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Abstract: Low inter-class variance and complex spatial details exist in ground objects of the coastal
zone, which leads to a challenging task for coastal land cover classification (CLCC) from high-resolution
remote sensing images. Recently, fully convolutional neural networks have been widely used in CLCC.
However, the inherent structure of the convolutional operator limits the receptive field, resulting in
capturing the local context. Additionally, complex decoders bring additional information redundancy
and computational burden. Therefore, this paper proposes a novel attention-driven context encoding
network to solve these problems. Among them, lightweight global feature attention modules
are employed to aggregate multi-scale spatial details in the decoding stage. Meanwhile, position
and channel attention modules with long-range dependencies are embedded to enhance feature
representations of specific categories by capturing the multi-dimensional global context. Additionally,
multiple objective functions are introduced to supervise and optimize feature information at specific
scales. We apply the proposed method in CLCC tasks of two study areas and compare it with other
state-of-the-art approaches. Experimental results indicate that the proposed method achieves the
optimal performances in encoding long-range context and recognizing spatial details and obtains the
optimum representations in evaluation indexes.

Keywords: coastal zone; land cover classification; semantic segmentation; encoder-decoder; context
encoding; attention mechanism

1. Introduction

Coastal land cover classification (CLCC) products are indispensable fundamental information in
the land–sea junction, which plays a vital role in resource investigation, climate change simulation,
and ecological environment protection [1–3]. With the remarkable development of data acquisition
technologies, satellite, aviation, and other remote sensing platforms have obtained a large amount
of high-resolution remote sensing (HRRS) images, providing opportunities for large-scale and
high-precision CLCC [4]. However, complicated land cover categories and significant multi-scale
features make it difficult to interpret remote sensing images for CLCC. Therefore, using HRRS images
to achieve fast and accurate land cover classification is a basic but challenging task.

Referring to coastal high-resolution images, there are different spectral, texture, scale, and shape
factors for the same category (low inter-class variance). On the other hand, different categories of
ground objects display similar feature representations (high intra-class variance) (Figure 1). Notably,
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it is especially significant for the former. Traditional pixel-based methods distinguish land cover
categories by manually extracting feature information such as spectrum, texture, and spatial relationship.
These methods mostly include supervised classification algorithms (e.g., KNN, RF, and SVM) and
unsupervised methods (e.g., K-means and ISODATA) [5]. However, their feature sensitivity easily
leads to incorrect classification, which makes it difficult to meet the requirements of CLCC products
with high-precision.
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Recently, the fully convolutional neural network (FCN) [6] has made great progress in land 
cover classification tasks via its powerful capabilities for representing abstract spatial and semantic 
features. In the implementation, the context reflecting object dependency is an indispensable 
influencing factor for extracting effective features. Nevertheless, owing to the inherent structure of 
convolutional operator, FCN-based semantic segmentation models have their receptive field limited 
to the local region that results in capturing the short-range contextual information. This limitation 
may cause inconsistencies within classes and affect the accuracy of pixel-level classification. To 
address this problem, dilated convolution [7] and spatial pyramid pooling [8] have been proposed 
one after another. The most common strategy is to capture a multi-scale context by fusing dilated 
convolution or pyramid pooling with different grid ranges [9–12]. However, dilated convolution is a 
sparse operation that may cause grid artifacts, since it is unable to extract dense feature information 
of all positions around the current feature point. Moreover, pyramid pooling may cause a lack of 
spatial positioning information of pixels [13]. Furthermore, concentrating on the attention 
mechanism, some works employed recurrent neural networks with long-range dependencies to 
capture the feature context [14,15], but the effectiveness of these methods depends on the learning 
results of long-term memorization. 

In addition, the ultimate goal of the CLCC task is to obtain the segmentation map with the 
original size. A commonly exploited workaround [9–11] employed high-level feature maps for a 
simple up-sampling operation to reconstruct the original resolution. This naive strategy may lead to 
rough classification results, such as fuzzy category edges and a lack of small-scale objects. Another 
different line [16–18] takes more prominence on optimizing fine-grained details and edge information 
via integrating low-level feature maps, which relies on the encoder–decoder architecture. Specifically, 
these methods focused on concatenating low-level and high-level features through skip connection 
at different scales and have become an effective solution. However, the complicated decoding 
structure may lead to redundant use of feature information and require a significant amount of 
computing resources. 

To solve the above issues, this paper proposes an attention-driven context encoding network 
(AdCENet) in an end-to-end fashion, which is structured on encoder–decoder architecture. 
Specifically, at the head and middle of the decoding path, a position-channel attention aggregation 
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represent the same land cover category with different features.

Recently, the fully convolutional neural network (FCN) [6] has made great progress in land cover
classification tasks via its powerful capabilities for representing abstract spatial and semantic features.
In the implementation, the context reflecting object dependency is an indispensable influencing factor
for extracting effective features. Nevertheless, owing to the inherent structure of convolutional operator,
FCN-based semantic segmentation models have their receptive field limited to the local region that
results in capturing the short-range contextual information. This limitation may cause inconsistencies
within classes and affect the accuracy of pixel-level classification. To address this problem, dilated
convolution [7] and spatial pyramid pooling [8] have been proposed one after another. The most
common strategy is to capture a multi-scale context by fusing dilated convolution or pyramid pooling
with different grid ranges [9–12]. However, dilated convolution is a sparse operation that may cause grid
artifacts, since it is unable to extract dense feature information of all positions around the current feature
point. Moreover, pyramid pooling may cause a lack of spatial positioning information of pixels [13].
Furthermore, concentrating on the attention mechanism, some works employed recurrent neural
networks with long-range dependencies to capture the feature context [14,15], but the effectiveness of
these methods depends on the learning results of long-term memorization.

