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Abstract: Smart manufacturing systems are growing based on the various requests for predicting the
reliability and quality of equipment. Many machine learning techniques are being examined to that
end. Another issue which considers an important part of industry is data security and management.
To overcome the problems mentioned above, we applied the integrated methods of blockchain
and machine learning to secure system transactions and handle a dataset to overcome the fake
dataset. To manage and analyze the collected dataset, big data techniques were used. The blockchain
system was implemented in the private Hyperledger Fabric platform. Similarly, the fault diagnosis
prediction aspect was evaluated based on the hybrid prediction technique. The system’s quality
control was evaluated based on non-linear machine learning techniques, which modeled that complex
environment and found the true positive rate of the system’s quality control approach.

Keywords: blockchain technology; quality control; machine learning; security; big data; internet of things

1. Introduction

Generally, the smart manufacturing system movement in recent years has been moving
toward integrating blockchain technology, physics, and cyber capabilities to capture their
advantages, and toward using detailed information to expand system-wide flexibility and
compatibility [1,2]. It is often regarded as Industry 4.0—a term originated in the German
government project to encourage the 4th generation of manufacturing using the concept of
cyber-physical systems, equipment, and processes to create easy decision making in smart
factories [3–5]. Smart manufacturing leverage correlates with the advanced data velocity,
volume, and variety connected with big data. Applying big data techniques increases the
strength of analyses and assists with predictive analysis [6]. The mentioned capabilities
come up in most industries but with various factors and speeds, i.e., their needs, based
on suppliers and installation methods. Consequently, the common ground that exists
between multiple industries can help to explain and improve the capabilities of specific
industries [7,8].

In recent years, blockchain technology’s growth and desirability have gathered at-
tention, especially in the financial industry [9–11]. Most of the regular blockchain appli-
cations are based on asset transfers and distributing information across networks based
on smart contracts, which are considered ideal for business operations and industry sec-
tors. The main focus of smart manufacturing in Industry 4.0 is to qualify the relationship
between different manufacturing units, facilities, retailers, etc., for further support manu-
facturing industries, based on the total manufacturing value chain [12]. This process affects
automating and optimizing the operations, improving flexibility, safety, cost reduction,
productivity, and profitability. However, Industry 4.0 comes with many advantages and
challenges in the manufacturing sector that stand in the way of the benefits. Most of
the challenges are summarized in connectivity—exchanging information among various
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machines, etc. [13]. Figure 1 shows the overview of the process. This scenario considers
the transaction process between the manufacturer and the distributor. There are two
main layers in the proposed blockchain in this system to perform the manufacturer’s
transaction: public and private layers. In the first step, the manager is in contact with the
supplier, manufacturer, and distributer to handle manufacturing and control the situation
to decrease the fault rate during the process. There are set rules in smart contracts for
the manufacturing process. Each layer contains the information which is stored in the
blockchain. The private layer focuses on the manufacturer’s product distribution process.
In the private layer, the manufacturer first decrypts the provided data and then distributes
them. Similarly, the dataset is encrypted into two main parts: the public key and the private
key. The private key is directly associated with the decrypted file and the public key with
the public layer. The public layer is focused on the transaction section of this procedure.
The first step is the data mining process to manage the transaction dataset and receive
the validation. Next is storing the dataset in the sequence structure of the blockchain,
and finally, the transaction is validated.

Manager
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Smart 
Contract

Smart 
Contract

Smart 
Contract

Raw Material Ready to distribute

Private Layer

Public Layer

Manufacturer

Decrypt

Distributer 

Encrypt
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Receive Validation
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of blockchain
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Figure 1. Overview of the proposed system.

The main contributions of this paper are as follows:

• Real-time monitoring based on the IoT environmental sensors.
• Reducing the latency of decision making using blockchain.
• Applying blockchain to secure the decentralized and transparent transactions.
• The use of smart contracts to enhance the manufacturing network.
• Predictive analysis based on the fault diagnosis of the manufacturing system.
• Applying big data techniques to manage the massive manufacturing dataset.

This remainder of the paper is divided as follows: Section 2 presents the practical
literature review of the current industrial and technological processes. Section 3 presents
the proposed manufacturing model system’s architecture. Section 4 presents the system’s
performance and results, and we conclude this paper in the conclusion section.

