
sensors

Article

Dynamic Inference Approach Based on Rules Engine in
Intelligent Edge Computing for Building Environment Control

Wenquan Jin 1 , Rongxu Xu 2 , Sunhwan Lim 3, Dong-Hwan Park 3, Chanwon Park 3 and Dohyeun Kim 2,*

����������
�������

Citation: Jin, W.; Xu, R.; Lim, S.;

Park, D.-H.; Park, C.; Kim, D.

Dynamic Inference Approach Based

on Rules Engine in Intelligent Edge

Computing for Building Environment

Control. Sensors 2021, 21, 630.

https://doi.org/s21020630

Received: 7 December 2020

Accepted: 14 January 2021

Published: 18 January 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Big Data Research Center, Jeju National University, Jeju 63243, Korea; wenquan.jin@jejunu.ac.kr
2 Department of Computer Engineering, Jeju National University, Jeju 63243, Korea; rongxu@jejunu.ac.kr
3 Autonomous IoT Research Section/Intelligent Convergence Research Laboratory, Electronics and

Telecommunications Research Institute, Daejeon 34129, Korea; shlim@etri.re.kr (S.L.);
dhpark@etri.re.kr (D.-H.P.); cwp@etri.re.kr (C.P.)

* Correspondence: kimdh@jejunu.ac.kr

Abstract: Computation offloading enables intensive computational tasks in edge computing to be
separated into multiple computing resources of the server to overcome hardware limitations. Deep
learning derives the inference approach based on the learning approach with a volume of data using
a sufficient computing resource. However, deploying the domain-specific inference approaches
to edge computing provides intelligent services close to the edge of the networks. In this paper,
we propose intelligent edge computing by providing a dynamic inference approach for building
environment control. The dynamic inference approach is provided based on the rules engine that is
deployed on the edge gateway to select an inference function by the triggered rule. The edge gateway
is deployed in the entry of a network edge and provides comprehensive functions, including device
management, device proxy, client service, intelligent service and rules engine. The functions are
provided by microservices provider modules that enable flexibility, extensibility and light weight for
offloading domain-specific solutions to the edge gateway. Additionally, the intelligent services can
be updated through offloading the microservices provider module with the inference models. Then,
using the rules engine, the edge gateway operates an intelligent scenario based on the deployed rule
profile by requesting the inference model of the intelligent service provider. The inference models are
derived by training the building user data with the deep learning model using the edge server, which
provides a high-performance computing resource. The intelligent service provider includes inference
models and provides intelligent functions in the edge gateway using a constrained hardware resource
based on microservices. Moreover, for bridging the Internet of Things (IoT) device network to the
Internet, the gateway provides device management and proxy to enable device access to web clients.

Keywords: edge computing; deep learning; rules engine; inference model; computational offloading

1. Introduction

Edge computing brings resources of computation and storage to the edge of networks
for providing various functions to the Internet of Things (IoT) devices with sensors and
actuators. Based on edge computing, the constrained IoT network is supported to operate
heterogeneous solutions, such as management, intelligent approaches, proxies and au-
tonomous control mechanisms, to provide rich service scenarios [1–5]. Due to IoT networks
deploying constrained devices for sensing and actuating, based on the limited power supply,
processor, storage, and network capability, this environment struggles to support a sufficient
computation and network requirement for implementing complex service scenarios [6–8].
For overcoming the limitations of IoT, cloud computing can be a solution to provide effec-
tively scalable and easily accessible interfaces to IoT networks as well as web clients [9].
Nevertheless, edge computing enables the computing resources to be performed close to
the environment where the data are generated and applied by sensors and actuators [10,11].

Sensors 2021, 21, 630. https://doi.org/10.3390/s21020630 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-8404-9447
https://orcid.org/0000-0002-4902-0681
https://doi.org/10.3390/s21020630
https://doi.org/10.3390/s21020630
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21020630
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/1424-8220/21/2/630?type=check_update&version=2

Sensors 2021, 21, 630 2 of 21

According to the edge computing architecture, edge computing deploys the device to serve
in the middle layer between IoT devices and the cloud elements.

The edge gateway is a device that provides edge computing functions to interact with
IoT devices and cloud elements from the entry of the network edge [12–14]. The edge
gateway provides management functionality through monitoring the environment and
devices, registering the information of devices for discovery by web clients and forwarding
messages to different protocols and networks [15–18]. Additionally, the intelligent ser-
vices are provided based on the sufficient computational ability of the edge gateway [19].
Therefore, the edge gateway enables multiple solutions to be deployed on the edge of
networks for providing the management, proxy, intelligent and autonomous services close
to the environments. For integrating multiple solutions to the edge gateway to provide
comprehensive services, the microservices architecture is key. Using the microservices
provider modules in the edge gateway, the deployment of services is enabled to be flexible,
lightweight and extendable [20–24]. Based on the independent microservice providers, the
services can be provided to external service consumers for a specific purpose as well as to
internal functions for the collaboration mechanisms. Moreover, the deployment of multiple
intelligent approaches is enabled without updating other functions to apply intelligent
solutions dynamically.

The computational offloading leverages multiple computational resources to separate
intensive computational tasks for deploying light-weight tasks in the network edge to
reduce computing load and network latency. Deep learning is an approach to develop
intelligent services based on a volume of sample data, which results in a model of prediction
or decision [25]. For providing intelligent services based on deep learning, firstly, the
learning model is trained with the data to derive the inference model. Then, the service
provider includes the inference model to provide intelligent services with the required input
parameters. By updating training data to extend the knowledge of the existing learning
model, it is possible to use the environment data in the edge gateway [26,27]. However,
the training process takes time, especially in the edge gateway. Therefore, training the
learning models with various datasets in the cloud server and deploying the inference
modes in the edge gateway enables the operation of multiple intelligent services on the
edge of networks.

This paper proposes a dynamic inference approach through deploying an intelligent
function and rules engine in the edge gateway for providing intelligent edge computing
in the building environment. Intelligent edge computing is enabled based on the edge
gateway that is deployed in the entry of the network edge to provide services for device
management, device proxy, client service, intelligent service and rules engine using mi-
croservice providers. The intelligent function interprets the inference models using the
model interpreter, which in turn provides the intelligent services that are used by the rules
engine in the edge gateway. The rules engine provides the dynamic inference approach
based on the rules that are used to simulate various intelligent service scenarios in the IoT
device networks. Using the proposed intelligent edge computing in the building environ-
ment, the edge gateway delivers the energy consumption value to the IoT device, which
updates the environment parameters, including temperature and humidity, by controlling
the heater. For registering the IoT devices to represent in the cyber world, a device manage-
ment technique is developed based on the EdgeX framework [28], which provides various
management interfaces through microservices. Additionally, a client service provider and
device proxy are developed and deployed in the edge gateway to connect the Internet
to the IoT device network. We performed an experiment to evaluate the performance of
the proposed intelligent edge computing through comparing with the external intelligent
function. The experimental results show that the proposed edge gateway takes less time to
deliver the control factor to the environment.

The rest of this paper is organized as follows. Section 2 introduces the related works re-
garding edge computing frameworks and solutions for enabling the intelligent approaches
in the edge of networks based on computational offloading and embedding. Section 3

Sensors 2021, 21, 630 3 of 21

presents the proposed intelligent edge computing architecture and functional blocks.
Section 4 introduces the proposed dynamic inference approach and related solutions,
including computational offloading and rules engine. Section 5 presents the implementa-
tion details and results of the IoT device, edge gateway and edge server. Section 6 evaluates
the performance of the edge gateway with the proposed microservices provider modules.
Finally, we conclude this paper and introduce our future directions in Section 7.

2. Related Works

Edge computing provides computational resources close to the environment for re-
ducing the computational load in the IoT networks and latency. EdgeX framework [28] is
an emerging edge computing solution that comprises multiple microservice provider mod-
ules to provide management of devices and data, and communications for heterogeneous
devices. The microservices enable the scale of functionality to be up and down based on
the capability of the edge gateway [29]. It does this by deploying various domain-specific
service providers based on microservices, which enables providing improved services in
edge computing. Mobile edge computing (MEC) is proposed to enable data service and
cloud computing tasks on the edge of networks that provide a sufficient computing ability
based on a high-performance device [30–32]. The architecture of MEC provides computa-
tional offloading for distributing the computational load to multiple mobile devices [33].
Cloudlet [34] comprises multiple computing devices and abundant resources of the net-
work, computing and storage to provide trusted support to nearby mobile devices for
enabling various scenarios based on mobile-cloud convergence [35,36]. MEC and Cloudlet
are used for implementing cloud computing in mobile devices to enable computing and
data repositories on the edge of the networks [37–41]. However, the limitation of the mobile
device only supports a small-scale of computational resources. Offloading the heavy tasks
to the cloud server can overcome the limitation and reduce the computational load for the
network edge.

Most task offloading approaches are used for deploying deep learning models with
huge volumes of data to the high-performance computing unit [42]. Eom et al. [43] pro-
posed a mobile offloading framework to apply machine learning techniques based on an
adaptive scheduling approach. Qiao et al. [44] proposed an integrated task offloading to
efficiently combine the services from the multiple mobile service providers in MEC for
vehicular networks. Xu et al. [45] proposed intelligent edge computing based on offload-
ing the learning approach to the cloud for renewable power supply. Crutcher et al. [46]
proposed a task offloading mechanism to deploy the learning model to the cloud for reduc-
ing the resource consumption based on a utilized prediction approach. Kwak et al. [47]
proposed an energy optimization approach through offloading the heavy computing pro-
cess to the cloud server for minimizing the energy in private edge computing. However,
deep learning approaches need time to train the model with huge volumes of data, and
only some computing units have high enough computational resources while still being
able to fit in a small-sized device. Zhang et al. [48] proposed a real-time object detection
technique using NVIDIA Jetson TX1, which is an embedded device that presents sufficient
performance. Beatriz et al. [49] developed a multiple object visual tracking based on im-
plementing real-time deep learning on the NVIDIA Jetson TX2 development kit, which
provides a powerful deep learning computing processor through a constrained mobile
device. Nevertheless, operating the deep learning model in constrained devices requires a
high cost for purchasing the computing units. Therefore, offloading the learning model to
the cloud server and deploying the inference model on the network edge is a better option.