In addition, the ultimate goal of the CLCC task is to obtain the segmentation map with the
original size. A commonly exploited workaround [9–11] employed high-level feature maps for a simple
up-sampling operation to reconstruct the original resolution. This naive strategy may lead to rough
classification results, such as fuzzy category edges and a lack of small-scale objects. Another different
line [16–18] takes more prominence on optimizing fine-grained details and edge information via
integrating low-level feature maps, which relies on the encoder–decoder architecture. Specifically, these
methods focused on concatenating low-level and high-level features through skip connection at different
scales and have become an effective solution. However, the complicated decoding structure may lead
to redundant use of feature information and require a significant amount of computing resources.

To solve the above issues, this paper proposes an attention-driven context encoding network
(AdCENet) in an end-to-end fashion, which is structured on encoder–decoder architecture. Specifically,
at the head and middle of the decoding path, a position-channel attention aggregation module is
embedding to capture global contextual information in spatial and channel domains. Alternatively,
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each decoding block adopts a global feature attention module to introduce multi-scale spatial detail
information by extracting the global context of high-level features to weight low-level features.
This lightweight structure will not cause too much computational burden. Meanwhile, multiple
cross-entropy objective functions are proposed for multi-scale deep supervision to obtain better
network performance. The primary contributions of this paper are as follows:

1. Considering the characteristics of coastal ground objects, a novel attention-driven method for
CLCC is proposed, which emphasizes the important role of context encoding information in
pixel-level classification tasks.

2. In the decoding phase, the position-channel attention aggregation module and global feature
attention module are introduced to perform multi-scale and multi-dimensional global context
encoding that enables enhancing the classification consistency. As we know, this is a courageous
attempt to apply them to explore better performance for CLCC simultaneously.

3. To achieve better classification results, this paper proposes a multi-scale deep supervision strategy
and embeds multi-grid operations in the backbone for optimizing the training process.

4. Experiments in two coastal study areas show that compared with other state-of-the-art semantic
segmentation models, AdCENet can effectively improve the classification performance and
generate high-precision CLCC products.

The rest of this paper is organized as follows: Section 2 illustrates the related work. Section 3
introduces the method proposed in this paper. Section 4 presents the experiments on two datasets and
then discussing them in Section 5. Conclusions are summarized in Section 6.

2. Related Work

2.1. CLCC Implementation for HRRS Images

CLCC is a pixel-level classification task that provides a comprehensive presentation for coastal
ground objects such as the location, shape, and spatial relationship. Their effective information provides
guidance for coastal zone research. Even though traditional machine learning methods based on a
single sample [19,20] have made great contributions to CLCC, it is undeniable that FCN methods that
adopt a large number of samples are achieving excellent performance in this field. The majority of
these methods are proposed to focus on the multi-scale features and spatial details of ground objects.

Ground objects belonging to the same category may show different scale features, which is a
significant characteristic of HRRS images. To solve the adverse effects that are caused by irregular
multi-scale features, Shang et al. [21] aggregated a multi-scale context extraction module and an
adaptive feature fusion module. Expanding from the lightweight dense network [22], Liu et al. [23]
proposed a relation-enhanced multi-scale convolutional network for land cover classification in urban
areas. On the basis of the U-net [16] framework, Guo et al. [24] utilized the attention module to
improve the accuracy of building extraction by suppressing the background influence of irrelevant
feature regions. Moreover, Cao et al. [25] combined a feature extraction network (Resnet), semantic
segmentation network (U-net), and integrated conditional random field for post-processing to achieve
tree species classification.

To further identify spatial details, some relevant reports suggested adding boundary detection
to segmentation models. Relying on Mask R-CNN [26] architecture, Zhang et al. [27] designed a
building extraction framework fused with a Sobel edge detection algorithm to solve the problem of
object integrity. Liu et al. [28] developed an edge loss enhancement network that employed multiple
weighted edge supervisions to retain spatial boundary information and reduce the interference of
ambiguous features. Considering the edge information as a priori knowledge, He et al. [29] proposed
an edge FCN for land cover classification of remote sensing images.

In general, the majority of the aforementioned works involve complex decoders or additional
iteration modules, which is a time-consuming process. In this paper, we extend the encoder–decoder
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structure to the CLCC task, whose decoders are mainly composed of lightweight global feature
attention modules. The architecture design allows the segmentation network to aggregate multi-scale
features and spatial details without consuming too much computing resources.

2.2. Contextual Information Aggregation

Contextual information that reflects the dependency relation between image objects plays a
key role in scene understanding. For example, the spatial distribution relations of ground objects
display the position context in remote sensing images. It is feasible to improve the consistency
of pixel classification by enlarging the receiving range to capture long-range context. At present,
various FCN-based segmentation models have been proposed to obtain long-range context, including
aggregating multi-scale contextual information and embedding attention mechanisms.

