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Abstract: Severe biomass burning (BB) events have become increasingly common in South America in
the last few years, mainly due to the high number of wildfires observed recently. Such incidents can
negatively influence the air quality index associated with PM2.5 (particulate matter, which is harmful
to human health). A study performed in the Metropolitan Area of São Paulo (MASP) took place on
selected days of July 2019, evaluated the influence of a BB event on air quality. Use of combined
remote sensing, a surface monitoring system and data modeling and enabled detection of the BB
plume arrival (light detection and ranging (lidar) ratio of (50 ± 34) sr at 532 nm, and (72 ± 45) sr at
355 nm) and how it affected the Ångström exponent (>1.3), atmospheric optical depth (>0.7), PM2.5

concentrations (>25 µg.m−3), and air quality classification. The utilization of high-order statistical
moments, obtained from elastic lidar, provided a new way to observe the entrainment process,
allowing understanding of how a decoupled aerosol layer influences the local urban area. This new
novel approach enables a lidar system to obtain the same results as a more complex set of instruments
and verify how BB events contribute from air masses aloft towards near ground ones.

Keywords: particulate matter; air quality; remote sensing; high order statistical moments; wildfires

1. Introduction

Air quality is one of the biggest problems faced by humanity currently, being more
aggravated in large urban centers [1]. Among the various pollutants emitted daily in cities,
particulate matter (PM) is noteworthy due to its relevant influence on the radiative bal-
ance [1–5], directly or indirectly, depending on its optical properties. The exposition to this
class of pollutants is hazardous to human well-being [6], principally due to the exposition
to PM2.5 (particles with aerodynamic diameter ≤ 2.5 µm). Because of their size, PM2.5 can
enter in the respiratory tract and be deposited in the pulmonary region, causing respiratory
and cardiovascular diseases [7,8]. Although vehicular traffic is an important source of PM2.5
in urban centers (contributing to consistent long-term degradation of urban air quality),
external sources like biomass burning (BB) plumes can also contribute to the increase of
the PM2.5 concentration, producing more serious adverse effects on urban air quality than
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vehicular traffic during short-term episodes of transported pollution from wildfires. Several
studies have discussed the influence of BB episodes in the aerosol optical properties [9–14]
and its relation with variations in the PM2.5 concentration and composition [2,9,15,16].

Wildfire activities are a common practice in general for those involved with agri-
cultural and cattle breeding. Such practices have been extended and become common
over the whole Amazon Region and its close neighboring areas, being considered the pri-
mary external anthropogenic sources of BB plumes in the Metropolitan Area of São Paulo
(MASP), the most populous South America region. Air masses can advect such plumes into
MASP, and they are more commonly detected between May and October [2]. MASP can be
affected by BB events, especially during the dry season when dispersion conditions are
worsened. In the last two decades, due to the employment of active remote-sensing systems,
e.g., light detection and ranging (lidar), BB plumes can be detected in the atmosphere of
MASP, in general up to 5000 m above ground level (a.g.l.) [11,14]. However, more studies
addressing the influence of BB events on the air quality can be carried on, aiming to under-
stand better and quantify the impact BB events caused by the pollutants [11], mainly when
aerosol layers decoupled from the atmospheric boundary layer (ABL) are detected. In this
situation, as the surface sensors cannot detect such layers, the effects of BB events on air
quality can be underestimated. The high-spatial and temporal resolution capability of the
lidar system recently have enabled the retrieval of important information of atmospheric
evolution [17,18], for instance, the profile of aerosol distribution in the atmosphere every 2 s.
In addition, measures with high acquisition rates allowed the implementation of high-order
statistical moments analysis. The information provided by these statistical moments allows
a better understanding of the vertical motion of the particle layers (skewness) and the
variation of the mixing level in the ABL region (kurtosis) [17,18] so that the combination
of this information can shed light on how the decoupled aerosol layers can interact with
the ABL and can affect the concentration of pollutants near to the surface. Moreover, it is
fundamental to identify the importance of some meteorological parameters, such as wind
speed and direction, ABL height dynamics, and ventilation coefficient (VC), in order to
understand better the dispersion process [19–21] and investigate the relationship with the
variation in the PM2.5 concentration.

In this framework, this paper’s main objective is to evaluate the influence of a BB
episode both on the air quality level and concentration of PM2.5 in the MASP. Such evalua-
tion was performed by combining data from remote-sensing systems (multiwavelength
Raman lidar, sunphotometer, and satellites), numeric model (hybrid single-particle la-
grangian integrated trajectory model, HYSPLIT), radiosonde, and PM2.5 concentration
data retrieved from surface instruments. In addition, to identify as a decoupled aerosol
layer can influence the ABL region, the vertical movements and the mixing-level of aerosol
plumes are described from high-order statistical moments generated by elastic lidar data.
The BB event presented and analyzed here was detected in MASP on 23 July 2019.

The paper has the following structure: Section 2 gives a brief explanation of the
experimental site and instruments used; Section 3 addresses the methodology; Section 4
gives the results and discussions; Section 5 draws conclusions.

