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Abstract: This article surveys reinforcement learning approaches in social robotics. Reinforcement
learning is a framework for decision-making problems in which an agent interacts through trial-and-
error with its environment to discover an optimal behavior. Since interaction is a key component
in both reinforcement learning and social robotics, it can be a well-suited approach for real-world
interactions with physically embodied social robots. The scope of the paper is focused particularly
on studies that include social physical robots and real-world human-robot interactions with users.
We present a thorough analysis of reinforcement learning approaches in social robotics. In addition
to a survey, we categorize existent reinforcement learning approaches based on the used method and
the design of the reward mechanisms. Moreover, since communication capability is a prominent
feature of social robots, we discuss and group the papers based on the communication medium
used for reward formulation. Considering the importance of designing the reward function, we also
provide a categorization of the papers based on the nature of the reward. This categorization
includes three major themes: interactive reinforcement learning, intrinsically motivated methods,
and task performance-driven methods. The benefits and challenges of reinforcement learning in
social robotics, evaluation methods of the papers regarding whether or not they use subjective and
algorithmic measures, a discussion in the view of real-world reinforcement learning challenges and
proposed solutions, the points that remain to be explored, including the approaches that have thus
far received less attention is also given in the paper. Thus, this paper aims to become a starting point
for researchers interested in using and applying reinforcement learning methods in this particular
research field.

Keywords: reinforcement learning; social robotics; human-robot interaction; reward design; physi-
cal embodiment

1. Introduction

With the proliferation of social robots in society, these systems will impact users
in several facets of life from providing assistance, performing cooperation, and taking
part in collaboration tasks. In order to facilitate natural interaction, researchers in social
robotics have focused on robots that can adapt to diverse conditions and to different user
needs. Recently, there has been great interest in the use of machine learning methods for
adaptive social robots [1–4]. Machine Learning (ML) algorithms can be categorized into
three sub fields: supervised learning, unsupervised learning and reinforcement learning.
In supervised learning, correct input/output pairs are available and the goal is to find a
correct mapping from input to output space. In unsupervised learning, output data is not
available and the goal is to find patterns in the input data. Reinforcement Learning (RL),
on the other hand, is a framework for decision-making problems in which an agent interacts
through trial-and-error with its environment to discover an optimal behavior [5]. The RL
agent receives scarce feedback about the actions it has taken in the past. The agent then
tunes its behavior over time via this feedback signal, i.e., reward or penalty. The agent’s
goal is therefore learning to take actions that maximize the reward.

RL approaches are gaining increasing attention in the robotics community. As inter-
action is a key component in both RL and social robotics, RL could provide a suitable
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approach for social human-robot interaction. Worth noting is that humans perform sequen-
tial decision-making in daily life where sequential decision making describes problems that
require successive observations, i.e., cannot be solved with a single action [6]. Consequently,
much of social human-robot interactions can be formulated as sequential decision-making
tasks, i.e., RL problems. The goal of the robot in these types of interactions would be to
learn an action-selection strategy in order to optimize some performance metric, such as
user satisfaction.

Before outlining the research related to reinforcement learning in social robots, first
it is important to establish the definition of a social robot in the context of this article.
A variety of definitions for a social robot have been proposed in the literature [7–12].
Within each of these definitions, there is a wide spectrum of characteristics. However,
two important aspects become prominent in these definitions that are considered in this
paper, namely, embodiment and interaction/communication capability. One example
can be found in Bartneck and Forlizzi [10] where they define a social robot as an “...
autonomous or semi-autonomous robot that interacts and communicates with humans by
following the behavioral norms expected by the people with whom the robot is intended
to interact.” Following this definition, the authors stress that a social robot must have a
physical embodiment. Based on the presented definitions in [7–12], we consider social
robots as embodied agents that can interact and communicate with humans. Figure 1
shows some of the social robots that are used in the reviewed papers.

(a)	Pepper (b)	Nao (c)	Mini (d)	Maggie (e)	iCat

Figure 1. Some of the social robots platforms referenced within the reviewed papers. (The pictures of (a) Pepper robot,
and (b) Nao robot were taken by the authors. (c) Mini robot, the figure is adapted from [13]—licensed under the Creative
Commons Attribution, (d) Maggie robot, the figure is from https://robots.ros.org/maggie/, accessed on 20 March 2020—
licensed under the Creative Commons Attribution, (e) iCat robot, the figure is from https://www.bartneck.de/wp-content/
uploads/2009/08/iCat02.jpg, accessed on 22 March 2020—used with permission, photo credit to Christoph Bartneck.)

This article presents a survey on RL approaches in social robotics. As such, it is
important to emphasize that the scope of this survey is focused on studies that include
physically embodied robots and real-world interactions. Considering the definition of [10]
given above, this paper excludes studies with simulations and virtual agents where no
physical embodiment is present. The presented review also excludes studies with industrial
robots and studies that do not include any interaction with humans. Rather, this review
exclusively focuses on papers that comprise both a social robot(s) and human input/user
studies. It is worth noting that studies which use simulations for training and test on
physical robot deployment with user studies fall within the selection criteria. Likewise,
studies that use explicit or implicit human input in the learning process are also included.

Due to the complexity of the social interactions and the real-world, most of the studies
applying RL are trained and tested in simulation environments. However, real-world inter-
actions are extremely important not only for social robots but also for understanding the
full potential of reinforcement learning. It is mentioned in [14] (p. 391), that “the full poten-
tial of reinforcement learning requires reinforcement learning agents to be embedded into

https://robots.ros.org/maggie/
https://www.bartneck.de/wp-content/uploads/2009/08/iCat02.jpg
https://www.bartneck.de/wp-content/uploads/2009/08/iCat02.jpg
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the flow of real-world experience, where they act, explore, and learn in our world, and not
just in their worlds.” Generally speaking, the overall goal of an RL agent is to maximize
the expected cumulative reward over time, as stated in the “reward hypothesis” [14] (p. 42).
The reward in RL is used as a basis for discovering an optimal behavior. Hence, reward
design is extremely important to elicit desired behaviors in RL-based systems. The choice
of reward function is crucial in robotics, where the problem is also referred to as the “curse
of goal specification” [15]. Therefore, in this paper, we provide a categorization based on
reward design which is crucial for RL to be successful. Moreover, since communication
capability is a distinctive feature of social robots, we discuss communication mediums
utilized for reward design together with RL algorithms.

Finally, it is also worth noting that in the general field of robotics there is a plethora
of research in RL. There also exist review papers on the topic of RL in robotics such
as applications of RL in robotics in general [15,16], policy search in robot learning [17],
safe RL [18], and Deep Reinforcement Learning (DRL) in soft robotics [19]. Indeed, RL has
been applied to a variety of scenarios and domains within social robotics, with growing
popularity. While the field of social robotics deserves a survey on its own, to the best of our
knowledge, there exists no such survey on this particular research field. Thus, the main
purpose of this work is to serve as a reference guide that provides a quick overview of the
literature for social robotics researchers who aim to use RL in their research. Depending on
the target user group, the application domain or the experimental scenario, different types
of rewards, problem formulations or algorithms can be more suitable. In that sense, we
believe that this survey paper will be beneficial for social robotics researchers.

Overview of the Survey

After surveying research on RL and social robotics, we analyze and categorize the stud-
ies based on four different criteria: (1) RL type, (2) the utilized communication mediums
for reward function formulation, (3) the nature of the reward function, (4) the evaluation
methodologies of the algorithms. These categorizations aim to facilitate and guide the
choice of a suitable algorithm by social robotics researchers in their application domain.
For that purpose, we elaborate on the different methods that are tested in real-world
scenarios with a physical robot.

Categorization based on RL type includes bandit-based methods, value-based meth-
ods, policy-based methods, and deep RL (see Section 4). The utilized communication
mediums are verbal communication, nonverbal communication, affective communication,
tactile communication, and additional communication medium between the robot and the
human. Moreover, there are studies in which higher interaction dynamics are used for re-
ward formulation such as engagement, comfort, and attention. There are also other studies
that do not use any communication medium at all for reward formulation. In the catego-
rization based on the design of the reward mechanisms, three major themes emerged:

1. Interactive reinforcement learning: In these methods, humans are involved in the
learning process either by providing reward or guidance to the agent (Section 5.1).
This approach, in which the human delivers explicit or implicit feedback to the agent,
is known as Interactive Reinforcement Learning (IRL).

2. Intrinsically motivated methods: There are different intrinsic motivations in the
literature on RL [20], however, the most frequently used approaches in social robotics
depend on the robot maintaining an optimal internal state by considering both internal
and external circumstances (Section 5.2).

3. Task performance driven methods: In these methods, the reward the robot receives
depends on either the robot’s task performance or the human interactant’s task
performance, or a combination of both (Section 5.3).

The evaluation methodologies include (1) the algorithm point of view, (2) the user
experience point of view, and (3) evaluation of both learning algorithm-related factors and
user experience-related factors.



Sensors 2021, 21, 1292 4 of 37

To formulate the social interactions as a reinforcement learning problem, researchers
need to consider some key concepts such as input data, state representation, robot actions,
and reward function. Moreover, after the implementation of RL, it should be decided
how the evaluation will be performed. Therefore, we extract from each of the cited works
the following key points (1) the input data, state space and action space (2) the reward
function (3) the communication medium in the HRI scenario (4) the main experimental
results (5) the experimental scenario and its validation. Therefore, the contributions of this
paper include: (i) analysing and categorising the relevant literature in terms of type of RL
used; (ii) analysing and categorising the relevant literature based on the reward function;
(iii) analysing the relevant literature in terms of evaluation methodologies.

The paper is organized as follows: In Section 2, we discuss the benefits and challenges
of applying RL in the social robotics domain. In Section 3, we present a background on
reinforcement learning. Following the formal presentation of the methods, in Section 4,
we present the applications of these methods in social robotics. Later, we present the
categorization based on reward functions in Section 5. Evaluation methods are discussed
in Section 6. In Section 7, we discuss the current approaches in the view of real-world RL
challenges and proposed solutions. The section further includes the points that remain
to be explored, and the approaches that have thus far received less attention. Finally, in
Section 8, we conclude the paper.

2. RL in Social Robotics—Benefits and Challenges

Applications of social robots are numerous and range from entertainment to eldercare.
The robot tasks in such cases involve interactive elements such as human-robot cooperation,
collaboration, and assistance. To achieve longitudinal interaction with social robots, it is
important for such robots to learn incrementally from interactions, often with non-expert
end-users. In consideration of continuously evolving interactions where user needs and
preferences change over time, hand-coded rules are labor-intensive. Even though rule-
based systems are deterministic, it can be difficult to create rules for complex interaction
patterns. Machine learning is bound to play an important role in a wide range of domains
and applications including robotics. However, the social robot learning problem differs
from the traditional ML setting in which there is a need for collected datasets or assump-
tions about the distribution of input data [21]. Often, social robots should be able to learn
new tasks and task refinements in domestic (unstructured) environments. Furthermore,
social robotics researchers need to deal with a particular challenge of learning in real-time
from human-robot interactions. ML paradigms such as supervised learning and unsu-
pervised learning are not designed for learning from real-time social interactions. On the
contrary, RL represents an active process. Unlike other ML methods, it does not need to be
provided desired outputs instead, it trains interactively based on reward signals and refines
its behavior throughout the interaction. Moreover, interaction is a key component for social
robots which makes RL a suitable approach. RL also provides a possibility to learn from
natural interaction patterns by utilizing the various social elements in the learning process.
Consideration of all these points suggests that socially guided machine learning [22] could
be a more suitable approach than traditional ML approaches for social HRI.

