
sensors

Communication

Iterative Min Cut Clustering Based on Graph Cuts

Bowen Liu 1 , Zhaoying Liu 1,*, Yujian Li 2, Ting Zhang 1 and Zhilin Zhang 1

����������
�������

Citation: Liu, B.; Liu, Z.; Li, Y.; Zhang,

T.; Zhang, Z. Iterative Min Cut

Clustering Based on Graph Cuts.

Sensors 2021, 21, 474. https://

doi.org/10.3390/s21020474

Received: 4 December 2020

Accepted: 5 January 2021

Published: 11 January 2021

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional clai-

ms in published maps and institutio-

nal affiliations.

Copyright: © 2021 by the authors. Li-

censee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Faculty of Information Technology, Beijing University of Technology, Beijing 100124, China;
liubw2017@emails.bjut.edu.cn (B.L.); zhangting@bjut.edu.cn (T.Z.); zhangzl@emails.bjut.edu.cn (Z.Z.)

2 School of Artificial Intelligence, Guilin University of Electronic Technology, Guilin 541004, China;
liyujian@guet.edu.cn

* Correspondence: zhaoying.liu@bjut.edu.cn

Abstract: Clustering nonlinearly separable datasets is always an important problem in unsupervised
machine learning. Graph cut models provide good clustering results for nonlinearly separable
datasets, but solving graph cut models is an NP hard problem. A novel graph-based clustering
algorithm is proposed for nonlinearly separable datasets. The proposed method solves the min
cut model by iteratively computing only one simple formula. Experimental results on synthetic
and benchmark datasets indicate the potential of the proposed method, which is able to cluster
nonlinearly separable datasets with less running time.

Keywords: clustering; graph cuts; variational method; partial differential equation; nonlinearly
separable datasets

1. Introduction

Clustering algorithms classify data points into C clusters (or categories) on the ba-
sis of their similarity. Its applications range from image processing [1,2] to biology [3],
sociology [4], and business [5]. Clustering algorithms mainly include partition-based
clustering [6–9], density-based clustering [10,11], and graph-based clustering [12–14], etc.
In partition-based clustering algorithms, the mean (or median) of a cluster is viewed as
the clustering center, and a data point is assigned to the nearest center. In density-based
clustering algorithms, clusters are groups of data points characterized by the same local
density, and a clustering center is the data point of which local density is higher. Graph-
based clustering algorithms define a graph with vertices equal to the elements of a dataset,
and edges are weighted by the similarity between pairs of data points in the dataset. Then
the algorithms find an optimal partition of the graph such that the edges between different
subgraph have a very low weight and the edges within a subgraph have high weight.
There are several popular constructions to transform a dataset into a similarity graph, such
as k-nearest neighbor (KNN) graph and mutual k-nearest neighbor (MKNN) graph [12].
The commonly used graph cut criterions include min cut, ratio cut, normalized cut (Ncut)
and Cheeger cut.

Clustering nonlinearly separable datasets is a challenging problem in clustering anal-
ysis. Many methods have been proposed to solve this problem. Kernel method maps a
nonlinearly separable dataset into a higher-dimensional Hilbert space, and in the Hilbert
space the dataset may be linearly separable. DBK clustering [15] proposes a density
equalization principle, and then based on this principle, they propose an adaptive kernel
clustering algorithm. Multiple kernels clustering algorithms [16–19] use multiple kernel
functions to enhance the performance of kernel clustering algorithms. Kernel K-means (or
Kernel fuzzy K-means) algorithms with appropriate kernel functions are able to cluster
nonlinearly separable datasets, but it is difficult to select appropriate kernel functions.

Spectral clustering, which is a famous graph-based clustering algorithm, firstly con-
structs a graph Laplacian matrix, and then computes eigenvalues and eigenvectors of the
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graph Laplacian matrix. It regards eigenvectors corresponding to the k smallest eigenval-
ues as low-dimensional embeddings of the dataset, and finally uses some basic clustering
algorithms (for example, K-means) to obtain a clustering result. Hyperplanes clustering
method [20] sets up a hyperplane framework to solve the Ncut problem. Sparse subspace
clustering [21] builds a similarity graph by sparse representation techniques, and then uses
spectral clustering to compute clustering results. Subspace Clustering by Block Diagonal
Representation (BDR) [22] proposes a theory of block diagonal property, and is then based
on the theory to build the similarity graph. Spectral clustering provides good cluster-
ing results for nonlinearly separable datasets, but it is complex to compute eigenvalues
and eigenvectors.

