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Abstract: Super-resolution (SR) algorithms based on deep learning have dominated in various tasks,
including medical imaging, street view surveillance and face recognition. In the remote sensing
field, most of the current SR methods utilize the low-resolution (LR) images that directly bicubic
downsampled the high-resolution (HR) images as not only train set but also test set, thus achieving
high PSNR/SSIM scores but showing performance drop in application because the degradation
model in remote sensing images is subjected to Gaussian blur with unknown parameters. Inspired by
multi-task learning strategy, we propose a multiple-blur-kernel super-resolution framework (MSF),
in which a multiple-blur-kernel learning module (MLM) optimizes the parameters of the network
transferable and sensitive for SR procedures with different blur kernels. Besides, to simultaneously
exploit the prior of the large-scale remote sensing images and recurrent information in a single
test image, a class-feature capture module (CCM) and an unsupervised learning module (ULM)
are leveraged in our framework. Extensive experiments show that our framework outperforms
the current state-of-the-art SR algorithms in remotely sensed imagery SR with unknown Gaussian
blur kernel.

Keywords: multi-task learning; Gaussian blur kernels; convolutional neural network; unsupervised
learning strategy

1. Introduction

In digital image processing, low-resolution (LR) images are generally viewed as a
result of a degradation function of high-resolution (HR) images. Although the degradation
functions of real-world LR-HR image pairs have infinite expressions and parameters,
which makes the super-resolution (SR) task an ill-posed problem, the SR algorithm aims to
find a relatively simplified degradation model and effectively enhance the resolution of
LR images.

In the remote sensing field, HR images provide strong data support to a set of essential
tasks, such as disaster monitoring, national resource management, and weather prediction.
However, due to the limitation of imaging devices, most present databases consist of
low-resolution images rather than high-resolution ones. Therefore, SR algorithms for
optical remote sensing images have been a hot topic for decades. There are two widely
explored SR methods: single-image SR (SISR) and multi-image SR (MISR). MISR utilizes
multiple images of the same scene to reconstruct a single image, which fully exploits extra
information to synthesize the complete scene. Intuitively, MISR should have played a
significant role in SR for remotely sensed imagery because cameras in satellites, airplanes
and drones periodically generate images of a same scene. Nevertheless, the problems,
such as image alignment, climate variation, and the change of scene content, inhibit the
MISR application in remote sensing images. In contrast, SISR, in conjunction with the deep
learning architecture based on Convolutional Neural Networks (CNN) and Generative
Adversarial Networks (GAN), shows remarkable potential. Currently, the SISR algorithms
that achieve state-of-the-art performance often involve advancement in deep learning.
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ESPCN [1] achieved state-of-the-art performance in SR tasks by introducing spatio-
temporal sub-pixel convolution networks that made full use of temporal redundancies
and maintained an excellent balance between reconstruction accuracy and running time.
SRFBN [2] added deconvolution layers to generate residual images in the feedback block
and achieved state-of-the-art performance in DIV2K [3]. DRLN [4] allowed the low-
frequency information to focus on the high-level features by employing cascading residual
on the residual structure. Through adding a recursive block that makes up of multiple
residual units and sharing weights across all these units, DRRN [5] achieved the state-of-
the-art performance in SR task with fewer parameters (300 K) than other SotA architectures
for SR (i.e., DRCN [6] 1.8 M). SAN [7] extracted large-range spatial contextual information
by exploiting the second-order feature statistics. Besides, the SR algorithms based on deep
learning have been also applied into the SR task in remote sensing field. Lanaras et al. [8]
employed a CNN architecture to upsample the LR images in an end-to-end manner to
super-resolve the multi-spectral imagery delivered by the Sentinel-2 satellite mission from
about 60 Ground Sampling Distance (GSD) to 10 GSD. Shen et al. [9] proposed a residual
convolutional neural network in order to generate HR PolSAR images from LR ones, which
focused on the change of pixel-wise difference instead of the slight but complex transfor-
mation between corresponding pixels. Salvetti et al. [10] proposed a fully convolutional
residual attention multi-image super-resolution (RAMS) to exploit spatial and temporal
correlations to leverage multiple remote sensing images.

Although deep learning algorithms have shown tremendous success in SR tasks,
some problems still exist. In many studies [11–13], the LR images in both train set and test
set are obtained by bicubic downsampling HR images, thereby making these networks
have high PSNR/SSIM scores on the test set but show performance drop in real scenarios
(i.e., remote sensing images). In other words, the bicubic downsampling method, unlike
the degradation model of the real scene, is over-simplified so that the test on bicubic down-
sampled LR image cannot precisely represent the generalization ability of the networks.
Moreover, in real scenarios, each LR-HR pair has a different degradation function and
parameters. Conventional data augmentation methods (e.g., synthesizing data through var-
ious degradation function) not only increase computation expense but also cannot achieve
satisfying performance on every test image. Besides, designing deeper networks, despite
the better performance, is likely to result in vanishing gradient problems and exploding
gradient problems.