In general, combining human and machine intelligence may be effective for solving
computationally hard problems [23]. The term “socially guided machine learning” was first
used by Thomaz et al. [22] and refers to approaches that include social interaction between
a user and a machine in the learning process. Studies using IRL in social robotics can be
considered as socially guided machine learning since they make use of human feedback in
different forms in the learning process. The feedback provided by the human can be used
for shaping the action policy (the human is involved in the action selection mechanism), or
shaping the reward function [24]. It can be treated either as reward, in that the feedback is
given based on the agent’s past actions indicating “how good the taken action was”, or
policy feedback in which human feedback affects action selection or modification thereby
indicating “what to do”.
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The majority of studies included in this review paper use IRL which may suggest
that IRL could be the best suited approach in social robotics. However, IRL has its own
challenges. Human teachers tend to give less frequent feedback (due to boredom and/or
fatigue) as learning progresses, resulting in diminished cumulative reward [25]. Likewise,
human teachers tend to provide more positive reward than punishment [26,27]. Yet another
problem in IRL is the transparency issues that might arise during the training of a physical
robot via human reward [28,29]. Reference [29] used an audible alarm to alert the trainer
about the robot’s loss of sense. Suay et al. [30] observed that experts could teach the defined
task in a predefined time frame, whereas the same amount of time was not enough for
inexperienced users. One solution suggested for this was algorithmic transparency during
training, which shows the internal policy to the human teacher. However, the presentation
of the model of the agent’s internal policy might be obscure for naive human teachers.
Therefore, this information should be presented in a straight-forward way that is easy to
understand to avoid causing confusion. To exemplify, in [28] human trainers waited for
the Leonardo robot to establish eye contact with them before they continued teaching. The
eye contact was considered as the robot being ready for the next action. These kinds of
transparent behaviors in which the robot communicates the internal state of the learning
process should be taken into account for guiding human trainers in IRL. As noted in several
studies, in IRL, the human teacher’s positive and negative reward can be much more
deliberate than a simple ‘good’ or ‘bad’ feedback [28,31]. The learning agent should be
aware of the subtle meanings of these feedback signals. As an example, human trainers
tend to have a positive bias [28,31].

In addition, there are a variety of technical challenges to address when implementing
RL in social robotics and social HRI. One of the drawbacks of online learning through
interaction with a human is the requirement of long interaction time, which can be tedious
and impractical for the users, resulting in fatigue and a loss of interest. A considerable
amount of interaction time can wear out the robot’s hardware. An alternative is using a
simulated world to train the algorithm and subsequently deploying it on the real robot.
Using a simulated setting has several advantages. It allows the agent to carry out learning
repeatedly, which would otherwise be very expensive in the real-world. Simulated environ-
ments can also run much faster than the real-world, thus permitting the learning agent to
make proportionately more learning experiences. Bridging the gap between the simulated
and the real-world is not a simple task. It may be achieved by randomizing the simulator
and learning a policy that shows success across many simulators and can ultimately be
robust enough to work in the real world. However, simulating the real-world can be very
difficult, especially with regards to modeling relevant human behaviors. Simulating the
human requires a predictive model of human interactive behaviors and social norms as
well as modeling the uncertainty of the real-world. Furthermore, the use of RL in social
robotics poses other challenges such as devising proper reward functions and policies, as
well as dealing with the sparseness of the reward signals.

The exploration-exploitation dilemma is a well-known problem in RL and refers to the
choice of actions to discover the environment or taking actions that have already proven to
be effective in producing reward [14]. RL practitioners use different approaches to deal
with the trade-off between exploration and exploitation, such as epsilon-greedy policy [32],
epsilon-decreasing policy [33] and Boltzmann distribution [34]. The epsilon-greedy strategy
exploits knowledge for maximizing rewards (greedily choosing the current best option),
otherwise to select a random action with probability ε P r0, 1s [14]. The epsilon-decreasing
strategy decreases ε over time, thereby progressing towards exploitative behavior [14].
Boltzmann exploration uses Boltzmann distribution to select the action to execute. A
temperature parameter balances between exploration and exploitation (high-temperature
value for selecting actions randomly and low-temperature value for selecting actions
greedily) [14].

Despite the mentioned challenges, there are also advantages of using RL in social
robotics. One of the main advantages is that the robot can learn a personalized adaptation
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for different interactants, i.e., a different policy for each user. Social robots can learn social
skills from their own actions without demonstrations through uncontrolled interaction
experiences. This is especially true given that interaction dynamics are difficult to model
and sometimes even humans cannot explain why they behave in a certain way. Therefore,
RL may enable social robots to adapt their behaviors according to their human partners
for natural human-robot interaction. In IRL, the immediate reward provided by the
human teacher has the potential to improve the training by reducing the number of
required interactions. Human teachers’ guidance significantly reduces the number of states
explored, and the impact of teacher guidance is proportional to the size of the state space,
i.e., it increases as the size of the state space grows [26]. In RL, how to achieve a goal
is not specified, instead the goal is encoded and the agent can devise its own strategy
for achieving that goal. Intrinsically motivated reward signals might be useful in many
real-world scenarios, where sparse rewards make the goal-directed behavior challenging.
Approaches using human social signals have the advantage of utilizing signals that the
user exhibits naturally during the interaction. It does not require an extra effort to collect
the reward. However, the change in social signals would not be so sudden, which would
very much affect the time for convergence. The role of human social factors deserves
extra attention in online learning methods. Combination of RL with deep neural networks
has shown success in many application areas. DRL is also a trending technique in social
robotics as we see increasing work in recent years. It has the advantage of not needing
manual feature engineering [35] and resulting in human-like behavior for social robots [36].

3. Reinforcement Learning

Reinforcement learning [5] is a framework for decision-making problems. Markov De-
cision Processes (MDPs) are mathematical models for describing the interaction between
an agent and its environment. Formally, an MDP is denoted as a tuple of five elements
xS , A, P , R, γy where S represents the state space (i.e., the set of possible states), A repre-
sents the action space (i.e., the set of possible actions), P : SˆAˆS Ñ r0, 1s represents the
probability of transitioning from one state to another state given a particular action, R :
SˆAˆS Ñ R represents the reward function, and γ is the discount factor that determines
the importance of future rewards, γ P r0, 1s. The agent interacts with its environment in
discrete time steps, t “ 0, 1, 2, ...; at each time step t, the agent gets a representation of the
environmental state St P S , takes an action At P A, moves to next state St`1, and receives a
scalar reward Rt`1 P R. Figure 2 depicts the standard RL framework.

EnvironmentSt+1

state 
St

Agent

action 
At

Rt+1

reward 
Rt

Figure 2. A standard reinforcement learning framework (reproduced from [14] (p. 38)).

The agent’s behavior that maps states to actions is described as a policy, π : S ˆA
where πps|aq “ PrpAt “ a|St “ sq is the probability of taking action a P A given state s.
The agent’s goal is to maximize the expected cumulative discounted reward, in other words
return which is denoted as Gt:

Gt “

8
ÿ

k“0

γkRt`k`1 (1)

where γ is the discount factor and usually γ P r0, 1s. The optimal behavior that is taking
the best action at each state to maximize the reward over time is called optimal policy, π˚.
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There exists a large variety of approaches in RL. They can be most broadly distin-
guished as model-based and model-free. Model-free approaches can be further subdivided
into value-based and policy-based approaches. A shortened version of a RL taxonomy can
be seen in Figure 3.

RL	Algorithms

Model-Free	RLModel-Based	RL

Value-based
Policy-based

Learn	the	Model Model	Given

On-policy Off-policy

SARSA DQNQ-Learning

Gradient-Free Gradient-Based

Figure 3. Taxonomy of Reinforcement Learning algorithms (reproduced and shortened from [37]).

3.1. Model-Based and Model-Free Reinforcement Learning

RL algorithms can be divided into two main categories, model-free RL and model-
based RL, depending on whether the agent does or does not use a model of the environment
dynamics, which can be either provided or learned. The model describes the transition
function, P , and the reward function, R. The model-based methods can be divided into
two categories: those that use a given model, i.e., the models of the transition and the
reward function can be accessed by the agent, and the methods in which the agent learns
the model of the environment [37]. In the latter approach, the agent learns a model, which it
subsequently uses during policy improvement. The agent can collect samples from the
environment by taking actions. From those samples state transitions and reward can
be predicted through supervised learning. Planning methods can be used directly on
the environment model. In the model-free approach, there is no effort to build a model
of the environment, instead the agent searches for the optimal policy through trial and
error interactions with the environment. Model-free methods are easier to implement in
comparison with model-based methods. These methods can be advantageous over more
complex methods when building a sufficiently accurate model is difficult [14] (p. 10).

3.2. Value-Based Methods

The value of policy π, namely the value function, is used to evaluate the states based
on the total reward the agent receives over time. RL methods that approximate the value
function through temporal difference (TD) learning instead of directly learning the policy
π are called value-based methods. For each learned policy π, there are two related value
functions: the state-value function, vπpsq, and state-action value function (quality function),
qπps, aq. The equations for qπps, aq and vπpsq are given in Equations (2) and (3) respectively.
Eπ in Equations (2) and (3) means the agent follows policy π in each step.

qπps, aq “ EπrRt`1`γ Rt`2`γ2 Rt`3` ...|St “ s, At “ as “ Eπ

«

8
ÿ

k“0

γkRt`k`1

ˇ

ˇ

ˇ

ˇ

ˇ

St “ s, At “ a

ff

(2)

vπpsq “ EπrRt`1 ` γ Rt`2 ` γ2 Rt`3 ` ...|St “ ss “ Eπ

«

8
ÿ

k“0

γkRt`k`1

ˇ

ˇ

ˇ

ˇ

ˇ

St “ s

ff

. (3)
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The value functions are expressed via the Bellman equation [38]. The Bellman equation
for vπ and qπ is given in Equations (4) and (5) where s1 indicates the next states from the
set S .

vπpsq “
ÿ

a
πpa|sq

ÿ

s1,r

pps1, r|s, aqrr` γvπps1qs (4)

qπps, aq “
ÿ

s1

pps1|s, aq

«

rps, a, s1q ` γ
ÿ

a1

πpa1|s1qqπps1, a1q

ff

. (5)

Comparing policies, a policy π is better than or equal to a policy π1 if:

π ě π1 if @s P S : vπpsq ě vπ1psq. (6)

There exists always at least one optimal policy π˚ whose expected return is greater
than or equal to the other policy/policies for all states. Optimal policies share the same
state-value function, defined as v˚psq “ max

π
vπpsq for all s P S , and action-value function,

defined as q˚ps, aq “ max
π

qπps, aq for all s P S and a P Apsq. The Bellman optimality

equation for q˚ps, aq is given in Equation (7).

q˚ps, aq “
ÿ

s1,r

pps1, r|s, aq
”

r` γ max
a1

q˚ps1, a1q
ı

. (7)

Another distinction in RL methods comes from the perspective of policy: on-policy vs.
off-policy learning. On-policy methods learn the value of the policy that is used to make
decisions. In the on-policy setting, the target policy and the behavior policy are the same.
The target policy is the policy that is learned about, and the behavior policy is the policy that
is used to generate behavior. The state-action-reward-state-action (SARSA) algorithm [39]
is one of the on-policy methods in which the agent interacts with the environment, selects
an action based on the current policy, then updates the current policy. The Q function
update in SARSA is done using Equation (8). A transition from one state-action pair to
the next is expressed as pSt, At, Rt`1, St`1, At`1q which gives rise to the name SARSA.
The update given in Equation (8) is done after every transition from a non-terminal state St.

QpSt, Atq Ð QpSt, Atq ` α
“

Rt`1 ` γ QpSt`1, At`1q ´QpSt, Atq
‰

. (8)

In the off-policy methods, the target policy is different from the behavior policy.
In these methods, the policy that is evaluated and improved does not match the policy that
is used to generate data. Off-policy methods can re-use the experience from old policies or
other agents’ interaction experience to improve the policy. One example of an off-policy
algorithm is Q-learning [40]. It is one of the most popular RL algorithms using discounted
reward [41]. The Q-learning rule is defined by:

QpSt, Atq Ð QpSt, Atq ` α
“

Rt`1 ` γ max
a

QpSt`1, aq ´QpSt, Atq
‰

. (9)

The Q-learning algorithm iteratively applies the Bellman optimality equation (given
in Equation (7)). As shown in Equation (9), the main difference between Q-learning and
SARSA (see Equation (8)) is that in the former the target value is not dependent on the
policy being used and only depends on the state-action function.