2. Related Work

This section encompasses details about smart manufacturing and identifies some
recent industry issues overlooked by the scientific community.

2.1. Big Data Challenges and Revolution in Smart Manufacturing

As the development of industry in the second decade of the new millennium pro-
gressed, analytics’ next-generation also started improving. The first step toward progress
was increased device complexity, which needed revolutions in manufacturing procedures;
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e.g., we design 3D devices now rather than 2D, and new devices such as FinFET [14] were
conceived [15,16]. The second step was lead by the new market drivers, which were toward
lower power but faster and smaller devices. Internet of Things (IoT) technology is applied
to these devices. This technique is used to configure the devices, which are connected over
the Internet. Data collection and analysis from different means—feedback, production,
enterprise, requests, etc.—improved the decision making process in smart manufactur-
ing [17,18]. During these developments, manufacturers and customers provided feedback
and their points of view related to the products, which helped the manufacturers improve
product quality, design, etc. Big data analysis helps a manufacturer identify customer
preferences and identify the failures of a product in real-time, which improves the potential
of data-driven marketing for predictive smart manufacturing [19–21].

Some big data technology can handle processing and storing the massive volumes of
data in the manufacturing industry, e.g., NoSQL MongoDB, Apache Kafka, and Apache
Storm. Apache Kafka is a scalable messaging system suitable for making real-time ap-
plications [22]. The advantages of this system are the high-throughput, scalablity, and
fault-tolerance. Some research showed positive outcomes when applying it to healthcare,
sensor data generated based on IoT technology, etc. Alfin et. al. [23] presented real-time
data monitoring in healthcare. The proposed system’s applied techniques are a combi-
nation of Apache Kafka and MongoDB to save the patients’ data extracted from sensors.
In [24], a car parking system based on cloud technology was proposed, which contains the
Apache Kafka technique. The system can manage a large amount of sensor data related to
increases in the number of clients.

2.2. Blockchain Technology in Smart Manufacturing

Blockchain technology is revolutionary for data security, data transmission, fault toler-
ance, and transparency [25]. The distributed ledger is key to this process. A blockchain is a
security-focused structure with excellent potential, efficient transparency, and decentraliza-
tion. This technology became public through Bitcoin [26], and researchers extended this
technology with various applications and in different fields. Nowadays, the applications
of blockchain are not limited to cryptocurrency and are applied in many other areas, e.g.,
agriculture [27], education [28], healthcare [29–36], finance [37], transportation [38,39],
and supply chains [40–50]. In [51], the authors developed the blockchain-based agriculture
supply chain management and traceability system. The main goal of this system is to
trace the food products [52] and manage the supply chain. The IoT-based agricultural
supply chain system uses two separate platforms in the blockchain network, Ethereum and
Hyperledger Fabric. These two networks differ in various aspects, e.g., transaction mode
and latency. The benefit of applying this system is being sure that the stored information is
secure. In [53], the authors focused on secure access to data based on digital tools integrated
into a chain. The main solution for that goal is blockchain technology, which distributes the
digital information without giving copy permission and manages the time-stamp dataset
in the network used to connect the services and the system. The implementation of this
approach is based on the permissioned blockchain.

Cloud manufacturing is another type of manufacturing system which is based on
customer-driven manufacturing. The proposed system’s main focus is using distributed
resources as a service and making them capable of providing cyber-physical manufacturing
control based on manufacturing as a service. The cloud architecture is centralized, creating
problems of trust and security for the user and the service [54]. In [55], public and private
networks were used as manufacturing service providers in the cloud. At the service
provider level, a public blockchain was used, and at the level of the workshop, a private
blockchain was used. The data were collected based on the level of the machine. In [56],
a cloud-based blockchain network was proposed to enable trust in the network without
a trusted moderator. However, manufacturers wished to reveal certain information, but
the proposed model lacks the ability to authorize such sharing. Thus, the efficiency of
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operation and the quality of service were inadequate [57]. Table 1 presents blockchain
technology’s challenges and opportunities in a few related research areas.

Table 1. Related studies of blockchain’s challenges and opportunities.