To address these issues, we propose a multiple-blur-kernel super-resolution frame-
work (MSF), which utilizes external and internal information simultaneously. Specifically,
inspired by the multi-task learning strategy, we present a multiple-blur-kernel learning
module (MLM) to wisely learn the general features among SR with different blur kernels.
In addition, a class-feature capture module (CCM) is embedded into the framework in
advance, learning the powerful image prior from the large-scale database and accelerating
the training process in MLM. Moreover, the predictive power from internal image statistics
in a single remote sensing image can further promote the performance of the framework.
Therefore, an unsupervised learning module (ULM) follows the MLM, exploiting the data
repetition in the test image. In general, our contributions are summarized as follows:

(1) We design a simplified but effective CNN architecture with residual learning as the
foundation network. It focuses on the slight difference between LR-HR image pairs
and remarkably decreases the training cost because the residuals in most region are
close to zero. Moreover, a Gaussian blur kernel generator is introduced to randomly
generate both isotropic and anisotropic Gaussian blur kernel, simulating the SR
process in real world instead of the predefined upgrade model.

(2) We propose a multiple-blur-kernel learning module based on the multi-task learning
strategy, in which each task corresponds to a randomly generated Gaussian blur
kernel. The multi-task learning strategy forces the network to pay attention to general
features among LR-HR image pairs with different Gaussian blur kernels, considerably
boosting the SR performance when testing the image pair with unknown blur kernel.
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Besides, through learning large-scale dataset, the natural priors from the remote
sensing images provide useful class-specific edge and texture information for SR
and accelerate the training process in MLM. In addition, the unsupervised learning
module further improves the SR performance by exploiting the recurrent information
inside the test image.

(3) We test the performance of MSF and other SotA SR architectures on the various
kinds of instances in remote sensing images that degrade with a randomly generated
Gaussian blur kernel. Then we study the influence of different scaling factors on
these SR architectures. Subsequently, we conduct the ablation experiment to test the
effectiveness of three modules. Finally, we test our MSF’s performance on real-world
images without the ground truth. Extensive experiments show that the performance
of our framework outperforms other SR architectures on remote sensing images with
unknown blur kernels.

2. Method and Material
2.1. Proposed Method

In digital image processing, the relationship between the HR image and LR image is
generally abstracted into the degradation model:

Ik
LR = (IHR ∗ k) ↓ s + n (1)

where Ik
LR, IHR, ∗, k, ↓ s and n denote the LR image, HR image, convolution, blur kernel,

downsampling with scaling factor s and noise, respectively.
In the photogrammetry field, a large number of factors (e.g., sensor errors, climate,

and data compression) have an effect on the imaging process. Therefore, the blur kernels k
in Equation (1) are usually treated as Gaussian blur kernels. The commonly used method
that generates the train set is to convolute the HR image with a specific Gaussian blur
kernel and then perform the bicubic downsampling step. When the test set is generated
by the same Gaussian blur kernel, the SR framework show excellent result. However, a
deep learning network training on images with a specific Gaussian blur kernel often shows
performance drop on the test set with different Gaussian blur kernel.

Theoretically, the data augmentation method that synthesizes the LR-HR pairs by
various Gaussian blur kernels can enhance the performance of the SR model when facing
the test set with unknown Gaussian blur kernel. But in most cases, the process of learning
the expanded dataset considerably consumes the computational resources, along with
gradient vanishing problems and gradient exploding problems. Hence, we introduce the
multi-task learning strategy that can wisely learn the relationship among SR process with
different blur kernels. Multi-task learning refers to a learning strategy that the network cap-
tures the domain-specific knowledge in multiple related tasks (e.g., semantic segmentation
and object detection) in order to promote the generalization ability across these tasks. We
propose a framework in which every task corresponds to a SR process with a specific blur
kernel, aiming to learn the general feature among multiple SR processes with different blur
kernels. Meanwhile, we exploit the usefulness of both external instance prior information
and internal recurrent information to further promote the SR result.

The overview of our proposed Multiple-blur-kernel Super-resolution Framework
(MSF) is shown in Figure 1. There are three modules in our MSF: the class-feature capture
module (CCM) extracts representative priors (texture and edge) of corresponding instances
(plane, ship, or car) in remote sensing images through learning large-scale external dataset,
the multiple-blur-kernel learning module (MLM) initializes the parameters by these priors
and intends to find a point in the parameter space transferable and sensitive for various
gradient descent zone for different blur kennels, and the unsupervised learning module
(ULM) combines internally recurred information in the entire test image to perform the
blur kernel estimation.
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Figure 1. The overview of the Multiple-blur-kernel Super-resolution Framework (MSF).

The core of the multi-task learning strategy is the parameter sharing mechanism,
which requires all modules in the framework to rely on the same foundation network. As
is shown in Figure 2, we employ a simple convolutional network with residual learning
as the foundation network. The foundation network consists of 8 hidden convolutional
layers. Each of the first 7 convolutional layers has 64 filters and is activated by ReLU. The
last convolutional layer has 3 filters, and the output of this layer is connected with the
original input in order to force the network to focus on the pixel-wise difference between
the LR-HR image pair.
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Figure 2. The architecture of the foundation network. The network takes upsampled LR image as
input tensor with shape H ×W × C× F, where H, W, C and F denote height, width, channels (3 as
default) and the number of filters (64 in our setting), respectively.

2.1.1. Class-Feature Capture Module (CCM)

A multi-task learning strategy consumes considerable computational resources be-
cause parameter updating in MLM needs to leverage the losses of all subordinate networks.
Theoretically, the more subordinate networks in MLM, the better performance the frame-
work achieves on the test set with unknown blur kernels. However, adopting too many
subordinate networks enlarges the size of the framework and brings various difficulties
in the training process. In practice, the video memory of GPU constrains the number of
subordinate networks, thus limiting the performance of the entire framework. Therefore,
some optimization steps that decrease the computation burden are needed. It is shown
that the class-feature from large-scale external dataset can provide significant priors of
natural scenarios (e.g., texture and edge of the instances). The initialization with these
priors, as opposed to the random initialization, reduces the number of iterations, and thus
accelerates the training phase in MLM. We propose a network whose architecture is the
same as the network in MLM. The network learns instance-relevant representative features
by training on the external dataset. The optimized parameter in CCM will be shared with
networks in MLM. The details in CCM are shown below.