In this article, a simple but effective clustering algorithm (called iterative min cut
clustering) for nonlinearly separable datasets is proposed. The proposed method is based
on graph cuts theory, and it does not require computing the Laplacian matrix, eigenvalues,
and eigenvectors. The proposed iterative min cut clustering uses only one formula to map
a nonlinearly separable dataset to a linearly separable one-dimensional representation. We
demonstrate the performance of the proposed method on synthetic and real datasets.

The remainder of this article is organized as follows. Section 2 introduces the pro-
posed iterative min cut (IMC) algorithm. Section 3 presents the experimental results on
nonlinearly separable datasets. Finally, concluding remarks are given in Section 4.

1.1. Related Works

Graph cuts clustering partitions a dataset X = {x1, . . . , xN} ⊂ RH into C clusters
by constructing a graph and finding a partition of the graph such that vertexes (a data
point is seen as a vertex of the graph) in same subgraph are similar to each vertex and
vertexes in different subgraph are dissimilar from each vertex. The construction methods
of transforming a data into a graph mainly include

(1) ε-neighborhood graph. It connects all vertexes (data points) whose pairwise distances
are smaller than ε, and then obtains an undirected graph.

(2) K-nearest neighbor graphs. It connects a vertex vi and a vertex vj if vi is among the
K-nearest neighbors of vj or if vj is among the K-nearest neighbors of vi (or if both vi
is among the K-nearest neighbors of vj and vj is among the K-nearest neighbors of vi).

(3) The fully connected graph. It connects all points, and then obtains a fully con-
nected graph.

Graph cuts problem is an NP hard problem, and spectral clustering is the most popular
method to solve this problem. The spectral clustering algorithm is detailed in Algorithm 1.

Algorithm 1: Spectral clustering.

Input: X
Do:

(1) Compute W where wij is the similarity between xi and xj,

and wij is usually computed by wij = exp(−‖xi−xj‖2

2σ2 )
(2) Compute the Laplacian matrix L = D−W where D is the degree matrix,
and dij is computed by di = ∑

j
wij

(3) Compute the first k eigenvectors of L, and these eigenvectors are seen as low
dimensiona embedding of the original dataset
(4) Using K-means to cluster the low dimensional embedding

Output: Clustering results of K-means

Spectral clustering provides good clustering results for nonlinearly separable datasets,
but it requires to compute eigenvectors and eigenvalues of the Laplace matrix L. The cost
of computing eigenvectors and eigenvalues is high without built-in tool.
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2. Iterative Min Cut Clustering

In this section, we propose an iterative min cut clustering (IMC). The proposed
IMC clustering algorithm partitions a dataset X = {x1, . . . , xN} ⊂ RH into C clusters by
minimizing the following objective function

∑
i,j

wij, xi and xj belong to different clusters (1)

where wij is the similarity (i.e., the edge weight) between xi and xj. For computational
convenience, we normalize the data point xi as follows. For any i ∈ {1, . . . , N},

xi =
xi

max{xi[1], . . . , xi[H]} (2)

The similarity wij is computed by

wij =

{
exp(−‖xi−xj‖2

2σ2 ), xi and xj are neighbors
0, otherwise

. (3)

We can use ε-neighborhood graph or K-nearest neighbor graphs (shown in Section 1.1) to
select neighbors.

To solve (1), we define a feature f ( f is a scalar) for each data point. If two data points
belong to the same cluster, then their f values are the same. If two data points belong to the
different cluster, then their f values are different. Let fi represent the feature of xi. fi = f j if
xi and xj belong to the same cluster, and fi 6= f j otherwise. f = [ fi] = [ f1, . . . , fN ]

T can be
viewed as a one-dimensional embedding of the dataset X. (1) is equivalent to the following
function

J =
N

∑
i=1

N

∑
j=1

wij
(

fi − f j
)2. (4)

According to [12], we get the relationship between (4) and the Laplacian matrix L, i.e.,

f TL f =
1
2 ∑

i,j
wij
(

fi − f j
)2. (5)

The problem min ∑
i,j

wij
(

fi − f j
)2 is equivalent to min f TL f . By the Rayleigh–Ritz

theorem [23], eigenvectors and eigenvalues of the matrix f TL f are approximately equal
to those of L, so spectral clustering computes eigenvectors of L instead of computing
eigenvectors of f TL f . In this article, we use a novel solution to solve problem (4).