3. Intelligent Edge Computing for Building Environment Control

We propose an intelligent edge computing for building environment control. As
shown in Figure 1, the proposed edge computing comprises an edge server, edge gateway,
edge client and IoT device. For deploying intelligent edge computing in the building
environment, the edge gateway provides intelligent approaches through offloading the

Sensors 2021, 21, 630 4 of 21

inference model to the building environment. In the building environment, IoT devices
are deployed to provide sensing and actuating services. The IoT devices are connected to
a network, which can be a local network that serves a private space in the building. The
edge gateway is deployed in the entry of the local network to interact with the IoT devices.
For enhancing the ability of the IoT devices in the network, the edge gateway provides
management, connectivity and intelligent solutions through sufficient computational re-
sources. The IoT devices are connected to the edge gateway; therefore, the edge gateway
collects the sensing data and controls the actuators through communication with the IoT
devices. Additionally, from the Internet, the edge client accesses the IoT devices through
the edge gateway.

Sensors 2021, 21, x FOR PEER REVIEW 4 of 21

3. Intelligent Edge Computing for Building Environment Control

We propose an intelligent edge computing for building environment control. As

shown in Figure 1, the proposed edge computing comprises an edge server, edge gateway,

edge client and IoT device. For deploying intelligent edge computing in the building en-

vironment, the edge gateway provides intelligent approaches through offloading the in-

ference model to the building environment. In the building environment, IoT devices are

deployed to provide sensing and actuating services. The IoT devices are connected to a

network, which can be a local network that serves a private space in the building. The

edge gateway is deployed in the entry of the local network to interact with the IoT devices.

For enhancing the ability of the IoT devices in the network, the edge gateway provides

management, connectivity and intelligent solutions through sufficient computational re-

sources. The IoT devices are connected to the edge gateway; therefore, the edge gateway

collects the sensing data and controls the actuators through communication with the IoT

devices. Additionally, from the Internet, the edge client accesses the IoT devices through

the edge gateway.

Figure 1. Proposed intelligent edge computing for building environment control.

For providing the intelligence in the building environment, the deep learning models

are offloaded to the edge server, which derives the intelligent models based on high-per-

formance computational resources and a huge volume of building user data. Then, the

intelligent models are deployed to the edge gateway for offloading intelligent approaches

to the network edge for operating intelligent scenarios using IoT devices in the building

environment. Based on the rules, offloaded intelligent approaches are selected to apply to

the building environment for specific scenarios.

The functions of the proposed edge computing are separated into three layers, in-

cluding client, edge and device layers, as shown in Figure 2.

Figure 1. Proposed intelligent edge computing for building environment control.

For providing the intelligence in the building environment, the deep learning models
are offloaded to the edge server, which derives the intelligent models based on high-
performance computational resources and a huge volume of building user data. Then, the
intelligent models are deployed to the edge gateway for offloading intelligent approaches
to the network edge for operating intelligent scenarios using IoT devices in the building
environment. Based on the rules, offloaded intelligent approaches are selected to apply to
the building environment for specific scenarios.

The functions of the proposed edge computing are separated into three layers, includ-
ing client, edge and device layers, as shown in Figure 2.

Sensors 2021, 21, 630 5 of 21

Sensors 2021, 21, x FOR PEER REVIEW 5 of 21

The device layer includes IoT devices that are used for collecting data from the envi-

ronment and update the environmental parameters through controlling actuators. The IoT

device equips with sensors and actuators that are represented in the IoT device by re-

sources. The resources expose the functions of sensing and actuating in the network for

providing the IoT services to the edge gateway. The resources are developed based on IoT

frameworks and libraries that enable the IoT device to provides services for delivering the

data to the network elements. The IoT device includes the wireless or wired connection

ability to communicate with the edge gateway through network protocols such as the

Constrained Application Protocol (CoAP) and Hypertext Transfer Protocol (HTTP). Event

management is used for publishing the sensing data and device status to the edge gate-

way, which enables the collection of continuous data from the environment and detects

the real-time event.

The edge layer includes edge server and edge gateway to distribute computing op-

erating IoT devices based on intelligent approaches in the edge of networks. The edge

server involves user data and learning models to result in the inference model through

training the user data on the learning model. The deep learning models are designed to

generate a network that outputs the results by passing the inputs between nodes. The

links between nodes of the network are defined by updating the parameters of the links

based on a large amount of data. Therefore, a heavy computing process is required, which

is supported by the edge server. The inference model is deployed in the edge gateway for

deriving a smart result to control the IoT device. For interacting with IoT devices, the edge

gateway provides management and device proxy services to link the IoT devices to the

cyber world. Moreover, the client service provider enables the users to access the repre-

sented virtual object to access actual devices through the Internet.

The client layer includes the edge client that is used for providing content to the users

and sending the command to the system by interacting with users and the edge gateway.

Based on the edge client, the client layer involves functions of User Interface (UI), man-

agement interface, control interface and data visualization. The UIs are provided by the

edge gateway to the edge client, and displayed to the users. Using the UIs, management

services, control interfaces and data visualization are provided, such as writing and read-

ing device information, configuring system parameters, sending the command to IoT de-

vice and presenting sensing data in various styles. The client layer is required for any

system that interacts with the server to present the contents of the services.

Figure 2. Intelligent edge computing hierarchical architecture.

Figure 2. Intelligent edge computing hierarchical architecture.

The device layer includes IoT devices that are used for collecting data from the
environment and update the environmental parameters through controlling actuators. The
IoT device equips with sensors and actuators that are represented in the IoT device by
resources. The resources expose the functions of sensing and actuating in the network for
providing the IoT services to the edge gateway. The resources are developed based on IoT
frameworks and libraries that enable the IoT device to provides services for delivering the
data to the network elements. The IoT device includes the wireless or wired connection
ability to communicate with the edge gateway through network protocols such as the
Constrained Application Protocol (CoAP) and Hypertext Transfer Protocol (HTTP). Event
management is used for publishing the sensing data and device status to the edge gateway,
which enables the collection of continuous data from the environment and detects the
real-time event.

The edge layer includes edge server and edge gateway to distribute computing
operating IoT devices based on intelligent approaches in the edge of networks. The edge
server involves user data and learning models to result in the inference model through
training the user data on the learning model. The deep learning models are designed to
generate a network that outputs the results by passing the inputs between nodes. The
links between nodes of the network are defined by updating the parameters of the links
based on a large amount of data. Therefore, a heavy computing process is required, which
is supported by the edge server. The inference model is deployed in the edge gateway
for deriving a smart result to control the IoT device. For interacting with IoT devices, the
edge gateway provides management and device proxy services to link the IoT devices
to the cyber world. Moreover, the client service provider enables the users to access the
represented virtual object to access actual devices through the Internet.

The client layer includes the edge client that is used for providing content to the
users and sending the command to the system by interacting with users and the edge
gateway. Based on the edge client, the client layer involves functions of User Interface (UI),
management interface, control interface and data visualization. The UIs are provided by
the edge gateway to the edge client, and displayed to the users. Using the UIs, management
services, control interfaces and data visualization are provided, such as writing and reading
device information, configuring system parameters, sending the command to IoT device
and presenting sensing data in various styles. The client layer is required for any system
that interacts with the server to present the contents of the services.

Sensors 2021, 21, 630 6 of 21

4. Proposed Dynamic Inference Approach Based on Rules Engine

In this section, we present the dynamic inference approach that is provided by the
rules engine based on interacting with multiple inference models. Figure 3 shows the
offloading flow for embedding the inference model to the edge gateway. In the edge
server, the inference model generator derives the learning models by applying the building
user data to the learning models. Each learning model outputs an inference model that
is offloaded to the edge gateway to provide intelligent service. The inference models
are deployed in the intelligent service provider, which includes intelligent functions to
provide building environment control factors based on the required input parameters. The
intelligent functions are invoked by the rules engine based on the rules that define the
IoT device operation scenarios. According to the rule profile, the rules engine applies the
intelligent approach dynamically. The intelligent function provides the control factor based
on the inference model and delivers the control factor to the device network for operating
the actuator to update the building environment.

Sensors 2021, 21, x FOR PEER REVIEW 6 of 21

4. Proposed Dynamic Inference Approach Based on Rules Engine

In this section, we present the dynamic inference approach that is provided by the

rules engine based on interacting with multiple inference models. Figure 3 shows the of-

floading flow for embedding the inference model to the edge gateway. In the edge server,

the inference model generator derives the learning models by applying the building user

data to the learning models. Each learning model outputs an inference model that is of-

floaded to the edge gateway to provide intelligent service. The inference models are de-

ployed in the intelligent service provider, which includes intelligent functions to provide

building environment control factors based on the required input parameters. The intelli-

gent functions are invoked by the rules engine based on the rules that define the IoT de-

vice operation scenarios. According to the rule profile, the rules engine applies the intel-

ligent approach dynamically. The intelligent function provides the control factor based on

the inference model and delivers the control factor to the device network for operating the

actuator to update the building environment.

Figure 3. Offloading flow for embedding the inference model to the rule-based edge gateway.