Through bicubic downsampling the HR images (whose class is the same as the test
piece), we obtain the LR-HR pairs (denoted as D ∼ (IHR, Ibic

LR)) for the class-feature capture
module (CCM), in which the LR images are the input of network and the HR images are
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ground truth. The network is randomly initialized and is optimized with the pixel-wise
L1 loss:

LossD(θ) = ED∼(IHR,Ibic
LR)

[‖ IHR − fθ(Ibic
LR) ‖1] (2)

θE ← θ (3)
After the training process in CCM, the optimized parameter θE represents the implicitly

class-relevant features across the large-scale data and is saved to initialize all networks
in MLM.

2.1.2. Multi-Blur-Kernel Learning Module (MLM)

The core of the multi-task learning strategy is the parameter sharing mechanism. Two
methods are commonly used: hard sharing and soft sharing. To overcome the gradient
vanishing problems brought by hard sharing and considerable training expense from
soft sharing, we propose a joint sharing mechanism. A new loss function is devised to
leverage all loss of the multiple tasks (i.e., parameter optimization for multiple blur kernels
θ1, θ2, θ3, . . . , θm in Figure 3). Mathematically, the MLM serves the function of finding a
point in the parameter space sensitive enough to perform gradient descent to different
local minimum.
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Figure 3. Diagram of the new loss function that leverage all subordinate losses, where θ de-
notes the parameter of the main network and θ1, θ2, θ3, . . . , θm denote the parameters of the
subordinate networks.

The number of subordinate networks is a hyperparameter. Theoretically, MLM with
larger number of subordinate networks has better generalization ability. Nevertheless,
the algorithmic complexity of the MLM is O(n2). As a result, there is a tradeoff between
efficiency and effectiveness.

After determining the number of subordinate networks, the train set in MLM needs
to be prepared before the learning phase. First, we need some blur kernels. To randomly
generate Gaussian blur kernels, we design a Gaussian blur kernel generator based on a
covariance Σ:

Σ = MΛMt (4)

Λ =

(
λ1 0
0 λ2

)
λ1 ∼ U(1, 2s)λ2 ∼ U(1, λ1) (5)

M =

(
cos ϕ − sin ϕ
sin ϕ cos ϕ

)
ϕ ∼ U(0, π) (6)

where ϕ denotes random angle, λ1 λ2 denote random length in two axes, and s denotes the
scaling factor. Note that when λ1 = λ2 and ϕ = 0, the generated Gaussian blur kernel is
isotropic Gaussian blur kernel; otherwise it is anisotropic Gaussian blur kernel.

After generating m Gaussian blur kernels, we randomly select m sets of HR remote
sensing images. For each set of data, we downsample the HR images to generate the LR
counterparts by using a corresponding blur kernel. Then the LR-HR pairs are divided into
two groups, the training data Di

train and validation data Di
val (i denotes the ith blur kernel)

The architecture of both main and subordinate networks is the foundation network,
and every network in MLM initializes with the parameters θE. The parameter update in
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MLM is a loop. First, each subordinate network trains on Di
train and performs a or a few

steps of gradient descent. The parameter update for one gradient descent is:

θi
j+1 ← θi

j − α∇θ LossDi
train(θ) (7)

where LossDi
train is the pixel-wise L1 loss, j is the number of gradient descent steps, and α is

the learning rate of the gradient descend on trainset (0.0001 in our experiment). Normally
the value of gradient descent steps in subordinate networks ranges from 1 to 10, because
too many steps of gradient descent hinder the generalization ability of MLM. We set j = 3
as default. Second, the validation set Di

val is sent to updated network and calculate the L1

loss LossDi
val(θi

j). Third, on the basis of LossDi
val(θi

j), the main network uses a new objective
function to optimize its parameter:

argmin
m

∑
i=1

LossDi
val(θi

j) (8)

= argmin
m

∑
i=1

LossDi
val

(
θ − α∇θ LossDi

train(θ)
)

(9)

The parameter update for one gradient descent in main network is shown as follows:

θ ← θ − β∇θ

m

∑
i=1

LossDi
val(θi

j) (10)

where β is the learning rate of the main network (0.001 in our experiment).
Finally, the updated parameter in main network is copied to every subordinate net-

work, and next loop begins. The train process ends till the main network converges.With
the parameter optimization from MLM, the ULM that takes the small piece containing the
interesting instance as input can efficiently descend to the local optimum.

Algorithm 1 shows the training steps in MLM:

Algorithm 1. Training process in a multiple-blur-kernel learning module

Input: The number of subordinate networks (blur kernels), randomly selected HR images, the
optimized parameter θE from CCM, the learning rate α β

Output: parameter θM

Generate m Gaussian blur kernels
For all Gaussian blur kernels do
randomly select HR images
downsample the HR images with corresponding Gaussian blur kernel
divide the HR-LR pairs into Dtrain and Dval
End
Initialize parameters of all networks in MLM with θE
While the main network does not converge do
For all subordinate networks do
For j steps do
Update the parameter by Equation (7)
End
Evaluate the loss in validation set LossDval (θ)
End
Update the parameter in main network by Equation (10)
Copy θ to all subordinate networks
End

The methodology and structure of MLM is similar to MAML [14] both of which aim
to promote the generalization ability of the framework, but the details of two frameworks
are quite different. the MAML focuses on sampling not only from the data but also the task
whereas the multi-task learning strategy pay attention to the common features among tasks,
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which, in our work, are the features among various SR processes with different Gaussian
blur kernels. In MLM, samples of same instances are randomly selected to form some
groups and then degraded through different blur kernels. Conversely, MAML requires the
task distribution before the training process.