Author Theoretical
Approach

Technology
Approach Model Approach Blockchain Application

Context

Ali et. al. [58] Systematic
Literature Blockchain - -

Li et. al. [59]
Cross case
study, enterprises
framework

Blockchain
and edge
Computing

- Smart contract

Kouhizadeh et. al [60] Decision making
evaluation Blockchain

theories of force
and field
in TOE
framework

-

Siegfried et. al. [61]

Descriptive
literature,
analysis of
systematic fit

Blockchain - -

Sun et. al. [62] Review Blockchain - Bitcoin
Easley et. al [63] Review Blockchain Game theoretic Bitcoin

Sheth et. al. [64] Theory of
contract Blockchain

Demand supply
based on economic
model

Ethereum

Treiblmaier et. al. [65] Theory building
framework Blockchain Principal agent

theory
Blockchain
applications

Wang et. al. [66] Review Blockchain Analysis of
transaction costs

Blockchain
applications

Pazaitis et. al. [67] Case study
framework Blockchain Decentralized

cooperation
Technological
solution

Jianchao et. al. [68] Use Case Blockchain Five force
model -

Morkunas et. al. [69] Firm business Blockchain Assets tracking
in Hyperledger

Computing the
power of processing

Biswas et. al. [70] Industry Blockchain Transactional
risk

Proof transaction
records

Kumar et. al. [71] Food Industry Blockchain Supply chain
management -

Kamble et. al. [72] Sustainable
supply chain Blockchain

Foreign exchange
automate payment
mechanism

Privacy in
different
concerns

O’Leary et. al. [73] Supply chain
and accounting Blockchain Stock exchanges Network design,

scalability

Kurpjuweit et. al. [74] Additive supply
chain Blockchain

Upgrade the
manufacturing
results

Lack of technical
skills

Lin et al. [75] Industrial
internet of things IIoT Adaptability,

confidentiality
Trust with the
third part

2.3. Machine Learning Technologies in Smart Manufacturing

Based on the modern technologies used for machine learning—IoT, big data, etc.—in
smart manufacturing, the industry’s main focus is creating an intelligent manufacturing
environment. The modern manufacturing system contains various sensors for collection
of data in the different formats and structures. The sensor data come from product lines,
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the equipment, activities, sensors of environmental conditions, etc. This section’s main
topics are the analysis of large volumes of data and real-time processing [76]. Machine
learning (ML) and artificial intelligence (AI) contain various tools and techniques for
quality control and improving production processes, pattern identification, and the roles
of automatic learning from datasets [77]. ML and AI contain several opportunities for
data aggregation and generating standard process insights, e.g., preventive maintenance,
forecasting the production, quality control, etc. The predictive maintenance deals with data
to develop schemes for identifying anomalies. Forecasting the production based on the
trends can leverage overtime to accurately estimate the productivity cycle. Quality control
inspection applications can use various ML techniques to generate dependable results
without human intervention. Similarly, it is significant for manufacturing workers to
adopt standards and protocols in open communication. In [78], the main focus was
customer satisfaction in the manufacturing system’s production model. The integration of
AI and information communication enabled the manufacturing standard to be high and
customized the factory based on optimizing the operations, intelligent decision making,
self-perception, etc.

3. Design and Architecture of Blockchain-Based Smart Manufacturing Quality Control

In this section, the detailed architecture of the proposed system is discussed. Figure 2
illustrates the proposed system’s architecture, which is based on blockchain-based qual-
ity control. The proposed system contains four main layers, an IoT sensor layer, a dis-
tributed ledger layer, a smart contract layer, and a business layer with the various functions.
Blockchain technology safely distributes the ledger for assessing quality, assets, logistics,
and transaction information. The defined smart contract provides the intelligence, privacy
protection, and automation in the presented system, and IoT sensors extract the real-time
data. The machine learning modules applied in this process are for pre-processing and
analyzing data.
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Figure 2. System architecture diagram.
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The first layer, the sensor layer, uses GPS to trace the products’ logistics and location
information. RFID gives the transaction, quality, and asset information. Due to the
high costs of RFID, barcodes can utilize processes when the accuracy standards are not
required and data are few. Furthermore, other sensors can be used to collect related
information—temperature, humidity, etc. The second layer is the distributed ledger layer,
which contains four main blockchain aspects: transactions, assets, logistics, and quality data.
All enterprises in the supply chain keep copies of this data—the supplier, the manufacturer,
the logistics manager, the retailer, and the financial institution operator. This information is
used to perform quality control and ensure the efficiency of the system. The third layer is
the smart contract layer, which is used to improve supply chain efficiency by gathering
and sharing data. To avoid the privacy issues, digital identities are used for controlling
the authority to access the data. The reason for using this process is that competitive
enterprises in the same supply chain will need to keep some information confidential.
Finally, the business layer contains the different business activities. Similarly, it is able to
manage and control the quality and support contracts via blockchain.

