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Abstract: Speed is an essential parameter in biomechanical analysis and general locomotion research.
It is possible to estimate the speed using global positioning systems (GPS) or inertial measurement
units (IMUs). However, GPS requires a consistent signal connection to satellites, and errors accumu-
late during IMU signals integration. In an attempt to overcome these issues, we have investigated
the possibility of estimating the horse speed by developing machine learning (ML) models using
the signals from seven body-mounted IMUs. Since motion patterns extracted from IMU signals
are different between breeds and gaits, we trained the models based on data from 40 Icelandic and
Franches-Montagnes horses during walk, trot, tölt, pace, and canter. In addition, we studied the
estimation accuracy between IMU locations on the body (sacrum, withers, head, and limbs). The
models were evaluated per gait and were compared between ML algorithms and IMU location. The
model yielded the highest estimation accuracy of speed (RMSE = 0.25 m/s) within equine and most
of human speed estimation literature. In conclusion, highly accurate horse speed estimation models,
independent of IMU(s) location on-body and gait, were developed using ML.

Keywords: inertial measurement unit; machine learning; breed; gait; feature extraction

1. Introduction

Speed is a key variable to analyze horse locomotion and assess performance [1,2].
Effects of speed on kinematic and kinetic parameters as well as health indicators have
been studied in a variety of equine-related areas [3–5], including injury prevention during
exercise [6], lameness detection [7,8], fitness level evaluation [9,10], and genomics anal-
yses [1,11]. Therefore, equine speed assessment is important as it assists clinicians and
equestrians to have a comprehensive view of a horse health and fitness level.

In general, the speed has been estimated by observation and labeling in relative terms
(e.g., slow and fast) [12]. Describing locomotion parameters relatively might be influenced
by expectation bias [13] and the precision is dependant on the assessor’s expertise [14,15].
As a solution, the speed should be measured quantitatively to become comparable.

There are different horse speed measuring methods using devices in literature. Con-
ventionally, high-speed cameras have been used for this purpose [16,17]. However, a
camera should be fixed on a wall or ground, requires scaling, and only captures a limited
area. Three-dimensional optical motion capture has also been employed for speed assess-
ment [18]. This method is seen as the ‘gold standard’ for measuring gait kinematics [19].
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Although motion capture systems can measure the speed precisely, they are expensive and
their use is limited to the laboratory environment [20].

In contrast to the limitations of the above methods, inertial measurement units (IMUs)
can quantify movement patterns indoor and outdoor. This technology has been utilized for
human and animal motion analysis and is capable of accurately measuring acceleration
and angular velocity. Fundamentally, integrating acceleration signal results in velocity. In
practice however, the aggregation of errors during the integration process can appear as an
accumulated drift from the real value over time [21–24].

Another portable device for speed measurement is the global positioning system (GPS).
This device has been validated for accurate speed measurement [2,25–28] in human [29]
and equine studies [6,11,30–36]. The advantage of using GPS is portability and low price.
However, it cannot be used indoors due to the lack of received signals from satellites. The
accuracy might also be affected outdoors if large obstacles hinder the connection.

By using GPS speed as ground-truth and IMUs for portability, estimating horse speed
would be feasible. However, IMU data is high dimensional, which complicates the possible
connection to one-dimension scalar speed data. Machine learning (ML) can overcome
this issue by processing non-linear and high dimensional data to an optimized model [37].
Therefore, this study aims to estimate horse speed using body-attached IMUs and ML
methods. To achieve an accurate and complete model, the effects of the number and
location of IMUs, ML approaches, gaits, and breeds (with distinct movement patterns) on
the estimation model were studied and compared.