2.1.3. Unsupervised Learning Module (ULM)

Although our proposed MLM can remarkably perform SR with unknown blur kernels,
kernel estimation for the test set can further promote the performance of the SR framework.
The underlying blur kernel of a single image can be predicted by using the self-similarity
properties within the image [15], which is usually learned by unsupervised learning.

In a single remote sensing image, small pieces of information (e.g., object, texture,
patch, edge) recurs in different scales, which is a significant property for super resolution.
Aided by the cross-scale internal recurrence of a single remote sensing image, we seek
to learn the degradation relationship between the specific image and its downsampled
counterpart. We use an unsupervised strategy that depends on two concerns:

(1) The upgrade function between the SR image and test image (LR) is similar to that
between the test image (LR) and its downsampled counterpart. The upgrade function
is denoted as F:

ILR = F1((ILR)downsample) (11)

ISR = F2(ILR) (12)

F1 ≈ F2 (13)
(2) The small pieces within a single remote sensing image obey the same SR model (i.e.,

same Gaussian blur kernel). Therefore, we divide the test image into several small
parts and send them into the network in ULM to estimate the blur kernel.

As shown in Figure 4, the purpose of ULM is to fully exploit the recurred textures and
edges in a single remote sensing image to estimate the blur kernel of the test image through
using the unsupervised learning strategy. Based on the concern that the SR procedures of
all pieces within a single remote sensing image encounter the same degradation function
(i.e., Gaussian blur kernel with same parameter), we divide the test image into multiple
pieces. Each piece that arises from the test image has the same size with a slight section
overlapped because the size of the image may be not divisible by the size of the input
tensor of the foundation network. This overlap setting makes our ULM tackle any size of
test image, and the final SR result can be reconstructed by multiple outputs of the network
in ULM. It should be noted that too many input pieces generated from test images weaken
the networks ability to super resolve the complete instance because the reconstruct step is
lack of semantic correlation, although this step contributes to promoting the contrast and
sharpening the edges in the result.

With the multiple pieces from the test image, we then generate downsampled version
of these piece. As shown in Equations (11)–(13), our learning strategy in ULM depends
on the concern that the SR procedure from downsampled version of the test piece to the
original test piece is similar to that from test piece to SR results. Consequently, we resize
the test pieces into multiple small versions (scaling factors 0.9, 0.8, 0.7, 0.6, 0.5), and then
bicubic interpolate them back into the original size, synthesizing multiple LR-HR image
pairs. The aim of this step is to let the network focus on general structural information of
these test pieces.

There are only two foundation networks in the ULM. The first network initializes
with θM, takes all pieces that are generated from test image as input tensor, and optimizes
with L1 loss, as mentioned in Equation (2). Once the first network coverages, the second
network shares the optimized parameter, and the piece containing the desired instance
is sent into the second foundation framework as test input. More results are obtained by
data augmentation (i.e., rotation by 90, 180, 270 degrees, and reflection both vertical and
horizontal). The final SR result is synthesized from the intermediate results by using the
stacking step. We employ median rather than mean of all predicted outputs as the final re-
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sult because the median value can maintain the sharpen contrast within the image whereas
the mean value usually smooths the variation, generating a relatively blurred result.
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Since the CCM and MLM fully utilize the external information and optimize the
parameters to a point that can efficiently descend, the USM only needs one or a few
iterations to show outstanding performance. Due to parameter optimization in MLM, the
time and computational consumption of ULM noticeably decreases. Contrary to some
unsupervised SR models [15,16], which commonly requires more than 10K times of gradient
update, the ULM needs only a few steps of gradient update (normally less than 10) to
achieve excellent performance on the test image. (all abbreviations of terms are shown in
section of Abbreviations).

2.2. Dataset

To comprehensively evaluate the performance of our proposed MSF, we exploit
the DIOR dataset [17]. The DIOR dataset is one of the largest publically available ob-
ject detection datasets in the remote sensing field. In DIOR, there are 23,463 optical re-
mote sensing images and 192,472 object instances labeled with 20 categories. The spatial
resolution of images varies from 0.5 m to 30 m. This large range of spatial resolution
variation dramatically promotes the effectiveness of our MSF on images with different
spatial resolutions. In addition, the object instances extracted from the remote sensing
images are taken as the input of CCM, providing strong natural image priors to im-
prove the SR performance of MSF on the test piece containing the same class of instance.
What is more, the size of the image in DIOR is 800 × 800 pixels, large enough to be di-
vided into a number of pieces (256 pieces in our experiment) to perform blur kernel
estimation in the test step. We do experiments on five categories of object instance:
plane, ship, vehicle, stadium and storage-tank. The dataset can be downloaded from
(https://pan.baidu.com/share/init?surl=w8iq2WvgXORb3ZEGtmRGOw passcode: 554e;
accessed date: 2 March 2021).