2. Experimental Site and Instrumentation
2.1. Experimental Site

The measurement campaign was carried on in MASP, the most economically important
region of Brazil (one of the ten biggest metropolitan regions in the world) with around
21 million inhabitants [22] and approximately 11 million vehicles [23], between 22 and
24 July 2019 (winter). The MASP has a humid subtropical climate, where the winter is
dry and in general, with average temperatures slightly lower than those occurring during
summer [24]. The thermal inversion layers, frequent in this season, inhibit the dispersion of
pollutants. Such characteristics, combined with the lack of green areas, excess of asphalt, and
buildings (considered heat island drivers), are responsible for intense air pollution episodes.
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The large automobile fleet in MASP consists of light and heavy-duty vehicles and
motorcycles, and it became the primary source of air pollutant emission [2]. According to
the Environment Company of São Paulo State (CETESB), vehicle emissions on the MASP
account for 97% of CO emissions, 76% of hydrocarbons, 64% of NOX, and 16,5% of SOX,
40% of PM10, and 37% PM2.5 concentrations [25].

2.2. Instrumentation
2.2.1. São Paulo (SPU) Lidar Station System

The SPU Lidar Station system is a multiwavelength Raman lidar installed at the
Nuclear and Energy Research Institute (IPEN/CNEN) in the city of São Paulo (23◦33′ S,
46◦38′ W, 760 m a.s.l., −3 UTC). This system is coaxial ground-based and operates with
a pulsed Nd:YAG laser pointed towards the zenith direction with a repetition frequency of
10 Hz. The laser emits radiation at 355 nm, 532 nm, and 1064 nm. The SPU lidar system has
three elastic channels (355 nm, 532 nm, and 1064 nm) and three Raman channels (387 nm,
408 nm, and 530 nm) [18]. The system reaches full overlap at 300 m a.g.l. and operates with
a spatial and temporal resolution of 7.5 m and 2 s, respectively.

2.2.2. Aerosol Robotic Network (AERONET)

The Aerosol Robotic Network (AERONET) is a ground-based monitoring network ded-
icated to monitoring and characterizing aerosols on a local and global scale [26]. The data of
aerosol optical depth (AOD) and Ångström exponent (AE) used in this work were obtained
from the data level 1.5 of the AERONET São Paulo Station (23◦33′ S, 46◦38′ W, 786 m a.s.l.).
In order to present the AOD and AE data with a temporal resolution of one hour, the hourly
average was calculated for each variable. The standard deviation will be presented together
with the average values.

2.2.3. QUALAR Platform and Monitoring Stations

CETESB is the company responsible for monitoring the air quality in São Paulo State.
It has 63 monitoring stations distributed statewide, which provide information on meteo-
rological parameters (surface temperature and humidity, wind speed, others), pollutant
concentration (PM10, PM2.5, CO2, others), and air quality classifications and indexes. This in-
formation is available in the QUALAR system (https://qualar.cetesb.sp.gov.br/) [23].

In this paper, PM2.5 concentration and horizontal wind speed values were retrieved,
with 1-h time resolution, at the Pinheiros Station (23◦33′ S, 46◦39′ W, 760 m a.s.l.). Considering
the CETESB stations that render data about PM2.5, Pinheiros is the closest station to IPEN
(3.5 km) with available data in the analyzed period. The air quality index (AQI) classi-
fications applied by CETESB are based on CONAMA (Brazilian Environment Council)
Resolution 491/2018 [25]. The AQI were obtained from all PM2.5 stations of MASP with
available data in the analyzed period.

2.2.4. Hybrid Single-Particle Lagrangian Integrated Trajectory Model (HYSPLIT)

The HYSPLIT [27] is a hybrid model between Lagrangian (which is applied to cal-
culate the advection and diffusion as backward trajectories of the air parcels) and Eule-
rian (which is applied to compute the pollutant air concentrations using a fixed three-
dimensional grid as a frame of reference) approaches. These combined methodologies allow
such a model to compute air parcel trajectories, complex transport, dispersion, deposition,
and chemical transformation. In this paper, HYSPLIT was applied to estimate the backward
trajectories of air parcels, with a temporal resolution of 3 h, that arrived in the MASP on
23 July 2019.

2.2.5. Radiosonde

At the Campo de Marte Airport (23◦30′ S, 46◦38′ W, 760 m a.s.l.), the radiosondes were
launched twice daily (00:00 UTC and 12:00 UTC). The data are available at the University
of Wyoming website (http://weather.uwyo.edu/upperair/sounding.html).

https://qualar.cetesb.sp.gov.br/
http://weather.uwyo.edu/upperair/sounding.html
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2.2.6. Wildfires Database

The Wildfires Database (https://queimadas.dgi.inpe.br) is coordinated and oper-
ated by the Brazilian National Institute for Space Research (INPE). Information and data
on burning episodes in South America are available in this database. Such information
is obtained from data from different satellites. In this work, we employ data from the
satellites Geostationary Operational Environmental Satellite 16 (GOES-16), through its
Advanced Baseline Imager (ABI), and Aqua, through its Moderate Resolution Imaging
Spectroradiometer (MODIS) [28].

3. Methodology
3.1. Atmospheric Boundary Layer Height Retrieval

The ABL can be subdivided into some main sublayers: convective boundary layer
(CBL), stable boundary layer (SBL), and residual layer (RL), which are directly associated
with the stability variation during the daily cycle of this layer [29]. Due to the radiative
cooling of the ground during the night, the SBL is formed. This layer is warmer than the
underlying surface and suppresses the turbulence mixing. The SBL is topped by the RL,
which has a uniform potential temperature profile with a value higher than the layer
below. This layer also displays a weak and sporadic turbulence and has both the pollutants
remaining and the maximum height of the CBL of the previous day. These two often decou-
pled layers coexist until the moment where, due to sunrise, the heat transfer, caused by the
warm ground, generates convective thermals that cause turbulence mixing, substituting
the SBL with the CBL. Into the CBL, the vertical distribution of potential temperature is
uniform. The CBL grows during the day (breaking the RL), reaching the maximum height
around the middle of the day.