3.3. Policy-Based Methods

Policy-based methods, also known as direct policy search methods, do not use value
function models. In these methods, the policy is parameterized with θ and written as πθ .
They operate in the space of policy parameters Θ and θ P Θ [17]. The goal is still to
maximize the accumulative return. The agent updates its policy by exploring various
behaviors and exploiting the ones that perform well in regard to some predefined utility
function Jpθq. In many robot control tasks the state space, which includes both internal
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states and external states, is high-dimensional. The policy of the robot πθ can be defined
as a controller. For any state of the robot, this controller decides which actions to take
or which signals to send to the actuators [42]. The robot takes its actions u according
to the controller (please note, actions in policy search context are represented with u
instead of a). The robot controller can be stochastic, i.e., πpu|sq or deterministic, i.e., πpsq.
After the action execution the robot transitions to another state according to the probabilistic
transition function ppst`1|st, utq. These states and actions of the robot form a trajectory
τ “ ps0, u0, s1, u1, ...q. The corresponding return for the trajectory τ is represented as Rpτq.
The global utility of the robot is denoted as:

Jpθq “ Eτ„πθ
rRpτqs. (10)

Computing the expectation in Eτ„πθ
rRpτqs requires to run an infinite number of

trajectories with the current controller. The way to go around this difficulty is to sample
the expectation. After performing a finite set of trajectories, the return is computed over
these trajectories. Thus, the goal is:

θ˚ “ argmax
θ

Jpθq “ argmax
θ

ÿ

τ

Ppτ, θqRpτq (11)

where θ˚ is the estimate of global performance and Ppτ, θq is the probability of τ under
policy πθ .

Here RL addresses a black-box optimization problem in that the function which re-
lates the performance to the policy parameters is unknown. There are two families of
methods: direct policy search and gradient descent [42]. In direct policy search algorithms,
approximate gradient descent is performed by “random trial then selection” methods, like
genetic algorithms, evolution strategies, finite differences, cross entropy, etc. These algo-
rithms need many samples and can escape from local minima if large enough variations are
used. In gradient descent methods, a mathematical transformation is used so that policy
gradient methods can be applied. In these methods, the policy gradient update is given by:

θk`1 “ θk ` α∇θ Jpθq (12)

where α is a learning rate, and the policy gradient is given by [17]:

∇θ Jpθq “
ÿ

τ

∇θ Ppτ, θqRpτq. (13)

There are different methods to estimate the gradient ∇θ Jpθq, interested readers may re-
fer to [17]. Policy-based methods have the advantage of being effective in high dimensional
or continuous action spaces and having better convergence properties.

Some methods learn both policy and value functions. These methods are called actor-
critic methods, where ‘actor’ is the learned policy that is trained using policy gradient with
estimations from the critic, and ‘critic’ refers to the learned value function that evaluates
the policy.

3.4. Deep Reinforcement Learning

Learning in RL progresses over discrete time steps by the agent interacting with the
environment. Obtaining an optimal policy requires a considerable amount of interaction
with the environment, which results in high memory and computational complexity.
Therefore, the tabular approaches that represent state-value functions, vπpsq, or state-
action value functions, qπps, aq, as explicit tables are limited to low-dimensional problems,
and they become unsuitable for large state spaces. A common way to overcome this
limitation is to find a generalization for estimating state values by using a set of features
in each state. In other words, the idea is to use a parameterized functional form with
weight vector w P Rd for representing vπpsq or qπps, aq that are written as v̂ps; θq or q̂ps, a; θq
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instead of tables [14] (p. 161). Such approximate solution methods are called function
approximators. The reduction of the state space by using the generalization capabilities
of neural networks, especially deep neural networks, is becoming increasingly popular.
Deep Learning (DL) has the ability to perform automatic feature extraction from raw data.
DRL introduces DL to approximate the optimal policy and/or optimal value functions [14]
(p. 192). Recently, there has been an increasing interest in using DL for scaling RL problems
with high-dimensional state spaces.

The DQN method, first presented by Mnih et al. [43], combines Q-learning with
Convolutional Neural Networks (CNN) for learning to play a wide variety of Atari games
better than humans. In DQN, the agent’s experiences et “ pst, at, rt, st`1q are stored at
each time step t in a data set Dt “ te1, ..., etu, so-called experience replay memory. Q-
learning updates are applied on a mini-batch uniformly sampled from the experience
replay memory. The Q-learning update is done using Equation (14):

Lipθiq “ Es,a,r,s1„UpDq

”´

r` γ max
a1

Qps1, a1; θ̂iq ´Qps, a; θiq
¯2ı

(14)

where θi represents the parameters (weights) of the Q-network at iteration i and θ̂i repre-
sents the parameters used to compute the target network at iteration i. The target network
parameters θ̂i are updated to the parameters θi after every C iterations.

4. Categorization of RL Approaches in Social Robotics Based on RL Type

In human-human communication, a communication medium is a means of conveying
information to other people. It can be in different forms such as verbal, nonverbal, affective,
and tactile. Human-robot interaction overlaps with human-human interaction to a certain
extent. Furthermore, there can be an additional physical interface (i.e., a computer, a tablet,
a smart game board, etc.) shared between the robot and the human. In the interaction
between the robot and the human, information transmission is bidirectional, the robot
and the human can be sender, receiver, or both. In the surveyed papers, we see all these
communication channels being utilized, especially for the RL problem formulation. As it
has already been stated in the introduction, one of the prominent characteristics of social
robots is the ability to interact and communicate. Therefore, we provide two categorizations
in this section: first we categorize the papers based on RL types, after which we provide a
further discussion and categorization with respect to the utilized communication channels
and interaction dynamics for the reward functions.

4.1. Bandit-Based Methods

Bandit-based methods can be considered as a simplified case of RL in which the next
state does not depend on the action taken by the agent. Different bandit-based methods
explored in social robotics [4,44–47], such as dueling bandit learning [44], k-armed bandit
method (multi-armed bandit) [4,45,46], and Exponential-Weight Algorithm for Exploration
and Exploitation (Exp3) algorithm [47].

4.1.1. Additional Physical Communication Medium between the Robot and the Human

Learning user preferences to personalize the user experience is used in customizing
advertisements and search results. A similar approach was applied in HRI studies [4,44].
Whereas the customization is done in the background for personalized experiences in
websites using users’ clicks, it is adapted for social interactions by asking the user to
select their preferences using the buttons. In other words, these studies use a physical
communication medium between the robot and the human. Schneider and Kummert [44]
investigated a dueling bandit learning approach for preference learning. The algorithm
draws two or more actions, and the relative preference is used as reward. It is defined as
follows: In each time step t ą 0 a pair of arms pkp1qt , kp2qt q is selected and presented to the

user, if the user prefers kp1qt over kp2qt then wt “ 1, and wt “ 2 otherwise where wt is a noisy
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comparison result. The distribution of outcomes is represented by a preference matrix P “
rpijsKxK, here pij is the probability that the user preferred arm i over arm j. The participant
provided pairwise comparisons via a button. In the work by Ritschel et al. [4], the robot
adapted its linguistic style to the user’s preferences. They defined the learning tasks as
k-armed bandit problems. The adaptation was done based on explicit human feedback
given via buttons in the form of numeric reward (´1, +1). The actions of the robot were a
set of scripted utterances. Similarly, Ritschel et al. [46] used an additional medium between
the robot and the user. They employed the social robot Reeti as a nutrition adviser, where a
custom hardware was utilized to obtain the information about the selected drink [46].
Their custom hardware included an electronic vessel holder and a smart scale that could
communicate with the robot. The problem was formalized as an k-armed bandit problem
where the actions of the robot were scripted spoken advice. The reward was calculated
from the amount of calories and quantity of the selected drink.

4.1.2. Verbal and Nonverbal Communication Plus an Interface

Social robots can use any natural communication channel, and benefit from different
user interfaces. The studies [45–47] take advantage of a physical medium shared across
the robot and the human to simplify the state space representations. Leite et al. [45] used
a multi-armed bandit for empathetic supportive strategies in the context of a chess com-
panion robot for children. The difference in the probabilities of the user being in a positive
mood before and after employing supportive strategies was used as a reward. The child’s
affective state was calculated by using visual facial features (smile and gaze) and contex-
tual features of the game (game evolution i.e winning/losing, chessboard configuration).
Similarly, in the work by Gao et al. [47] the user’s task-related parameters were monitored
through the puzzle interface. The robot’s behaviors were adapted by combining a decision
tree model with the Exp3 [48]. The Exp3 algorithm maintains a list of weights for each
of the actions, which are used for selecting the next action. The reward was the user’s
task performance in combination with the user’s verbal feedback. The set of robot actions
included four supportive behaviors to help the user to solve the puzzle game.

4.2. Model-Based and Model-Free Reinforcement Learning
Verbal Communication

Considering the challenge of modeling real-world human-robot interactions, the ma-
jority of papers included in this survey use model-free RL. Nevertheless, several recent
works started to investigate model-based RL for HRI [49,50]. One of the challenges of
real-world robot learning is the delayed reward. There is an assumption that the result of
an agent’s observations of its environment is available instantly. However, there can be
a lag in human reaction to robot actions in HRI. When the reward of the robot depends
on human responses, reward shaping can be useful for the robot to get more frequent
feedback. Reward shaping is a technique that consists of augmenting the natural reward
signal so that additional rewards are provided to make the learning process easier [51].
Studies in [49,50] presented methods including model-based RL and reward shaping for
HRI. Tseng et al. [49] proposed a model-based RL strategy for a service robot learning the
varying user needs and preferences, and adjusting its behaviors. The proposed reward
model was used to shape the reward through human feedback by calculating temporal
correlations of robot actions and human feedback. Concretely, they modeled human re-
sponse time using a gamma distribution. This formulation was found to be effective
(more cumulative reward collected) in dealing with delayed human feedback. The work
by Martins et al. [50] presented a user-adaptive decision-making technique based on a
simplified version of model-based RL and POMDP formulation. Three different reward
functions were formulated, and compared in the experiments. Their entropy-based reward
shaping mechanism devised using an information-based term. The purpose of using the
information term was to increase the reward given for an action leading to unknown
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transitions, thereby encouraging the robot to investigate the impact of new actions on
the user.

4.3. Value-Based Methods

In recent years, there has been an increasing interest in applying RL methods to
social robotics with growing trend towards value-based methods. Q-learning, along
with its different variations, is the most commonly used RL method in social robotics.
The studies using Q-learning are [3,13,34,52–61]. These comprise studies using stan-
dard Q-learning [3,54,55,58,60,62], studies modify Q-learning for dealing with delayed
reward [52], tuning the parameters for Q-learning such as α [13,34,52], dealing with
decreasing human feedback over time [52], comparing their proposed algorithm with
Q-learning [33,49,61,63,64], variation of Q-learning called Object Q-learning [64–66], com-
bining Q-learning with fuzzy inference [67], SARSA [68,69], TD(λ) [70], MAXQ [33,71,72],
R-learning [32], and Deep Q-learning [35,36,73,74].

4.3.1. Tactile Communication

When the user is involved in the learning process by providing feedback in the form
of reward or guidance, the general approach is either using an additional interface or
utilizing the sensory information such as internal (robot’s onboard sensors) or external
cameras and microphones. Nowadays, many social robots are equipped with tactile
capabilities. However, the usage of the robots’ touch sensors as a feedback mechanism
has received relatively little attention in the context of RL in social robotics. Yet [52,53]
benefited from the robot’s tactile sensors instead of an additional interface between the user
and the robot. Barraquand and Crowley [52] conducted five experiments with different
modifications of the classical Q-learning algorithm. The human teacher provided feedback
through tactile sensors of the Sony AIBO robot, caressing the robot for the positive feedback
and tapping the robot for the negative feedback. The action space comprised two actions;
bark and play. The first experiment was standard Q-learning with human reward. Since the
human ceased giving feedback over time, they concluded that the learning rate α should
be adapted. In the second experiment, they used the asynchronous Q-learning algorithm.
In asynchronous Q-learning, the learning rate α may be different for different state-action
pairs. The learning rate is decreased when the system encountered the same situations and
actions. In relation to standard Q-learning this modification increased the effectiveness
of the algorithm, i.e., it learned faster and forgot more slowly. Because the learning rate
was much smaller when there was no feedback. To overcome the delayed reward, they
considered to increase the effect of human-delivered positive reward in larger time frames
and to decrease the effect of negative reward in a shorter time frame. The use of an eligibility
trace with a heuristic for delayed reward was found to be more efficient than classical
Q-learning (generalizing experience to cover similar situations). The authors noted that
learning rate, reward propagation, and analogy (i.e., propagating information to similar
states) can improve the effectiveness of learning from social interaction. Yang et al. [53]
proposed a Q-learning based approach that combines homeostasis and IRL. The internal
factors, i.e., the drives and motivations worked as a triggering mechanism to initiate the
robot’s services. However, the reward in the real-world experiments was given by the
user touching the robot’s head, left hand, and right hand to give positive, negative, and
dispensable feedback, respectively [53]. The authors trained their model in a simulator and
deployed it on the Pepper robot.