2.3. The Evaluation Indexes

To evaluate the performance of the SR algorithm, some image quality assessment
methods (IQA) are proposed. There are two types of IQA methods: subjective methods,
which mainly depend on the human visual perception, and objective computational meth-

https://pan.baidu.com/share/init?surl=w8iq2WvgXORb3ZEGtmRGOw
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ods, which focus on the pixel-wise difference and similarity between LR and HR pairs. In
remote sensing field, although subjective indexes are able to accurately capture the human
visual attention, objective indexes are more commonly used to obtain quantitative result.

Peak Signal-to-Noise Ratio (PSNR) is a measurement that widely assesses the loss
transformation in image processing tasks, such as image compression and image inpainting.
For SR task, PSNR is defined as follows:

PSNR = 20· log10 (
L2

1
N ∑N

i=1 (I(i)− Î(i))2 ) (14)

where L denotes the maximum pixel value (i.e., equals to 255 in general cases using 8-bit
representations). I and Î denote the ground truth image and predicted image, respectively.

Another widely used index is the structural similarity index (SSIM). In the human
brain, structural information provides more visual stimuli. On the basis of this scientific
observation, SSIM is proposed for measuring the structural similarity between images,
based on independent comparisons in terms of luminance, contrast, and structures. For
an image, the comparison of luminance and contrast, denoted as Cl(I, Î) and Cc(I, Î), are
estimated by the mean and standard deviation the image intensity, and are obtained by
following equations:

Cl(I, Î) =
2µIµ Î + C1

µI2 + µ Î
2 + C1

(15)

Cc(I, Î) =
2σIσÎ + C2

σI2 + σÎ
2 + C2

(16)

where C1 and C2 are constants for stability:

Cs(I, Î) =
σI Î + C3

σIσÎ + C3
(17)

SSIM(I, Î) =
[

Cl(I, Î)
]α[Cc(I, Î)

]β[ Cs(I, Î)
]γ (18)

where α, β, γ are control parameters for adjusting the relative importance.

3. Experiments and Results
3.1. Data Preparation

Some pre-processing steps need to be done before running the framework:

3.1.1. Bicubic Downsampling Step

Bicubic downsampling is a widely adopted step in SR models because the equal size
of the input LR images and the ground truth forces the SR models focus on the slight
transformation between corresponding pixels among LR-HR image pair, decreasing the
complexity of the models and increasing the generalization ability:

• direct downsample with scaling factor;
• bicubic interpolate back into the origin size.

All networks in MSF take pieces (64 × 64 pixels) as input tensor.

3.1.2. Data Preparation in CCM

The purpose of CCM is to exploit the prior information in large-scale external dataset.
Due to the diverse spatial resolutions of observation instances, CCM can extract strong
predictive information (i.e., edges and textures) to SR procedure. The class-name informa-
tion can be read from the annotation document. Besides, instances out of size (larger than
64 × 64 pixels) can be cropped to the size needed. It is shown that the pieces containing
incomplete instance as external data do not hinder the performance of CCM. Instead, these
pieces usually contain high spatial resolution object, providing useful textures and edges
to test objects with low spatial resolution:



Sensors 2021, 21, 1743 10 of 19

• randomly select 200 images and crop small pieces (64 × 64 pixels) containing instance.
The pieces work as external dataset;

• bicubicly downsample the pieces in external dataset, and synthesize the paired dataset DE.

3.1.3. Data Preparation in MLM

MLM serves the function of letting the framework capture the implicit generalization
features among different Gaussian blur kernels. Therefore, the intuitive data pre-processing
step is to synthesize data from DE with generated Gaussian blur kernels. However, it is
proved by the experiments that the optimization from newly selected instance-pieces excels
this intuitive data-augmentation step. So we select new images containing same-class
instance as train data in MLM. Moreover, although more blur kernels and more data for
each subordinate network theoretically enhance the performance of MLM, the algorithm
complexity of MLM is O(n2). It is a tradeoff between computational cost and effectiveness:

• randomly select 160 images of the same class and crop small pieces (64 × 64 pixels)
containing instances;

• randomly generate 16 Gaussian blur kernels;
• every 10 pieces bicubicly downsample with a Gaussian blur kernel, 8 pieces work as

Dtrain, 2 pieces work as Dval.

Bicubic downsampling with a Gaussian blur kernel involves a blur convolution step
between downsampling and bicubic interpolation.

3.1.4. Data Preparation in ULM

The unsupervised learning strategy in ULM aims to perform a kernel estimation
within the test piece, forcing the network to descend in a correct gradient descent zone and
finding the local minimum for corresponding blur kernel. To solve the size of the image
cannot be divisible by the size of input piece, we cut the test image into 256 pieces with a
small part overlapped. For overlapped part, we reconstruct the SR piece through median
value of the results from multiple pieces:

• divide the test image (800 × 800 pixels) into 256 pieces (64 × 64 pixels), some of which
are slightly overlapped;

• for each piece, downsample by several scaling factors and then bicubic interpolate
back to origin size (64 × 64 pixels), synthesizing the paired dataset;

• perform data augmentation including rotation (90,180,270 degrees) and reflection
(horizontal and vertical).

The whole test set contains 100 randomly selected image-pieces with instances. As
opposed to many studies that use bicubic downsampling images as the test set, we generate
a new Gaussian blur kernel to perform convolution between the downsampling step and
the interpolation step in the test images. Our purpose is to test the ability of MSF and other
algorithms to super resolve images with unknown Gaussian blur kernel. We implement all
experiments on a workstation equipped with an Intel CPU i7 8700 k, a RTX2080Ti GPU with
11 GB memory and 64 GB DDR4 Memory. Our framework is running on the Tensorflow
framework version 1.8 and CDUA10.