To expand the receptive field by replacing the inherent structure of the convolutional operator,
inserting dilated convolution into the backbone has become a popular method [10,11]. Additionally,
global pooling is widely used in computer vision research [30–32], which is capable of capturing the
global representation of contextual information. For instance, GCN [33] integrated large convolutional
kernels and global pooling to enhance local and global context, respectively. Particularly, the multi-scale
context has the capability to facilitate segmentation networks for extracting discriminatory features.
Ghias et al. [34] introduced a multi-resolution reconstruction model to generate accurate pixel markers
by adopting the Laplacian pyramid. For capturing contextual information in different spatial ranges,
Zhao et al. [12] established a pyramid pooling module, while Chen et al. [9] proposed an atrous spatial
pyramid pooling module.

Given the capacity of attention mechanisms to model long-range dependencies, some segmentation
models employed self-similar methods to aggregate long-range context. On one hand, the attention
mechanism calculates feature representations per pixel by assigning weights of all positions. To
collect information from other positions, PSANet [35] utilized an adaptive learning attention mask and
dual-directions information propagation for predicting the current position. OCNet [36] generated
object context mapping for per-pixel by calculating the similarity between the current pixel and other
pixels. CCNet [37] simplified the position attention module, where the feature of each position was
calculated from a certain number of other positions. On the other hand, attention methods were also
applied to obtain long-range dependency in the channel domain. SENet [38] adaptively recalibrated
the characteristic response of channels by squeezing and exciting the module to explicitly model the
context between channels. EncNet [39] employed a channel attention-based context encoding module
to encode global semantic features and selectively emphasized feature maps related to categories.

In this work, motivated by the attention mechanism, we introduced the position-channel attention
aggregation module to enhance the feature representation of a specific category in the spatial and
channel domains. The cascade structures are deployed in the decoding stage, where the high-level
features contain rich semantic information related to land cover categories.

3. Methodology

3.1. Overview

Paying attention to the low inter-class variance and complex spatial details of coastal ground
objects, a full convolution network based on encoder–decoder architecture and attention mechanisms is
proposed for CLCC tasks (Figure 2). On the whole, our proposed AdCENet is primarily comprised of
a feature extraction path (encoder) and an up-sampling path (decoder). Furthermore, skip-connections
are utilized to map the corresponding low-level features and high-level features in parallel paths, as
illustrated in Figure 2a.

In the encoding path, a pre-trained residual network (Resnet101) [31] (Figure 2b) serves as
the backbone for feature extraction, following previous works [39,40]. Particularly, concentrating
on retaining more spatial detail information without changing the scale of pre-trained parameters,
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down-sampling layers in the last two residual blocks are replaced with dilated convolutional layers.
This strategy makes the size of the output feature map 1/8 of the original image, which can retain more
category information.Sensors 2020, 20, 7032 5 of 22 
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The decoding path is primarily connected by global feature attention (GFA) modules and
position-channel attention aggregation (PCAA) modules in a certain order. Firstly, corresponding to
residual blocks of Resnet101, three GFA modules (Figure 2d) are defined to enhance the recognition
ability of multi-scale objects and detailed information by generating global feature guidance. Then,
focusing on the local receptive field caused by convolutional operators, PCAA modules (Figure 2c) are
embedded at the head and middle of the decoding path to capture long-range contextual information
in spatial and channel domains, respectively. Additionally, behind each PCAA module, a convolutional
layer with a kernel size of 1 × 1 is designed for channel dimensionality transformation to match the
low-level feature map. Finally, following the output semantic feature map, a convolutional layer
with a kernel size of 3 × 3 and a bilinear up-sampling operation are sequentially cascaded to obtain a
pixel-level classification map with the original size. It should be noted that the BN [41] operation and
Relu [42] activation function are loaded behind each convolutional and transposed convolutional layer.

3.2. Residual Learning Framework

The deep convolution neural network has achieved great breakthroughs in land cover classification
tasks, which allows it to learn and capture rich spatial and semantic features. It has been proved that
a deeper network can lead to a better ability for feature recognition [43,44]. However, it may cause
degradation problems, such as gradient poor training, vanishing gradient, and exploding gradient.
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Therefore, we employ a pre-trained residual network composed of residual blocks as the feature
extraction path to learn effective category features.

As the unit structure of the residual network, the residual block presents the mapping process
of several stacked convolutional layers, as illustrated in Figure 3. Denoting the input and mapping
output as x and H(x), the F(x) represents the mapping of stacked nonlinear convolutional operations,
formulated as follows:

H(x) = F(x) + x (1)
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Figure 3. Residual learning: a building block.

Notably, even if the convolution layer parameter is 0, it is still an identity mapping. It can be
concluded that the residual structure adds identity mapping artificially, and the network performance
will not become worse with the increase in depth. On the contrary, the convolutional layers continuously
update the weight and iterate in the direction of gradient descent.