As shown in Figure 4, the IoT device publishes the event to the edge gateway and the

rules engine operated the scenario base on the intelligent function. The intelligent function

is triggered by the event that is sent from the IoT device. The event is a request message

to include sensing data and actuating commands. The rules engine makes the decision to

operate an intelligent scenario. Then, the rules engine delivers the event to the selected

intelligent function that is provided based on the inference model. The inference model is

derived from the deep learning that is developed based on user data.

Figure 3. Offloading flow for embedding the inference model to the rule-based edge gateway.

As shown in Figure 4, the IoT device publishes the event to the edge gateway and the
rules engine operated the scenario base on the intelligent function. The intelligent function
is triggered by the event that is sent from the IoT device. The event is a request message
to include sensing data and actuating commands. The rules engine makes the decision to
operate an intelligent scenario. Then, the rules engine delivers the event to the selected
intelligent function that is provided based on the inference model. The inference model is
derived from the deep learning that is developed based on user data.

Sensors 2021, 21, 630 7 of 21Sensors 2021, 21, x FOR PEER REVIEW 7 of 21

Figure 4. Deployment flow of embedding inference model to rule-based edge gateway.

Figure 5 shows the scenario of the offloading learning and inference model to distrib-

uted edge computing. The computational process of deep learning is distributed to the

edge server and edge gateway. The edge server includes the inference model generator to

provide the inference model that is used in the edge gateway. For generating the inference

model, the inference model generator includes the learning model and building user data,

and trains the learning model using the data. Then, the edge gateway deploys the infer-

ence model on the intelligent service provider to provide intelligent service. The intelli-

gent service provider includes the intelligent function that interprets the inference model

using the model interpreter for providing the intelligent service based on the inference

model.

Figure 5. Scenario of the offloading learning and inference model for intelligent edge computing.

Figure 4. Deployment flow of embedding inference model to rule-based edge gateway.

Figure 5 shows the scenario of the offloading learning and inference model to dis-
tributed edge computing. The computational process of deep learning is distributed to the
edge server and edge gateway. The edge server includes the inference model generator to
provide the inference model that is used in the edge gateway. For generating the inference
model, the inference model generator includes the learning model and building user data,
and trains the learning model using the data. Then, the edge gateway deploys the inference
model on the intelligent service provider to provide intelligent service. The intelligent
service provider includes the intelligent function that interprets the inference model using
the model interpreter for providing the intelligent service based on the inference model.

Sensors 2021, 21, x FOR PEER REVIEW 7 of 21

Figure 4. Deployment flow of embedding inference model to rule-based edge gateway.

Figure 5 shows the scenario of the offloading learning and inference model to distrib-

uted edge computing. The computational process of deep learning is distributed to the

edge server and edge gateway. The edge server includes the inference model generator to

provide the inference model that is used in the edge gateway. For generating the inference

model, the inference model generator includes the learning model and building user data,

and trains the learning model using the data. Then, the edge gateway deploys the infer-

ence model on the intelligent service provider to provide intelligent service. The intelli-

gent service provider includes the intelligent function that interprets the inference model

using the model interpreter for providing the intelligent service based on the inference

model.

Figure 5. Scenario of the offloading learning and inference model for intelligent edge computing. Figure 5. Scenario of the offloading learning and inference model for intelligent edge computing.

Sensors 2021, 21, 630 8 of 21

Figure 6 shows the intelligent IoT device operation sequence. The sequence presents
the process of training the learning model and deploying the inference model to the network
edge. Once the inference model is deployed, the user deploys the rule through the edge
client and the rule engine requests to the real-time intelligent service provider to operate
IoT devices by publishing events. First, the user deploys the learning model and building
user data, and trains the model with the data to get the inference model. The model will
be deployed in the edge gateway. Second, the user crates the rule using the edge client
through requesting device information and deploying the rule to the edge gateway. Finally,
the edge gateway activates the rule to invoke the intelligent service provider and control
the IoT device.

Sensors 2021, 21, x FOR PEER REVIEW 8 of 21

Figure 6 shows the intelligent IoT device operation sequence. The sequence presents

the process of training the learning model and deploying the inference model to the net-

work edge. Once the inference model is deployed, the user deploys the rule through the

edge client and the rule engine requests to the real-time intelligent service provider to

operate IoT devices by publishing events. First, the user deploys the learning model and

building user data, and trains the model with the data to get the inference model. The

model will be deployed in the edge gateway. Second, the user crates the rule using the

edge client through requesting device information and deploying the rule to the edge

gateway. Finally, the edge gateway activates the rule to invoke the intelligent service pro-

vider and control the IoT device.

Figure 6. Intelligent IoT device operation sequence.

5. Implementation Details and Results

The proposed entities are deployed in the corresponding platform to provide func-

tions as shown in Figure 7. The edge client is a web client that provides the information

through UIs to users as well as receiving the information from users and delivering it to

the edge gateway. In the experiment, the Chrome web browser runs the edge client on a

laptop to access the edge gateway through the Internet. The UIs are provided by the client

service provider from the edge gateway. Bootstrap and jQuery libraries are used for im-

plementing the contents of UIs based on the Spring Boot framework.

Figure 6. Intelligent IoT device operation sequence.

5. Implementation Details and Results

The proposed entities are deployed in the corresponding platform to provide functions
as shown in Figure 7. The edge client is a web client that provides the information through
UIs to users as well as receiving the information from users and delivering it to the edge
gateway. In the experiment, the Chrome web browser runs the edge client on a laptop to
access the edge gateway through the Internet. The UIs are provided by the client service
provider from the edge gateway. Bootstrap and jQuery libraries are used for implementing
the contents of UIs based on the Spring Boot framework.

Sensors 2021, 21, 630 9 of 21
Sensors 2021, 21, x FOR PEER REVIEW 9 of 21

Figure 7. Implemented entities of the proposed embedded edge computing.

The edge gateway includes modules of the client service provider, intelligent service

provider, EdgeX core, rules engine and device proxy for providing services to edge client

and IoT device. Spring Boot 2.1.4 is used for developing the client service provider and

rules engine to provide microservices. EdgeX core are implemented using Go to provide

web services through multiple microservice providers. Additionally, the device proxy is

implemented using Go based on the implementation template from the EdgeX foundry.

The intelligent service provider is developed in Python based on Flask framework to pro-

vide microservices. In the experiment, these modules are deployed in a Raspberry Pi 4,

which includes 4 GB memory to run the Ubuntu 64 bit OS smoothly.

The IoT device is an Android application that runs on the Android Thins platform

based on Raspberry Pi 3. Jetty is a Java library used for implementing the HTTP server on

the IoT device to provide web services. TensorFlow lite is used for implementing the en-

vironment emulator on the IoT device to emulate the indoor environment and heater. Vol-

ley is an Android library for implanting the HTTP client. The HTTP client is used for pub-

lishing evens to the edge gateway to trigger the intelligent approach based on the rules

engine.

The edge server provides the inference model through training the building user data

using the Deep Neural Network (DNN) learning model on the high-performance ma-

chine. The learning model is implemented based on TensorFlow 2 framework in the Py-

thon environment. In the first step, the edge server outputs a TensorFlow DNN model,

which is a folder that includes multiple files. Then, a converter is used to convert the

model to a TensorFlow lite model, which is a single file with the extension tflite. Finally,

we deploy the file to the edge gateway to provide intelligent services.

The detailed development environments of the IoT device, edge gateway and edge

server are presented in Table 1, including the platforms, frameworks and libraries.

Table 1. Development Environment.

Entity Platform Frameworks and Libraries

IoT Device
Raspberry Pi 3 Model B, Android

Things 1.0 (Android SDK 27)
Jetty 9.1.0, Volley 1.1.0, TensorFlow-Lite 1.10.0

Edge Gateway
Raspberry Pi 4 Model B, Ubuntu

20.04 64 bit

Client Service Provider (Spring Boot 2.1.4, HTTP Client 4.5.10,

Bootstrap 3.3.7, JQuery 3.4.1)

Intelligent Service Provider (TensorFlow-Lite 2.1.0, Flask 1.1.2)

Rules Engine (Spring Boot 2.1.4, Drools 7.11)

EdgeX Core and Device Proxy (EdgeX Fuji)

Edge Server PC, Windows 10 pro 64 bit IoTivity 1.2/Californium CoAP/Jetty 9.1

Figure 7. Implemented entities of the proposed embedded edge computing.

The edge gateway includes modules of the client service provider, intelligent service
provider, EdgeX core, rules engine and device proxy for providing services to edge client
and IoT device. Spring Boot 2.1.4 is used for developing the client service provider and
rules engine to provide microservices. EdgeX core are implemented using Go to provide
web services through multiple microservice providers. Additionally, the device proxy is
implemented using Go based on the implementation template from the EdgeX foundry.
The intelligent service provider is developed in Python based on Flask framework to
provide microservices. In the experiment, these modules are deployed in a Raspberry Pi 4,
which includes 4 GB memory to run the Ubuntu 64 bit OS smoothly.

The IoT device is an Android application that runs on the Android Thins platform
based on Raspberry Pi 3. Jetty is a Java library used for implementing the HTTP server
on the IoT device to provide web services. TensorFlow lite is used for implementing the
environment emulator on the IoT device to emulate the indoor environment and heater.
Volley is an Android library for implanting the HTTP client. The HTTP client is used for
publishing evens to the edge gateway to trigger the intelligent approach based on the rules
engine.