3.2. Experiment and Results
3.2.1. The Comparison with Other State-of-the-Art Super Resolution Algorithms

To comprehensively evaluate the effectiveness of our proposed method, several current
state-of-the-art super-resolution approaches, including the conventional bicubic interpola-
tion (i.e., LR input for MSF), EDSR [13], RCAN [18], and SRFBN [2], were compared. The
table below shows the comparison of PSNR and SSIM metrics with these SotA methods
on the test set. All algorithms are tested on the test set with a newly generated Gaussian
blur kernel.

As shown in Table 1, our MSF shows excellent performance dramatically superior to
all other SotA algorithms on nearly all classes of the test set expect on the stadium-class data
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(slightly inferior to SRFBN). We observe that it generally follows the order: MSF, SRFBN,
RCAN, EDSR. In details, the PSNR/SSIM scores of EDSR and RCAN are only slightly
higher than that of the direct bicubic-interpolation method, while SRFBN and our MSF
show noticeably better results. Our MSF achieves obviously higher scores on the test sets of
vehicle, ship, and plane classes (PSNR 6.35, 4.72 and 1.48 dB; SSIM 0.362, 0.176, 0.49, com-
pared with the second-best results), but similar scores on storagetank class (PSNR 0.12 dB;
SSIM 0.036). Our MSF also shows performance drop on stadium scenario, decreased by ap-
proximate 9 dB compared with performance on other four classes. Interestingly, the EDSR
achieves inferior results compared with bicubic interpolation method on the stadium and
storagetank classes, which suggests that EDSR cannot provide high-frequent information
when testing these two scenes. We speculate the relatively inferior performance of EDSR
results from its removal of the short-skip modules in the residual network.

Table 1. The average PSNR/SSIM results of SR models on five categories of instances with a new
randomly generated Gaussian blur kernel (scaling factor 2).

Instance Bicubic EDSR RCAN SRFBN MSF

Vehicle 30.53/0.8442 31.21/0.8737 32.02/0.8919 31.44/0.8992 38.37/0.9281
Ship 29.21/0.8827 29.99/0.8923 31.62/0.9172 34.57/0.9127 39.29/0.9348
Plane 31.31/0.8723 33.01/0.8991 35.18/0.9002 36.83/0.8786 38.31/0.9492

Stadium 27.02/0.8902 26.23/0.8521 27.33/0.9100 29.09/0.9341 28.01/0.9212
Storage tank 29.98/0.8909 29.19/0.8822 31.07/0.8743 36.51/0.9281 36.63/0.9317

Figures 5–9 show the qualitative comparison results between our MSF and other SotA
SR algorithms when trained and tested on data set over five categories. As shown above,
the super-resolved result of our MSF has clearer edges and higher contrast than other SR
models. It should be noted that all test images (except the stadium class) contain instances
which repeatedly appear with diverse size and orientation. This internal recurrent infor-
mation provides strong edge and texture predictive power through using unsupervised
learning strategy, which cannot be exploited by supervised SR models. For stadium class,
aided by the feedback blocks with feedback connection, the ability of SRFBN to super
resolve the regular geometric shapes in the test piece slightly excels our MSF, showing
clearer lines on the ground and boundaries of the stadium. However, MSF still achieves a
comparable result. Considering the SR models for remote sensing images usually pay more
attention to the complex and diverse edges and texture of instance objects rather than sim-
ple and regular ones, we believe the effectiveness of our MSF in the remote sensing field.
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3.2.2. The Influence of Different Scaling Factors

In this part, our purpose is to compare the performance of MSF and other SR algo-
rithms on the data with different scaling factors. We adjust the scaling factor (2,3,4) in the
bicubic downsampling step. Theoretically, with a larger scaling factor, the downsampled
piece loses more texture information and details, making the framework more struggled
to capture the distribution of the degradation model. To obtain an unbiased result, all SR
methods test on the new selected data set (class: plane).

The result in Table 2 shows that all SR algorithms obtain remarkably lower scores of
PSNR/SSIM with the increase of the scaling factor, as we predicted before the experiment.
However, our MSF still outperforms other networks, mostly because the unsupervised
module in our framework fully utilizes the internal information recurred in the patch.

Table 2. The average PSNR/SSIM results on dataset with different scaling factors.

Scaling Factor Bicubic EDSR RCAN SRFBN MSF

×2 30.13/0.8003 33.44/0.8464 34.16/0.8821 36.22/0.8896 39.91/0.9429
×3 26.10/0.7112 27.69/0.8102 29.91/0.8434 30.01/0.8632 34.21/0.9102
×4 24.19/0.6928 23.52/0.7676 24.32/0.8002 28.32/0.8116 29.32/0.9008

Additionally, we hypothesize the dataset expanded by various scaling factors would
contribute to performance promotion for MSF, but the experiment shows that this data
augmentation method, in fact, confuses the network by decreasing the correspondence
between LR-HR pairs and thus weakens the performance of our network.