3.3. Position–Channel Relation Aggregation Module

It is an effective way to improve the performance of land cover classification by encoding contextual
information to enhance discriminant features. Attention mechanisms enable focusing on the key
regions related to a specific category to capture a long-range context. Therefore, a PCAA module
similar to proposed in [45,46] recently is introduced in our model, as shown in Figure 4. The module is
composed of position relation attention (PRA) block (Figure 4a) and channel relation attention (CRA)
block (Figure 4b), which are connected in parallel.
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3.3.1. Position Relation Attention Block

The local feature Fin_p ∈ RC×H×W of channel reduction is given as the input of the PRA block. In
addition, three convolutional operators with the same kernel size of 3 × 3 are employed to obtain the
feature group {Fp1, Fp2, Fp3} ∈ RC×H×W, each with H × W spatial dimension and C channels. After
reshaping them to {Fr

p1, Fr
p2, Fr

p3} ∈ RC×N and performing a transposition to Fr
p1, Frt

p1 ∈ RN×C is obtained,

where N = H × W. The spatial dimension attention map Wp ∈ RN×N allows it to be expressed by a
similarity between the current position and other positions in the individual feature map:

Wp( j, i) =
exp(Frt

p1(i) · F
r
p2( j))∑N

i=1 exp(Frt
p1(i) · F

r
p2( j))

(2)

where, Frt
p1(i) and Fr

p2(j) denote the elements at the ith and jth positions in their respective feature
maps, and Wp (j, i) indicates an impact of the ith position on the jth position. For the per-pixel
of the above attention map, a larger value presents a greater correlation between the features of
corresponding positions.

Finally, performing matrix multiplication on Fr
p3 and Wp obtained from the above calculations,

and adding their result to the input Fin_p, a position relation feature map Fout_p ∈ RC×H×W is carried out,
as expressed in Equation (3):

Fout_p = λp

∑N

i=1
(Wp( j, i) · Fr

p3(i)) + Fin_p (3)

where λp denotes the learnable scaling factor with an initial value of 0.
Conventional convolutional operator implements a limited receptive field, which easily leads

to poor classifications. Referring to the position attention map, the PRA block selectively aggregates
long-range spatial context to enhance the relationship between features with similar semantics
in different positions. It brings possibilities to achieve semantic consistencies of the same-type
ground objects.

3.3.2. Channel Relation Attention Block

Different from the PRA block, the CRA block directly reshapes the fed local feature map Fin_c to
generate a matrix group {Fr

c1, Fr
c2, Fr

c3} ∈ RC×N without convolutional operations. After that, matrix
multiplication is conducted between Frt

c1 and Fr
c2, while Frt

c1 is obtained by transposing Fr
c1. The channel

dimension attention map Wc ∈ RC×C is generated via a softmax function as follows:

Wc( j, i) =
exp(Frt

c1(i) · F
r
c2( j))∑C

i=1 exp(Frt
c1(i) · F

r
c2( j))

(4)

where, Frt
c1(i) and Fr

c2(j) denote the elements at the ith and jth channels, and Wc (j, i) indicates an impact
of the ith channel on the jth channel.

Meanwhile, intermediate feature Fm_c ∈ RC×H×W is obtained by sequentially performing matrix
multiplication and reshaping operations on Fr

c3 and Wc. Finally, the channel relation feature map Fout_c

∈ RC×H×W is formulated via an element-wise summation, as shown in Equation (5):

Fout_c = λc

∑N

i=1
(Wc( j, i) · Fr

c3(i)) + Fin_c (5)

where λc also presents a learnable scaling factor with an initial value of 0.
As we have seen, high-level features have rich semantic information, each channel of whose

is regarded as a specific carrier of certain categories. Additionally, semantic information of
different categories has a specific relationship in the channel dimension. The CRA block explores
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interrelationships of different channels by establishing a weighted model of features and enhances
the specific semantic representation of features in the channel domain. Consequently, the method
improves the ability to distinguish feature channels that represent different categories.

3.4. Global Feature Attention Module

To restore the original size of the final predictive segmentation map, [7,9–11] employed a naive
decoder to perform bilinear up-sample operation crudely, ignoring the spatial details contained
in low-level features. Different from these naive decoding modules, a commonly exploited
workaround [16,17] leveraged skip-connection to stitch low-level and high-level feature maps, but
the operation increases the volume of model parameters. Therefore, to overcome this limitation, a
lightweight GFA module is introduced as a fast and effective decoding block.

As shown in Figure 5, global context Fg ∈ RC
l
×1 of all channels in the high-level feature map Fh∈

RC
l
×H

l
×W

l is generated by employing global average pooling:

Fg(k) =
1

H ×W

H∑
i=1

W∑
j=1

Fk
h(i, j, k) (6)

where Fk
h(i, j, k) represents the element at position (i, j) of the kth channel.
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Referring to the structural design in this network, the global context Fg and low-level features Fl ∈

RC
l
×H

l
×W

l are cascaded to generate a global context-guided spatial detail feature map Fls ∈ RC
l
×H

l
×W

l.

This process does not require convolution to match the number of channels. Additionally, taking into
account the Resnet blocks of the feature extraction path, a transposed convolutional layer is selectively
applied to upsample Fh and fuse the corresponding detailed feature map. To achieve this, a semantic
feature map Fg_out ∈ RC

l
×H

l
×W

l with fine-grained information can be obtained, defined in Equation (7):

Fg_out =

convt(Fh) + Fg · Fl, upsample = true

conv(Fh) + Fg · Fl, others
(7)

where convt(·) is a transposed convolutional operator with a kernel size of 4 × 4, while conv(·) presents
a convolutional operator with a kernel size of 1 × 1.

In general, the introduced GFA module utilizes the global context provided by high-level semantic
features to weight low-level features, which guides the restoration of spatial details such as edge
information and small-scale ground objects. It is noteworthy that the module possesses fewer
parameters and is able to be selectively deployed in different locations of the decoding stage.



