The authors’ aim was to evaluate whether these sensors are sensitive to movementi.e., the movement of
dust caused by human movement. Even when keeping the concentrations very low (around 3 µg/m3),
the correlation coefficient for a sampling time of 90 min was 0.99.

Alvarado et al. installed the sensors for environmental monitoring (including the Sharp) on a
drone [83]. Before completing the infrastructure, the authors tested the sensors in the laboratory and
compared them to a TSI Dusttrak 8520, obtaining 0.98 and 0.91 as correlation coefficients for PM2.5
and PM10 respectively.

6.2.5. Shinyei Family

Another family of low-cost particulate sensors is produced by Shinyei: the PMS-SYS-1, PPD42NS,
PPD20V, and PPD60PV models. Feinberg et al. compared the first sensor in this list to a Grimm EDM
180 in the field [98]. In this case, the sensor provided an R2 of 0.52.

The other three sensors were tested together by Jhonson et al. [138]. The test was performed in
laboratory conditions using a DustTrak TSI as a reference instrument and keeping the concentration
below 500 µg/m3. The authors obtained correlation coefficients of 0.8, 0.98, and 0.97 for PPD42NS,
PPD20V, and PPD60PV respectively.

6.2.6. Other Sensors

In addition to the sensors previously discussed, there are many others that have attracted much
less interest by the scientific community. The Honeywell HPMA115S0, for example, was tested only for
PM2.5 [67,129,130]. In [67], laboratory tests showed that Honeywell could reach correlation coefficients
as high as 0.99. In [129], field tests provided an R2 of 0.77, which was higher than that provided by
an Alphasense N2 and only slightly lower than the correlation performance of two sensors from the



Sensors 2020, 20, 6819 47 of 56

Plantower family. In [130], a field-test was performed using a Grimm EDM 180, achieving an R2 of 0.58
over a 13-day campaign.

Another sensor that fits into this class of devices is the Winsen ZH03A, which was tested in the
field by Badura [82]. The comparison in the field provided and R2 value of 0.81 but a value close to 1 in
the laboratory, which is agrees with the results for all the other devices.

The Sensirion SPS30 is a relatively new sensor, with its production having started in 2018.
Its peculiarities include an ultra slim package and a HEPA filter to avoid performance degradation due
to powder build-up. The only scientific work that investigated its performance showed that this sensor
is not suitable for PM10 measurements [132].

The last sensor included in this list is the Samyoung DSM501A, which is evaluated under
laboratory conditions in [63]. The results reported showed a very high correlation coefficient of 0.98.

From all these articles, it is possible to outline some useful rules that can be adopted for the usage
of these low cost instruments:

• Relative humidity is a crucial environmental parameter, and keeping the humidity lower than
85% is important to avoid a rapid degradation in accuracy

• Using high sampling times and averaging the data increase the accuracy of PM measurements,
especially at low PM concentrations (30 µg for PM2.5), where LCPMS suffers from the
worst accuracy.

• All LCPMS sensors showed the best performance with PM 2.5.
• The default calibration for an LCPMS is only a recommendation and provides good accuracy only

under restricted conditions.
• Within the same brand and model of LCPMS, the quality parameters can vary. Therefore,

a laboratory test is mandatory to verify the quality parameters for each sensor.
• Specific seasonal calibrations in the field are necessary to achieve the best performance,

despite changes in PM typology and humidity interference.

7. Discussion and Conclusions

As stated in Section 1, the interest in LCPMS devices is increasing and strongly supported by the
demand for the more direct role of citizens in monitoring their lived environments. Most recently,
the research on the health effects of particulate matter has focused on lower particle size fractions
(i.e., <1 µm), which has boosted research on innovative detection devices. The current reference
methods, despite providing the most complete and reliable assessments of PM pollution, are not able to
respond to the growing demand for real-time and diffuse information. Even the reference methods that
allow for hourly measurements (such as TEOM, BAM, etc.) require equipment to be integrated in bulky,
fixed monitoring stations, which necessarily cover a limited spatial region. Moreover, this reference
equipment does not allow the monitoring of indoor environments, which are often polluted by ultrafine
particles to a much greater extent than outdoor environments. This is why an ever-increasing number
of LCPMS models are being commercialized (totally almost 50 types, as reviewed in this paper),
mostly by companies located in Asia.