Due to the limitation in the measurement time, the CBL height (CBLH) and RL height
(RLH) were estimated from radiosonde and lidar data.

3.1.1. Residual Layer Height (RLH) and Convective Boundary Layer Height (CBLH)
Determined from Light Detection and Ranging (Lidar) Data

Visible (532 nm) lidar observations are used for the analysis. Before implementing the
algorithms described below, three corrections are performed to guarantee the quality of
the data. Firstly, the dark current signal (DC(z)) is subtracted from the raw signal (P(z))
in order to minimize the influence of the electronic noise. Next, the background radiation
signal (BG) is removed to reduce the influence of external sources, e.g., the Sun. Following
this, each profile point generated using the previous steps is multiplied by its squared
correspondent height (due to the attenuation of the signal with the height), resulting in the
range corrected signal (RCS532):

RCS532(z) = (P(z)− DC(z)− BG) ∗ z2 (1)

The CBLH was estimated with the wavelet covariance transform method (WCT)
because this method enables the CB to identify the CB even when the RL is present. [30].
The WCT calculates the covariance between RCS532 and a mother-wavelet, given by the
Haar function, denoted by h

(
z−b

a

)
. The covariance profile maximum corresponds to the

keenest reduction in the RCS532. This reduction is associated with a high decrease in the
aerosol concentration and, consequently, the top of the CBL. Hence, such height is selected
as the CBLH, according to the following equations:

CBLH = Max(W(a, b)), W(a, b) =
1
a

∫ zf

zi

RCS532(z)h
(

z− b
a

)
dz, (2)

where a and b are the dilatation and transition coefficients linked to the mother-wavelet, z is
the height above the ground and, zi and zf are the lower and upper limits of the RCS532(z).

The variance method (VM) was adopted to determine the RLH [31]. This method com-
putes the top of the aerosol layer based on the maximum variance in the RCS532 observed

https://queimadas.dgi.inpe.br
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during a determined time-interval, which in this paper is 10 min, in order to reduce the
influence of the noise at the signal. The VM takes into account the equations:

RLH = Max
(
σ2

RCS532
(z)
)

, σ2
RCS532

(z) =
1
n

n

∑
i=1

[
RCS532i(z)− RCS532(z)

]2, (3)

where z is the height and n and RCS532(z) are the number and the average value of RCS532
profiles, respectively, observed during a 10-min time interval. Because of the entrainment
of clean air coming from the free troposphere (FT) in the ABL during the convective
period, the maximum of σ2

RCS532
(z) occurs at the top of the CBL, in a clear sky situation.

During the early morning, the RL can generate secondary sharp peaks in the RCS, causing
a misinterpretation in the CBLH estimated so that often the RLH is detected. Therefore,
the variance method estimates the RLH until the difference between this height and the
height estimated by the WCT method is lower than 100 m.

3.1.2. RLH and CBLH Estimated from Radiosonde Data

From the radiosonde at 12:00 UTC, the RLH and CBLH are estimated based on the
potential temperature and relative humidity (only for CBLH) profiles until 3500 m. At first,
CBLH is evaluated using the parcel method [32]. Such a method estimates the height
where an air portion in ambient temperature can rise adiabatically from the ground by
the convective process. The CBLH estimation is reinforced by detecting the height where
the minimum vertical gradient in the relative humidity profile occurs [33]. The RLH is
identified from the high gradient in the potential temperature profile above the CBLH.
In the radiosonde data at 00:00 UTC, only the RLH is estimated based on the same technique
applied at 12:00 UTC.

3.2. Ventilation Coefficient

An essential parameter to evaluate the air pollutants’ dispersion level is the VC,
expressing the rate at which the air in the CBL is transported away from a determined
region [31]. The VC is calculated from the combination of the CBLH and horizontal wind
speed (WS). In this paper, the VC is estimated from the 1-h average values of the horizontal
wind speed (WS), and CBLH (CBLH) calculated from lidar data, obeying the equation:

VC = CBLH ∗WS. (4)

Consequently, such a variable is obtained with a temporal resolution of one hour.

3.3. High-Order Statistical Moments

The high frequency of lidar data acquisition (2 s) allows the high-order statistical
moments to be estimated until the fourth-order [17,18]. Such moments are obtained from
the fluctuation of RCS532 (RCS′532), which is obtained from the Reynolds decomposition:

RCS′532(z)i = RCS532(z)− RCS532(z)i, (5)

where RCS532(z) denotes the average value obtained for one hour of measurements.
In this paper, the high order statistical moments explored are skewness and kurtosis of

the RCS532. The skewness can provide information regarding the aerosol plumes’ vertical
movements since the positive values are associated with updrafts and negative ones with
downdrafts. Kurtosis is linked to the level of mixing. Values lower than 3.0 for kurtosis are
related to a well-mixed CBL, and values higher than 3.0 are related to a low-mixed CBL [17,18].

4. Results and Discussion
4.1. First Day (One Day before the Biomass Burning (BB) Event)

Figure 1 presents the profiles obtained from radiosonde launched on 22 July 2019.
The vertical profiles of potential temperature and relative humidity, obtained at 12:00 UTC,
show the CBLH and RLH at approximately 500 m and 1550 m, respectively (Figure 1b,c)
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so that both layers are trapped by a thermal inversion (Figure 1a). In the CBL region, the
relative humidity (RH) is lower than 70%. The horizontal wind speed profile (Figure 1c)
has values higher than 10 m·s−1 and the predominance of a NNW direction between 500 m
and 2000 m.
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Figure 1. Atmospheric parameters obtained from radiosonde data on 22 July 2019 at 12:00 UTC. (a) Temperature [K]; (b) potential
temperature [K]; (c) relative humidity [%]; (d) horizontal wind speed [m·s−1]; (e) wind direction [degrees true]. The gray and
orange dashed lines represent the residual layer height (RLH) and convective boundary layer height (CBLH), respectively.