The edge server provides the inference model through training the building user data
using the Deep Neural Network (DNN) learning model on the high-performance machine.
The learning model is implemented based on TensorFlow 2 framework in the Python
environment. In the first step, the edge server outputs a TensorFlow DNN model, which is
a folder that includes multiple files. Then, a converter is used to convert the model to a
TensorFlow lite model, which is a single file with the extension tflite. Finally, we deploy
the file to the edge gateway to provide intelligent services.

The detailed development environments of the IoT device, edge gateway and edge
server are presented in Table 1, including the platforms, frameworks and libraries.

Table 1. Development Environment.

Entity Platform Frameworks and Libraries

IoT Device Raspberry Pi 3 Model B, Android Things 1.0
(Android SDK 27) Jetty 9.1.0, Volley 1.1.0, TensorFlow-Lite 1.10.0

Edge Gateway Raspberry Pi 4 Model B, Ubuntu 20.04 64 bit

Client Service Provider (Spring Boot 2.1.4, HTTP
Client 4.5.10, Bootstrap 3.3.7, JQuery 3.4.1)

Intelligent Service Provider (TensorFlow-Lite 2.1.0,
Flask 1.1.2)

Rules Engine (Spring Boot 2.1.4, Drools 7.11)
EdgeX Core and Device Proxy (EdgeX Fuji)

Edge Server PC, Windows 10 pro 64 bit IoTivity 1.2/Californium CoAP/Jetty 9.1

Sensors 2021, 21, 630 10 of 21

Figure 8 shows the implementation result of the proposed edge gateway, which
comprises five microservice providers, including client service, intelligent service, rules
engine, EdgeX core and device proxy. The providers run on the edge gateway based on
Raspberry Pi 4, which can provide sufficient storage and computing ability. The client
service provider provides services to edge clients for visualizing information through
UIs and by forwarding the requests to the EdgeX core. The intelligent service provider
includes the smart heater model, which was developed using TensorFlow Lite to provide
the embedded inference approach through interpreting the DNN model.

Sensors 2021, 21, x FOR PEER REVIEW 10 of 21

Figure 8 shows the implementation result of the proposed edge gateway, which com-

prises five microservice providers, including client service, intelligent service, rules en-

gine, EdgeX core and device proxy. The providers run on the edge gateway based on

Raspberry Pi 4, which can provide sufficient storage and computing ability. The client

service provider provides services to edge clients for visualizing information through UIs

and by forwarding the requests to the EdgeX core. The intelligent service provider in-

cludes the smart heater model, which was developed using TensorFlow Lite to provide

the embedded inference approach through interpreting the DNN model.

Figure 8. Implementation of the microservice providers run on edge gateway.

The rules engine, EdgeX core and device proxy are developed based on the EdgeX

framework. The rules engine includes rules management that is developed using Drools

to provide the rule-based service scenario. Drools is a framework that provide the rule-

based approach to implement the knowledge-based systems using rules. The rules repre-

sents the knowledge to process acquired knowledge into a knowledge base that is used

for reasoning to operate the corresponding actions. The rules engine can be implemented

based on the if-then-else concept by a simple implementation. However, the EdgeX frame-

work adopts the Drools framework as the default solution to implement the rules engine.

Therefore, we use the Dloors framework to implement the dynamic approach for selecting

the inference model to provide the intelligence in edge computing. The microservices of

the intelligent service provider are triggered by the rules engine. The rules engine always

detects events from the EdgeX core. The EdgeX core exposes management functions of

device, data, etc. through APIs. Additionally, the provider exposes an event publishing

API to receive sensing and status data from IoT devices. The device proxy registers the

information of IoT devices that are deployed in the same network with the edge gateway,

and forwards the request to the IoT devices. We captured the application running status

using htop, which is an application monitoring software to monitor memory, processing

and other additional information.

Figure 9 shows the implementation details of the DNN-based inference model that is

deployed in the intelligent service provider module to provide intelligent services. The

edge server is a high-performance computer that is used for processing the building user

data in the smart heater learning model to result in the DNN prediction model. The file

Figure 8. Implementation of the microservice providers run on edge gateway.

The rules engine, EdgeX core and device proxy are developed based on the EdgeX
framework. The rules engine includes rules management that is developed using Drools to
provide the rule-based service scenario. Drools is a framework that provide the rule-based
approach to implement the knowledge-based systems using rules. The rules represents the
knowledge to process acquired knowledge into a knowledge base that is used for reasoning
to operate the corresponding actions. The rules engine can be implemented based on the
if-then-else concept by a simple implementation. However, the EdgeX framework adopts the
Drools framework as the default solution to implement the rules engine. Therefore, we use
the Dloors framework to implement the dynamic approach for selecting the inference model
to provide the intelligence in edge computing. The microservices of the intelligent service
provider are triggered by the rules engine. The rules engine always detects events from the
EdgeX core. The EdgeX core exposes management functions of device, data, etc. through
APIs. Additionally, the provider exposes an event publishing API to receive sensing and
status data from IoT devices. The device proxy registers the information of IoT devices that
are deployed in the same network with the edge gateway, and forwards the request to the
IoT devices. We captured the application running status using htop, which is an application
monitoring software to monitor memory, processing and other additional information.

Figure 9 shows the implementation details of the DNN-based inference model that is
deployed in the intelligent service provider module to provide intelligent services. The
edge server is a high-performance computer that is used for processing the building user
data in the smart heater learning model to result in the DNN prediction model. The
file ai_model.tflite contains the DNN prediction model that is derived from the smart
heater learning model. The learning model is a DNN that is developed in TensorFlow for
learning the building user data. The DNN comprises five hidden layers, and each layer

Sensors 2021, 21, 630 11 of 21

has 30 nodes. The input layer has five nodes, including TS, IT, IH, OT and OH, which
stand for the time sequence, indoor temperature, indoor humidity, outdoor temperature,
and outdoor humidity, respectively. EC is a node in the output layer which stands for
energy consumption. The learning model is trained by the building user data. TS, IT, IH,
OT and OH are the input of the learning model that derives the EC. The input parameters
present the environment where the user is involved. In a status of the environment, the user
updates the environment to be a user-desired status using the heater through consuming
the energy that is presented by EC. Therefore, we train the leaning model using input
parameters TS, IT, IH, OT and OH with the output parameter EC to derive the inference
model for providing a value to update the environment to be a user-desired environment.
The building user data includes the time sequence, indoor temperature, indoor humidity,
outdoor temperature, outdoor humidity and heater’s energy consumption. The data
contain 26,208 rows that are collected from 1 January 2014 to 30 September 2014 with
15-min intervals. For training the DNN model with the building user data, the input
dimension is (1, 5) and the output demension is (1, 1). The data are applied on the proposed
DNN model with 3000 epochs to get a satisfying result for deploying in the intelligent
service provider. However, the training process takes several minutes on the edge server;
the inference model can derive the result in few microseconds (ms) in the edge gateway.

Sensors 2021, 21, x FOR PEER REVIEW 11 of 21

ai_model.tflite contains the DNN prediction model that is derived from the smart heater

learning model. The learning model is a DNN that is developed in TensorFlow for learn-

ing the building user data. The DNN comprises five hidden layers, and each layer has 30

nodes. The input layer has five nodes, including TS, IT, IH, OT and OH, which stand for

the time sequence, indoor temperature, indoor humidity, outdoor temperature, and out-

door humidity, respectively. EC is a node in the output layer which stands for energy

consumption. The learning model is trained by the building user data. TS, IT, IH, OT and

OH are the input of the learning model that derives the EC. The input parameters present

the environment where the user is involved. In a status of the environment, the user up-

dates the environment to be a user-desired status using the heater through consuming the

energy that is presented by EC. Therefore, we train the leaning model using input param-

eters TS, IT, IH, OT and OH with the output parameter EC to derive the inference model

for providing a value to update the environment to be a user-desired environment. The

building user data includes the time sequence, indoor temperature, indoor humidity, out-

door temperature, outdoor humidity and heater’s energy consumption. The data contain

26,208 rows that are collected from 1 January 2014 to 30 September 2014 with 15-min in-

tervals. For training the DNN model with the building user data, the input dimension is

(1, 5) and the output demension is (1, 1). The data are applied on the proposed DNN model

with 3000 epochs to get a satisfying result for deploying in the intelligent service provider.

However, the training process takes several minutes on the edge server; the inference

model can derive the result in few microseconds (ms) in the edge gateway.

Figure 9. Implementation of the Deep Neural Network (DNN) model using building user data for

predicting heater energy consumption.

Figure 10 shows the implementation of the IoT device. The requests to the IoT device

are sent by the edge gateway through the device proxy. The implemented IoT device pro-

vides services through resource classes CuurResource, HeaterResource, IhResource, ItRe-

source, OhResource and OtResource. On the edge of the network, the exposed IoT services

are /it, /ih, /ot and /oh for sensing indoor and outdoor temperature and humidity, and

/heater for actuating the heater. The IoT device includes an emulator of the user environ-

ment that was developed based on TensorFlow lite. The emulator includes a TensorFlow

prediction model that predicts the updated environment parameters by the current envi-

ronment with the heater energy consumption. The IoT device is requested for getting sens-

ing and status data from the edge client, and controlling the heater based on intelligent

operation through the rules engine.

Figure 9. Implementation of the Deep Neural Network (DNN) model using building user data for
predicting heater energy consumption.

Figure 10 shows the implementation of the IoT device. The requests to the IoT device
are sent by the edge gateway through the device proxy. The implemented IoT device
provides services through resource classes CuurResource, HeaterResource, IhResource,
ItResource, OhResource and OtResource. On the edge of the network, the exposed IoT
services are /it, /ih, /ot and /oh for sensing indoor and outdoor temperature and humidity,
and /heater for actuating the heater. The IoT device includes an emulator of the user
environment that was developed based on TensorFlow lite. The emulator includes a
TensorFlow prediction model that predicts the updated environment parameters by the
current environment with the heater energy consumption. The IoT device is requested for
getting sensing and status data from the edge client, and controlling the heater based on
intelligent operation through the rules engine.