Sensors 2020, 20, 7032 9 of 22

3.5. Multi-Scale Supervision

A gradient descent algorithm gradually searches for better parameters by reducing loss objectives.
Inspired by recent work [37,46,47], multiple cross-entropy loss functions are leveraged to monitor the
features at specific scales in this network. This deep supervision strategy enables the distinguishing of
multi-scale features to capture the context of specific categories and optimizing the training process.

The cross-entropy loss function represents a deviation between the predicted value and true label
value at each pixel, formulated as follows:

L =
1
N

N∑
i=1

L∑
l=1

(
−

{
yi

l log[ỹi(l)] −
(
1− yi

l

)
log[1− ỹi(l)]

})
(8)

where i and l denote the ith pixel and lth category, and ỹi and yi
l indicate the predicted and true value.

Our proposed multi-scale supervision establishes a weighted model for segmentation results of the
overall network and local two PCCA modules, whose global objective function is expressed as follow:

Lseg_total = Lseg_overall + αLseg_pcaa1 + βLseg_pcaa2 (9)

where α and β denote the weight coefficients. Referring to the method of specifying parameters in [37],
α and β are set to 0.4 and 0.2, respectively.

4. Experiment

4.1. Datasets Description

In this research, two typical coastal areas are selected as the study areas. As illustrated in Figure 6,
both the study areas are located on the east coast of China, where moist subtropical monsoon climate
results in a variety of ground objects with low inter-class variance and complex detailed information.
Specifically, study area I is located in Xiaoshan District, Zhejiang Province. The original data are from
aerial images with a high resolution of 0.8 m collected in 2017. The image is composed of three bands
of red (R), green (G), and blue (B), covering a scale of approximately 61 square kilometers with a spatial
extent of 12,800 × 7424 pixels. Study area II is located in Fengxian District, Shanghai, and the employed
satellite images with a resolution of 0.5 m were collected on 26 December 2016. Similar to the image
data of study area I, this image contains RGB channels, covering an area of approximately 46 square
kilometers with a spatial extent of 18,842 × 9830 pixels. It has been widely accepted that special ground
objects in remote sensing images have a constant scale range. Therefore, the image of study area II was
resampled to obtain a consistent spatial resolution as study area I. In addition, referring to the above
two study areas, there are significant divergences in the spectral, shapes, and scales of all the ground
objects. It is primarily caused by the influence of sensors, seasonal factors, and local land-use status.
Generally, the selected study areas are characterized by diverse land cover categories and complex
spatial distributions, which reflect the unique geographical characteristics of the coastal zone and meet
our experimental needs.

The Lableme [48] software was used to annotate the image data corresponding to the above two
study areas at pixel-level, which is tedious manual work. The generated benchmarks were named
Shanghai dataset and Zhejiang dataset, respectively. For both datasets, six land cover categories
were defined (Figure 7), including vegetations (Veg.), farmland (Farmland), water (Water), bare land
(Bareland), roads (Road), and impervious surfaces (Imp.Surf.). Table 1 gives statistical information on
normalized mean, variance, and proportions of all the categories. Notably, it is unbalanced for the
land cover categories of both the datasets. For example, the proportions of Road and Bareland are
much smaller than Farmland and Imp.Surf. Furthermore, compared with the Zhejiang dataset, the
spatial distribution of land cover categories in the Shanghai dataset presents more complex and more
detailed information.
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Table 1. Statistics for the Shanghai and Zhejiang datasets.

Statistics Shanghai Dataset Zhejiang Dataset

Mean value of each band 0.40, 0.43, 0.32 0.37, 0.37, 0.33

Variance of each band 0.15, 0.13, 0.13 0.19, 0.17, 0.17

Veg. 20.07% 7.86%
Farmland 32.29% 46.03%

Water 11.44% 13.46%
Bareland 3.96% 7.77%

Road 5.79% 4.23%
Imp.Surf. 26.45% 20.65%

4.2. Evaluation Metrics

To prove the validity and effectiveness of our proposed AdCENet for CLCC, the multi-categories
classification task is taken as multi-segmentation work. Referring to the confusion matrix, TP, TN,
FP, and FN denote the numbers of true positives, true negatives, false positives, and false negatives,
respectively [49,50]. Thus, the following five metrics are chosen to evaluate the precision of our
experimental results.

Per-class Accuracy (PA): Per-class accuracy is the percentage of pixels that are correctly classified
in terms of total predicted pixels in each category, as defined in Equation (10):

PA =
TPc

TPc + FPc
(10)

where C is the number of land cover categories.
Overall Accuracy (OA): The overall accuracy presents an overall performance of land cover

classification models in multi-classification tasks, as defined in Equation (11):

OA =
1
C

C∑
c=1

TPc + TNc

TPc + TNc + FPc + FNc
(11)

Kappa Coefficient (KC): Kappa coefficient is an index for the consistency test. In the classification
task, it is used to measure whether the predicted results of the model are consistent with the actual
ground truth, as defined in Equation (12):

KC =
po − pe

1− pe
(12)

po =
C∑

c=1

TPc + TNc

TPc + TNc + FPc + FNc
, pe =

∑C
1 (TPc + FPc) · (TPc + FNc)∑C

1 (TPc + TNc + FPc + FNc)
2 (13)

Mean F1 Score (mF1): This metric is regarded as a harmonic average of experimental accuracy
and recall rates, as defined in Equation (14):

mF1 =
1
C

C∑
c=1

2×
precision× recall
precision + recall

(14)

precision =
TPc

TPc + FPc
, recall =

TPc

TPc + FNc
(15)