According to (4), we have for every i ∈ {1, . . . , N} that

∂J
∂ fi

= 2 ∑
j
( fi − f j)wij − 2 ∑

j
( f j − fi)wji

= 4 ∑
j
( fi − f j)wij

. (6)

Equating all the previous partial derivatives to zero (i.e., ∂J
∂ fi

= 0, i ∈ {1, . . . , N}), we obtain
the following values of fi, for every i ∈ {1, . . . , N}

fi =

∑
j

wij f j

∑
j

wij
. (7)
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According to variational method [24], (7) contains two f , and we can view a f as
f (k), and view the other f as f (k+1). The proposed ideal is from variational method. The
variational method is well supported by the theory, so the proposed method is indirectly
supported by the theory of variational method. The proposed method uses only one
formula to solve the problem (4) (Spectral clustering requires computing eigenvalues
and eigenvectors to solve this problem, and computing eigenvalues and eigenvectors is
complex). The initial f (0) is initialized randomly. The proposed IMC algorithm is detailed
in Algorithm 2.

Algorithm 2: IMC algorithm.
Input: X
compute wij by (3), Randomly initialize f (0)

Repeat

Compute f (n+1) via f (n+1)
i =

∑
j

wij f (n)j

∑
j

wij

Until
∣∣∣J(n) − J(n−1)

∣∣∣ is less than a prescribed tolerance or n is equal to the maximum
number of iterations
Output: f

Figure 1 shows a nonlinearly separable dataset, and Figure 2 shows its f computed by
IMC. From Figure 2 we can see that f is linearly separable, and we can partition it by using
thresholding method. Figure 3 shows a final clustering result of IMC, and from it we can
see that the clustering result is consistent with the dataset shown in Figure 1.

Figure 1. A nonlinearly separable dataset containing three clusters.

Figure 2. The plot of f for the dataset shown in Figure 1. X-axis means i (i.e., the subscript of xi),
Y-axis means f .
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Figure 3. A clustering result of the dataset shown in Figure 1.

Next, we consider obtaining the final clustering results by one-dimensional vector f .
We partition the one-dimensional vector f into C categories by using some basic clustering
algorithms (e.g., K-means) or thresholding method:

Li =


0 fi < T1

. . . . . .
c Tc < fi < Tc+1

. . . . . .
C fi > TC

(8)

where Tc is the c-th threshold.

3. Experiments

In this section, we used experiments to evaluate the effectiveness of the proposed
method. The variational method indirectly provided a theoretical support for the proposed
method. The purpose of experiments was to verify whether the proposed method was
valid. We used six datasets: two synthetic datasets (Dataset 1 and 2) and four UCI real
datasets. Dataset 2 was from [10]. Dataset 1 and 2 were composed of 300 and 1587 data
points from two and five classes, respectively. The two synthetic datasets are shown in
Figure 4, and ground-truth labels are presented in Figure 5. UCI real datasets are detailed
in Table 1.

(a) (b)

Figure 4. Synthetic datasets. (a) Dataset 1. (b) Dataset 2.
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(a)

(b)

Figure 5. Ground-truth labels of two synthetic datasets. (a) Dataset 1. (b) Dataset 2.

All the experiments were implemented using MATLAB 2015a on a standard Window
PC with an Intel 2.3 GHz CPU and 8 GB RAM.

Table 1. UCI real datasets.

Datasets Codes Instances Classes Dimensions

Iris D3 150 3 4
Dermatology D4 358 6 34

Glass D5 214 6 10
Parkinsons D6 195 2 23

3.1. Experiments for Synthetic Datasets

In this subsection, we used synthetic datasets to demonstrate the performance of the
proposed method for nonlinearly separable datasets. We used KNN graph and set K = 10.
The σ of (3) was set to 0.1. The maximum number of iterations was 8000 (Note that the
computational complexity of (7) was very low, so the algorithm did not take too much
time).

Figure 6 shows plots of partitioned f on two datasets, and from it we see that all plots
of f were linearly separable. Figure 7 shows final clustering results for two datasets, and
from it we see that all clustering results were consistent with ground-truth labels, so all
clustering results were correct.

(a)

Figure 6. Cont.
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(b)

Figure 6. Plots of f for two synthetic datasets. (a) Dataset 1. (b) Dataset 2.

(a) (b)

Figure 7. Final clustering results of the proposed IMC. (a) Dataset 1. (b) Dataset 2.