4.3.2. Additional Physical Communication Medium between the Robot and the Human

Since we identify social robots with interaction, the robot learning within a social
scenario stands out in the surveyed papers. Alternatively, there are studies where social
interaction is not the main concern however, the main purpose is training a social robot
to do a task. As an example, a human teacher trains the agent through a GUI [26,30],
speech and gestures [28,31]. In Suay and Chernova [26], human teacher trained a social
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robot. They performed experiments similar to those presented in [75] in a real-world sce-
nario with the Nao robot [26]. The human trainer observed the robot in its environment via
a webcam and provided reward based on the robot’s past actions or anticipatory guidance
for selecting future actions through a GUI. They conducted four sets of experiments (small
state space and only reward, large state space and only reward, small state space and re-
ward plus guidance, large state space and reward plus guidance) to investigate the effect of
teacher guidance and state space size on learning performance in IRL. The task was object
sorting and the size of state space depended on the object descriptor features. Their results
showed that the guidance accelerated the learning by significantly decreasing the learning
time and the number of states explored. They observed that human guidance helped the
robot to reduce the action space and its positive effect was more visible in large state-space.
In a similar vein, Suay et al. [30] conducted a user study in which 31 participants taught a
Nao robot to catch the robotics toys by using one of three algorithms: Behavior Networks,
IRL, and Confidence-Based Autonomy. The study compared the results of these algorithms
in terms of algorithm usability and teaching performance by non-expert users. In IRL,
the participants provided positive or negative feedback in the form of reward through an
on-screen interface. In terms of teaching performance, users achieved better performance
using Confidence-Based Autonomy, however, IRL was better of modelling user behavior.
It has been noted in much of the literature that teaching with IRL requires more time than
with other methods because users had the tendency to stop rewarding or to vary their
reward strategy. This affected the training time, which is a drawback to this approach.

4.3.3. Verbal and Nonverbal Communication

We discuss different human feedback types in IRL in Section 5.1. When a human
teacher trains an agent, the positive or negative feedback might convey several meanings,
even lack of feedback can give information to the agent depending on the teacher’s training
strategy [76]. For example, Thomaz and Breazeal [31] realized that human trainers might
have multiple intentions with the negative reward they are giving, such as the last taken
action was bad and future actions should correct the current state. They performed experi-
ments with two different platforms: the Leonardo robot learned pressing buttons and a
virtual agent learned baking a cake (Sophie’s kitchen). The virtual agent responded to the
negative reward by taking an UNDO action, i.e., the opposite action. In the examples with
the Leonardo robot, the human teacher provided verbal feedback. After negative feedback,
the robot expected the human teacher to guide it through refining the example by using
speech and gestures (collaborative dialog). Although the interactive Q-learning with the
addition of UNDO behavior was tested only on the virtual agent, it is worth mentioning
that the proposed algorithm was more efficient compared to standard IRL. It had several
advantages such as robust exploration strategy, fewer states visited, fewer failures occurred
and fewer action trials done for learning the task. Continuing along these lines, Thomaz
and Breazeal [28] explored how self-exploration and human social guidance can be coupled
for leveraging intrinsically motivated active learning. They called the presented approach
socially guided exploration, in which the robot could learn by intrinsic motivations, how-
ever, it could also take advantage of a human teacher’s guidance when available. The robot
learner with human guidance generalized better to new starting states and reached the
desired goal states faster than the self-exploration.

4.3.4. Higher Level Interaction Dynamics: Engagement

Social robots are expected to exhibit flexible and fluent face-to-face social conversation.
The natural conversational abilities of social robots should not be only limited to short basic
task related sentences. However, they should be able to engage users in the interactions
with chat and entertainment, varying from storytelling to jokes together with human-like
vocalizations and sounds. As an example, Papaioannou et al. [60] reported that users
spent more time with the robot which can carry out small chat together with task-based
dialogue compared to the robot that conversed only task-based dialogue. In their system,
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the agent was trained using the standard Q-learning algorithm with simulated users
and tested with the Pepper robot where the robot assisted visitors of a shopping mall
by providing information about and directions to the shops, current discounts in the
shops, among other things. In the problem definition, states were represented with 12
features such as user engaged, task completed, distance, turn taking, etc. The action space
consisted of 8 actions, A “ [PerformTask, Greet, Goodbye, Chat, GiveDirections, Wait,
RequestTask, RequestShop]. The reward was encoded as predefined numerical values
based on task completion by the agent, including the engagement of the user. Another study
considering user engagement is Keizer et al. [1], who applied a range of ML techniques
in the presented system that included a modified iCat robot (with additional manipulator
arms with grippers) and multimodal input sensors for tracking facial expressions, gaze
behavior, body language and location of the users in the environment. The reward function
was a weighted sum of task-related parameters. For each individual user i the reward
function Ri was defined as Ri “ 350ˆ TCi ´ 2ˆWi ´ TOi ´ SPi. TCi is short for Task
Complete, and is a binary variable. Wi (Waiting) is a binary variable showing whether the
user i is ready to order but not engaged with the system. TOi stands for Task Ongoing
and is a binary variable describing whether the user is interacting with the robot but
has not been served. SPi is short for Social Penalties and corresponds to several social
penalties (e.g., while the user i is still talking to the system, it turns its attention to another
user). An experimental evaluation compared a hand-coded and trained system. The
authors reported that the trained system performed better and it was found to be faster
at detecting user engagement than the hand-coded one, while the latter was more stable.
In [55,57,59], the authors investigated the entertainment capabilities of social robots using
RL. Ritschel et al. [57] presented a social-cues-driven Q-learning approach for adapting
the Reeti robot to keep the user engaged during the interaction. The engagement of the
user was estimated from the user’s movement through the Kinect 2 sensor by using a
Dynamic Bayesian Network. They used the change in the engagement as a reward in
the storytelling scenario to adapt the robot’s utterance based on the personality of the
user. In similar fashion, the work by Weber et al. [59] incorporated social signals in the
learning process, namely the participants’ vocal laughs and visual smiles as reward. In
the problem formulation, they used a two-dimensional vector containing probabilities
of laughs and smiles for state representation, and the action space consisted of sounds,
grimaces and three types of jokes. They used an average reward based on all samples
from the punchline to the end with a predefined punchline for every joke. The human
social signals were captured and processed by using the Social Signals Interpretation (SSI)
framework [77]. Their purpose was to understand the user’s humor preferences in an
unobtrusive manner in order to improve the engagement skills of the robot. In a joke-telling
scenario, the Reeti robot adapted its sense of humor (grimaces, sounds, three kinds of
jokes and their combination) by using Q-learning with a linear function approximator.
Likewise Addo and Ahamed [55] presented a joke telling scenario with a torso Nao robot
for entertaining a human audience. They used Q-learning in which the actions of the robot
were pre-classified jokes, and the numerical reward corresponded to affective states of the
user. However, the affective states of the participants were captured by a self-reported
feedback signal. After each joke, the human participant provided a verbal feedback (i.e.,
reward) such as “very funny”, “funny”, “indifferent” and “not funny”.

4.3.5. Affective Communication: Facial Expressions

Human facial expressions are perhaps one of the richest and most powerful tools in
social communication. Facial expressions analysis is commonly used in HRI for understand-
ing users and enhancing their experience. Affective facial expressions can also facilitate
robot learning in RL. Recently, it is becoming more popular to use off-the-shelf applications
in social robotics for different perception and recognition modules. Affectiva software [78]
analyzes facial expressions from videos or in real-time. The studies [58,68,69] used this
software for affective child-robot interaction. In the work by Gordon et al. [68] a tutoring
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system for children was presented. The system included an Android tablet and the Tega
robot setup integrated with the Affectiva software for facial emotion recognition. They used
the SARSA algorithm where the reward was a weighted sum of valence and engagement.
Both valence and engagement values were obtained from the Affectiva software. Similar
to [68], Park et al. [58] used the Tega robot as a language learning companion for young
children. A personalized policy was trained through 6–8 sessions of interaction by using a
tabular Q-learning algorithm. The reward function was a weighted sum of engagement
and learning gains of the child. The engagement was obtained from the Affectiva software.
The learning gains in the reward function was represented as numerical values ([´100,
0, +50, +100]) depending on the lexical and syntactic complexity of the phrase relative
to the child’s level. Gamborino and Fu [69] presented an approach for socially assistive
robots for children to support them in emotionally difficult situations using SARSA. In
the proposed method, the human trainer selects the actions for the social robot RoBoHoN
(small humanoid smartphone robot) through an interface with the purpose to improve the
mood of the child depending on her/his current affective state. The affective state of the
child was based on seven basic facial emotions and engagement obtained by the Affectiva
software and stored in an input feature vector to classify the mood of the child as good or
bad. The emotions were binarized as 1 or 0 depending on whether the value was greater or
less than the average, respectively. The robot suggested a set of actions to the trainer. The
aim was to suggest actions that would match with the trainer’s action preferences. This way
the agent would act independently, without feedback from the trainer. Another study using
facial expressions is Zarinbal et al. [54], in which Q-learning was used for query-based
scientific document summarization with a social robot. The problem formulation was as
follows: In each state St :ă xi, scoretpxiq ą a summary that consisted of M sentences was
generated, where xi is a sentence and i “ 1, 2, ..., M. The scoring scheme was updated based
on the human-delivered reward. The reward rt P t´1, 0, 1u depended on the classified
facial expressions: dislike, neutral and like. In state St, the robot presented the sentence
x˚ to the user and based on his reward rt. The authors concluded that user feedback may
improve the query-based text summarization.

4.3.6. Verbal Communication

The curse of dimensionality is a phenomenon that refers to problems with high
dimensional data. Representing state and action spaces as explicit tables becomes im-
practical for large spaces. To overcome the problem of large state space, approximate
solutions are used, one of them being fuzzy techniques. This approach is also explored for
HRI, e.g., Chen et al. [67] and Patompak et al. [32] used fuzzification and fuzzy inference
together with Q-learning. These works employed verbal communication in their user
studies. Chen et al. [67] proposed a multi-robot system for providing services in a drinking-
at-a-bar scenario. The authors used a modified Q-learning algorithm combined with fuzzy
inference which was called information-driven fuzzy friend-Q (IDFFQ) learning for un-
derstanding and adapting the behaviors of the mentioned multi-robot system based on
the emotion and intention of the user. The reward function was defined as r “ prt ` rhq{2.
Task completion rt (i.e., robots selected the drink the user preferred) and the human’s
satisfaction with the robots’ task performance rh were predefined numerical values. Fuzzi-
fication of emotions was done using the triangular and trapezoidal membership function
in the pleasure-arousal plane. They compared the proposed algorithm with their previous
algorithm, Fuzzy Production Rule-based Friend-Q learning (FPRFQ) [79]. The authors
noted that the current algorithm was superior in that it resulted in higher collected reward
and faster response time of the robots. Patompak et al. [32] proposed a dynamic social force
model for social HRI. The authors considered two interaction areas: a quality interaction
area and a private area. The quality interaction area was defined as the distance from which
the users can be engaged in high-quality interactions with robots. The proposed model
was designed by a fuzzy inference system, the membership parameters were optimized by
using the R-learning algorithm [80]. R-learning is an average reward RL approach; it does
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not discount future rewards [81]. They argued that R-learning was suitable for the scenario
since they intended to take every interaction experience into account equally. In the real
robot experiments, positive or negative verbal rewards were provided by the participants.

Another study that used verbal communication for the reward is [62]. In this study, a
gesture recognition system categorized the body trunk patterns as towards (the person is
facing the robot), neutral (the trunk is facing the robot between 30–150 away), and away
(orientation of the trunk is more than 150). The recognized gestures were interpreted as a
person’s accessibility level, which was used to determine the person’s affective state. In
the Q-learning-based decision-making system, the robot had drives and emotional states
which were utilized for action selection. In particular, a state is represented as spyH , yR, dq
where yH is the accessibility level of the human, yR is emotional state of the robot and d
is the dominant drive. State transition probabilities, Q-values for each state, and reward
for each transition were predetermined numerical values. The satisfaction of the robot’s
drives depended on the robot completing the task. In the experimental scenario, the Brian
robot reminded the user about daily activities (eat, use the bathroom, go for a walk and
take medication) and the user verbally stated ‘yes’ or ‘no’ after the robot’s action, with
‘no’ meaning that the robot’s drive is not satisfied and it will continue to try to satisfy the
drive. The authors mentioned that the robot could use its drives in one or two iterations for
the reminders except the drive related to using the bathroom. It was attributed to people
potentially being uncomfortable with this reminder.