3.2.3. Ablation Study

The purpose of this section is to demonstrate the importance of three modules in our
framework. To do this, we maintain the architecture of the foundation network and ablate
or remain the modules in the framework to generate new frameworks. Moreover, to verify
the effectiveness of our architecture, we add frameworks with full input (360 pieces) as
exclusive input data for CCM or MLM. It should be noted that the ULM is an unsupervised
network that only needs the test set. We train six frameworks in parallel: complete MSF
(with 200 pieces as train data for CCM; 160 pieces for MLM), CCM (with 360 pieces as train
data), MLM+ULM(with 160 pieces as train data for MLM), MLM+ULM(with 360 pieces as
train set for MLM, 36 Gaussian blur kernels in MLM), ULM(with only test images), and
CCM(360)+ULM(with 360 pieces as train data for CCM). All frameworks test on a new
generated test set (class: ship)

Table 3 presents the results of six frameworks. In general, complete MSF remarkably
outperforms other incomplete frameworks. What is more, it is shown that the frameworks
adopted MLM are noticeably superior to those without MLM, which demonstrates the
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significance of the multi-task learning strategy. Moreover, the result that a single application
of ULM achieves a similar PSNR score with CCM (360) and obviously higher SSIM score
than CCM (360) verifies our concern that the recurrent information in the single test image
provides strong predictive power for SR procedure.

Table 3. The average PSNR/SSIM results on six frameworks.

MSF(360) CCM(360) MLM(160) + ULM MLM(360) + ULM ULM CCM(360) + ULM

39.77/0.9378 31.31/0.8464 33.29/0.8894 37.93/0.9369 31.22/0.8899 32.13/0.8852

In detail, we can see that MLM(360) + ULM framework achieves the second-best
performance, considerably superior to MSF(160) + ULM, showing more blur kernels
that indeed promote the performance of the framework (36 kernels versus 16 kernels).
Nevertheless, the difference of 1.84 dB from MSF verifies the effectiveness of the CCM.
Besides, the running time of MLM(360) + ULM is 13 hours longer than that of MSF,
which also demonstrates the accelerating function of CCM. The single CCM(360), whose
architecture is a typical supervised SR network, achieves only 31.31 dB and 0.8464, inferior
to ULM with only one test image. This result mainly springs from the fact that the nature
of SR model for real scenarios is a nonconvex optimization, and the optimized parameter
of a network solely learning the large-scale external dataset shows performance drop when
testing on the images with unknown blur kernel.

To investigate the potential of the unsupervised learning strategy in the SR field,
we record the relationship between PSNR score and the number of iterations in the
test phase of frameworks that contains unsupervised module (i.e., MSF(360), ULM, and
CCM(360)+ULM). Astonishingly, as shown in Figure 10, the single ULM achieves the best
performance when there is only one iteration. On the contrary, the ULM initialized with
the parameters from CCM does not show better performance, which proves that simply
combining the supervised learning module with the unsupervised learning module will
not enhance the framework’s ability to tackle the test image with an unknown blur kernel.
In other words, the MLM wisely exploits the external prior to reinforce the performance of
the ULM. The result that our MSF obtains the least score in the first iteration is reasonable
because the purpose of the MLM is to find a transferable and sensitive point instead of
a local optimum. Obviously, when the second iteration ends, our MSF has remarkable
edges over the other two frameworks. In addition, our MSF coverages in about 10 iter-
ations whereas the CCM+ULM framework needs about 200 iterations and ULM needs
approximately 2500 iterations.

To further study the influence of the number of subordinate networks in MLM on
the SR performance, we design a comparison test. Five MSFs are trained in parallel and
the amount of data remains the same, 200 image pairs in CCM and 160 image pairs in
MLM. The difference among five frameworks is the number of subordinate networks in
MLM (that is, the number of Gaussian blur kernels generated in MLM): 4, 8, 16, 32, 80,
respectively. Therefore, the amounts of data that corresponds to each subordinate network
are 40, 20, 10, 5, 2, respectively.

Figure 11 shows that the MSF performance is positively correlated with the number
of the subordinate networks in MLM in the range between 4 and 16. However, the perfor-
mance of MSF(32) has a decreasing tendency and MSF(80) shows a dramatical performance
drop. It may be attributed to the small amount of data for each subordinate network. Hence,
to further verify our speculation, we conduct a comparison test, in which three MSF frame-
works with 16, 32, 80 subordinate networks in MLM are trained in parallel. 160 image pairs
are randomly generated into 32 and 80 groups with some data being repeatedly selected,
aiming to ensure that each subordinate network corresponds to 10 image pairs, which are
same as MSF(16).



Sensors 2021, 21, 1743 15 of 19

Sensors 2021, 21, x FOR PEER REVIEW 15 of 20 
 

 

network solely learning the large-scale external dataset shows performance drop when 
testing on the images with unknown blur kernel. 

To investigate the potential of the unsupervised learning strategy in the SR field, we 
record the relationship between PSNR score and the number of iterations in the test phase 
of frameworks that contains unsupervised module (i.e., MSF(360), ULM, and 
CCM(360)+ULM). Astonishingly, as shown in Figure 10, the single ULM achieves the best 
performance when there is only one iteration. On the contrary, the ULM initialized with 
the parameters from CCM does not show better performance, which proves that simply 
combining the supervised learning module with the unsupervised learning module will 
not enhance the framework’s ability to tackle the test image with an unknown blur kernel. 
In other words, the MLM wisely exploits the external prior to reinforce the performance 
of the ULM. The result that our MSF obtains the least score in the first iteration is reason-
able because the purpose of the MLM is to find a transferable and sensitive point instead 
of a local optimum. Obviously, when the second iteration ends, our MSF has remarkable 
edges over the other two frameworks. In addition, our MSF coverages in about 10 itera-
tions whereas the CCM+ULM framework needs about 200 iterations and ULM needs ap-
proximately 2500 iterations. 