3.1. Real-Time Quality Control

The increasing number of companies and factories in the world is making the effec-
tiveness of blockchain technology greater. The companies involving machinery, networks,
participants, parts, products, and logistics all face security problems when sharing their
datasets inside and outside the factory. Blockchain’s best place in any industry is based on
the manufacturer managing to identify its needs and problems correctly. By providing chal-
lenges, opportunities, and understanding of the industry, the manufacturer can select the
best option while mitigating the issues of blockchain technology. Transparency and trust
in blockchain technology are important at every stage of production, from gathering raw
materials to delivering the final product. Some of the key points are monitoring the supply
chain for better transparency, monitoring the sources of materials, managing company
identities, tracking the assets, securing the quality, and the adoption of standards. Figure 3
illustrates real-time data monitoring in the process of production using a blockchain sys-
tem. The real-time data quality and product quality processing are evaluated based on
smart contracts, and the feedback of this process is sent to the supplier, manufacturer,
etc. The system can provide different suppliers smart contracts using digital identities.
Each component has its own digital identity with a specific authentication code for the
blockchain. Furthermore, a manufacturer cannot read this information, which is the case to
avoid revealing the data to other suppliers. Manufacturers are able to control the means of
monitoring though, based on the smart contracts’ rules.



Sensors 2021, 21, 1467 7 of 21

Blockchain Distributed ledger

Real-time Monitoring

Supplier Manufacturer Retailer 

Components Products 

Quality evaluation dataset

Feedback Feedback

Feedback

U
p

lo
ad

 q
u

ality feed
b

ack
 d

ataU
p

lo
ad

 q
u

al
it

y 
fe

ed
b

ac
k

 d
at

a U
p

lo
ad

 q
u

ality feed
b

ack
 d

ata

Figure 3. Real-time controlling and quality monitoring.

3.2. Digital Identity

Digital identity has a great role in measuring system security in interconnected devices.
To use the online services, a user might need to make a profile on various websites and
use his personal information to be available for using services. This information is stored
without the user knowing, and it is accessible to third parties. By applying the decentralized
service of blockchain for online activities, each user can have a separate digital ID based
on these IDs, and with the digital watermarking techniques, the user’s transactions can
be executed. Based on this process, the user data can be stored in the permission network,
and they are accessible only for the user with the right to access it. Figure 4 presents the
blockchain distributed ledger based on the digital identity. The data collected from the
logistics operators, suppliers, retailers, manufacturers, and financial institutions uploaded
in the distributed ledger and access control to this data are based on digital identity.
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Figure 4. Distributed ledger digital identity based on blockchain.

3.3. Contract Automation and Logistics Planning

From among the data in the blockchain and the smart contracts, suppliers are available
to access customer feedback and analysis related to products to help them improve their
production. Data collected based on the IoT sensors regarding environmental information—
temperature, humidity, etc.—are used to trace and train the product’s transport. The use-
fulness of smart contracts in the logistics system is to route the product’s transportation
intelligently. The transportation information is accessible for manufacturers and suppliers.
The logistics plans in a smart contract are defined based on product position and quantity.
Simultaneously, the digital identity supports the system to keep it confidential for logistics
providers and competition. Figure 5 presents the contract automation in the distributed
ledger of the blockchain. The output of contract execution is able to be accessed by the sup-
plier, logistics manager, manufacturer, and retailer. Similarly, they also upload the contracts
in the distributed ledger. The uploaded contracts are the input for contract automation,
and the system follows this process to improve the security and defined rules.
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Figure 5. Distributed ledger contract automation based on blockchain.