2. Methods

The proposed estimation model is summarized in Figure 1. The body-mounted
IMUs and GPS data from two different breeds were collected, time-synchronized, and
preprocessed. Subsequently, data was split in windows for Time- and frequency-domain
feature extraction. Then, “feature set”s were defined as the extracted features from an
IMU or a combination of IMUs. To decrease the number of features used in the estimation
model, the optimal group of features was identified using a feature selection method for
each feature set. Next, estimation models were trained using popular ML techniques in
the literature [38,39], which were support-vector machine (SVM) [40], Gaussian progress
regression (GPR) [41], decision tree (DT) [42], boosted trees (BT) [43,44], and random
forest [45]. Finally, accuracy of the models were compared.

Figure 1. A summary of the model training procedure.
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2.1. Data

Since horse breeds are biomechanically distinct and present different motion patterns
between gaits [46–48], we used motion data from two different breeds and various gaits
(walk, trot, tölt, pace, and canter) to provide a complete estimation model. The data
used in this study was collected from different research projects. In one study, data was
collected from fifteen Icelandic horses, ridden at walk, trot, tölt, pace, and canter to study
the normal biomechanical properties of different gaits [49]. In another study, twenty-five
Franches-Montagnes (FM) horses were walked and trotted in hand to study gaits and
phenotype-genotype associations (study not published yet). In both studies, horses were
equipped with the same gait analysis system (EquiMoves®-www.equimoves.nl) consisting
of seven ProMove-mini IMUs (Inertia Technology B.V., Enschede, The Netherlands) (tri-
axial accelerometer and tri-axial gyroscope) [50,51] on poll, withers, sacrum, and the
lateral aspect of all four limbs (cannon bone). IMU sensors were set to a sampling rate
of 200 Hz. Figure 2 demonstrates the IMU locations and orientations on horse body.
Horses with known history of lameness or presenting any clear sign of lameness during
the measurements were excluded from this study.

Figure 2. IMUs locations and orientations on horse body. RF: right front limb, LF: left front limb, RH:
right hindlimb, LH: left hindlimb. Photographed by Christelle Althaus.

The sacrum IMU contained a GPS module (Hornet ORG14xx, OriginGPS Ltd., Airport
City, Israel) for the measurement of Icelandic horses, while for FM horses, the GPS module
was embedded in the withers IMU. The sacrum and withers were selected for GPS place-
ment since they are the clearest point of the horse’s body for receiving satellites signals.
Therefore, the measurement were performed outdoors. The GPS sampling configuration
was set to 5 Hz.

The GPS module has been designed to accurately measure the speed (less than
0.01 m/s error for speed value of 30 m/s) using the Doppler shift method [52]. To confirm
the accuracy, the module was tested and validated for outdoor speed measurement prior
to this study. A detailed description of the validation method and results is provided as
Supplementary File S1.

As demonstrated in Figure 2, the three axes of rotation for the sacrum, withers, and poll
IMUs were x, y, and z, which were defined in the order as longitudinal axis, mediolateral
axis, and vertical axis. For limbs, x, y, and z-axis were aligned to limb (longitudinally),
retraction/protraction angle axis, and abduction/adduction angle axis, respectively [50].

www.equimoves.nl
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2.2. Features and Feature Sets

The signals derived from the IMU (x, y, and z axes of acceleration and angular velocity)
were low-pass filtered (fourth-order Butterworth filter and 30 Hz cut-off frequency) for
noise reduction [50]. Then, the filtered signals were windowed into 256 timesteps windows.
The middle of each window was time-synchronized with the corresponding speed data.
Since the speed data from GPS were collected every 0.2 s (5 Hz) and the IMU data frequency
was 200 Hz, the windows overlapped.

Based on the most chosen features in related literature [53–56], 23 time and frequency-
domain features were selected (Table 1), which later were extracted from the windows.
Before the computation of frequency-domain parameters, we used a Hann window to
reduce spectral leakage and to enhance the outcome [57].

Table 1. Time- and frequency-domain features.