In Section 3, we briefly reported on the Mie theory underlying LCPMS’s principles of operation.
This theoretical treatment helps, in practice, to direct the choice of light sources in the visible and near
infrared spectra for the detection of particles in the range of 0.1–100µm to guarantee the validity of direct
proportionality between the value of scattered light intensity and the particle diameters. The particle
size distribution is determined by comparing the light intensities with a standard curve, calibrated using
a set of uniform particles with known diameters; therefore, assuming a spherical geometry and a mass
density of 1 g/cm3, the diameters of the particles can be converted into mass measurements.

In Tables 5 and 6, we summarized the metrological and technical characteristics of most LCPMS
devices, selected from among the market products that have been already investigated by various
research groups. These tables are mainly intended as an instrument for designers to find aggregated
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information that can facilitate the choice of particulate sensors for both mobile and fixed installation
development. The Supporting Information section completes this review by also considering sensor
devices not yet investigated in scientific peer reviewed papers. All the above information was
then reclassified by considering application scenarios characterized by four specific fingerprints:
output flexibility, integration complexity, IoT, and advanced metrological properties. This information
is generally the most useful but is also generally missing, as stressed in a recent review [173]. Section 6,
on the other hand, was fully devoted to reviewing the current scientific literature discussing the listed
LCPMS devices. In general, as summarized in Table 8, these kinds of devices follow the trends of
PM changes in the environment and also exhibit good performance with accuracy that, under some
conditions, can reach R2 values as high as 0.99. However, such results strongly depend on whether or
not the device is calibrated using some FEM or FRM methods in the operative environment. If not,
R2 values lower than 0.5 are commonly observed.

Field calibration is a very critical factor for this class of devices. The vast majority of field calibration
literature aiming to improve accuracy in medium- to long-term field deployments reported interference
(mostly from high humidity levels) issues and highlighted several nonlinearities, as reviewed in
Section 4. Almost all authors agreed with the need for multivariate regression approaches to calibrate
LCPMS devices, thereby solving these issues and correcting their impacts. Some authors call for the use
of nonlinear regression to cope with the observed nonlinear behaviors. Field calibration may indeed
provide a solution to match composition in calibration and operational regimes. However, the same
dependence of the LCPMS’s sensitivity to particulate composition and weather conditions warns
against generalizing the results obtained by specific field-data-driven calibration, especially when
deployments in different locations are considered. To rule out possible sensor aging or fouling, as well
as composition or weather mismatches, ongoing recalibrations using high quality model data or
communication with a high accuracy station is suggested.

Related to the field calibration issue is the assessment of laboratory characterization procedures.
In the lab, LCPMS performance is usually evaluated inside an environmental chamber where physical
parameters such as temperature and relative humidity are controlled. In some cases, other gases are also
considered. Different labs may use different aerosol sources, such as cigarette smoke, incense smoke,
or even welding fumes. Alternatively, to create a uniform aerosol in terms of concentration and
composition, some authors use completely automated aerosol generators. In general, sensor outputs are
compared to various reference instruments, and important parameters—such as the linear correlation
coefficient, the detection limit, temperature, and RH effects—are recorded. Nevertheless, the PM
sensor data can result from PM concentration decay over time or the introduction of a forced air flow
to quench the process. The PM aerosol may also be maintained in the flow at wind speed. Linearity,
calibration curve, and precision are the basic characteristics used to evaluate the reliability of PM
sensors in the laboratory. The limits imposed on the chamber size by the chemical–physical variability
of particulate composition due to the effect of interferents and weather conditions clearly indicate that
lab characterization, although necessary, cannot replace PM sensor calibration in the field.

Supplementary Materials: The following are available online at http://www.mdpi.com/1424-8220/20/23/6819/s1,
Table S1: Supporting information for PM sensors Metrological characteristics
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Abbreviations

AQ Air quality
DQO Data quality objective
LCPMS Low-cost PM (PM1, PM2.5, PM10) sensors
MMAD Mass median aerodynamic diameter
MNB Mean normalized bias
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MNE Mean normalized error
MLP Multilayer perceptron
OPCs Optical particle counters
PM Particulate matters
RSs Regulatory stations
RH Relative humidity
TSP Total suspended particles
HVAC Heating ventilation air conditioning
IoT Internet of Things
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