Sensors 2021, 21, 630 12 of 21
Sensors 2021, 21, x FOR PEER REVIEW 12 of 21

Figure 10. Implementation result of accessing IoT device based on rules engine and edge client.

Figure 11 shows the Drools template for creating the Drools profile. The profile is

used for operating the proposed intelligent scenarios in the rules engine based on the

Drools framework. Once rule information is delivered by the client service provider to the

rules engine, the information is converted to a Drools file with file extension drl. The tem-

perate defines the format of the Drools file, which includes the event filter list and objec-

tive function. An event comes with the name of the resources, which are defined in the

Drools rule for triggering the objective function. The temperate creates a rule with device

ID, resource name list, objective device ID and command ID. The device ID and resource

name list are used for the rule condition. The objective device ID and command ID are

used for operating the goal based on the rule.

Figure 11. Drools template in the rules engine for creating a Drools profile.

Figure 10. Implementation result of accessing IoT device based on rules engine and edge client.

Figure 11 shows the Drools template for creating the Drools profile. The profile is
used for operating the proposed intelligent scenarios in the rules engine based on the
Drools framework. Once rule information is delivered by the client service provider to
the rules engine, the information is converted to a Drools file with file extension drl. The
temperate defines the format of the Drools file, which includes the event filter list and
objective function. An event comes with the name of the resources, which are defined in
the Drools rule for triggering the objective function. The temperate creates a rule with
device ID, resource name list, objective device ID and command ID. The device ID and
resource name list are used for the rule condition. The objective device ID and command
ID are used for operating the goal based on the rule.

Sensors 2021, 21, x FOR PEER REVIEW 12 of 21

Figure 10. Implementation result of accessing IoT device based on rules engine and edge client.

Figure 11 shows the Drools template for creating the Drools profile. The profile is

used for operating the proposed intelligent scenarios in the rules engine based on the

Drools framework. Once rule information is delivered by the client service provider to the

rules engine, the information is converted to a Drools file with file extension drl. The tem-

perate defines the format of the Drools file, which includes the event filter list and objec-

tive function. An event comes with the name of the resources, which are defined in the

Drools rule for triggering the objective function. The temperate creates a rule with device

ID, resource name list, objective device ID and command ID. The device ID and resource

name list are used for the rule condition. The objective device ID and command ID are

used for operating the goal based on the rule.

Figure 11. Drools template in the rules engine for creating a Drools profile. Figure 11. Drools template in the rules engine for creating a Drools profile.

Sensors 2021, 21, 630 13 of 21

Figure 12 shows the implementation result of edge client that presents the information
of an IoT device. The information is delivered from the EdgeX core through the Internet.
For presenting the device information to users, the client shows the list of retrieved devices
that are deployed in the same network with the edge gateway. Once an item is selected
by a user, then the client shows detailed information of the selected device, and the page
includes a link to the detail control page for sending commands to the IoT device.

Sensors 2021, 21, x FOR PEER REVIEW 13 of 21

Figure 12 shows the implementation result of edge client that presents the infor-

mation of an IoT device. The information is delivered from the EdgeX core through the

Internet. For presenting the device information to users, the client shows the list of re-

trieved devices that are deployed in the same network with the edge gateway. Once an

item is selected by a user, then the client shows detailed information of the selected device,

and the page includes a link to the detail control page for sending commands to the IoT

device.

Figure 12. Presentation of the IoT device information on the edge client.

Figure 13 shows the implementation result of the edge client for data visualization.

The implemented IoT device provides five resources, including four sensors and one ac-

tuator. However, the IoT device sends six parameters, including a timestamp with the

sensing data and actuator status. The client provides data visualization by retrieving the

stored data from the edge gateway. Using the data, the client displays the maximum, min-

imum, average and standard deviation by deriving the statistical values.

Figure 12. Presentation of the IoT device information on the edge client.

Figure 13 shows the implementation result of the edge client for data visualization.
The implemented IoT device provides five resources, including four sensors and one
actuator. However, the IoT device sends six parameters, including a timestamp with the
sensing data and actuator status. The client provides data visualization by retrieving the
stored data from the edge gateway. Using the data, the client displays the maximum,
minimum, average and standard deviation by deriving the statistical values.

Sensors 2021, 21, 630 14 of 21
Sensors 2021, 21, x FOR PEER REVIEW 14 of 21

Figure 13. Data visualization on edge client.

Figure 14 shows the implementation result of rules management in the edge client.

A rule can be uploaded by a client through the edge client. The rule is deployed in the

edge gateway to operate the intelligent scenario once the rule is triggered by the published

event. For managing rules in the proposed edge computing, the edge client provides list,

form and detail pages for retrieving and uploading rule information. The rule list page

provides a list of retrieved rules that are uploaded by users through the rule form page.

The rule form page provides a form for filling the information of a new rule, and through

the client service provider, sends this to the rules engine, which converts the rule infor-

mation to a Drools file. Detailed information of a rule is retrieved from the client service,

which saves the rule information when the rule is uploaded.

Figure 14. Rules management using edge client.

Rule List Page

Rule Form Page Rule Detail Page

Figure 13. Data visualization on edge client.

Figure 14 shows the implementation result of rules management in the edge client. A
rule can be uploaded by a client through the edge client. The rule is deployed in the edge
gateway to operate the intelligent scenario once the rule is triggered by the published event.
For managing rules in the proposed edge computing, the edge client provides list, form
and detail pages for retrieving and uploading rule information. The rule list page provides
a list of retrieved rules that are uploaded by users through the rule form page. The rule
form page provides a form for filling the information of a new rule, and through the client
service provider, sends this to the rules engine, which converts the rule information to a
Drools file. Detailed information of a rule is retrieved from the client service, which saves
the rule information when the rule is uploaded.

Sensors 2021, 21, x FOR PEER REVIEW 14 of 21

Figure 13. Data visualization on edge client.

Figure 14 shows the implementation result of rules management in the edge client.

A rule can be uploaded by a client through the edge client. The rule is deployed in the

edge gateway to operate the intelligent scenario once the rule is triggered by the published

event. For managing rules in the proposed edge computing, the edge client provides list,

form and detail pages for retrieving and uploading rule information. The rule list page

provides a list of retrieved rules that are uploaded by users through the rule form page.

The rule form page provides a form for filling the information of a new rule, and through

the client service provider, sends this to the rules engine, which converts the rule infor-

mation to a Drools file. Detailed information of a rule is retrieved from the client service,

which saves the rule information when the rule is uploaded.

Figure 14. Rules management using edge client.

Rule List Page

Rule Form Page Rule Detail Page

Figure 14. Rules management using edge client.

Sensors 2021, 21, 630 15 of 21

6. Performance Evaluation

For evaluating the performance of computational resources, the memory usage of the
proposed edge gateway on the Raspberry Pi 4 is presented in Figure 15. The total memory
of the device is 3,884,376 kb, in which the run processes take 1,499,948 kb. The device
runs the proposed modules to provide the dynamic inference approach in intelligent edge
computing. However, the memory ability is sufficient for running these processes. In
the running processes, the edge gateway takes 1,024,596 kb, and 470,352 kb is used for
other processes, including running the OS. The rules engine and client service provider
modules use the most memory. Both modules are developed in Java to provide web
services. Therefore, the Java applications based on Java Virtual Machine (JVM) use more
memory. Increasing the rules in the rules engine does not increase the memory usage
of the module. The intelligent service provider takes 46,216 kb for providing intelligent
approaches based on the TensorFlow lite model. The memory usage is not increased by
increasing the count of the model in the intelligent service provider. The EdgeX core
runs on the Docker container, which is developed in Go to provide microservices through
consuming 44,488 kb of memory. The device proxy is also developed in Go to provide
services that use 19,460 kb of memory. According to the experiment, Go-based modules
use less memory than Java-based modules, while they provide more functions through
microservices.

Sensors 2021, 21, x FOR PEER REVIEW 15 of 21

6. Performance Evaluation

For evaluating the performance of computational resources, the memory usage of the

proposed edge gateway on the Raspberry Pi 4 is presented in Figure 15. The total memory

of the device is 3,884,376 kb, in which the run processes take 1,499,948 kb. The device runs

the proposed modules to provide the dynamic inference approach in intelligent edge com-

puting. However, the memory ability is sufficient for running these processes. In the run-

ning processes, the edge gateway takes 1,024,596 kb, and 470,352 kb is used for other pro-

cesses, including running the OS. The rules engine and client service provider modules

use the most memory. Both modules are developed in Java to provide web services. There-

fore, the Java applications based on Java Virtual Machine (JVM) use more memory. In-

creasing the rules in the rules engine does not increase the memory usage of the module.

The intelligent service provider takes 46,216 kb for providing intelligent approaches based

on the TensorFlow lite model. The memory usage is not increased by increasing the count

of the model in the intelligent service provider. The EdgeX core runs on the Docker con-

tainer, which is developed in Go to provide microservices through consuming 44,488 kb

of memory. The device proxy is also developed in Go to provide services that use 19,460

kb of memory. According to the experiment, Go-based modules use less memory than

Java-based modules, while they provide more functions through microservices.

Figure 15. Proposed edge gateway memory usage.