4.3.7. Higher Level Interaction Dynamics: Attention

Social robots have the potentials for information acquisition from both verbal and
nonverbal communication. Not only can they gesture, maintain eye contact, and share
attention with their users, but they can also estimate the users’ non-verbal cues and behave
accordingly. In this interaction, both actors can interpret verbal and nonverbal social cues
to communicate effectively. For natural fluid HRI, robot non-verbal behaviors together
with verbal communication are thoroughly discussed in [82]. These social cues do not only
convey a basic message but also carry higher-level interaction dynamics such as attention,
engagement, comfort, and so on. The following works highlight these in the context of RL
in social robotics. Chiang et al. [56] proposed a Q-learning based approach for personalizing
the human-like robot ARIO’s interruption strategies based on the user’s attention and the
robot’s belief in the person’s awareness of itself. The authors called it the “robot’s theory of
awareness”. They formulated the problem based on the user attention, which was referred
to as a Human-Aware Markov Decision Process. The human attention was estimated
with a trained Hidden Markov Model (HMM) from human social cues (face direction,
body direction, and voice detection). The reward consisted in predefined numerical values
based on the robot’s theory of awareness of the user. The robot had six actions (gestures:
head shake and arm wave; navigation: approach the user and move around; audio: make
sound and call name) to draw the user’s attention while the user was reading. The optimal
policy converged after two hours of interaction. The robot developed personalized policies
for each user depending on their interruption preferences. Another study considering
human attention in their problem formulation is Hemminghaus and Kopp [3]. They used
Q-learning to adapt the robot head Furhat’s behavior in a memory game scenario. In the
game, the robot assisted the participant by guiding their attention towards target objects
in a shared spatial environment. In the proposed hierarchical approach, the high-level
behavior was mapped to low-level behaviors, which could then be directly executed by the
robot. The purpose of using Q-learning was to learn the execution of high-level behaviors
through low-level behaviors. In the problem formulation, states were represented in
terms of the user’s gaze, user’s speech, and game state. The game state represented the
number of remaining card pairs in the game. The action space included actions such as
speaking, gazing, etc. or a combination of those actions. The reward was designed as
r “ rpos´ c if success r “ c.rneg if no effect. The robot received a positive reward rpos if the
robot’s action helped the user to find the correct pair. The robot received a negative reward
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rneg if the action had no effect on helping the user. c represents the cost of the chosen action
in cases where the costs were determined manually. Moro et al. [61] is another study that
considered the attention of the user. Their scenario was an assistive tea-making activity
for older people with dementia. The authors proposed an algorithm involving Learning
from Demonstration (LfD) and Q-learning for personalized robot behavior according to
a user’s cognitive abilities [61]. The Casper robot learned to imitate the combination of
speech and gestures from a collected data set. The robot learns to select the suitable labeled
behavior (i.e., speech and gestures initially learned from demonstrations) that is most likely
to transition the user into the desired state, i.e., focused on the activity and completing the
correct step. The reward function, Rps, bi

lq, depended on bi
l , the labeled behavior displayed

by the robot, and the state s where s “ tsr, suu. Here, sr represents a set of robot activity
states, and su is the user state such that su “ ts f nc, sacu. In the user state, s f nc represents the
user functioning state which is one of five mental functioning states: focused, distracted,
having a memory lapse, showing misjudgment, or being apathetic. The user activity state,
sac, represents possible actions that can be performed by seniors with cognitive impairment:
successfully completing a step, being idle, repeating a step, performing a step incorrectly,
or declining to continue the activity. The robot was rewarded according to the state the user
transitioned into—a positive reward if the user was focused and completed the activity, and
a negative reward if the user transitioned to an undesirable state. The authors compared
the proposed approach with Q-learning, and reported that the proposed approach required
fewer interactions for convergence and fewer steps required to complete the tea-making
activity. In all the papers explained above, the robot takes the users attention into account
for deciding its actions. Shared attention refers to situations involving mutual gaze, gaze
following, imperative pointing and declarative pointing. Da Silva and Francelin Romero
[63] presented a robotic architecture for shared attention which included an artificial
motivational system driving the robot’s behaviors to satisfy its intrinsic needs, so-called
necessities. The motivational system comprised necessity units that were implemented as
a simple perceptron with recurrent connections. The input to the artificial motivational
system was provided by a perception module used to detect the environmental state and to
encode the state in first order logic with predicates. This module included face recognition
with head pose estimation and a visual attention mechanism. The necessities of the robot
were associated with a state-action pair in the training phase of the learning algorithm. The
activation of a necessity unit was dependent on the input signal representing a stimulus
detected from the environment (i.e., the perception module) and empirically defined
parameters. They compared the performance of three different RL algorithms, namely
contingency learning, Q-learning and Economic TG (ETG) methods for shared attention
in social robotics. ETG is a relational RL algorithm that incorporates a tree-based method
for storing examples [83]. Because ETG performed better in the simulation experiments,
they decided to employ it in real-world experiments which entailed one of the authors
interacting with the robotic head. The authors reported that the robot’s corrected gaze
index, which was defined as frequency of gaze shifts from the human to the location that
the human is looking at, was increased over time during learning.

4.3.8. Affective Communication

Humans use affective communication consciously or unconsciously in their daily
conversations by expressing feelings, opinions, or judgments. Social robots can facilitate
their learning process through sensing and building representations of affective responses.
This idea was used in [33,71,72]. In these studies, the socially assistive robot Brian 2.0 was
employed as a social motivator by giving assistance, encouragement, and celebration in a
memory game scenario. In the scenario, the participants interacted with the robot one-on-
one with the objective to find the matching pictures in the memory card game (4 ˆ 4 grid,
16 picture cards). The robot’s behaviors were adapted using a MAXQ method to reduce
the activity-induced stress in the user. The MAXQ approach is a hierarchical formulation,
which accommodates a hierarchical decomposition of the target problem into smaller
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subproblems by decomposing the value function of an MDP into combinations of value
functions of smaller integral MDPs [84]. The authors argued that the MAXQ algorithm
was suitable for memory game scenarios due to its temporal abstraction, state abstraction,
and sub-task abstraction. These abstractions also helped to reduce the number of Q-values
that needed to be stored. The detailed system was presented in [33]. In their system,
they used three different types of sensory information: a noise-canceling microphone for
recognizing human verbal actions, an emWave earclip heart rate sensor for affective arousal
level and a webcam for monitoring the activity state (depending upon whether matching
card pairs were found or not). They used a two-stage training process involving offline
training followed by online training. The purpose of the first stage was to determine the
optimal behaviors for the robot with respect to the card game. The offline training was
carried out on a human user simulation model created with the interaction data of ten
participants. In the second stage, they aimed to personalize the robot according to the user’s
state (affective arousal and game state) for different participants in online interactions.
The affective arousal and user activity state formed the user state (e.g., stressed: high
arousal and not matching card, pleased: low arousal and matching card). The success of
the robot’s actions was subject to the improvement of a person’s user state from a stressed
state to a stress-free state.

4.4. Deep Reinforcement Learning

For natural interaction, it is important that social robots possess human-like social
interaction skills, which requires features from high dimensional signals. In these cases,
DRL can be useful. In fact, several researchers have begun to examine the applicability of
DRL in social robotics [35,36,73,74,85–87].

4.4.1. Tactile Communication

One of the pioneering works using DRL in social robotics was presented by [36].
Here, a Pepper robot learned to choose among predefined actions for greeting people,
based on visual input. In their work, they succeeded to map two different visual input
sources, the Pepper robot’s RGBD camera and the webcam, to discrete actions (waiting,
looking towards the human, hand waving and handshaking) of the robot. The reward
was provided by a touch sensor located on the robot’s right hand to detect handshaking.
The robot received a predefined numerical reward (1 or ´0.1) based on a successful or
unsuccessful handshake. A successful handshake was detected through the external touch
sensor. The proposed multimodal DQN consists of two identical streams of CNN for
action-value function estimation—one for grayscale frames and another for depth frames.
The grayscale and depth images were processed independently, and the Q-values from
both streams were fused for selecting the best possible action. This method comprised
two phases: the data generation phase and the training phase. In the data generation
phase, the Pepper robot interacted with the environment and collected data. After this
phase, the training phase began. This two-stage algorithm was useful in that it did not
pause the interaction for training. Qureshi et al. [36] used 14 days of interaction data where
each day of the experiment corresponded to one episode. The same authors applied a
variation of DQN, the Multimodal Deep Attention Recurrent Q-Network (MDARQN) [73],
to the same handshaking scenario in [36]. In their previous study, the robot was unable to
indicate its attention. For adding perceptibility to the robot’s actions, a recurrent attention
model was used, which enabled the Q-network to focus on certain parts of the input
image. Similar to their previous work [36], two identical Q-networks were used (one for
grayscale frames and one for depth frames). Each Q-network consisted of convnets, a
Long Short-term Memory (LSTM) network, and an attention network [88]. The convnets
were used to transform visual frames into feature vectors. The network transforms an
input image into D-dimensional L feature vectors, each of them representing a part of
the image at “ ta1

t , ..., aL
t u, al

t P RD. This feature vector was provided as an input to the
attention network for generating the annotation vector z P RD. The annotation vector zt
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is the dynamic representation of a part of an input image at time t. zt is computed with
zt “

řL
l“1 βl

ta
l
t. The LSTM network used the annotation vector zt for computing the next

hidden state. Each of the streams of the MDARQN model were trained by using the back-
propagation method. The outputs from the two streams were normalized separately and
averaged to create output Q-values of MDARQN. As in their previous work, handshake
detection was used for the reward function (´0.1 for unsuccessful handshakes and 1 for
successful handshakes). The horizontal and vertical axes of the input image were divided
into five subregions, and the Q-network enabled to focus on certain parts of the input
image. The attention mechanism of the robot used the annotation vector zt to determine the
pixel location to direct maximal attention to the input image. This region selection provided
computational benefits by reducing the number of training parameters. Another work from
the same authors Qureshi et al. [74] proposed an intrinsically motivated DRL approach
for the same handshaking scenario. The proposed method utilized three basic events to
represent the current state of the interaction, i.e., eye contact, smile, and handshake. These
event occurrences were predicted at the next time step according to the state-action pair by
a neural network called Pnet. Another neural network called Qnet was employed for action
selection policy guided by the intrinsic reward. The reward was determined based on the
prediction error of Pnet, i.e., the error between actual occurrences of events ept` 1q and
Pnet’s prediction êpt` 1q. An OpenCV-based event detector module provided the labels for
three events (i.e., actual event occurrence). The Qnet was a dual stream deep convolutional
neural network mapping pixels to q-values of the actions (wait, look towards human, wave
hand, and shake hand). Pnet was a multi-label classifier which was trained to minimize
the prediction error between ê and e by using the Binary Cross Entropy (BCE) loss function.
The reward consisted in predetermined numerical values depending on the prediction
error between e and ê. They investigated the impact of three different reward functions
named strict, neutral and kind. In all reward functions, if all three events are predicted
successfully by Pnet, Qnet receives a reward of 1, if all events are predicted wrong then
Qnet gets a reward of ´0.1. If one or two events are predicted correctly then different
reward functions penalize differently, with the strict reward having the highest penalties.
The authors reported that the reward functions with more positive reward on incorrect
predictions yielded more socially acceptable behavior. They compared the collected total
reward from 3 days of experiments in a public place, each day following a different policy
(random policy, Qnet policy, and the previously employed method [36]). The current
proposed model led to more human-like behaviors, according to the human evaluators.

4.4.2. No Communication Medium

Another study using the Pepper robot and DQN was presented by Cuayáhuitl [35].
In their scenario, human participants played a ‘Noughts and Crosses’ game with two
different grids (small and big) against the Pepper robot. They used a CNN for recognizing
game moves, i.e., hand-writing on the grid. These visual perceptions and the verbal
conversations of the participant were given as an input to their modified DQN. The author
modified the Deep Q-Learning with Experience Replay [43] by adding the identification
of the worst action set Â. Â included actions with minprps, aq ă 0 @a P Aq and A is the
set of actions leading to win the game. The action selection was done with max

aPAzÂ
Qps, a; θq.