Figure 2 presents the RCS532 profiles, obtained from 12:00 UTC to 21:00 UTC, where
an ABL without the presence of decoupled sublayers can be observed. At the start of the
measurement, the CBLH (550 m) is higher than the value obtained from radiosonde data
(500 m). The RL cannot be detected. A low growth regime is observed until approximately
14:00 UTC when the CBL growth rate increases and the CBLH reaches its maximum value
(around 1700 m) at 19:00 UTC. Then, it does not have significant variation (around 1750 m)
until the end of the measurement.

Sensors 2020, 20, x FOR PEER REVIEW 7 of 19 

 

(3900 m2·s−1), favoring the dispersion process. At 18:00 UTC, the VC begins to decrease, 
significantly reducing between 20:00 UTC and 21:00 UTC (2450 m2·s−1). From 20:00 UTC, 
the PM2.5 concentration increases continuously, reaching 20 µg·m−3 at 23:00 UTC. The tran-
sition from unstable to stable behavior in ABL (where there are practically no convective 
movements, with a predominance of mechanical turbulence) and the thermal inversion 
situated above the RL contribute together to reducing the efficiency of the dispersion of 
the pollutants. 

 
Figure 2. Range corrected signal (RCSହଷଶ) profiles from 12:00 UTC to 21:00 UTC on 22 July 2019. 
The black dots represent the CBLH. The color bar represents the intensity of the RCSହଷଶ. 

 
Figure 3. Atmospheric parameters obtained from radiosonde data on 23 July 2019 at 00:00 UTC. (a) Temperature [K]; (b) 
potential temperature [K]; (c) relative humidity [%]; (d) horizontal wind speed [m·s−1]; (e) wind direction [degrees true]. 
The gray dashed line represents the RLH. 

Figure 4b presents the hourly-variation of AE (red dots) and the AOD (blue dots) 
between 13:00 UTC and 17:00 UTC. The increase in the AE between 13:00 and 14:00 UTC 
(0.73 to 1.42) indicates a reduction in the aerosols’ average size in the atmospheric column. 
Such a variation is accompanied by a reduction in the average AOD values (0.900 to 0.045). 
After 14:00 UTC, the AE decreases to lower values (indicating an increase in the aerosols’ 

Figure 2. Range corrected signal (RCS532) profiles from 12:00 UTC to 21:00 UTC on 22 July
2019. The black dots represent the CBLH. The color bar represents the intensity of the RCS532.



Sensors 2021, 21, 425 7 of 19

The RL height, obtained from radiosonde data, at 00:00 UTC (23 July), Figure 3b, is situ-
ated around 1530 m and trapped by a thermal inversion (Figure 3a). The RH is around 50%
in the first few meters (Figure 3c), increasing to values higher than 75% above the RLH.
Between 2000 m and 3000 m, the horizontal wind speed has values higher than 5 m·s−1

(Figure 3d) with NWE and NE directions (Figure 3e).
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(b) potential temperature [K]; (c) relative humidity [%]; (d) horizontal wind speed [m·s−1]; (e) wind direction [degrees true].
The gray dashed line represents the RLH.

Figure 4a displays the daily variation of PM2.5 concentration. Between 05:00 to 08:00 UTC,
the PM2.5 concentration decreases from 21 to 9 µg·m−3. At 09:00 UTC, an increase (10 µg·m−3)
can be observed. However, at 10:00 UTC, the concentration decreases again, reaching
7 µg·m−3 at 11:00 UTC. After this period, the concentration begins to rise. This increase
occurs due to vehicle emissions during the rush hour in the morning, as indicated by [34].
However, at 13:00 UTC, the PM2.5 concentration begins to decrease again, reaching 6 µg·m−3

at 16:00 UTC. It is a consequence of CBLH growth, which results in a VC increasing
(3900 m2·s−1), favoring the dispersion process. At 18:00 UTC, the VC begins to decrease,
significantly reducing between 20:00 UTC and 21:00 UTC (2450 m2·s−1). From 20:00 UTC,
the PM2.5 concentration increases continuously, reaching 20 µg·m−3 at 23:00 UTC. The tran-
sition from unstable to stable behavior in ABL (where there are practically no convective
movements, with a predominance of mechanical turbulence) and the thermal inversion
situated above the RL contribute together to reducing the efficiency of the dispersion of
the pollutants.

Figure 4b presents the hourly-variation of AE (red dots) and the AOD (blue dots)
between 13:00 UTC and 17:00 UTC. The increase in the AE between 13:00 and 14:00 UTC
(0.73 to 1.42) indicates a reduction in the aerosols’ average size in the atmospheric column.
Such a variation is accompanied by a reduction in the average AOD values (0.900 to 0.045).
After 14:00 UTC, the AE decreases to lower values (indicating an increase in the aerosols’
average size in the atmospheric column), reaching 1.27 at 17:00 UTC. The AOD has a low
variation after 14:00 UTC, reaching 0.050 at 17:00 UTC.