3.4. Blockchain Transaction Execution Process

In this section, the transactional process in the manufacturing industry is explained.
Step by step transaction accomplishment is illustrated in Figure 6. The user’s ability to
connect to the blockchain system is based on the front-end application using his registered
ID. User registration is the administrator’s responsibility to allow certain users to accom-
plish the right transactions. A transaction proposal needs the user’s login information
and a transaction request submission based on the registered documents. The transac-
tion records share with the nodes after completing the process. There are two types of
nodes: endorser and committer nodes. Endorser peers are responsible for performing the
transaction request and validating it, and otherwise rejecting it. The committer pairs first,
authorizes the transaction, and writes the transaction into the ledger block. The endorser
is a particular type of committer used to hold smart contracts. Moreover, the endorser is
applied to extract the selected transaction’s smart contract before upgrading the ledger
in its simulated environment to receive the transaction proposal. The endorser simulated
environment is a RW set. The RW set includes the relevant data from before the transaction,
and it performs the transaction in a simulated environment. In the next step, the signed
transaction is returned to the client based on the RW set, and the client sends it back to
the manager for transaction delivery—at this stage it has been updated with the RW set to
order the dataset toward a block. The data are compared with the real-world transaction
information, which is done by nodes, and after matching, the contract is written into the
ledger. Finally, updating the ledger is based on the data provided. At last, the committer
node sends the submitted notification to the client for the state validation. The process
between the client and the blockchain network uses the REST API.
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Figure 6. Procedure of transaction execution based on blockchain technology.

3.5. Machine Learning-Based Predictive Analysis

During the past few decades, machine learning has become part of the industrial
process to predict and make easier decision making for further steps and developments.
Data extraction is based on the useful information and identifying the new patterns and
predictions, and making the data samples far more simplified. Consequently, the decision
making can be faster than before. All this has a direct effect on the manufacturing life cycle.
The main goal of applying machine learning techniques is to supply a new perspective
to the the manufacturing industry. Figure 7 presents the process of fault detection in the
proposed system. The data preparation is an important and essential step in machine
learning to extract the necessary and related datasets, examine the structure, and select the
direction and samples. To extract the essential dataset and utilize it, changes in conditions
and operations also need to be identified. To improve the quality of a dataset, data pre-
processing and transmission are required. After preparing the training dataset, the machine
learning algorithm that meets our needs for modeling must be selected. By selecting a
model, the necessary parameters are specified. In the next step, the performance evalu-
ation is completed. There are many techniques with which to evaluate the performance
and validate the model—cross validation, parameter sensitivity analysis, model stability
analysis, etc. After completing the whole process of modeling the dataset and validating
the performance, data analysis techniques are applied to further improve our approach.
Some analysis techniques include clustering, monitoring, fault diagnosis, fault classifi-
cation, and quality monitoring. The fault diagnosis is done to give detailed information
related to a fault found during the process. Depending on the fault diagnosis method,
the fault’s main cause might be in the process or related to a special sensor. After clearing
the fault diagnosis output, the performance evaluation report is generated. Soft sensing or
prediction techniques are able to evaluate the key performance of the procedure. The pre-
dictive data models can extract and add to the online prediction process based on the
ordinary variables’ relationship. The result shows the real-time prediction output based on
the regression and prediction models.
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Figure 7. Machine learning fault detection process.

4. The Implementation Process of the Purposed Smart Manufacturing Method

In this section, the results and implementation process of the proposed integrated
method are evaluated. Table 2 presents the tools and technologies applied in the imple-
mentation and the required configuration. The operating system on which the process was
implemented and run was Ubuntu Linux 18.04.1 LTS using an Intel(R) CPU Core(TM),
i7-8700, at 3.20 GHz. The blockchain environment needed the docker engine version
18.06.1-ce, and the docker composer version suitable for this process was 1.13.0. We have
used the open-source Hyperledger Fabric V1.2 blockchain technology, and the primary
memory used was 32 GB. The programming language was Python via tensor-flow with the
Composer-Playground IDE platform, and the CLI (command line interface) tool used was
the Composer REST Server, which is a famous tool used for deploying most composers.

Table 2. Proposed system tools and techniques of implementation.