In other words, the proposed DQN algorithm refines the action set at each step to make
the agent learn to infer the effects of its actions (such as selecting the actions that lead
to winning or to avoid losing). The reward consisted in predefined numerical values
based on the performance of the robot in the game. Therefore, this study does not use any
communication medium for reward formulation. The robot received the highest reward in
the cases ‘about to win’ or ‘winning’, whereas the robot received the lowest reward in the
cases ‘about to lose’ or ‘losing’.
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4.4.3. Nonverbal Communication

Expressive robot behaviors including facial expressions, gestures, and posture are
found to be useful to express the robots’ internal states, goals, and desires [89]. To date,
several studies have investigated the production of expressive robot behaviors using DRL,
including gaze [85,86] and facial expressions [87]. Lathuilière et al. [85] modeled Q-learning
with a Long Short Term Memory (LSTM) to fuse audio and visual data for controlling the
gaze of the robotic head to direct it towards the targets of interest. The reward function was
defined as Rt “ Ft`1` α

ř

t`1 where α ě 0 serves as an adjustment parameter. If the speech
sources lie within the camera’s field of view, large α values return large rewards, i.e, α
permits to give importance to speaking persons. The reward function includes face reward
Ft (α “ 0) and speaker reward (α ą 0). The number of visible people (face reward) and the
presence of speech sources in the camera field of view (speaker reward) were observed from
the temporal sequence of camera and microphone observations. The proposed DRL model
was trained on a simulated environment with simulated people moving and speaking,
and on the publicly available AVDIAR dataset. In this offline training, they compared the
reward obtained with four different networks: early fusion and late fusion of audio and
video data, as well as only audio data and only video data. The authors emphasized the
importance of audio-visual fusion in the context of gaze control for HRI. They reported
that the proposed method outperformed the handcrafted strategies. Lathuilière et al. [86]
extended the study presented in [85] by investigating the impact of the discount factor, the
window size (number of past observations affects the decision), and LSTM network size.
They reported that in the experiments with AVDIAR dataset, high discount factors were
prone to overfit, whereas in the simulated environment low discount factors resulted in
worse performance. Using smaller window sizes accelerated the training, however, larger
window sizes performed better in simulated environment. Changing the LSTM size did
not make a substantial difference in the results. In a similar vein, Churamani et al. [87]
utilized visual and audial data for enabling the Nico robot to express empathy towards the
users. They focused on both recognizing the emotions of the user and generating emotions
for the robot to display. The presented model consisted of three modules: an emotion
perception module, an intrinsic emotion module, and an emotion expression module. For
the perception module, both the visual and audio channels were used to train a Growing-
When-Required (GWR) Network. For the emotion expression module, they used a Deep
Deterministic Policy Gradient (DDPG) based actor-critic architecture. The reward was the
symmetry of the eyebrows and mouth in offline pre-training, whereas in online training the
reward was provided by the participant deciding whether the expressed facial expression
was appropriate. The Nico robot expressed its emotions through programmable LED
displays in the eyebrow and mouth area.

4.5. Policy-Based Methods
Higher Level Interaction Dynamics: Comfort

In the domain of socially assistive robotics, the robots are expected to be adaptive
to their users to some extent, by using social interaction parameters (for example, the
interaction distance, the speed of motion and utterances) regarding to the task, to the
users’ comfort and personality. Several studies [90–92] examined the Policy Gradient
Reinforcement Learning (PGRL) for adapting the robot behaviors using social interaction
parameters. Mitsunaga et al. [90,91] presented a study where the Robovie II robot adjusted
its behaviors (i.e., proxemics zones, eye contact ratio, waiting time between utterance
and gesture, motion speed) according to comfort and discomfort signals of humans (i.e.,
body re-positioning amount and the time spent gazing at the robot).These signals were
used as reward. The goal of the robot was to minimize these signals, thereby reducing
experienced discomfort in the human interactant. In [92], an ActiveMedia Pioneer 2-
DX mobile robot adapted its personality by changing the interaction distance, speed and
frequency of motions, and vocal content (what and how the robot says things). The purpose
of this adaptation was to improve the user’s task performance. Their reward function was
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based on user performance, defined as the number of performed exercises. Specifically, the
number of performed exercises over the previous 15 s was computed every second and
results were averaged over a 60 s period to produce the final evaluation for each policy.
They used a threshold for the reward function (7 exercises in the first 10 min) and a time
range to adjust the fatigue incurred by the participant. The participant’s performance was
tracked by the robot through a light-weight motion capture system worn by the participant.

5. Categorization of RL Approaches in Social Robotics Based on Reward

We now present a review of the literature but with focus on the reward function.
Designing the reward function is perhaps the most crucial step in the implementation of an
RL framework. One of the main contributions of this paper is a categorization of different
types of reward functions that are used in RL and social robotics. The categorization is
given in Figure 4.

RL	in	Social	Robotics

Interactive	RL Intrinsically
Motivated	Methods

Task	Performance
Driven	Methods

Implicit	FeedbackExplicit	Feedback Homeostasis-based
methods

Human	Task
Performance

Robot	Task
Performance

Human	and	Robot
Task	Performance

Figure 4. Reinforcement Learning approaches in social robotics.

As we have already discussed the used RL methods in Section 4, they are not included
here. Moreover, the evaluation methodologies are also discussed in a separate section
(see Section 6).

5.1. Interactive Reinforcement Learning

Different approaches have been proposed for incorporating the human assistance in
the learning process of artificial agents, including learning from human feedback [24,76]
and learning from demonstration. Learning from demonstration is beyond the scope of
this paper, we focus on learning from human feedback. In traditional RL, the agent receives
environmental reward from a predefined reward function. Interactive RL makes use of
human feedback in the learning process in combination with or without environmental
reward. Interactive RL framework is given in Figure 5. Integrating human feedback with
RL can be accomplished in different ways, such as via evaluative feedback [93], corrective
feedback [94] or guidance [95].
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Figure 5. Interaction in Interactive Reinforcement Learning (reproduced from [96]).

Li et al. [96] discuss different interpretations of human evaluative feedback in inter-
active reinforcement learning (referred to as human-centered RL throughout the paper).
They distinguish between three types of human evaluative feedback: interactive shaping,
learning from categorical feedback and learning from policy feedback. In interactive shap-
ing, human feedback is interpreted as numeric reward, and this reward can be myopic
i.e., γ “ 0 [93] or non-myopic i.e., γ is different from 0 [97]. Human feedback might be
erroneous when the task is repetitive. Moreover, human teachers tend to give less frequent
feedback (e.g., due to boredom and fatigue) as the learning progresses. Modeling human
feedback has been found to be an efficient strategy when the meaning of human-delivered
feedback is ambiguous [76]. Loftin et al. [76] developed a probabilistic model of human
teacher’s feedback. They interpret human feedback as categorical feedback, considering
that human teachers may have different feedback strategies. In their work, depending on
the human teacher’s training strategy, a lack of feedback can convey information about
the agent’s behavior. Human training strategies are categorized into four groups: reward-
focused strategy (positive reward for correct actions and no feedback for incorrect actions),
punishment-focused strategy (no feedback for correct actions and punishment for incorrect
actions), balanced strategy (positive reward for correct actions and punishment for incor-
rect actions) and inactive strategy (the human teacher rarely provides feedback). Corrective
feedback can be categorized under policy feedback. As an example, Celemin and Ruiz-del
Solar [94] presented a framework named COACH (COrrective Advice Communicated by
Humans) which uses human corrective feedback in the action domain as binary signals
(i.e., increase or decrease the magnitude of the current action). In their comparison with
classical reinforcement learning approaches, they showed that RL agents can benefit from
human feedback, i.e., learning progresses faster [94]. When the agent learns both human
feedback and environment reward, the human feedback can be used to guide the agent’s
exploration [95]. The guidance includes both providing feedback on past actions and guid-
ing the agent in the learning process through future-directed rewards. Human guidance
can reduce the action space by narrowing down the action choices [98], which speeds up
the training process by accelerating the convergence towards an optimal policy.

In the context of HRI, the human can be in the learning loop by way of varying types of
inputs, such as providing feedback via a GUI (e.g., by button or mouse clicks). Alternatively,
the feedback can be delivered more naturally, via emotions, gestures and speech. Therefore,
this category comprises two subcategories: (1) explicit feedback, when the feedback is
direct, provided through an interface such as ratings, and labels; (2) implicit feedback,
if the human feedback is spontaneous behavior or reactions such as non-verbal cues
and social signals. The terms “explicit feedback” and “implicit feedback” are adopted
from Schmidt [99]’s “implicit interaction” study in human-computer interaction. For a
quick summary of the studies, see Table 1.
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Table 1. Summary of Interactive Reinforcement Learning approaches in social robotics.

Reference Subcategory Type of RL Reward Social Robot

Barraquand et al. [52] Explicit
feedback Q-learning User provides reward by using

robot’s tactile sensors Aibo

Suay et al. [26,30] Explicit
feedback Q-learning Human teacher delivers reward

or guidance through a GUI Nao

Knox et al. [29] Explicit
feedback TAMER Human teacher provides reward

by using a remote Nexi

Yang et al. [53] Explicit
feedback Q-learning User gives reward by

touching robot’s tactile sensors Pepper

Schneider et al. [44] Explicit
feedback Dueling bandit User provides feedback

through a button Nao

Churamani et al. [87] Explicit
feedback DDPG

User gives reward whether
robot’s expression is appropriate to

affective context of dialogue
Nico

Tseng et al. [49] Explicit
feedback Modified R-Max User provides reward

through a software ARIO

Gamborino et al. [69] Explicit
feedback SARSA User’s transition between

bad and good mood state RoBoHoN

Ritschel et al. [4] Explicit
feedback k-armed bandit User gives reward via buttons Reeti

Patompak et al. [32] Implicit
feedback R-learning Verbal reward by the user

based on robot’s social distance Pepper

Thomaz et al. [31] Implicit
feedback Q-learning Human teacher provides

reward or guidance Leonardo

Thomaz et al. [28] Implicit
feedback Q-learning Human teacher provides guidance

through speech or gestures Leonardo

Gruneberg et al.
[100,101]

Implicit
feedback Not specified Human teacher’s smile and frown Nao

Addo et al. [55] Implicit
feedback Q-learning Verbal reward of the user Nao

Zarinbal et al. [54] Implicit
feedback Q-learning Human teacher’s facial expressions Nao

Mitsunaga et al.
[90,91]

Implicit
feedback PGRL Discomfort signals of the user Robovie II

Leite et al. [45] Implicit
feedback

Multi-armed
bandit

User’s affective cues and
task-related features iCat

Chiang et al. [56] Implicit
feedback Q-learning

Numerical values based on
attention and engagement

levels of the user
ARIO

Gordon et al. [68] Implicit
feedback SARSA Weighted sum of

facial valence and engagement Tega
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Table 1. Cont.

Reference Subcategory Type of RL Reward Social Robot

Ritschel et al. [57] Implicit
feedback Q-learning Change in user engagement Reeti

Weber et al. [59] Implicit
feedback Q-learning Vocal laughter and visual smiles Reeti

Park et al. [58] Implicit
feedback Q-learning Weighted sum of engagement

and learning Tega

Ramachandran et al.
[102]

Implicit
feedback POMDP Engagement level of the user Nao

Martins et al. [50] Implicit
feedback

Model-based RL
and POMDP

The robot’s actions’ impact
on the user GrowMu

5.1.1. Explicit Feedback

In the explicit feedback approach, the feedback of the human teacher is given by
direct manipulations and generally through an artificial interface. The human teacher
observes the agent’s actions and environment states and subsequently provides feedback
to the agent through a graphical user interface (GUI) or through the robot’s (touch) sensors.
In this approach, the feedback from the human teacher is noiseless and direct in the form
of numerical values provided via a button, a Graphical User Interface (GUI), or through
the robot’s touch sensors. In general, the main purpose of the interaction is to teach
the robot to do something in this category. Unlike the explicit feedback category, in the
implicit feedback category, the majority of studies include a social scenario such as robot
tutoring, robots supporting the human in a game, etc. The studies under this category
are [4,26,29,30,44,52,53].