On this day, the AQI of PM2.5 was classified as good (≤25 µg·m−3) at Pinheiros station,
with an average daily concentration of 16 µg·m−3.
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4.2. Second Day (Detection of the BB Event)

The potential temperature and RH profiles, obtained from radiosonde data at 12:00 UTC,
reveal the CBLH and RLH at approximately 500 m and 1500 m (Figure 5b,c), respectively,
and the last one is trapped by a thermal inversion (Figure 5a). In the region below the
RLH, the RH (Figure 5c) presents slight variability with an average value of around 60%.
Two maximum peaks can be observed in the horizontal wind speed profile (Figure 5d) at
500 m and 2200 m, with a predominance of NNW and N directions, respectively (Figure 5e).
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Figure 5. Atmospheric parameters obtained from radiosonde data on 23 July 2019 at 12:00 UTC. (a) Temperature [K];
(b) potential temperature [K]; (c) relative humidity [%]; (d) horizontal wind speed [m·s−1]; (e) wind direction [degrees true].
The gray and orange dashed lines represent the RLH and CBLH, respectively.

The RCS532 profiles (Figure 6), obtained between 12:00 UTC to 21:00 UTC, present the
ABLH behavior, where can be observed an RLH varying from 1450 m to 1300 m, from the
beginning of measurement until approximately 15:30 UTC. The CBLH has low variations in
the first hours of measurement, with a rapid increase between 14:40 to 15:40 UTC, reaching
1470 m. Around 18:00 UTC, the CBLH reaches its maximum height (1500 m). After that,
it remains practically constant.

The profiles of the aerosols’ optical properties were retrieved for this day by applying
Raman inversion analysis [35,36]. Figure 7a,b show the backscatter and extinction profiles,
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respectively, from the wavelengths 532 nm (green line) and 355 nm (violet line), where
an aerosol layer between 2500 m and 3000 m can be noticed clearly due to an increase
in the values of the backscatter and the extinction coefficient profiles. The lidar ratio
profiles (Figure 7c) show two distinct layers: the first one is related to the CBL, and the
second one is the decoupled aerosol layer between 2500 m to 3000 m. For the CBL, there
were observed mean lidar ratio values of (48 ± 9) sr and (69 ± 10) sr, at wavelengths
532 nm and 355 nm. Lidar ratio values of (50 ± 34) sr at 532 nm and (72 ± 45) sr at
355 nm were retrieved for the decoupled layer. According to the literature, such lidar
ratio values agree with aerosols profiles originated from biomass burning events [37–39].
Nicolae et al. [40] reported biomass burning fresh aerosol classification with lidar ratio
values of (45.7 ± 6.4) sr and (73.0 ± 11.6) sr for 532 nm and 355 nm, respectively. In our
case, since the aerosol optical properties were retrieved by applying the Raman technique
during daytime measurements, which implies profiles with considerable background noise,
the lidar ratio values for the decoupled aerosol layer presented large uncertainties.
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From the potential temperature and RH profiles (Figure 8 b,c), obtained from ra-
diosonde data at 00:00 UTC (24 July), it is possible to observe the top of the RL, at about
1470 m, which is confined by a thermal inversion (Figure 8a). From the surface until 800 m,
the RH (Figure 8c) is around 53%, reaching higher values (around 70%) at the top of RLH.
The horizontal wind speed profile has a maximum between 1500 m and 2000 m (Figure 8d),
with a predominant NNW direction (Figure 8e).
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The yellow points in Figure 9 represent wildfire episodes detected by the satellites
GOES-16 and Aqua between 20 and 21 July 2019, in the Brazilian center-west region.
The backward trajectories demonstrate the route traveled by the aerosol plumes that
arrived at 2500 m (blue line) and 3000 m (red line) in MASP on 23 July 2019, at 12:00 UTC.
The trajectories are coincident with wind direction (NNW) 2500 and 3000 m presented in
Figure 5e. The analysis of the backward trajectories, the height of the decoupled aerosol
layer (Figure 6), and the lidar ratio values (Figure 7c) reinforce the assertion that that
aerosols originated from wildfires compose the decoupled layer.

The PM2.5 concentration (Figure 10a) increases between 00:00 UTC and 04:00 UTC
(25 to 46 µg·m−3), presenting some variations from 05:00 UTC and increasing significantly
between 11:00 UTC and 12:00 UTC, due to rush hours (as observed in the early day), reach-
ing 54 µg·m−3. At 12:00 UTC, when the CBL begins to rise, the values of VC (Figure 10a)
increase significantly (reaching 2450 m2·s−1 at 14:00 UTC), and the PM2.5 concentration
begins to decrease, reaching the minimum (7 µg·m−3) value at 16:00 UTC. Although the
CBL continues rising until around 18:00 UTC, the low wind speed values inhibit the VC
increase, occasioning low values (2900 m2·s−1) compared to the early day (3900 m2·s−1).
At 18:00 UTC, when the VC values begin to decrease continuously, the PM2.5 concentration
increases slightly, with a significant variation (6 to 17 µg·m−3) between 20:00 UTC and
21:00 UTC (beginning of the stable period in the atmosphere).