As shown in Figure 16, the experiment of the performance evaluation is performed

through two types of network configurations. The proposed edge computing is config-

ured based on deploying the intelligent function in the edge gateway, which provides the

intelligent service that is performed close to the environment where the data are gener-

ated. For a comparison with the proposed approach, the external intelligent function is

proposed, which is configured based on deploying the intelligent function in the cloud

server. The external intelligent function provides the intelligent service from the high-

performance server through the Internet. However, the inference model in the server pro-

cess the request quickly based on sufficient computing ability. Nevertheless, the network

delay is a potential issue in the overall latency. In the experiment with the internal intelli-

gent function, the IoT device sends the event to the rules engine through the EdgeX core.

Then, the rule is triggered and the microservice of the intelligent function is invoked by

the rules engine. The delivered inference data is used for updating the environment by

the edge gateway. The overall process is performed in the network edge. In the experi-

ment with an external intelligent function, once the rule is triggered, the rules engine re-

quests the cloud server to get the control factor, and applies the data to the environment.

For providing the performance evaluation, the process delays are collected and presented

through comparisons.

Figure 15. Proposed edge gateway memory usage.

As shown in Figure 16, the experiment of the performance evaluation is performed
through two types of network configurations. The proposed edge computing is configured
based on deploying the intelligent function in the edge gateway, which provides the
intelligent service that is performed close to the environment where the data are generated.
For a comparison with the proposed approach, the external intelligent function is proposed,
which is configured based on deploying the intelligent function in the cloud server. The
external intelligent function provides the intelligent service from the high-performance
server through the Internet. However, the inference model in the server process the
request quickly based on sufficient computing ability. Nevertheless, the network delay
is a potential issue in the overall latency. In the experiment with the internal intelligent
function, the IoT device sends the event to the rules engine through the EdgeX core. Then,
the rule is triggered and the microservice of the intelligent function is invoked by the
rules engine. The delivered inference data is used for updating the environment by the
edge gateway. The overall process is performed in the network edge. In the experiment
with an external intelligent function, once the rule is triggered, the rules engine requests
the cloud server to get the control factor, and applies the data to the environment. For

Sensors 2021, 21, 630 16 of 21

providing the performance evaluation, the process delays are collected and presented
through comparisons.

Sensors 2021, 21, x FOR PEER REVIEW 16 of 21

Figure 16. Network architecture for experimenting internal and external intelligent functions. (a) Internal intelligent func-

tion. (b) External intelligent function.

Figure 17 shows request delays for operating intelligent services based on the edge

gateway in the network edge. For evaluating the performance of the operation latency,

the comparisons between deploying the intelligent service provider on the inside and out-

side of the edge gateway are presented.

Figure 17. Performance of request delays for intelligent operation. (a) Operating intelligent func-

tion time. (b) Invoking intelligent function time. (c) Total operation time.

Figure 16. Network architecture for experimenting internal and external intelligent functions. (a) Internal intelligent
function. (b) External intelligent function.

Figure 17 shows request delays for operating intelligent services based on the edge
gateway in the network edge. For evaluating the performance of the operation latency, the
comparisons between deploying the intelligent service provider on the inside and outside
of the edge gateway are presented.

Sensors 2021, 21, x FOR PEER REVIEW 16 of 21

Figure 16. Network architecture for experimenting internal and external intelligent functions. (a) Internal intelligent func-

tion. (b) External intelligent function.

Figure 17 shows request delays for operating intelligent services based on the edge

gateway in the network edge. For evaluating the performance of the operation latency,

the comparisons between deploying the intelligent service provider on the inside and out-

side of the edge gateway are presented.

Figure 17. Performance of request delays for intelligent operation. (a) Operating intelligent func-

tion time. (b) Invoking intelligent function time. (c) Total operation time.

Figure 17. Performance of request delays for intelligent operation. (a) Operating intelligent function
time. (b) Invoking intelligent function time. (c) Total operation time.

Sensors 2021, 21, 630 17 of 21

Figure 17a presents the operation time of the intelligent function in the intelligent
service provider module. IF means that the intelligent service provider module is deployed
in the edge gateway to operate the intelligent function. EF mean thats the intelligent service
provider module is deployed in the external machine. In this experiment, the external
machine is a PC that includes i5-8400 CPU with SSD to provide a high-performance
computing ability in a different network. Therefore, the EF presents less latency for
operating the intelligent function. Nevertheless, the intelligent function operation provides
small latency in the overall process.

Figure 17b presents delays for invoking the intelligent function from the rules engine.
RIF means invoking the internal intelligent function and REF means invoking the external
intelligent function. The average latency shows the REF takes more time than the RIF.
Although the EF takes less time for operating the intelligent function, the overall process
for invoking the intelligent function through microservices takes more time because of the
network delay. Figure 17c presents delays for the process, which includes event publishing
of IoT device, rule activation in the rules engine, invoking the intelligent function of
the intelligent service provider and sending the command to IoT device. IRIF means
the experiment with the internal intelligent service provider support and IREF means
the experiment with the external intelligent service provider. Through this experiment,
deploying the intelligent function in the edge gateway takes less latency even when the
edge gateway is deployed in a small machine with a constrained specification.

According to the experimental results, the external server machine takes less time
than the edge gateway for operating the intelligent function due to its sufficient computing
resources. However, edge computing enables the computational process close to the
environment where the data are collected and applied. Therefore, the presented results
depict that the proposed edge gateway takes less average time in the overall process, which
is enabled to handle the operation of real-time intelligent scenarios in the network edge.

We applied intelligent edge computing to the building environment by predicting
the energy consumption to update the environment to be the user-desired condition.
Experimenting the intelligent services in a real environment requires too many resources
and costs for evaluating the quality of services. Therefore, the operation of the intelligent
scenario is performed in the emulated environment that is developed using deep learning
models with the user data. The environment emulator includes two models, including the
indoor temperature prediction model and the indoor humidity prediction model, which
are used for updating the indoor temperature and humidity, respectively. The models
receive the indoor temperature/humidity, outdoor temperature/humidity and energy
consumption as the inputs to predict the indoor temperature or humidity. The IoT device
gets the updated indoor temperature and humidity from the environment emulator and
publishes this to the edge gateway to continue a rotation of the intelligent scenario. Each
prediction model is trained using the same user data that are also used for the inference
model in the intelligent service provider. The Mean Absolute Percentage Error (MAPE) for
the temperature and humidity prediction models are, respectively, 2.65% and 4.27%, which
are insufficient as compared to the real environment. Nevertheless, the evaluation results
can be referred to to develop the intelligent scenario testbed.

The specification of the smart heater model that depicts the output is the user-desired
energy consumption for operating the heater to update the indoor temperature and hu-
midity in the building. The model is developed based on the proposed DNN with the
building user data, which are compared with the result to evaluate the performance of the
prediction accuracy. Based on the model, the edge gateway applies the energy consumption
on the IoT device, and the IoT device updates the temperature and humidity through the
heater. Figure 18 depicts the performance of the smart heater model by comparing the
operating energy consumption with the original data. The model is derived using the smart
heater learning model based on DNN and building user data for providing the energy
consumption from the intelligent service provider module in the edge gateway. The energy
consumption result is collected 96 times. One day is separated into 96 time points, and

Sensors 2021, 21, 630 18 of 21

each time point lasts 15 min. The smart heater model applies 100 watts when the indoor
temperature is too low. The collected results present similar data to the original data.

Sensors 2021, 21, x FOR PEER REVIEW 18 of 21

energy consumption result is collected 96 times. One day is separated into 96 time points,

and each time point lasts 15 min. The smart heater model applies 100 watts when the

indoor temperature is too low. The collected results present similar data to the original

data.

Figure 18. Energy consumption comparison of intelligent heater operation and original user data.

Figure 19 shows the temperature data comparison between the experimental result

and the original user data. The indoor temperature is updated by the heater that is oper-

ated by the edge gateway. Using the building user data, the model is developed for the

indoor environment. Therefore, the temperature is similar to the original data. However,

the operating temperature is kept at 24 degrees Celsius. The reason for this is that the

model is configured to control the heater to always keep the indoor temperature higher

than 24 degrees Celsius. The result of operating heater energy consumption illustrates that

the heater sometimes consumes the maximum amount of energy.

Figure 19. Temperature data comparison of experimental result and original user data.

Through the proposed experiment, we present the performance of the intelligent ap-

proach that is offloaded to the network edge. The latency performance illustrates the pro-

posed edge computing is enabled to handle the intelligent operation immediately in the

network edge. Then, the performance of the prediction results illustrates that the intelli-

gent approaches are performed in the network edge for building environment control.

Figure 18. Energy consumption comparison of intelligent heater operation and original user data.

Figure 19 shows the temperature data comparison between the experimental result
and the original user data. The indoor temperature is updated by the heater that is operated
by the edge gateway. Using the building user data, the model is developed for the indoor
environment. Therefore, the temperature is similar to the original data. However, the
operating temperature is kept at 24 degrees Celsius. The reason for this is that the model
is configured to control the heater to always keep the indoor temperature higher than
24 degrees Celsius. The result of operating heater energy consumption illustrates that the
heater sometimes consumes the maximum amount of energy.

Sensors 2021, 21, x FOR PEER REVIEW 18 of 21

energy consumption result is collected 96 times. One day is separated into 96 time points,

and each time point lasts 15 min. The smart heater model applies 100 watts when the

indoor temperature is too low. The collected results present similar data to the original

data.

Figure 18. Energy consumption comparison of intelligent heater operation and original user data.

Figure 19 shows the temperature data comparison between the experimental result

and the original user data. The indoor temperature is updated by the heater that is oper-

ated by the edge gateway. Using the building user data, the model is developed for the

indoor environment. Therefore, the temperature is similar to the original data. However,

the operating temperature is kept at 24 degrees Celsius. The reason for this is that the

model is configured to control the heater to always keep the indoor temperature higher

than 24 degrees Celsius. The result of operating heater energy consumption illustrates that

the heater sometimes consumes the maximum amount of energy.