Time-Domain Feature Equation

Maximum max = Maximum value of the window
Minimum min = Minimum value of the window

Mean (x̄) mean =
1
N

N

∑
n=1

xn

Median mdn = Median value of the window

Standard deviation (σ) sd =
1

N − 1

N

∑
n=1

(xn − x̄)2

First quartile p25 = 25th percentile of the window
Third quartile p75 = 75th percentile of the window

Kurtosis krt =
1
N

N

∑
n=1

( xn − x̄
σ

)4

Skewness skw =
1
N

N

∑
n=1

( xn − x̄
σ

)3

Frequency-domain Feature

Spectral entropy ent = −
N

∑
n=1

(
|x(ωi)|2

∑N
n=1 |x(ωi)|2

× ln
|x(ωi)|2

∑N
n=1 |x(ω)|2

)

Spectral energy enrg =
N

∑
n=1
|x(ω)|2

Magnitude of Fourier transform 1st
six coefficients f f tk = Magnitude

( N−1

∑
n=0

xne−j( 2π
N )kn

)

Phase angle of Fourier transform 1st
six coefficients angk = arctan

( N−1

∑
n=0

xnsin(
2π

N
)kn

N−1

∑
n=0

xncos(
2π

N
)kn

)

N = Window size, xn ∈Window, k = Fourier transform coefficient number (1, 2, ..., 6), ω = ∑N−1
n=0 xne−j( 2π

N )(N−1)n.
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In total, the dimensionality of the feature vector for each IMU was 23 (features)× [3 (ac-
celerometer signals) + 3 (gyroscope signals)] = 138 features. Eleven feature sets were defined
from the combination of IMU(s) extracted features (Table 2). The feature sets were defined
to compare the accuracy of estimation models in terms of different IMU locations.

Table 2. Feature sets definition.

Feature Set
IMU Positions

Sacrum Withers Poll RF LF RH LH

All × × × × × × ×
Limbs × × × ×
Sac/Wth × ×
Sac/RF × ×
Sacrum ×
Withers ×
Poll ×
RF ×
LF ×
RH ×
LH ×

RF: Right front limb, LF: Left front limb, RH: Right hindlimb, LH: Left hindlimb.

2.3. Feature Selection

The implementation of a feature selection method has several advantages. It prevents
the model from overfitting, decreases training effort, and increases the model perfor-
mance [55,58]. Therefore, the features of each feature set were used as input for a k-fold
sequential Forward floating Selection method (SFFS) [59]. The criteria for adding a new
feature in each SFFS step was more than 0.01 point decrease of estimated versus measured

speed root mean square error (RMSE =

√
∑N

n=1
(estimated speed at tn−measured speed at tn)2

N ).

2.4. Model Training and Performance Evaluation

To be certain that the dataset from each subject has been used at least one time
as training and testing data, all the mentioned ML methods were executed with leave-
one-subject-out cross-validation [60]. The estimation models were trained by tuning the
hyperparameters and using the selected features in each feature set.

The performance of each model was quantified by calculating the following parame-
ters, mean absolute error (MAE), RMSE, and normalized root mean square error (nRMSE).
MAE and nRMSE were defined as follows:

MAE =
N

∑
n=1

estimated speed at tn −measured speed at tn

N
(1)

nRMSE =
RMSE

Mean o f measured speed vector
(2)

The measured speed was derived from GPS, while the estimated speed was computed
using the trained models. For evaluation of the model performance per gait, the signals
from All feature set was applied to a gait classification model [61]. The results of the models
(11 feature sets × 5 ML techniques = 55 models) are compared in the next section. Matlab
R2020a (MathWorks Inc., Natick, MA, USA) was used for all the computations.
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3. Results

Approximately 130,000 speed datapoints (26,000 s) have been extracted from the
dataset. The estimation performances of the trained models are presented visually in
Figure 3 and in details in Table 3. The range of accuracy parameters were 0.14–0.36 m/s for
MAE and 0.25–0.58 m/s for RMSE. The performance results of feature sets and methods
are compared in the following sections.

Table 3. Accuracy of the models- MAE(m/s) and RMSE (m/s).