The AE value (Figure 10b) always remains above 1.35, so that after 13:00 UTC, it contin-
ually increases, reaching 1.65 at 20:00 UTC. Such a pattern demonstrates the predominance
of particles with a smaller size than the particles observed in the previous day, where
the average value of AE was 1.20. In addition, the AE values observed on 23 July follow
those observed in the BB events (>1.3) in other regions and from the literature [37–39].
Compared to the previous day (where the average value was around 0.05), the higher AOD
value indicates an increase in the aerosol load, mainly after 14:00 UTC, when the AOD



Sensors 2021, 21, 425 11 of 19

is continuously increasing, reaching 0.11 at 20:00 UTC. Such variations are not detected
directly by the CETESB stations because their detections are limited at the surface level.
Nevertheless, the sun photometers obtain data from the entire atmospheric column [26] so
that AOD and AE data are more sensitive to the effects between 2500 m and 3000 m.
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Figure 9. The 96-h backward trajectories generated from the hybrid single-particle lagrangian
integrated trajectory model (HYSPLIT). The yellow points represent the wildfires detected by the
satellites GOES-16 and Aqua in Brazil’s Midwest region between 20 and 21 July. The blue and red
lines indicate the backward trajectories of the air parcels that arrived in the Metropolitan Area of São
Paulo (MASP) at 2500 m and 3000 m, respectively. The map was generated using Google Earth.
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Figure 10. (a) Daily cycles of PM2.5 concentration (green dots) and VC (orange dots); (b) AOD at 500 nm (blue points)
and AE (440/675) (red points) hourly averages variation from 11:00 UTC to 20:00 UTC, on 23 July 2019. The blue and red
shadows represent the AOD and AE standard deviation, respectively. The AERONET data level is 1.5 for AOD and AE.

However, considering the ABL behavior, it is possible that, due to the entrainment
processes, the aerosols of the decoupled plume gradually enter the ABL, thus being able
to reach its lowest region after a determined time interval. Such a phenomenon can be
observed by the combination of the skewness (Figure 11) and kurtosis (Figure 12) profiles
obtained from RCS532, which provide information about the vertical movement of aerosol
plumes and the mixing level of the ABL, respectively [17,18].

As expected, between 13:00 UTC and 14:00 UTC (Figure 11a), the CBLH is situated in
the inflection point of the skewness profile, which has a predominance of negative values
(downdrafts) in the CBL region and positive values (updrafts) above it [17,18]. Such be-
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havior occurs due to the entrainment process during the CBL growth, where clean air
from Free Troposphere (FT) gets in the CBL region (negative peaks), and aerosols are trans-
ported to FT, resulting in positive peaks. Between 18:00 UTC and 19:00 UTC (Figure 11b),
the skewness profile maintains the same pattern as the previous one, indicating a continu-
ous entrainment process, which also can be observed between 19:00 UTC and 20:00 UTC
(Figure 11c), where there is a higher presence of updrafts in comparison with early periods.

Sensors 2020, 20, x FOR PEER REVIEW 12 of 19 

 

observed by the combination of the skewness (Figure 11) and kurtosis (Figure 12) profiles 
obtained from RCSହଷଶ, which provide information about the vertical movement of aerosol 
plumes and the mixing level of the ABL, respectively [17,18]. 

As expected, between 13:00 UTC and 14:00 UTC (Figure 11a), the CBLH is situated 
in the inflection point of the skewness profile, which has a predominance of negative val-
ues (downdrafts) in the CBL region and positive values (updrafts) above it [17,18]. Such 
behavior occurs due to the entrainment process during the CBL growth, where clean air 
from Free Troposphere (FT) gets in the CBL region (negative peaks), and aerosols are 
transported to FT, resulting in positive peaks. Between 18:00 UTC and 19:00 UTC (Figure 
11b), the skewness profile maintains the same pattern as the previous one, indicating a 
continuous entrainment process, which also can be observed between 19:00 UTC and 
20:00 UTC (Figure 11c), where there is a higher presence of updrafts in comparison with 
early periods. 

 
Figure 11. RCSହଷଶ skewness profiles obtained on 23 July 2019, between (a) 13:00–14:00 UTC, (b) 
18:00–19:00 UTC, (c) 19:00–20:00 UTC. The purple dotted line represents the CBLH. 

Figure 12 presents (from the kurtosis profiles) the change in the mixing level in the 
CBL region caused by the entrainment process. It varies from well-mixed (Figure 12a) to 
low-mixed (Figure 12b), returning to a predominance of the well-mixed again (Figure 
12c). Therefore, the intense process of entrainment observed throughout the day indicates 
a significant entrance of air from FT in the CBL. Consequently, the decoupled layer’s 
plumes can contribute to increasing the concentration of PM2.5 in the CBL region. Signifi-
cant increase tends to be observed during the night or in the following early morning due 
to the stable regime of the ABL and the thermal inversion above the RLH, which act as 
inhibitors of the dispersion process. 

On this day, the AQI of PM2.5 was classified as moderate (>25 µg·m−3) at Pinheiros 
station, with an average daily concentration of 30 µg·m−3. 

4.3. Third Day (One Day after the BB Event) 
The CBLH and RLH, obtained from the potential temperature and RH profiles  

(Figure 13b,c) at 12:00 UTC, are situated around 430 m and 1450 m. Both layers are trapped 
by a thermal inversion (Figure 13a). Close to the surface, RH (Figure 13c) is around 77% 
and decreases until the RLH, where the value is lower than 45%. The horizontal wind 
speed profile (Figure 13d) has two maxima around 400 m and 3000 m with NNW and NE, 
respectively, as the predominant direction (Figure 13e). 

Figure 11. RCS532 skewness profiles obtained on 23 July 2019, between (a) 13:00–14:00 UTC, (b)
18:00–19:00 UTC, (c) 19:00–20:00 UTC. The purple dotted line represents the CBLH.Sensors 2020, 20, x FOR PEER REVIEW 13 of 19 

 

 
Figure 12. RCSହଷଶ kurtosis profiles obtained on 23 July 2019, between (a) 13:00–14:00 UTC, (b) 
18:00–19:00 UTC, (c) 19:00–20:00 UTC. The purple dotted line represents the CBLH. 