3.2. Experiment about Convergence

We further carried on to evaluate the convergence of the proposed method. We ran
the proposed method 100 times on two datasets with different initial values. If all the
results were correct, then the algorithm could be globally convergent. We used NMI [25]
as the clustering evaluation metric. NMI is a normalization of the Mutual Information
score to evaluate the clustering results between 0 (no mutual information) and 1 (perfect
correlation).

Table 2 shows the min, max, and mean of NMI of the proposed method for two
datasets. From it we can see that all of clustering results were correct. Thus, the proposed
IMC could usually obtain correct clustering results.

Table 2. The min, max, and mean of NMI of the proposed method on two datasets.

DS Mean Min Max

Dataset 1 1.0000 1.0000 1.0000
Dataset 2 1.0000 1.0000 1.0000

3.3. Experiments for Real Datasets

In this subsection, we evaluated the performance of the proposed method on real
datasets (shown in Table 1). We ran the proposed method (IMC) and spectral clustering
(SC) 50 times, and the mean result was retained.

Table 3 shows the mean of NMI and the mean of running time of IMC and SC on two
real datasets. The better results in each case are highlighted in bold. From it we can see
that:

(1) when the max iteration number was set to 1000 and 2000, IMC needed less running
time than SC, but obtained higher NMI than SC;

(2) for different max iteration numbers, IMC obtained different NMI, but all NMI of IMC
were higher than those of SC.
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Table 3. NMI and running time comparisons of IMC with spectral clustering (SC) on UCI real datasets.

Method
Max D3 D4 D5 D6

Iteration NMI Time NMI Time NMI Time NMI Time

SC − 0.7660 0.0570 0.1116 0.1599 0.331222 0.047160 0.014030 0.014457

IMC

1000 0.7777 0.0111 0.1362 0.0301 0.387883 0.014373 0.014030 0.011158

2000 0.7716 0.0257 0.1226 0.0653 0.359414 0.033953 0.014030 0.030275

3000 0.7703 0.0432 0.1213 0.1061 0.340673 0.056648 0.014030 0.049958

4000 0.7670 0.0633 0.1218 0.1426 0.322012 0.078662 0.014030 0.073234

5000 0.7706 0.0981 0.1458 0.1697 0.348434 0.118252 0.014030 0.117675

6000 0.7690 0.1172 0.1449 0.2462 0.349533 0.140191 0.014030 0.162995

7000 0.7817 0.1502 0.1468 0.3033 0.327493 0.171360 0.014030 0.173535

8000 0.7792 0.2191 0.1512 0.3710 0.386487 0.250267 0.014030 0.211110

4. Concluding Remarks

In this article, we propose a novel graph-based clustering algorithm called IMC
for solving the clustering problem on nonlinearly separable datasets. We first compute
similarities between pairs of data points. Then the proposed IMC maps a nonlinearly
separable dataset to a one-dimensional vector by using only one formula. Finally, we use
thresholding method or K-means to obtain final clustering results. We use experiments
to evaluate the performance of the proposed method on synthetic nonlinearly separable
datasets and real datasets, and we also use experiments to demonstrate the convergence of
the proposed method. By experiments, on synthetic datasets and little real datasets, the
proposed method can provide good clustering results.

We summarize the advantages of the proposed method from the following two aspects.
Theoretical view: (1) the proposed ideal is from variational method. The variational

method is well supported by the mathematics theory, so the proposed method is indirectly
supported by the theory of variational method; (2) it uses only one formula to solve the
problem (spectral clustering requires to compute eigenvalues and eigenvectors to solve
this problem, and computing eigenvalues and eigenvectors is complex).

Practical view: the proposed method can obtain good clustering results for synthetic
nonlinearly separable datasets and some real datasets.

In the future, we will consider extending IMC by using other graph cut criteria.
Moreover, we think one-dimensional data may not represent the structure of large datasets
completely, but one-dimensional data is simple (It is both a strength and a weakness). We
will consider how to solve this problem.

Author Contributions: data curation, T.Z. and Z.Z.; writing—original draft, B.L.; writing—review
and editing, Y.L. and Z.L. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by National Natural Science Foundation of China (No. 61876010,
61806013, and 61906005), and Scientific Research Project of Beijing Educational Committee
(KM202110005028).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: All authors declare no conflict of interest.



Sensors 2021, 21, 474 9 of 10

Abbreviations
The following abbreviations are used in this manuscript:

X dataset
N number of data points in a dataset
H dimension of data points
xi i-th data points in a dataset
W similarity matrix
wij similarity between xi and xj
D degree matrix
L Laplace matrix
f the feature of X
fi i-th value of f
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