Mean IoU (mIoU): IoU is a standard performance measure for object category segmentation,
calculating a ratio of the intersection and union of real and predicted categories, while mIoU is a mean
value of all the categories, as defined in Equation (16):
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mIoU =
1
C

C∑
c=1

TPc

TPc + FPc + FNc
(16)

4.3. Experimental Setup

Two comparative experiments were conducted on the aforementioned two datasets to verify the
accuracy and generalization of our proposed method. Each original image and the corresponding
ground truth of the study areas were clipped into smaller blocks with a size of 256 × 256 by employing
a sliding window. The extracted RGB image patches and corresponding ground truth were taken as
network inputs, respectively, where the ratio of training set to validation set was approximately 2:1.
Specifically, for the Shanghai dataset, the number of the training set and validation set is 752 and 352,
respectively, while the corresponding number is 994 and 456 in the Zhejiang dataset. Meanwhile, mean
subtraction and normalization were performed on the input images to accelerate the convergence of
weight and deviation parameters in the network.

The training set in the two datasets is relatively small, especially the Shanghai dataset. Since data
augmentation is an effective method to expand the training set and ultimately improve the robustness,
several data augmentation methods were adopted to increase the diversity of our training set in
runtimes. These effective methods mainly include random horizontal flip, random vertical flip, and
random scaling (from 0.5 to 2.0).

Our proposed method was implemented on the deep learning framework PyTorch [51]. All
experiments were performed on a computer with an Intel Core i7-9700k CPU, 16 GB RAM, and
NVIDIA RTX 2080 GPU (8 GB memory). Specifically, we set 120 training epochs to achieve an overall
convergence of this network with a batch size of four. The stochastic gradient descent (SGD) with a
momentum of 0.9 and a weight decay of 0.00001 was used as the optimizer. Additionally, the initial
learning rate was set to 0.006 and we employed a “poly” learning rate policy where the learning rate
was multiplied by (1-current_epoch/totle_epoch)0.9 after each training epoch.

4.4. Results and Analysis

In the experiments, several state-of-the-art semantic segmentation models concentrating on
multi-scale objects and encoding long-range context were introduced and compared with our proposed
AdCENet, including FCN [6] based on Resnet101, RefineNet [18], GCN [33], PSPNet [12], Deeplab
V3+ [11], OCNet [36], and EncNet [39]. For all the competitive methods, we utilized pre-trained
Resnet101 as the feature extraction network and performed land cover classification tasks on the
same datasets.

As illustrated in Figures 8 and 9, partial representative examples of CLCC results generated from
AdCENet and other competitive methods are expressed. Presented in Figures 8a and 9a, there is no
doubt that FCN gains the worst classification effect. Even though FCN is a pioneering work of fully
convolutional networks, it ignores the detailed information provided by the decoding path. Compared
with FCN, RefineNet and GCN improved the capability to discriminate small-scale ground objects.
However, these two methods still have shortcomings in analyzing categories with low inter-class
variance (Figures 8b and 9b,c). Moreover, as illustrated in Figures 8d and 9d,e, PSPNet and Deeplab
V3+ successfully capture the multi-scale features of ground objects, which utilized dilated convolution
and pyramid pooling to overcome the local receptive field of the convolutional operator. However,
it is difficult for them to distinguish different ground objects and boundaries with similar features.
As the representative works of the attention mechanism, OCNet and EncNet can accurately solve
the issue of low inter-class variance, but there are still incorrect classification results (Figure 8f,g and
Figure 9f,g). As we expected, the proposed AdCENet achieved an optimal classification result, as
shown in Figures 8h and 9h. Specifically, the proposed method outstandingly identifies small-scale
features and their boundaries information and achieves excellent performance in recognition of similar
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but distinct ground objects. It can be concluded that our proposed method comprehensively considers
the characteristics of multi-scale and low inter-class variance in HRRS images.Sensors 2020, 20, 7032 13 of 22 
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convolutional neural network (FCN), (b) RefineNet, (c) GCN, (d) PSPNet, (e) Deeplab V3+, (f) OCNet, 
(g) EncNet, (h) our AdCENet. The negative results of the aforesaid classification task are circled in 
white ellipses. 

Figure 8. Representative examples of land cover classification results on the Shanghai dataset: (a) fully
convolutional neural network (FCN), (b) RefineNet, (c) GCN, (d) PSPNet, (e) Deeplab V3+, (f) OCNet,
(g) EncNet, (h) our AdCENet. The negative results of the aforesaid classification task are circled in
white ellipses.
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Figure 9. Representative examples of land cover classification results on the Zhejiang dataset: (a) FCN,
(b) RefineNet, (c) GCN, (d) PSPNet, (e) Deeplab V3+, (f) OCNet, (g) EncNet, (h) our AdCENet. The
negative results of the aforesaid classification task are circled in white ellipses.