 
Figure 13. Atmospheric parameters obtained from radiosonde data on 24 July 2019, at 12:00 UTC. (a) Temperature [K]; (b) 
potential temperature [K]; (c) relative humidity [%]; (d) horizontal wind speed [m·s−1]; (e) wind direction [degrees true]. 
The gray and orange dotted lines represent the RLH and CBLH, respectively. 

The RCSହଷଶ profiles (Figure 14) indicate a well-defined ABL. The RLH oscillates be-
tween 1450 m and 1300 m, from the beginning of measurement until 15:00 UTC. The CBL 
has a high increase from 13:30 to 15:00 UTC (500 to 1300 m), reaching the maximum 
(around 1700 m) after 18:00 UTC. The decoupled aerosol layer (observed in the previous 
day) was not detected. 

Figure 12. RCS532 kurtosis profiles obtained on 23 July 2019, between (a) 13:00–14:00 UTC,
(b) 18:00–19:00 UTC, (c) 19:00–20:00 UTC. The purple dotted line represents the CBLH.

Figure 12 presents (from the kurtosis profiles) the change in the mixing level in the
CBL region caused by the entrainment process. It varies from well-mixed (Figure 12a) to
low-mixed (Figure 12b), returning to a predominance of the well-mixed again (Figure 12c).
Therefore, the intense process of entrainment observed throughout the day indicates a
significant entrance of air from FT in the CBL. Consequently, the decoupled layer’s plumes
can contribute to increasing the concentration of PM2.5 in the CBL region. Significant
increase tends to be observed during the night or in the following early morning due to the
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stable regime of the ABL and the thermal inversion above the RLH, which act as inhibitors
of the dispersion process.

On this day, the AQI of PM2.5 was classified as moderate (>25 µg·m−3) at Pinheiros
station, with an average daily concentration of 30 µg·m−3.

4.3. Third Day (One Day after the BB Event)

The CBLH and RLH, obtained from the potential temperature and RH profiles
(Figure 13b,c) at 12:00 UTC, are situated around 430 m and 1450 m. Both layers are trapped
by a thermal inversion (Figure 13a). Close to the surface, RH (Figure 13c) is around 77%
and decreases until the RLH, where the value is lower than 45%. The horizontal wind
speed profile (Figure 13d) has two maxima around 400 m and 3000 m with NNW and NE,
respectively, as the predominant direction (Figure 13e).
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The RCS532 profiles (Figure 14) indicate a well-defined ABL. The RLH oscillates
between 1450 m and 1300 m, from the beginning of measurement until 15:00 UTC. The CBL
has a high increase from 13:30 to 15:00 UTC (500 to 1300 m), reaching the maximum (around
1700 m) after 18:00 UTC. The decoupled aerosol layer (observed in the previous day) was
not detected.

At 00:00 UTC, from the radiosonde data, the RLH can be observed around 1900 m
(Figure 15b), confined by a thermal inversion (Figure 15a). Close to the surface, the RH
(Figure 15c) changes quickly from 70% to 55%, reaching around 80% at the RLH. The hori-
zontal wind speed profile has a maximum between 2000 m and 2500 m (Figure 15d) with
NNW as the predominant direction (Figure 15e).

From 00:00 UTC (25 July), the PM2.5 concentration rises steadily (Figure 16a), reaching
the maximum value (75 µg·m−3) at 10:00 UTC, higher than the values observed in the
previous days, mainly on the day before the BB event. This difference indicates the effect
that may have been caused by the entry of air from the FT because, in the regions close
to the ABL, there was a decoupled aerosol layer deriving from the BB event (Figure 6).
The thermal inversion and the stable regime (which inhibits the vertical mixing) limit
the dispersion process; such characteristics combined with the shallow SBL could have
contributed to an increase in the PM2.5 concentration. At 12:00 UTC, the CBLH begins to
increase significantly, and the concentration of PM2.5 initiates to decrease, varying from 63
to 17 µg·m−3 between 12:00 and 16:00 UTC. Although the CBLH has a higher increase rate
between 16:00 UTC and 18:00 UTC, the wind speed is low, ending in an almost constant
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VC value (2500 m2·s−1). From 18:00 UTC, the PM2.5 concentration increases again, mainly
after 21:00 UTC, reaching 27 µg·m−3 at 23:00 UTC. As observed in the previous day, the
concentration of PM2.5 exhibits an inverse pattern compared to the VC.
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The AE (Figure 16b) presents values during the all day-cycle, close to those observed
at the end of the previous day, which indicates the predominance of particles with the
same small size. Also, such AE values (>1.3) were observed in other BB events indicated
in the literature [37–39]. The AOD values (Figure 16b) are always higher than or equal to
the averaged values seen in the preceding days (0.05 and 0.07 on 22 and 23 July, respec-
tively). Moreover, such values begin to increase significantly at 15:00 UTC, reaching 0.21
at 20:00 UTC. These phenomena indicate a high aerosol accumulation in the CBL region,
verified by the intensity of the RCS532 profile, presented in Figure 13. Consequently, the av-
erage daily value of PM2.5 concentration (39 µg·m−3) is higher than that of the previous
day (30 µg·m−3).
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shadows represent the AOD and AE standard deviation, respectively. The AERONET data level is 1.5 for AOD and AE.