Feature Set SVM DT Random Forest BT GPR

MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE
All 0.16 0.29 0.18 0.32 0.14 0.25 0.20 0.33 0.16 0.29
Limbs 0.18 0.33 0.20 0.35 0.15 0.27 0.22 0.36 0.18 0.32
Sac/Wth 0.19 0.32 0.21 0.36 0.16 0.28 0.23 0.37 0.19 0.33
Sac/RF 0.18 0.30 0.20 0.34 0.15 0.26 0.22 0.35 0.17 0.30
Sacrum 0.21 0.34 0.23 0.38 0.17 0.29 0.24 0.39 0.20 0.34
Withers 0.22 0.37 0.24 0.41 0.17 0.31 0.26 0.42 0.22 0.36
Poll 0.32 0.53 0.35 0.58 0.28 0.45 0.36 0.58 0.32 0.52
RF 0.20 0.35 0.23 0.39 0.17 0.31 0.25 0.40 0.20 0.35
LF 0.21 0.36 0.23 0.39 0.17 0.31 0.25 0.40 0.21 0.35
RH 0.19 0.33 0.21 0.37 0.16 0.28 0.24 0.38 0.18 0.33
LH 0.19 0.33 0.21 0.36 0.16 0.28 0.23 0.38 0.18 0.32

RF: Right front limb, LF: Left front limb, RH: Right hindlimb, LH: Left hindlimb. A gradient of color (from dark blue to dark red) was
chosen to highlight the accuracy of each model. Dark blue indicates the highest accuracy (lowest RMSE and MAE) while dark red
presents the lowest accuracy (highest RMSE and MAE).

3.1. Selected Features

According to Table 4, the first-ranked feature of upper body feature sets (sacrum,
withers, poll, and Sac/Wth) was extracted from the z-axis of accelerometer signal. The
second-ranked feature was also from acceleration signals, which were derived from x and
z axes. For the limb feature sets, the z-axis of angular velocity signal ranked the highest.
Moreover, the second-ranked feature for both front limbs feature sets were obtained from
x-axis of acceleration signal, while for both hindlimbs and Limbs feature sets were selected
from z-axis of gyroscope output. Furthermore, all the selected features of limbs feature set
were from z-axis of angular velocity.

Table 4. The highest ranked (first to sixth) selected features using SFFS based on random forest method.

Feature Set #1 #2 #3 #4 #5 #6

All max_gyrz sd_accz mean_gyroz p75_gyrz fft1_accx max_accx
(LH) (sacrum) (sacrum) (LF) (withers) (sacrum)

Limbs max_gyrz p75_gyrz p25_gyrz min_gyrz p75_gyrz p25_gyrz
(LH) (LF) (LH) (RH) (RH) (RF)

Sac/Wth sd_accz sd_accz ent_gyrz p75_accx ent_accz skw_accz
(withers) (sacrum) (sacrum) (withers) (sacrum) (sacrum)

Sac/RF p25_gyrz sd_accz max_accx mean_accx sd_gyry sd_gyrz
(RF) (sacrum) (RF) (sacrum) (sacrum) (RF)

Sacrum min_accz sd_accz ent_gyrz sd_gyrx sd_gyry ent_accz
Withers sd_accz p75_accx sd_accx mean_gyrz ent_accz sd_gyrz
Poll fft3_accz sd_accx sd_gyry ent_accz krt_accz ent_accx
RF p25_gyrz max_accx sd_gyrz mdn_gyrz sd_gyry sd_gyrx
LF p75_gyrz max_accx sd_gyrz sd_accy sd_gyry mdn_gyrz
RH min_gyrz p75_gyrz mdn_accx min_accx mean_gyrx p75_accx
LH max_gyrz p25_gyrz p75_accx mean_gyrx min_accx p75_accy

RF: Right front limb, LF: Left front limb, RH: Right hindlimb, LH: Left hindlimb; gyrx,y,z: x, y, and z axis of angular velocity
signal.
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Figure 3. Comparison of models performances using MAE (m/s) and RMSE (m/s).