Figure 19. Temperature data comparison of experimental result and original user data.

Through the proposed experiment, we present the performance of the intelligent ap-

proach that is offloaded to the network edge. The latency performance illustrates the pro-

posed edge computing is enabled to handle the intelligent operation immediately in the

network edge. Then, the performance of the prediction results illustrates that the intelli-

gent approaches are performed in the network edge for building environment control.

Figure 19. Temperature data comparison of experimental result and original user data.

Through the proposed experiment, we present the performance of the intelligent
approach that is offloaded to the network edge. The latency performance illustrates the
proposed edge computing is enabled to handle the intelligent operation immediately in the
network edge. Then, the performance of the prediction results illustrates that the intelligent
approaches are performed in the network edge for building environment control.

7. Conclusions and Future Directions

We proposed an intelligent edge computing for building environment control through
providing a dynamic inference approach using the edge gateway. The edge gateway in-
cludes the inference model to provide the intelligent service close to the environment where

Sensors 2021, 21, 630 19 of 21

the sensors and actuators are deployed for collecting environmental data and updating the
environment. Therefore, offloading the intelligent function to the network edge reduces the
process latency for real-time control. According to the experimental results, the external
server machine takes less time than the edge gateway for operating the intelligent function
due to its sufficient computing resources. Nevertheless, the presented results depict that the
edge gateway takes a less average time in the overall process. Moreover, the edge gateway
includes rules engine to provide an intelligent service dynamically through selecting one of
the multiple intelligent service providers. The microservices architecture enables deploying
multiple service providers to interact with internal functions in the runtime of the edge
gateway. According to the experimental results, operating the proposed microservices
modules in the network edge based on the edge gateway is sufficient for providing device
management, device proxy, client service, intelligent service and rules engine.

For providing the dynamic inference approach in edge computing, a rules engine and
an intelligent service provider are included on the edge gateway to select and operate the
intelligent model. Comparing with emerging IoT and edge computing architecture such
as Open Conectivity Foundation (OCF) [50] and oneM2M [51], microservice implementa-
tion is the key to enable the dynamic inference model in the edge computing. The core
specification of OCF provides the functionality of messaging, discovery, monitoring and
maintenance based on the fundamental communication ability for constrained devices.
Recently, the OCF core optional specification provide the rule mechanism based on the rule-
specific resource that selects a function to operate based on an if-then-else structure [52].
However, the intelligent approach is not considered the base of the OCF reosurces. Dif-
ferent from OCF and EdgeX, the oneM2M addresses large-scale industrial solutions for
logistic, factories and cities. For the implementation of oneM2M, the edge computing node
is construted as a Middle Node-Common Service Entity (MN-CSE). The intelligent model
can be deployed in the Application Entity (AE) on top of MN-CSE to provide intelligent
services in the network edge [53]. However, the deployment of multiple intelligent models
in runtime is not supported in the CES. Additionally, the rule management is not supported
to operate an AE.

In the future, we will develop more inference models to deploy on the proposed edge
gateway to operate multiple intelligent scenarios in the IoT network. Then, based on the
multiple inference models, we can apply an optimization approach to select the optimal
model. Moreover, we will develop an automatic offloading mechanism to update the
inference models in the proposed edge gateway.

Author Contributions: W.J., R.X., S.L., D.-H.P., C.P. and D.K. designed the overall system. W.J.
implemented the overall system and performed experiments. W.J. and D.K. wrote this paper. All
authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: No statement.

Acknowledgments: This work was supported by the Institute of Information & communications
Technology Planning & Evaluation (IITP) grant funded by the Korea government (MSIT) (2020-0-
00048, Development of 5G-IoT Trustworthy AI-Data Commons Framework). Any correspondence
related to this paper should be addressed to Dohyeun Kim.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Shi, W.; Cao, J.; Zhang, Q.; Li, Y.; Xu, L. Edge Computing: Vision and Challenges. IEEE Internet Things J. 2016, 3, 637–646.

[CrossRef]
2. Shi, W.; Dustdar, S. The Promise of Edge Computing. Computer 2016, 49, 78–81. [CrossRef]

http://doi.org/10.1109/JIOT.2016.2579198
http://doi.org/10.1109/MC.2016.145

Sensors 2021, 21, 630 20 of 21

3. Hong, C.-H.; Varghese, B. Resource management in fog/edge computing: A survey on architectures, infrastructure, and
algo-rithms. ACM Comput. Surv. 2019, 52, 1–37.

4. Khan, W.Z.; Ahmed, E.; Hakak, S.; Yaqoob, I.; Ahmed, A. Edge computing: A survey. Futur. Gener. Comput. Syst. 2019, 97,
219–235. [CrossRef]

5. Yu, W.; Liang, F.; He, X.; Hatcher, W.G.; Lu, C.; Lin, J.; Yang, X. A Survey on the Edge Computing for the Internet of Things. IEEE
Access 2018, 6, 6900–6919. [CrossRef]

6. Want, R.; Schilit, B.N.; Jenson, S. Enabling the Internet of Things. Computer 2015, 48, 28–35. [CrossRef]
7. Jin, W.; Kim, D. A Sleep Scheme Based on MQ Broker Using Subscribe/Publish in IoT Network. Int. J. Adv. Sci. Eng. Inf. Technol.

2018, 8, 539–545. [CrossRef]
8. Al-Fuqaha, A.I.; Guizani, M.; Mohammadi, M.; Aledhari, M.; Ayyash, M. Internet of Things: A Survey on Enabling Technologies,

Protocols, and Applications. IEEE Commun. Surv. Tutor. 2015, 17, 2347–2376. [CrossRef]
9. Salman, O.; Elhajj, I.; Kayssi, A.I.; Chehab, A. Edge computing enabling the Internet of Things. In Proceedings of the 2015 IEEE

2nd World Forum on Internet of Things (WF-IoT), Milan, Italy, 14–16 December 2015; pp. 603–608.
10. Yousefpour, A.; Fung, C.; Nguyen, T.; Kadiyala, K.; Jalali, F.; Niakanlahiji, A.; Kong, J.; Jue, J.P. All one needs to know about fog

computing and related edge computing paradigms: A complete survey. J. Syst. Arch. 2019, 98, 289–330. [CrossRef]
11. Liu, C.-F.; Bennis, M.; Debbah, M.; Poor, H.V. Dynamic Task Offloading and Resource Allocation for Ultra-Reliable Low-Latency

Edge Computing. IEEE Trans. Commun. 2019, 67, 4132–4150. [CrossRef]
12. Morabito, R.; Petrolo, R.; Loscrí, V.; Mitton, N. LEGIoT: A Lightweight Edge Gateway for the Internet of Things. Futur. Gener.

Comput. Syst. 2018, 81, 1–15. [CrossRef]
13. Chen, C.-H.; Lin, M.-Y.; Liu, C.-C. Edge Computing Gateway of the Industrial Internet of Things Using Multiple Collaborative

Microcontrollers. IEEE Netw. 2018, 32, 24–32. [CrossRef]
14. Morabito, R.; Petrolo, R.; Loscrí, V.; Mitton, N. Enabling a lightweight Edge Gateway-as-a-Service for the Internet of Things. In

Proceedings of the 2016 7th International Conference on the Network of the Future (NOF), Buzios, Brazil, 16–18 November 2016;
pp. 1–5.

15. Jin, W.; Kim, D.-H. IoT device management architecture based on proxy. In Proceedings of the 2017 6th International Conference
on Computer Science and Network Technology (ICCSNT), Dalian, China, 21–22 October 2017; pp. 84–87.

16. Jin, W.; Kim, D. Resource Management Based on OCF for Device Self-Registration and Status Detection in IoT Networks.
Electronics 2019, 8, 311. [CrossRef]

17. Jin, W.; Kim, D. Development of Virtual Resource Based IoT Proxy for Bridging Heterogeneous Web Services in IoT Networks.
Sensors 2018, 18, 1721. [CrossRef]

18. Jin, W.; Kim, D. Improved Resource Directory Based on DNS Name Self-Registration for Device Transparent Access in Heteroge-
neous IoT Networks. IEEE Access 2019, 7, 112859–112869. [CrossRef]

19. Zhou, Z.; Chen, X.; Li, E.; Zeng, L.; Luo, K.; Zhang, J. Edge Intelligence: Paving the Last Mile of Artificial Intelligence with Edge
Computing. Proc. IEEE 2019, 107, 1738–1762. [CrossRef]

20. Dragoni, N.; Giallorenzo, S.; Lafuente, A.L.; Mazzara, M.; Montesi, F.; Mustafin, R.; Safina, L. Microservices: Yesterday, Today, and
Tomorrow. In Present and Ulterior Software Engineering; Mazzara, M., Meyer, B., Eds.; Springer International Publishing: Cham,
Switzerland, 2017; pp. 195–216. [CrossRef]

21. Di Francesco, P.; Lago, P.; Malavolta, I. Migrating Towards Microservice Architectures: An Industrial Survey. In Proceedings of
the 2018 IEEE International Conference on Software Architecture (ICSA), Seattle, WA, USA, 30 April–4 May 2018; pp. 29–2909.

22. Newman, S. Building Microservices: Designing Fine-Grained Systems; O’Reilly Media, Inc.: Sebastopol, CA, USA, 2015.
23. Fowler, M.; Lewis, J. Microservices; O’Reilly Media, Inc.: Sebastopol, CA, USA, 2014; Volume 1, p. 1.
24. Santana, C.; Alencar, B.; Prazeres, C. Microservices: A mapping study for internet of things solutions. In Proceedings of the 2018

IEEE 17th International Symposium on Network Computing and Applications (NCA), Cambridge, MA, USA, 1–3 November
2018; pp. 1–4.

25. LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [CrossRef]
26. Marquez, G.; Johnson, B.; Jafari, M.; Gomez, M. Online Machine Learning Based Predictor for Biological Systems. In Proceedings

of the 2019 IEEE Symposium Series on Computational Intelligence (SSCI), Xiamen, China, 6–9 December 2019; pp. 120–125.
27. Hoi, S.C.; Wang, J.; Zhao, P. Libol: A library for online learning algorithms. J. Mach. Learn. Res. 2014, 15, 495–499.
28. Edgex Foundry. Available online: https://www.edgexfoundry.org (accessed on 12 September 2020).
29. Liu, F.; Tang, G.; Li, Y.; Cai, Z.; Zhang, X.; Zhou, T. A Survey on Edge Computing Systems and Tools. Proc. IEEE 2019, 107,

1537–1562. [CrossRef]
30. Zhao, R.; Wang, X.; Xia, J.; Fan, L. Deep reinforcement learning based mobile edge computing for intelligent Internet of Things.

Phys. Commun. 2020, 43, 101184. [CrossRef]
31. Wang, X.; Han, Y.; Wang, C.; Zhao, Q.; Chen, X.; Chen, M. In-Edge AI: Intelligentizing Mobile Edge Computing, Caching and

Communication by Federated Learning. IEEE Netw. 2019, 33, 156–165. [CrossRef]
32. Mao, Y.; You, C.; Zhang, J.; Huang, K.; Letaief, K.B. A Survey on Mobile Edge Computing: The Communication Perspective. IEEE

Commun. Surv. Tutor. 2017, 19, 2322–2358. [CrossRef]
33. Sufyan, F.; Banerjee, A. Computation Offloading for Distributed Mobile Edge Computing Network: A Multiobjective Approach.

IEEE Access 2020, 8, 149915–149930. [CrossRef]

http://doi.org/10.1016/j.future.2019.02.050
http://doi.org/10.1109/ACCESS.2017.2778504
http://doi.org/10.1109/MC.2015.12
http://doi.org/10.18517/ijaseit.8.2.3099
http://doi.org/10.1109/COMST.2015.2444095
http://doi.org/10.1016/j.sysarc.2019.02.009
http://doi.org/10.1109/TCOMM.2019.2898573
http://doi.org/10.1016/j.future.2017.10.011
http://doi.org/10.1109/MNET.2018.1700146
http://doi.org/10.3390/electronics8030311
http://doi.org/10.3390/s18061721
http://doi.org/10.1109/ACCESS.2019.2935239
http://doi.org/10.1109/JPROC.2019.2918951
http://doi.org/10.1007/978-3-319-67425-4_12
http://doi.org/10.1038/nature14539
https://www.edgexfoundry.org
http://doi.org/10.1109/JPROC.2019.2920341
http://doi.org/10.1016/j.phycom.2020.101184
http://doi.org/10.1109/MNET.2019.1800286
http://doi.org/10.1109/COMST.2017.2745201
http://doi.org/10.1109/ACCESS.2020.3016046

Sensors 2021, 21, 630 21 of 21

34. Ceselli, A.; Premoli, M.; Secci, S. Cloudlet network design optimization. In Proceedings of the 2015 IFIP Networking Conference
(IFIP Networking), Toulouse, France, 20–22 May 2015; pp. 1–9.

35. Sanaei, Z.; Abolfazli, S.; Gani, A.; Buyya, R. Heterogeneity in Mobile Cloud Computing: Taxonomy and Open Challenges. IEEE
Commun. Surv. Tutor. 2014, 16, 369–392. [CrossRef]

36. Satyanarayanan, M.; Schuster, R.; Ebling, M.; Fettweis, G.; Flinck, H.; Joshi, K.; Sabnani, K. An open ecosystem for mobile-cloud
convergence. IEEE Commun. Mag. 2015, 53, 63–70. [CrossRef]

37. Satyanarayanan, M.; Chen, Z.; Ha, K.; Hu, W.; Richter, W.; Pillai, P. Cloudlets: At the Leading Edge of Mobile-Cloud Convergence.
In Proceedings of the 6th International Conference on Mobile Computing, Applications and Services, Austin, TX, USA, 6–7
November 2014; pp. 1–9.

38. Abbas, N.; Zhang, Y.; Taherkordi, A.; Skeie, T. Mobile Edge Computing: A Survey. IEEE Internet Things J. 2018, 5, 450–465.
[CrossRef]

39. Mach, P.; Becvar, Z. Mobile Edge Computing: A Survey on Architecture and Computation Offloading. IEEE Commun. Surv. Tutor.
2017, 19, 1628–1656. [CrossRef]

40. Sun, X.; Ansari, N. EdgeIoT: Mobile Edge Computing for the Internet of Things. IEEE Commun. Mag. 2016, 54, 22–29. [CrossRef]
41. Dolui, K.; Datta, S.K. Comparison of edge computing implementations: Fog computing, cloudlet and mobile edge computing. In

Proceedings of the 2017 Global Internet of Things Summit (GIoTS), Geneva, Switzerland, 6–9 June 2017; pp. 1–6.
42. Yu, S.; Wang, X.; Langar, R. Computation offloading for mobile edge computing: A deep learning approach. In Proceedings of the

2017 IEEE 28th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), Montreal,
QC, Canada, 8–13 October 2017; pp. 1–6.

43. Eom, H.; Juste, P.S.; Figueiredo, R.; Tickoo, O.; Illikkal, R.; Iyer, R. Machine Learning-Based Runtime Scheduler for Mobile
Offloading Framework. In Proceedings of the 2013 IEEE/ACM 6th International Conference on Utility and Cloud Computing,
Dresden, Germany, 9–12 December 2013; pp. 17–25.

44. Qiao, G.; Leng, S.; Zhang, K.; He, Y. Collaborative Task Offloading in Vehicular Edge Multi-Access Networks. IEEE Commun.
Mag. 2018, 56, 48–54. [CrossRef]

45. Xu, J.; Chen, L.; Ren, S. Online Learning for Offloading and Autoscaling in Energy Harvesting Mobile Edge Computing. IEEE
Trans. Cogn. Commun. Netw. 2017, 3, 361–373. [CrossRef]

46. Crutcher, A.; Koch, C.; Coleman, K.; Patman, J.; Esposito, F.; Calyam, P. Hyperprofile-Based Computation Offloading for Mobile
Edge Networks. In Proceedings of the 2017 IEEE 14th International Conference on Mobile Ad Hoc and Sensor Systems (MASS),
Orlando, FL, USA, 22–25 October 2017; pp. 525–529.

47. Kwak, J.; Kim, Y.; Lee, J.; Chong, S. DREAM: Dynamic Resource and Task Allocation for Energy Minimization in Mobile Cloud
Systems. IEEE J. Sel. Areas Commun. 2015, 33, 2510–2523. [CrossRef]

48. Zhang, W.; Zhao, D.; Xu, L.; Li, Z.; Gong, W.; Zhou, J. Distributed embedded deep learning based real-time video processing.
In Proceedings of the 2016 IEEE International Conference on Systems, Man, and Cybernetics (SMC), Budapest, Hungary, 9–12
October 2017; pp. 1945–1950.

49. Blanco-Filgueira, B.; García-Lesta, D.; Fernández-Sanjurjo, M.; Brea, V.M.; López, P. Deep learning-based multiple object visual
tracking on embedded system for IOT and mobile edge computing applications. IEEE Internet Things J. 2019, 6, 5423–5431.
[CrossRef]

50. Park, S. OCF: A New Open IoT Consortium. In Proceedings of the 2017 31st International Conference on Advanced Information
Networking and Applications Workshops (WAINA), Taipei, Taiwan, 27–29 March 2017; pp. 356–359.

51. Swetina, J.; Lu, G.; Jacobs, P.; Ennesser, F.; Song, J. Toward a standardized common M2M service layer platform: Introduction to
oneM2M. IEEE Wirel. Commun. 2014, 21, 20–26. [CrossRef]

52. OCF Core Optioanl Specification. Available online: https://openconnectivity.org/specs/OCF_Core_Optional_Specification_v2.2
.1.pdf (accessed on 30 December 2020).

53. Cai, K.L.; Lin, F.J. Distributed Artificial Intelligence Enabled by oneM2M and Fog Networking. In Proceedings of the 2018 IEEE
Conference on Standards for Communications and Networking (CSCN), Paris, France, 29–31 October 2018; pp. 1–6.

http://doi.org/10.1109/SURV.2013.050113.00090
http://doi.org/10.1109/MCOM.2015.7060484
http://doi.org/10.1109/JIOT.2017.2750180
http://doi.org/10.1109/COMST.2017.2682318
http://doi.org/10.1109/MCOM.2016.1600492CM
http://doi.org/10.1109/MCOM.2018.1701130
http://doi.org/10.1109/TCCN.2017.2725277
http://doi.org/10.1109/JSAC.2015.2478718
http://doi.org/10.1109/JIOT.2019.2902141
http://doi.org/10.1109/MWC.2014.6845045
https://openconnectivity.org/specs/OCF_Core_Optional_Specification_v2.2.1.pdf
https://openconnectivity.org/specs/OCF_Core_Optional_Specification_v2.2.1.pdf

	Introduction
	Related Works
	Intelligent Edge Computing for Building Environment Control
	Proposed Dynamic Inference Approach Based on Rules Engine
	Implementation Details and Results
	Performance Evaluation
	Conclusions and Future Directions
	References