Sensors 2020, 20, 7032 15 of 22

Moreover, Tables 2 and 3 give evaluation results of all the competitive methods in terms of
per-class accuracy (PA), overall accuracy (OA), kappa coefficient (KC), mean F1 Score (mF1), and mean
Iou (mIoU) on the Shanghai and Zhejiang dataset. The experimental results show that our proposed
AdCENet achieves remarkable performance. For instance, the proposed method acquires the highest
OA, KC, mF1, and mIoU values of 93.34%, 91.32%, 92.29%, and 85.81% on the Shanghai dataset and
95.63%, 93.86%, 93.88%, and 88.62% on the Zhejiang dataset. Compared with the well-known Deeplab
V3+ [11], AdCENet achieves 3.31% and 1.14% improvement on mIoU, respectively. In terms of PA,
AdCENet still obtains the best representations. Specifically, for the categories with larger proportions
(e.g., Water, Imp.Surf., and Farmland), the accuracies of all the methods have little divergence, while
most of the state-of-the-art models achieve strong recognition ability to the features of large-scale
ground objects. However, the proposed network remarkably improved the classification performance
on small-scale objects (e.g., Road, Veg., and Bareland), compared with other state-of-the-art methods.
It is undeniable that the context encoding method possesses effectiveness in recognizing long-range
dependence and spatial details.

Table 2. Comparison results to other state-of-the-art methods on the Shanghai dataset (%). The best
classification results are highlighted in each column in bold.

Method Veg. Bare
Land Water Imp.

Surf.
Farm
Land Road OA KC mF1 mIoU

FCN [6] 77.76 80.73 82.67 91.69 92.70 81.79 87.15 83.23 84.51 73.52
RefineNet [18] 88.07 81.98 88.92 93.42 92.72 91.44 91.00 88.29 89.41 81.11

GCN [33] 87.11 81.43 87.96 93.73 93.62 90.88 91.02 88.29 89.28 80.91
PSPNet [12] 88.07 86.20 91.82 94.85 95.16 93.23 92.78 90.59 91.53 84.53
Deeplab [11] 89.71 83.43 90.89 94.15 94.28 91.66 92.34 90.01 91.02 83.70
OCNet [36] 88.31 86.93 91.36 94.51 94.85 92.36 92.57 90.31 91.39 84.28
EncNet [39] 88.51 86.38 92.14 94.55 94.84 93.33 92.74 90.54 91.56 84.57
AdCENet 90.95 88.23 91.10 94.90 94.96 93.63 93.34 91.32 92.29 85.81

Table 3. Comparison results to other state-of-the-art methods on the Zhejiang dataset (%). The best
classification results are highlighted in each column in bold.

Method Veg. Bare
Land Water Imp.

Surf.
Farm
Land Road OA KC mF1 mIoU

FCN [6] 78.30 88.73 89.71 92.52 95.64 79.97 91.64 88.23 87.77 78.75
RefineNet [18] 85.32 89.47 93.01 95.18 96.76 87.70 94.07 91.66 91.60 84.81

GCN [33] 84.02 90.07 93.15 94.64 96.56 89.51 93.90 91.43 91.39 84.46
PSPNet [12] 86.67 91.81 95.28 95.67 97.43 90.62 95.18 93.21 93.21 87.48
Deeplab [11] 87.25 91.72 95.24 95.74 97.23 90.00 95.11 93.12 93.12 87.35
OCNet [36] 84.48 91.71 94.66 95.73 97.42 89.76 94.89 92.81 92.77 86.73
EncNet [39] 85.30 92.90 94.41 95.63 97.43 90.78 95.06 93.04 93.06 87.25
AdCENet 87.38 93.12 95.97 96.35 97.43 92.09 95.63 93.86 93.88 88.62

Since the prospective aim of our proposed method is to serve the large-area and high-precision
CLCC task, Figure 10 gives the land cover classification products of the above study areas. It is worth
encouraging that the products provide high-precision spatial distributions of ground objects, which
are capable of guiding social and economic activities such as land resource surveys and ecological
environment protection.
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area II.

5. Discussion

5.1. Ablation Study for Attention Modules

5.1.1. Effectiveness of Attention Modules

At the head and middle of the decoding path, PRA and CRA blocks were embedded to capture the
long-range context in spatial and channel domains, respectively. Meanwhile, multi-scale GFA modules
were employed as the decoding blocks to fuse low-level detail features. To verify the effectiveness of
the aforementioned attention modules, several ablation experiments were carried out on the Shanghai
dataset under different settings.

As illustrated in Table 4, attention modules remarkably improve the network performance, while
Resnet101 is used as a baseline network. Specifically, the GFA module, respectively, increased by
4.75% and 7.30% in terms of mF1 and mIoU, compared with the baseline. These results strongly prove
the superiority of the decoding path constructed by GFA modules. Additionally, the PRA block and
CRA block further improved the value of mIoU by 0.86% and 0.56%. As expected, AdCENet, which
integrates all the above attention modules, achieves outstanding results up to 81.96% for mIoU.

Table 4. Performance comparison of AdCENet with different attention modules in evaluation metrics.
The optimal evaluation metrics are highlighted in each column in bold.