5.1.2. Implicit Feedback

Human social signals are widely used as reward in social human-robot interaction.
The most commonly used signals are human emotions, as these have a great influence on
decision-making [103]. Computational models of emotions have been studied by many
researchers as part of the agent’s decision making architecture, by modelling the RL agents
with emotions or incorporating human emotions as an input to the learning process. As
an example, Moerland et al. [104] surveyed RL studies focusing on agent/robot emotions.
Since emotions also play an important role in communication and social robots [7], there
exist various studies considering these aspects for RL and social robotics. In the implicit
feedback approach, the agent learns from spontaneous natural behavior and reactions of
the interactant, i.e., emotions, speech, gestures, etc. This type of feedback is noisy and
indirect. In other words, in this approach, human feedback requires pre-processing and the
quality of the feedback depends on the perception and recognition algorithms being used.
Unlike explicit feedback, the implicit feedback is not provided directly through an interface.
Instead, the human’s emotions or verbal instructions serve as reward or guidance signals.
The studies in this category are [28,31,32,45,50,55–57,59,68,90,91,100–102].

5.2. Methods Using Intrinsic Motivation

It is a common approach to examine the biological and psychological decision-making
mechanisms and to use a similar method for autonomous systems. One such approach
consists in combining intrinsic motivation with reinforcement learning. Intrinsic motiva-
tion is a concept in psychology, which denotes the internal natural drive to explore the
environment, as well as gain new knowledge and skills. The activities are performed
for inherent satisfaction rather than external rewards [105]. Researchers have proposed
computational approaches that use intrinsic motivation [106]. In intrinsically motivated RL,
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the main idea is using intrinsic motivations as a form of reward [107]. There are different
intrinsic motivation models within the RL framework [20]. However, in social robotics,
the idea of maintaining the internal needs of the robot (detailed in Section 5.2) has received
much attention [13,34,63–66,108]. One exception is [74], in which prediction error of social
event occurrences was used as intrinsic motivation. For a quick summary, see Table 2.

Homeostasis-Based Methods

Homeostasis, as defined by Cannon [109], refers to a continuous process of main-
taining an optimal internal state in the physiological condition of the body for survival.
Berridge [110] explains homeostasis motivation with a thermostat example that behaves as
a regulatory system by continuously measuring the actual room temperature and compar-
ing it with a predefined set point, and activating the air conditioning system if the measured
temperature deviates from the predefined set point. In the same manner, the body main-
tains its internal equilibrium through a variety of voluntary and involuntary processes and
behaviors. The homeostasis-based RL in social robotics is presented in [13,34,64–66,108].
These studies introduced a biologically inspired approach that depends on homeostasis.
The robot’s goal was to keep its well-being as high as possible while considering both
internal and external circumstances. The common theme in these studies is that the robot
has motivations and drives (needs), where each drive has a connection with a motivation
as in Equation (15).

i f Di ă Ld then Mi “ 0

i f Di ě Ld then Mi “ Di `wi
(15)

Motivations whose drives are below the activation levels do not initiate a robot
behavior. This was formulated as i f Di ă Ld then Mi “ 0 where Di is a drive, Ld the
activation level, and Mi is the related motivation. The motivation depends on two factors:
the associated drive and the presence of an external stimulus, this was formulated as
i f Di ě Ld then Mi “ Di`wi where wi is the related external stimulus. These motivations
serve as action stimulation to satiate the drives. A drive can be seen as a deficit that leads
the agent to take action in order to alleviate this deficit and maintain an internal equilibrium.
The ideal value for a drive is zero, corresponding to the absence of need. The robot learns
how to act in order to maintain its drives within an acceptable range, i.e., to maintain its
well-being. The well-being of the robot was defined as:

Wb “ Wbideal ´
ÿ

i

αiDi (16)

where Wbideal is the value of the well-being when all drives are satiated, and αi is the set
of the personality factors that weight the importance of each drive. The variation of the
robot’s well-being is used as reward signal and calculated with the Equation (17)

∆Wb “ Wbt ´Wbt´1 (17)

i.e., the difference between the current well-being Wbt and the well-being in the previous
step Wbt´1.

In several works [64–66], a variation of the traditional Q-learning algorithm was used
in addition to the homeostasis-based approach. In all of these, the authors referred to the
proposed algorithm as Object Q-learning. In this approach, there are actions associated
with each object in the environment, and the robot considers its state in relation to every
object independently. Thus, there is an assumption that an action execution in relation
to a certain object does not influence the state of the robot in relation to other objects.
However, in reality, an action execution may create collateral effects. In other words,
an action associated with a particular object, e.g., approaching it, may affect the robot’s
state in relation to other objects, e.g., moving away from them. The update of Q-values
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accounted for these collateral effects. The purpose of this simplification was to reduce the
number of states during the learning process. In their experiments, to reduce the state
space, the robot learned what to do with each object without considering its relation to
other objects. In other words, they assumed that an action execution associated with a
certain object will not affect the state of the robot in relation to the rest of the objects. The
proposed algorithm was implemented on the social robot Maggie that lived in a laboratory
and interacted with several objects in the environment (e.g., a music player, a docking
station, or humans). Castro-González et al. [65] appears to be closely linked to the other
papers discussed here with one difference being that a discrete emotion, fear, was used
as one of the motivations. Unlike other motivation-drive pairs, no drive was associated
with the ‘fear motivation’ (i.e., fear is not a deficiency of any need). ‘Fear motivation was’
linked to dangerous situations (that can cause damage the robot) and directed the robot
to a secure state. As an example, the motivation ‘social’ was not updated if the user who
occasionally hit the robot was around. For a quick summary, refer to Table 2.

Table 2. Summary of Intrinsically Motivated Methods in social robotics.

Reference Subcategory Type of RL Reward Social Robot

Malfaz et al. [108] Homeostasis based Q-learning Wellbeing of the robot Maggie

Castro-Gonzalez et al.
[64–66]

Homeostasis
based

Object
Q-learning Variation of robot’s wellbeing Maggie

Maroto et al. [13] Homeostasis
based Q-learning Maximization of robot’s well-being Mini

Perula et al. [34] Homeostasis
based Q-learning Well-being of the robot Mini

Da Silva et al. [63] - Economic TG Generated on the basis of
internal state estimate Robotic head

Qureshi et al. [74] - DQN Prediction error of an action
conditional prediction network Pepper

5.3. Methods Driven by Task Performance

Task performance denotes the effectiveness with which an agent performs a given task,
and the performance metrics can vary for different tasks. In these methods, the design of
the reward function is based on task-driven measures, which often include some problem-
specific information, especially the task performance of the robot, task performance of the
human, or both. For a quick summary, see Table 3.

5.3.1. Human Task Performance Driven Methods

In these human task performance driven methods, the reward function is based on
the user’s success in performing a task related to the interaction with the robot. The studies
in this category are [47,92].

5.3.2. Robot Task Performance Driven Methods

In these methods, the reward design depends on the robot’s task performance. Robot be-
haviors that satisfy the user’s preferences, accurate completion of the task, finishing the
task within a desired amount of time, visiting certain states, and robot actions that benefit
or satisfy the user are examples for task performance measures. The studies in this category
are [1,3,35,36,46,60,62,67,70,85,86].
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Table 3. Summary of Task performance driven methods in social robotics.

Reference Subcategory Type of RL Reward Social Robot

Tapus et al. [92] Human task
performance PGRL User performance Pioneer 2-DX

Gao et al. [47] Human task
performance

Multi-arm
bandit

User task performance and
user’s verbal feedback Pepper

Chan et al. [71,72] Human and robot
task performance MAXQ

Success of the robot’s actions
in helping or improving user’s

affect and task performance
Brian 2.0

Chan et al. [33] Human and robot
task performance MAXQ Task performance of

human and robot Brian 2.0

Moro et al. [61] Human and robot
task performance Q-learning

Numerical numbers based on
robot’s performance on user’s

activity state
Casper

Nejat et al. [62] Robot task
performance Q-learning User provides verbal feedback Brian

Ranatunga et al. [70] Robot task
performance TD(λ) Head and eye kinematic

scheme of the robot Zeno

Keizer et al. [1] Robot task
performance

Monte-Carlo
control

The robot’s performance
as a bartender iCat

Qureshi et al. [36] Robot task
performance

Multimodal
DQN

Numerical values based on
robot’s handshake success Pepper

Papaioannou et al.
[60]

Robot task
performance Q-learning Task completion of the robot Pepper

Qureshi et al. [73] Robot task
performance MDARQN Numerical values based on

robot’s handshaking success Pepper

Hemminghaus et al. [3] Robot task
performance Q-learning Robot’s task performance and

execution cost of the robot’s action Furhat

Chen et al. [67] Robot task
performance Q-learning Numerical values based on

correctly completed tasks Mobile robots

Ritschel et al. [46] Robot task
performance

n-armed
bandit

Robot’s performance at convincing
user to select healthy drink Reeti

Lathuiliere et al. [85,86] Robot task
performance DQN

Number of observed faces and
presence of speech sources

in the visual field
Nao

Cuayahuitl [35] Robot task
performance DQN Numerical values based on

robot’s performance in the game Pepper

5.3.3. Human and Robot Task Performance Driven Methods

In the previous two sections, we listed the studies using task performance of the robot
and human as reward signal. There are also studies that use a combination of the human’s
and the robot’s task performance as reward signal. As an example, in [33,72] the robot
received the highest reward if the user completed the task successfully. The robot also
received reward for its actions that were suitable for the current situation. Likewise, in [61],
the robot was rewarded based on actions that transitioned the user into a desirable state
(e.g., completing the activity). Other papers in this category are [33,71,72].
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6. Evaluation Methodologies

The past decade has seen a rapid growth of social robotics in diverse uncontrolled
environments such as homes, schools, hospitals, shopping centers, or museums. In this
review, we have seen various application domains in a range of fields including ther-
apy [3], eldercare [62], entertainment [59], navigation [32], healthcare [44], education [58],
personal robots [13], and rehabilitation [92]. Research in the field of social robotics and
human-robot interaction becomes crucial as more and more robots are entering our lives.
This brings many challenges as social robots are required to deal with dynamic and
stochastic elements in social interaction in addition to the challenges in robotics. Besides
these challenges, validation of social robotics systems with users necessitates efficient
evaluation methodologies. Recent studies underline the importance of evaluation and
assessment methodologies in HRI [111]. However, developing a standardized evalua-
tion procedure still remains a difficult task. Furthermore, in RL-based robotic systems,
there is a need to explore various human-level factors (personal preferences, attitudes,
emotions, etc.) to assure that the learned policy leads to better HRI. Additionally, how
can we evaluate whether the learned policy conveys the intended social skill(s)? As an
example, in Qureshi et al. [36,73,74]’s study, the model performance on a test dataset was
evaluated by three volunteers who judged if the robot’s action was an appropriate one
for the current scenario. In [87], there both annotators and participants rated whether
the robot was able to associate the facial expressions with the conversation context. The
independent annotators’ ratings were higher than the participants’, which, as the authors
argued, might be explained by discrepancies between the participants’ actual expressed
emotion and the intended emotion. In such cases, additional sensory information could
be useful for validating that the adaptive robot behaviors lead to better HRI. For example,
Park et al. [58] analyzed the body poses and electrodermal activity (EDA) of the participants
to check their correlation with participant’s engagement. This kind of approach could be
used to support subjective evaluations. A comparative evaluation methodology considering
both the learned policy and the user’s experience about the interaction is another way of
evaluation. As an example [32,33,56,90,91] presented the policy for each participant as
well as a discussion on the effectiveness of the robot behavior on the user based on their
comments and subjective evaluations.

The papers in the scope of this manuscript used different evaluation and assessment
methodologies for their algorithms and for their systems with users. We identify three types
of evaluation methodologies: (1) an evaluation from the algorithm point of view, (2) evalu-
ation and assessment of user experience-related subjective measures, and (3) evaluation of
both learning algorithm-related factors and user experience-related factors. Several studies
only reported the self-rated questionnaire results [45] or user opinions [55]. There are also
studies which do not include any evaluation, and only a short discussion regarding the
learned policy [53,57,100,101].