3.2. Feature Set

It can be inferred from Figure 3 and Table 3 that All feature set provided the best
performance (RMSE = 0.25–0.33 m/s). In addition, the feature sets from both hindlimbs
IMU signals were labeled as the lowest RMSE and MAE among the individual IMU feature
sets in estimating the speed (RMSE = 0.28 and MAE = 0.16 m/s). It should be noted that
the accuracy of models except the model trained with poll features (RMSE = 0.45–0.58 m/s)
were approximately as high as the model based on All feature set.

3.3. Machine Learning Technique

Similar to the performance comparison of the feature sets, the differences between
performances of models based on SVM, GPR, and random forest methods were insignif-
icant. Nonetheless, considering the small differences, the best ML method in terms of
accuracy was random forest. Conversely, models based on DT and BT methods had the
worst performance among the ML techniques used in this study.

3.4. Gait

As shown in Table 5, the RMSE and nRMSE increased and decreased respectively as
the model estimated the faster gaits. The lowest RMSE (0.20 m/s) was obtained during
walk, which was lower than the total RMSE (0.25 m/s). During pace, the model was
indicated the lowest nRMSE (4.12%) among other gaits.

Table 5. Performance of model (based on “All” feature set and Random forest method) per gait type.

Gait Measured- Predicted Speed Error

Speed (±SD) ( m
s ) RMSE ( m

s ) nRMSE

All 3.25 (±1.63) 0.25 7.69%
Walk 1.70 (±0.17) 0.20 11.76%
Trot 3.30 (±0.23) 0.31 10.03%
Tölt 3.90 (±0.23) 0.28 7.18%
Canter 4.95 (±0.43) 0.34 6.87%
Pace 7.52 (±1.43) 0.31 4.12%
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4. Discussion

The main goal of this paper was to develop an accurate model for estimating the
speed of horses using IMUs. The derived speed from GPS was used as ground-truth
to compare the performances of models trained on five ML methods. Each ML method
was trained on eleven feature sets to compare the estimation accuracy in terms of the
number and placement of IMUs on the horse body. The feature sets consisted of time-
and frequency-domain features extracted from the output of seven IMUs, which was an
extensive database of acceleration and angular velocity signals.

The selected features from the angular velocity signal in limb-related feature sets
(Table 4) can be explained by the fact that equine limbs move in reciprocating motion.
This motion influences the stride frequency, and stride frequency amplifies the locomotion
speed. Therefore, a feature extracted from rotation around the z-axis of limb IMU can
be an indicator of change in stride frequency [62–64]. In addition, the sacrum, withers,
and poll feature sets had z-axis acceleration signal extracted features as their highest rank
features. The explanation can be similar to the limbs since by using vertical acceleration
of the mentioned IMUs, it is possible to determine the periodical pattern of their vertical
displacements. Thus, the vertical displacement is affected by the hoof-on and hoof-off rate,
i.e., stride frequency [50,65].

To analyze the relation of stride frequency and speed in the dataset, hoof-on mo-
ments of the right front limb were detected using a validated method from another study
[65]. Then, stride frequency was calculated using the timing of detected hoof-ons, time-
synchronized with speed values. According to the result shown in Figure 4, as speed
increases, the stride frequency also increases. To investigate the possibility of estimating
speed using stride frequency, we fitted second- and third-degree polynomials to the data
and computed the accuracy. However, the accuracy was low compared to the results of
the ML models (2nd-degree polynomial: MAE = 0.51 m/s, RMSE = 0.8 m/s and R2 = 0.74;
3rd-degree polynomial: MAE = 0.52 m/s, RMSE = 1.36 m/s, and R2 = 0.73), which is
concurrent with the outcome of other studies [66,67]. Therefore, it requires a more complex
model to estimate speed accurately, which has been done successfully in this study.