System Component Description

Operating System Ubuntu Linux 18.04.1 LTS
CPU Intel(R) Core(TM) i7-8700@3.20 GHz
Hyperledger Fabric V1.2
Docker Engine Version 18.06.1-ce
CLI Tool Composer REST Server
Docker Composer Version 1.13.0
Primary Memory 32 GB
Programming Language Python, tensor-flow
IDE Platform Composer-Playground
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4.1. The Smart Contact Development of the Case Study in Smart Manufacturing

Our development based on blockchain requires a suitable environment, for which
Hyperledger is a good option. One of the important aspects is the design of a smart contract
for the business network. A smart contract on the basis of Hyperledger contains four main
components that define the participants, the business logic script, and the rules of access
control to secure the access point of the database. The business network is run based on
the participants and their assets, which can accomplish the transaction. The participants in
this system are suppliers, manufacturers, distributors, and retailers. Exclusively, the assets
in this system are set as raw materials, orders, and records. The participants are presented
in the business network in Figure 8. A transaction based on a smart contract involves
users’ interactions with assets, performance of the transaction, a private network for the
participants, and every other activity during the smart contract’s development. The event
functions are also considered as part of the transaction and the execution process of the
same transaction. Table 3 presents the events and transactions of our procedure.

Table 3. Definitions of transactions in the proposed system.

Component Name Component Type

Update Product Details Transaction
Update Raw Material Transaction
Update the Status of order Transaction
Share Product Record
with Wholesalers Transaction

Share Product Record
with Distributer Transaction

Share Product Record with
Notification Messages Event

Updating the status of order Event
Sharing the notification of
order place Event

Sharing the notification of
confirmed orders Event

Share the notification of order
detail with distributers Event

Figure 8. Definition of Hyperledger composer participants.
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4.2. The Distributed Ledger in the Manufacturing System

The main basis of Hyperledger can be summarized as two sections. The first is a
blockchain, and the second is the world-state. Another ability of Hyperledger is to configure
the world-state databases to receive access in ledger phases based on the current set of
values. World-state is capable of automatically storing a value and checking it without
the need for fully logging information. The key value contains the world-state data and
a reference. The ledger communication and block transactions are presented in Figure 9.
The updates and changes are automatically done with the world-state database. Couch DB
and Level DB are the world-state suitable options. Level DB is the default state to save
the smart contract information in the existing and paired nodes through the network.
The Couch DB is the answer for rich query environments and is modeled in the smart
contract. Instead of saving the key values, the Couch DB stores the actual data. The results
and information from REST API are supported in Couch DB. Based on these advantages,
the Couch DB is used in the proposed environment.

Blocks

Block Structure 

Header Data
Meta
data

Database State Transactions

Transaction 1

Transaction 2

Transaction n

Couch 
DB

Level
DB

Key:Rawmaterial1
Value:
{“RawmaterialID”:”4020”
“SupplierID”:”Auto123”
…}

Transaction 1

Proposal 

Endorsement 

Response 

Figure 9. Ledger communication and the block transaction process.

5. Results and Discussion

In this section, the predictive analysis of machine learning algorithms, evaluation
metrics, blockchain execution results, and smart manufacturing vision is presented in
detail. The experimental settings of the blockchain environment and machine learning
approach are included.

5.1. Machine Learning-Based Predictive Analysis

Implementing the predictive analysis in this procedure followed the Python language
and scikit-learn module for the eXtreme Gradient Boosting (XGBoost) model, which is
open-source technology. XGBoost is the basis of eXtreme Gradient Boosting for optimiza-
tion, and it is a flexible and highly efficient algorithm for non-linear and numeric datasets.
It avoids the overfitting problem due to processing. Figure 10 presents the architectural
diagram of the predictive analysis in this approach. There are three main sections in the
prediction process. The first section is the data collection process, done in the manufactur-
ing environment. The second section is the data processing—to make the data suitable
and prepare them for further industry processes. The last section is applying the XGBoost
prediction algorithm to evaluate and predict the proposed system’s quality in the manufac-
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turing environment. The data pre-processing section contains seven main steps: processing
the raw data, feature engineering, comparing the features based on data transformation,
normalizing the dataset, selecting the features, splitting the dataset into training and test
sets, and finally applying the XGBoost algorithm.

Input data for the 
smart manufacturing 

convergence and 
security 

Processing raw 
dataset 

Feature 
engineering 

Data 
transformation 

Feature selection Splitting dataset Training dataset Testing dataset 

Pre-proceed data Computed features Data normalization 
Selected features Training dataset 

Raw data

Testing
Estimated 

quality
output

Training

Testing dataset

Figure 10. Architectural diagram of the predictive analysis based on XGBoost.