On this day, the air quality index of PM2.5 was classified as moderate (>25 µg·m−3) at
Pinheiros station, with an average daily concentration of 36 µg·m−3.

The upper part of Figure 17 presents the average PM2.5 daily value concentration
variation from 22 to 26 July 2019 at Pinheiros CETESB station. The dotted light blue line
represents the monthly average PM2.5 concentration value obtained in this station. On the
day of the BB event, the PM2.5 concentration is almost double (30 µg·m−3) of the early day
(16 µg·m−3). However, in the following days, the PM2.5 concentration increases, reaching
the maximum value (39 µg·m−3) on 24 July (one day after the BB event) and decreasing
slowly, staying above the average monthly value (24 µg·m−3) during four days. The lower
part of Figure 17 shows the percentage of CETESB stations (in MASP) with air quality
index as good (green) and moderate (yellow) between 22 to 26 July 2019. One day before
the BB event, 90% of the stations indicated the AQI to PM2.5 as good (≤25 µg·m−3). On the
23 July 2019 (day of the BB event), the number of stations with AQI air quality classified as
moderate (>25 µg·m−3) became four times larger, representing 40% of stations in MASP.
One day after the BB event (24 July 2019), all CETESB stations indicated the AQI to PM2.5
as moderate. The air quality in the city started to improve gradually from 25 July, and on
26 July (3 days after the plume arrived), 40% of the stations still indicated the air quality
as moderate.
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This analysis demonstrates that the influence of BB events on the air quality is not
restricted to days where the BB plume is detected. On the contrary, as CETESB sensors have
their measurements limited to the surface region, this prevents layers of aerosols located
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in higher regions being detected. However, the RCS532 skewness and kurtosis profiles
allow a better understanding of the interaction process between FT and ABL so that after
continuous exchanges between these two layers, it is expected that surface sensors can
detect the BB event effect. Also, the thermal inversion above the RL and CBL (which can
confine the aerosol) and the low values of VC (which inhibits the dispersion process) can
cause an expansion, over several days, of the harmful effect from BB events in the air
quality at the MASP. Similar situations, in terms of the influence of the meteorological
parameters in the PM2.5 concentration, were also observed in other cities like Beijing [41]
and Shanghai [42,43]. Therefore, only the variations of CBLH values cannot be considered
the primary cause of the changes in the PM2.5 concentration. However, a more detailed
understanding can be obtained if more atmospheric variables are analyzed (e.g., VC)
together. In a comparison work, Tang et al. [20] found a low correlation between these two
variables when RH is lower than 80%, which is coincident with all three days presented
here, mainly in the region close to the surface. However, the VC’s variation affects the
PM2.5 concentrations more intensively, indicating that although the entrainment process is
fundamental, the horizontal wind speed also needs to be considered because it has high
importance in the pollutant diffusion. Therefore, there is a negative correlation between
PM2.5 and the VC.

5. Conclusions

This paper analyzes the influence of a BB event on the air quality of the MASP. On the
first day of measurements (22 July 2019, one day before the BB event), an average daily
PM2.5 concentration of 16 µg·m−3 was registered. The next day (23 July 2019), a decoupled
aerosol layer nearby 2500 m was observed (from lidar data) which, according to lidar ratio
values, (50 ± 34) sr at 532 nm and (72 ± 45) sr at 355 nm, represents a BB event. Such
an argument was reinforced by the backward trajectories generated from HYSPLIT data
(from regions where wildfires were detected by Aqua and GOES-16 satellites to MASP),
by the wind direction obtained from radiosonde data, and by the increase of AE, which
reached a similar range of values than those observed in the BB episodes registered in the
literature (>1.3). Although the aerosol layer and ABL are not connected, the entrainment
of air from FT in the CBL and the mixing-level variations observed from skewness and
kurtosis profiles demonstrate that, gradually, the influence of the decoupled layer affects
the ABL region. A significant increase in the PM2.5 concentration tends to be observed
during the night or in the following early morning because the low values of VC and
the thermal inversion above the RL inhibit the dispersion process. Consequently, in the
subsequent day (24 July 2019), the PM2.5 concentration increased, reaching an average
daily value of 39 µg·m−3. Unfortunately, the meteorological characteristics of the MASP
winter do not favor an effective dispersion process, so that during four consecutive days,
the PM2.5 concentration stayed above the monthly average (24 µg·m−3). Between 23 and
26 July 2019, 40% or more of the CETESB stations in MASP remained with air quality to
PM2.5 as moderate so that on 24 July, all stations had the air quality classified as moderate.

The joining of remote sensing, surface monitoring stations, and backward trajectories
data enabled a BB event detection. However, the air quality and concentration of PM2.5
are not affected because the CETESB sensors are limited to detection at the surface level.
They can then indicate that an aerosol plume decoupled from the ABL does not affect the
lower regions of the atmosphere. However, from the RCS532 skewness and kurtosis analysis,
it was possible to demonstrate as they occur the exchanges between ABL and FT, so that the
influence of the plume at the surface can be detected after a period of constant interaction
between these two layers and, in the case of MASP, this is intensified by the thermal
inversions and low VC values, to a period of three days. Therefore, the methodology
applied in this work represents a new application that can be given to lidar systems and
used by monitoring networks, such as the Latin American LIdar NETwork (LALINET)
and European Aerosol Research LIdar NETwork (EARLINET), adding new results to the
research, without the need to acquire more equipment. In the future, these analyses will be
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extended to other periods, and with the collaboration of other research centers, to other
regions where BB events have occurred.
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