Figure 4. Stride frequency versus speed.

The performance of all the models per gait had a similar pattern in the means of RMSE
and nRMSE. To present this pattern, the performance of the model based on All feature
set was demonstrated in Table 5. As the horses switched to faster gaits- from walking to
cantering- the RMSE of models increased while their nRMSE slightly decreased. It should
be noted that RMSE indicates the actual differences from the mean while nRMSE shows the
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differences relative to mean. Therefore, these alteration suggests that the model maintains
its high accuracy on different speeds regardless of the gait.

Random forest, GPR, and SVM models obtained better results compared to DT and BT.
Moreover, the performance of models trained with random forest algorithms was the best
and the training and testing duration were significantly shorter compared to the models
based on SVM and GPR. Therefore, this method not only has an advantage in accuracy but
also reduces computational time.

The model in this study is more accurate than the only other speed estimation model in
equine literature (average RMSE = 0.43 m/s) [68]. Moreover, our model is able to estimate
the speed of two distinct breeds and five gaits by attaching an IMU to one of the seven
body locations in contrast to the mentioned model, which estimates the speed of one breed
during canter by attaching an IMU to the saddle. In addition, five ML techniques were
compared for choosing the best performing while only SVM was used in [68]. Therefore,
our model is the most complete in terms of accuracy, IMU placement options, and different
motion patterns (breed and gait) support in the equine literature.

Despite the scarcity of speed estimation studies in equine literature, various studies
investigated human speed estimation using IMU. For instance, linear regression was
applied to the output of a single IMU to estimate older adults’ walking speed, where
the model yielded RMSE ≈ 0.069 m/s accuracy [69]. Another study also developed
a walking speed estimation model using GPR, which achieved an accuracy (RMSE) of
0.066–0.095 m/s [70]. By comparing the results of the present model and the mentioned
studies, we can conclude that our model is more general than the models from human
studies in terms of multiple motion patterns support and different IMU placements, while
others focused only on estimating the walking speed [24]. As shown in Table 5, the nRMSE
range of the model was 4.12–11.76%. By calculating the nRMSE range of [70] (5.4–10%) and
[69] (6.6–14.7%), it can be derived that the model in this study can estimate the speed more
accurately than aforementioned studies.

It is more attractive to predict the speed with only one sensor since it is cheaper and
the deployment on a subject’s body is simpler. However, according to the results, the model
based on Sacrum/RF feature set showed better accuracy than models based on single IMU.
During the training and competition, the sacrum IMU may fall off, since it is attached to
the horse with double-sided tape without a strap. Therefore, it might limit the usability of
the sacrum-based models to research purposes. In contrast, the limbs IMUs can be fixed
around the tendon boots. Finally, the accuracy differences between the Sacrum/RF model
and individual limb-based models (especially hindlimbs) are negligible. Considering the
easier deployment, using only one limb IMU for estimation is nearly as accurate while
being more applicable during training and competitions.

5. Conclusions

In this study, three novel outcomes were achieved. First, our investigation for the
optimal IMU placement concluded that placing only one IMU on any limb, withers, or
sacrum will result in high speed estimation accuracy. Second, our model can estimate the
speed during distinct motion patterns from two different breeds and five gaits. Finally,
the performances of five prevalent ML techniques on estimating the horse speed were
compared.

In total, 55 ML estimation models were trained, validated, and evaluated. Models
based on random forest method performed better than SVM, GPR, DT, and BT methods.
Moreover, the model can accurately estimate the speed during all gaits using the output
signals of only one IMU (limb, sacrum, or withers). Therefore, this robust model offers
flexibility to researchers, equestrians, and breeders in terms of IMU location on the horse’s
body, and thus, they can benefit from accurate speed estimation in training and competition.
In future studies, model capability might be explored by adding data from different breeds
or age-specific horses measurements. Performance of the model can also be investigated
by training it on novel deep learning methods.
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