Equation (1) evaluates the XGBoost objective function:

λt =
m

∑
i=1

A(zi, ẑi
ˆ(t − 1) + Dt(Ri)) + Φ(Dt) (1)

In this evaluation process, zi is the training dataset’s real value. A is the learning
function, and t is the number of iterations. Dt is the function for every iteration, and Ri
represents the function of the combination of all features in every iteration.

Evaluation Metrics

To evaluate how well the system identifies or excludes the binary classifier, accuracy
is used as a statistical measure. Equation (2) evaluated the accuracy of this procedure. Xa,
Xb, Ya, and Yb represent the true positive, true negative, false positive, and false negative.
A high impact accuracy demonstrates good performance.

Accuracy =
Xa + Xb

Xa + Xb + Ya + Yb
(2)

Equation (3) evaluates the recall of this procedure. The recall shows the correctly
identified true positive proportion, which is the best metric for model selection.

Recall =
Xa

Xa + Yb
(3)

Equation (4) evaluates the precision based on the correct and positive values identified.
Similarly, it measures the cost in false-positive conditions.

Precision =
Xa

Xa + Ya
(4)

Figure 11 shows the three high-performance machine learning algorithms’ confusion
matrices in the presented system. XGBoost had the highest output.
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Figure 11. Confusion matrices of machine learning algorithms.

Figures 12–14 present the test results from the cross validation, which are divided
into accuracy, precision, and recall of XGBoost and KNN algorithms. XGBoost had the
highest impact in the presented approach. We have compared XGBoost with other machine
learning algorithms presented in Table 4.

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

XGB Avg XGB Max XGB Min KNN Avg KNN Max KNN Min

A
cc

u
ra

cy
 

Test Accuracy

Figure 12. Cross validation of the test accuracy results.
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Figure 13. Cross validation of the test precision results.
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Figure 14. Cross validation of the test recall results.

Table 4. Comparison results of machine learning algorithms.

Model Training (s) Prediction (s) Accuracy

XGBoost 1.412 1.118 95.56
KNN 1.119 1.482 91.73
SVC 2.187 1.581 80.2
Naive Bayes 1.115 1.112 68.5
Logistic Regression 1.184 1.112 60.4
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5.2. Execution Results of the Blockchain Environment

The blockchain network in a smart manufacturing industry is presented. In the smart
manufacturing management system, the manufacturer can add, update, and delete the
product details in the blockchain network. The manufacturer is supposed to fill out the web
form and all blockchain network entries for adding new details. Similarly, users can update
their information in the blockchain network by sending an update request in the blockchain
network’s user interface. Figure 15 presents the blockchain network’s transaction history
portal in the proposed system. In this portal, the transaction history and all the activities
completed are related to the transactions provided. The information contains the dates,
times, entry types, participants, and actions. Similarly, the transaction log file details of the
network are also provided.

Figure 15. Transaction portal history information.

Figure 16 presents the maximum, minimum, and average transaction latency of the
process. There are various user groups with different numbers of members compared.
The 540 user process had an average latency of 450 (ms); the 270 one had an average latency
of 167 (ms), and the 90 user process had a 145 (ms) average latency. Finally, the 45 users
had a 52 (ms) average latency in this procedure.

Figure 17 illustrates the various response times in the network based on users’ growth.
The system’s performance was evaluated based on three groups of users with 90, 270, and
320 members in the first, second, and third testing periods. There were no changes in
the system’s response time in the first and second tests, but the third group’s test results
contained slight changes in the system’s response.
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Figure 17. Different request response times.

6. Conclusions and Future Work

In this research, multistage quality control was evaluated based on various machine
learning and blockchain-based solutions. Data validation was performed based on the
performance of the classification output. A comparison between XGBoost and other ML
algorithms showed that XGBoost can extract the complex relationship of the dataset and
provide a quality evaluation with the highest accuracy. The presented system’s main goal—
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and novelty—was implementing a blockchain integrated with machine learning to improve
smart manufacturing procedures and environment quality; it provided excellent results.
This system offers a secure environment for manufacturers and users to improve business
environments with more safety and trust. As future work, we plan to increase the network
size to test and validate the system’s performance for more complicated manufacturing
environments in terms of accuracy, machine learning models, etc.
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