Method GFA
Module

PRA
Block

CRA
Block OA (%) KC (%) mF1 (%) mIoU (%)

Baseline 87.15 83.23 84.51 73.52
AdCENet

√
90.95 88.16 89.23 80.82

AdCENet
√ √

91.33 88.70 89.78 81.68
AdCENet

√ √
91.28 88.63 89.58 81.38

AdCENet
√ √ √

91.51 88.94 89.96 81.96

To further analyze the impact of attention modules, several representative examples of land cover
classification results are compared, as shown in Figure 11. The baseline without the decoding path
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gives approximate positions of the land cover categories, and it is difficult to identify small-scale
ground objects (Figure 11a). As decoding blocks, GFA modules improve the ability of AdCENet to
recognize spatial details, while this method exists poor performance in distinguishing ground objects
with low-class variance, as shown in Figure 11b. Furthermore, PRA and CRA blocks improve the
representation ability of features with a low inter-class variance to a certain extent (Figure 11c,d),
which proves their effectiveness in capturing long-range context. As shown in Figure 11e, AdCENet,
integrated by the baseline and all the attention modules, executes a significant improvement in
identifying inter-class confusion features and spatial details. In general, each attention module
employed in AdCENet enables the network to enhance effective features in different domains or scales
and ultimately improve the classification ability.
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Figure 11. Representative examples of land cover classification results on the Shanghai dataset:
(a) baseline, (b) AdCENet + GFA, (c) AdCENet + PRA, (d) AdCENet + CRA, (e) AdCENet + PRA +

CRA. The results of classification errors are circled in white ellipses.

5.1.2. Influence of Connection Mode

The proposed AdCENet in previous sections is based on an assumption that PRA and CRA blocks
in PCAA modules are connected in parallel, which does not consider the impact of different connection
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modes on network performance. Therefore, a feasibility study was conducted by utilizing several
different connection modes on the Shanghai dataset. The connection modes mainly include series
connections (Series1: PRA~CRA, Series2: CRA~PRA) and a parallel connection (Parallel: PRA + CRA).
Paying attention to the series connections, the PRA and CRA block is arranged in order of presentation.

Table 5 gives the experimental results with evaluation metrics. Compared with Series2, Series1
increases the values of OA and mIoU by 0.22% and 0.46%, which illustrates that it may produce better
representation by moving PRA to the head. Meanwhile, the parallel connection employed in our
proposed network achieves optimal performance with the highest values of OA, KC, mF1, and mIoU
by 91.51%, 88.94%, 89.96%, and 81.96%.

Table 5. Performance comparison of attention modules with different connection modes in evaluation
metrics. The optimal evaluation metrics are highlighted in each column in bold.

Method Connection
Mode Order OA (%) KC (%) mF1 (%) mIoU (%)

AdCENet Series PRA~CRA 91.35 88.71 89.80 81.70
AdCENet Series CRA~PRA 91.13 88.43 89.50 81.24
AdCENet Parallel CRA + PRA 91.51 88.94 89.96 81.96

On the other hand, Figure 12 shows the classification accuracy of per-class in a CLCC task by
adopting different connection modes. It can be concluded that AdCENet with parallel connection
obtains the best accuracies in per-class, while the divergence is especially significant in small proportion
and small-scale categories such as Veg., Bareland, and Road. Consequently, to capture long-range
contextual information in both spatial and channel domains, we suggest building the PCAA module in
parallel. In this way, AdCENet is pretty good at executing excellent classification ability.
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specific color.

5.2. Effectiveness Analysis of Improvement Strategies

In our proposed method, several optimization strategies were introduced to optimize the training
process and improve the network performance, including multiple Resnet blocks with dilated convolution
(DB), multi-grid (MG) structure for the last Resnet block, and multi-scale deep supervision (DS).
In combination with different strategies, several ablation experiments were conducted on the Shanghai
dataset to verify their effectiveness.

The proposed AdCENet without any optimization strategy is served as the baseline. Table 6
shows that the last two Resnet blocks with dilated convolutions for retaining the resolution bring
improvement by 2.59% for mIoU, while the multi-grid structure has further improved the network
performance. It is worth noting that our proposed multi-scale deep supervision significantly enhances
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the classification ability and achieved approximately 1% improvement and the highest value of 85.81%
in terms of mIoU, compared with other methods.

Table 6. Performance comparison of AdCENet with different improvement strategies in evaluation
metrics. The optimal evaluation metrics are highlighted in each column in bold.

Method DB MG DS OA (%) KC (%) mF1 (%) mIoU (%)

Baseline 91.51 88.94 89.96 81.96
AdCENet

√
92.80 90.81 91.54 84.55

AdCENet
√ √

93.03 90.92 91.69 84.82
AdCENet

√ √ √
93.34 91.32 92.29 85.81

Furthermore, Figure 13 shows the convergence curves of mIoU for the validation set under
different strategies in each training/validation epoch. In the early epochs of training, the mIoU value
of the validation set obtained by employing all optimization strategies is lower than other methods
but it will be improved at the fastest speed in the following epochs. After the 40th epoch, our
method achieved the remarkable highest value with a smooth boost, while other methods have larger
oscillations. Consequently, all the above improvement strategies are effective and practical for our
proposed AdCENet.
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6. Conclusions

This paper proposes a novel AdCENet method for coastal land cover classification from HRRS
images. To demonstrate the superiority of the proposed method, another seven state-of-the-art
approaches were employed for comparative analysis on the Shanghai and Zhejiang datasets. The
experimental results present that the GFA module successfully integrates the spatial details of low-level
feature maps by performing global context guidance. Meanwhile, the PCAA module embedded in the
decoding stage successfully encodes the global context in the position and channel domains by capturing
the corresponding features of a specific category. On the other hand, several ablation experiments were
conducted on the Shanghai dataset under different combination settings. The experimental results
indicate that the introduced attention modules can effectively improve the classification performance,
and the optimization strategies enable it to improve the stability and accuracy of the training process.
In summary, the proposed AdCENet achieves better performance in land cover classification with
unique coastal characteristics. In the future, we will reduce the model volume to achieve fast and
accurate land cover classification under the premise of ensuring network performance.
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