The cumulative collected reward over time is the most commonly used evaluation
method. As learning progresses, the frequency of negative rewards is expected to decrease
and positive rewards are expected to increase. Thus, the cumulative reward and comparing
the reward across different settings and variations of algorithms are one of the measures
for evaluating the efficiency of learning [49,50,52,85,86]. The evolution of the learning
algorithm over time (e.g., the evolution of Q values) is another evaluation method. Several
studies presented only the learning evolution of their system without mentioning how a
participant would perceive the learned robot behaviors [13,34,61,63–66,108]. Comparison
of user experiences (e.g., learning gains of children) for adaptive and non-adaptive robot
is another way of evaluation [68,102]. We also see evaluation by using only interaction
related objective measures such as the frequency of turn-taking and dialogue duration with
the robot [60]. Task-related evaluation measures (i.g., the number of moves needed to solve
a game with an adaptive versus a random robot) together with Q-matrix [3], or average
task success and average reward [35] are used. In some IRL studies, the purpose is only
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teaching a robot. In these studies, evaluation metrics are training time [26,29], or training
related parameters (e.g., the amount of positive and negative feedback) [28].

Studies reporting both subjective user opinions and algorithm related measures
are [30,44,46,59,92]. Interaction related objective measures such as interaction duration, dis-
tance to the robot, preferred motion speed of the robot in combination with questionnaires
are other measures for evaluating the efficiency of the learned policy. Studies also use a
comparison of different algorithms in terms of average steps, average reward, average exe-
cution time together with questionnaires [67], and the number of times the preferences of
the trainer match with the agent’s action [69], reward and discussion of observations from
the experiments [46], questionnaires and task-related parameters (e.g., time to complete
the task) [47].

7. Discussion

In this paper, we present the RL approaches in social robotics. In virtual game envi-
ronments (e.g., Atari, Go, etc.) which are commonly used testbeds for RL implementations,
the goal is well defined (e.g., getting higher scores, accomplishing a game level, or winning
the game). In social robotics, the goal is not that clear. Still, we argue that social robots
could provide a unique potential testbed for RL implementations in real-world scenarios, in
a sense that they can deal with transparency issues by showing their internal states through
social cues (e.g., facial expressions, gaze, speech, LEDs on their body, tablet). In Section 5,
we presented RL approaches based on reward types. IRL with implicit reward is the most
widely used approach in social robotics since human social cues occur naturally during
the interaction. However, the change in social cues can be slow, which leads to sparse
reward. A combination of the reward approaches presented Section 5, namely intrinsically
motivated methods, IRL with implicit feedback, and task performance-driven methods
could be an approach to deal with the sparse reward problem. This way the robot could
receive a reward even when there is no dramatic change in social cues or the task is not
completed in one step. Similar to the homeostasis-based approaches, combining emotional
models for robots’ decision-making mechanisms could be helpful. The interested reader
may refer to [104] which presents a thorough analysis and discussion of computational
emotional models incorporated within RL. Th sparse reward problem is not the only prob-
lem in real-world social HRI. We continue to the discussion with the proposed solutions
for real-world RL problems in Section 7.1. Later on, we present possible interesting future
directions in Section 7.2.

7.1. Proposed Solutions to Real-World RL Problems

RL is a powerful and versatile algorithmic tool and has been shown to perform
better than humans in simulated environments [43] However, the progress on applying
RL methods to real-world systems is not so advanced yet. This is due to the complexity
of the real-world. Dulac-Arnold et al. [112] discuss nine challenges of realizing RL on
real-world systems. Here, we discuss these challenges and how some papers tackled them
in real-world HRI with social robots.

The first mentioned challenge is “training off-line from the fixed logs of an external
behavior policy”. This challenge applies to HRI since users would not tolerate the long
pauses and action delays of the social robot. As an example, Qureshi et al. [36] suggested
an approach where they divided training into two stages. In the first stage, the robot
interacts with the environment and gathers data, whereas in the second stage the robot
rests and trains.

The second challenge is “learning on the real system from limited samples”. This chal-
lenge is especially valid for HRI since the interaction time with the users is limited in
controlled lab experiments. Moreover, users get bored and tired with longer interaction
duration. As mentioned [112] exploration must be limited. As an example, in [13,34],
exploration and exploitation phases are separated. A predefined duration is set for the
exploration phase, in which the robot runs through all possible states and actions. More-
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over, they also decreased the learning rate α throughout the exploration phase to in-
crease the importance of previously learned information as the learning progresses. In the
exploitation phase, they set α to 0. As mentioned in [112], for improving the sample
efficiency expert demonstrations can be beneficial to avoid learning from scratch. For exam-
ple, Moro et al. [61] combined LfD with Q-learning for a Casper robot helping older people
in a tea making scenario. Another mentioned solution was model-based RL, of which
we see two examples in social robotics [49,50]. In addition, long-term interactions (several
sessions [58,68,102]) are important for HRI and could be beneficial for RL to collect samples.

The third challenge is “high-dimensional continuous state and action spaces”. In
the context of social robotics, the problem also needs to be simplified due to the low
onboard computational power of most platforms. That might be another reason for a
small set of actions in the reviewed papers. To overcome this challenge we see several
approaches. As an example, human guidance was found to effective [26], as well as Object
Q-learning [64–66] and action elimination [35].

The fourth challenge is “safety constraints that should never or at least rarely be
violated”. The mentioned approaches for this challenge in [112] include imposing safety
constraints during the training. In the current literature, social robot interactions are gener-
ally conducted in a controlled laboratory environment and the researchers are available to
intervene if any problems occur. Therefore, this challenge seems to get little attention.

The fifth challenge is “tasks that may be partially observable, alternatively viewed
as non-stationary or stochastic”. We see several attempts in social robotics to deal with
this challenge such as in POMDP based approaches [50,102], and in DRL where several
frames are stacked together for incorporating the history of the agent observations. Another
mentioned approach to deal with this challenge was using recurrent networks which were
applied in [63].

The sixth challenge is “reward functions that are unspecified, multi-objective, or risk-
sensitive”. Some papers that use simulated environments for training and testing on real-
world interactions. In these papers, there are different reward functions for the simulated
world and the real-world. Generally, the real-world reward functions are simplified to
one parameter such as feedback of the user or predefined numeric numbers, whereas the
simulated world reward functions are more complex including several parameters.

The seventh challenge is “system operators who desire explainable policies and
actions”. This is particularly valid for social robotics, since ambiguous robot behaviors
might affect the user’s willingness to interact again. Moreover, if the human trains the
robot, the intention and internal state of the robot becomes crucial for the success of the
training. As an example, Knox et al. [29] discussed the transparency challenges and their
effect on the training time. Thomaz and Breazeal [28] observed that participants had a
tendency to wait for eye contact with the robot before saying the next utterance while
training the robot. These kinds of social cues on the robot could be used for explaining its
actions and internal states.

The eighth challenge is “inference that must happen in real-time at the control fre-
quency of the system”. The real-world is slower than the simulated world both in reaction
and data generation. To deal with this challenge, several researchers used an additional
interface between the robot and the human, so that the inference is received from the
interface rather than robot control.

The ninth challenge is “large and/or unknown delays in the system actuators, sensors,
or rewards”. We see several approaches to deal with this challenge, as an example [52]
considered to increase the effect of human-delivered positive reward in larger time frames
and to decrease the effect of negative reward in a shorter time frame. Another approach
was estimating reward from natural human feedback using the gamma distribution [49].

7.2. Future Outlook

There are still many interesting potential problems and open questions to be solved in
RL for social robotics. Applications on physically embodied robots are limited due to the
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enormous challenge of complexity and uncertainty in real-world social interactions. The
increased prevalence of RL in physical social robots will shed further light on this topic.
Another unanswered question is how RL-based social robotics may include the generation
of reward signals from ambiguous or conflicting sources of implicit feedback, and how
learned skills can be transferred to different robots. Further work could also investigate
larger state-action spaces, as current studies are mostly limited to a small sets.

Despite the fact that there are goal-oriented approaches for social robot learning [113,114],
in the current literature, the social robot that learns through RL has only one goal, such as
performing a single task and optimizing a single reward function. However, in many real-
world scenarios, a robot may need to perform a diverse set of tasks. As an example, socially
assistive robots designed with the purpose of assisting older people in their houses may
need to accomplish several tasks such as medication reminders, detecting issues, informing
caregivers, and managing plans. Multi-goal RL enables an agent to learn multiple goals,
hence the agent can generalize the desired behavior and transfer skills to unseen goals
and tasks [115]. This has been applied on robotic manipulation tasks in a simulated
environment [115]. However, applying the multi-goal RL framework to social robots
would be a fruitful area for future work.

Another interesting future direction might be the application of multi-objective RL in
social robotics. The task efficiency and user satisfaction can be two objectives where the
robot would try to maximize both objectives by formalizing the problem as a multi-objective
MDP. As an example, Hao et al. [116] presents a multi-objective weighted RL in which the
agent had two objectives: minimizing the cost of service execution and eliminating the
user’s negative emotions. We refer the interested reader to the survey on multi-objective
decision making for a more detailed explanation of the topic [117].

Recent developments in the field of deep neural networks have led to an increas-
ing interest in DRL. Applying DRL in social robotics has also received recent attention,
however, studies focused on small sets of actions and single task scenarios. In this re-
gard, social robots with larger sets of actions would be a promising area for further work.
Another future direction can be a further investigation of hyper-parameters of RL in so-
cial robotics. This was briefly discussed in [1], as an example, in turn-based interactions
relatively small discount factors (i.e., 0.7 ď γ ď 0.95) are more common, whereas for the
frame-based interactions with rather long trajectories, higher discount factors seem to be
more suitable (i.e., γ ě 0.99). In deep networks, the selection of different hyper-parameters
affects the accuracy of the algorithm [118]. This also applies to DRL, Lathuilière et al. [86]
presented several experiments to evaluate the impact of some of the principal parameters
of their deep network structure.

Thus far, model-free RL learning a value function or a policy through trial and error
is the most commonly used approach in social robotics. However, model-based RL that
focuses on learning a transition model of the environment serving as a simulation remains
to be further explored. In particular, having a user model can ease the learning process.
Although it is difficult to model human reactions, having a model can play a crucial role in
reducing the number of required interactions in the real-world. The model-based approach
can also help with the problem of hardware depreciation which may arise in model-free
RL in robotics because of the considerable amount of interaction time. Simulating the
interaction environment can ease the training without manual interventions and a need
for maintenance. Nonetheless, transferring the learned policies in simulation directly to
the physical robot may not be trivial due to undermodeling and uncertainty about system
dynamics [15]. A common limitation is that most of the works are not generalizable, i.e.,
utilizing the knowledge learned by one robot on the other or utilizing the task knowledge
for other tasks. The Google AI team trained a model-based Deep Planning Network
(PlaNet) agent which achieved six different tasks (i.e., cartpole swing-up, cartpole balance,
finger spin, cheetah run, etc.) [119]. A similar approach for a physical social robot would
be an interesting future direction.
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RL problems are formalized as MDPs in fully observable environments. However, in
the case of HRI not all of the required observations are available, due to the underlying
effect of psychological states on human behavior. It has been demonstrated that POMDPs
are able to model the uncertainties and inherent interaction ambiguities in real-world HRI
scenarios [120]. Hausknecht and Stone [121] proposed a method that couples a Long Short
Term Memory with a Deep Q-Network to handle the noisy observations characteristic of
POMDPs. A similar approach would be useful in social robotics problems to better capture
the dynamics of the environment. We included two examples of POMDP approaches
in social robotics, [50,102]. Further investigation would constitute an interesting line
of research.

8. Conclusions

In this work, we give an overview of the work on RL in social robotics. We sur-
veyed the literature and presented a thorough analysis of RL approaches in social robotics.
Social robots have two important characteristics: physical embodiment and interac-
tion/communication capabilities. Therefore, we included studies with physically em-
bodied robots. Moreover, we categorize the papers based on the used RL type. In this
categorization, we discuss and group the papers based on the communication medium
used for reward formulation. Considering the importance of designing the reward function,
we also categorize the papers based on the nature of the reward. The evaluation methods
of the papers are also grouped by whether or not they use subjective and algorithmic met-
rics. We then provide a discussion in the view of real-world RL challenges and proposed
solutions. The points that remain to be explored, including the approaches that have thus
far received less attention are also given in the discussion section. To conclude, despite
tremendous leaps in computing power and advances in learning methods, we are still a
long way from general-purpose, robust, and versatile social robots that can learn several
skills from naive users with real-world interactions. In spite of the immediate challenges,
we see steady progress of RL applications in social robotics with an increasing interest in
recent years.
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