 
Figure 10. The relationship between PSNR score and the number of iterations in three unsuper-
vised learning modules. 

To further study the influence of the number of subordinate networks in MLM on 
the SR performance, we design a comparison test. Five MSFs are trained in parallel and 
the amount of data remains the same, 200 image pairs in CCM and 160 image pairs in 
MLM. The difference among five frameworks is the number of subordinate networks in 
MLM (that is, the number of Gaussian blur kernels generated in MLM): 4, 8, 16, 32, 80, 
respectively. Therefore, the amounts of data that corresponds to each subordinate net-
work are 40, 20, 10, 5, 2, respectively. 

Figure 11 shows that the MSF performance is positively correlated with the number 
of the subordinate networks in MLM in the range between 4 and 16. However, the perfor-
mance of MSF(32) has a decreasing tendency and MSF(80) shows a dramatical perfor-
mance drop. It may be attributed to the small amount of data for each subordinate net-
work. Hence, to further verify our speculation, we conduct a comparison test, in which 
three MSF frameworks with 16, 32, 80 subordinate networks in MLM are trained in paral-
lel. 160 image pairs are randomly generated into 32 and 80 groups with some data being 

Figure 10. The relationship between PSNR score and the number of iterations in three unsupervised
learning modules.

Sensors 2021, 21, x FOR PEER REVIEW 16 of 20 
 

 

repeatedly selected, aiming to ensure that each subordinate network corresponds to 10 
image pairs, which are same as MSF(16). 

 
Figure 11. Comparison among MSF with different number of subordinate networks. 

As one can see in the Figure 12, the data augmentation method that increases the 
training samples in each subordinate network can restore the effectiveness of MSF dam-
aged by the small amount of training data. Nevertheless, the performance of MSF(80) is 
still inferior to those of MSF(16) and MSF(32), which proves that the number of blur ker-
nels in is not always positively correlated to the performance of the proposed SR frame-
work. Besides, it can be observed in Figure 13 that the time consumptions of MSF(32) and 
MSF(80) are obviously higher than that of MSF(16). Moreover, the MSF with more blur 
kernels in MLM frequently encounters gradient vanishing problems and gradient explod-
ing problems. As a result, we set 16 subordinate networks in MLM as default. 

 
Figure 12. Comparison among MSF with different number of subordinate networks after data 
augmentation step; the green part is the increase obtained by data augmentation. 

 
Figure 13. Time consumption of different MSF. 

Figure 11. Comparison among MSF with different number of subordinate networks.

As one can see in the Figure 12, the data augmentation method that increases the
training samples in each subordinate network can restore the effectiveness of MSF damaged
by the small amount of training data. Nevertheless, the performance of MSF(80) is still
inferior to those of MSF(16) and MSF(32), which proves that the number of blur kernels in is
not always positively correlated to the performance of the proposed SR framework. Besides,
it can be observed in Figure 13 that the time consumptions of MSF(32) and MSF(80) are
obviously higher than that of MSF(16). Moreover, the MSF with more blur kernels in MLM
frequently encounters gradient vanishing problems and gradient exploding problems. As
a result, we set 16 subordinate networks in MLM as default.
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3.2.4. Super Resolution for Real Remote Sensing Images

In addition to the previous experiments on synthetic LR-HR image pairs to quanti-
tively evaluate the performance of our proposed MSF, the experiment on instance-pieces
in DIOR as direct input to our framework is also conducted to test the effectiveness of
MSF. Without groud-truth HR images, only visual results are provided to show the com-
parison between the original image and predicted SR output. In the experiment, different
spatial-resolution instance-pieces are taken as input to MSF.

The visual comparison is shown in Figure 14. We can see that after resizing step with
scaling factor 4, the edge of the ships has mosaic effect and becomes serrated. The SR result
from our MSF has smooth edge and high contrast, achieving better visual pleasing results.
It is because the ships in the original image have relatively simple edges and details, and
prior information extracted by CCM and recurred information captured by ULM enhance
the predictive power of the SR model. However, our SR result show some limitation.
First, although detail information is added, the body of both ships still has some objects
unrecognizable. Second, some linear artifacts appear in the body of the upper ship.
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4. Discussion

The reconstruction process of the super resolution algorithms is based on the degrada-
tion model, as shown in Equation (1). However, most of the current SotA SR algorithms
usually assume the blur kernel in degradation is predefined (e.g., bicubic downsampling).
Hence these SR algorithms usually suffer a performance drop when tested on remote
sensing images because the blur kernel in the real world is usually a Gaussian blur kernel
with unknown parameters. Therefore, a SR algorithm that can tackle unknown Gaussian
blur kernel is needed for remote sensing images.

In this study, we introduce the multi-task learning strategy, through which our frame-
work learns the general features among SR reconstruction process with different Gaussian
blur kernel. In addition, the external information and internal recurred information are em-
ployed to provide useful high-frequency information and details to SR result and accelerate
the training process of the multi-task learning module.
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Through the comparison experiment, our MSF outperform other state-of-the-art SR
algorithms with a large gap on the vehicle, ship, and plane classes. The distinctive perfor-
mance of our MSF springs from its ability to tackle various blur kernels and to utilize the
recurrent information to reason the estimated blur kernel in the test image. On the stadium
and storagetank classes, our MSF still achieves comparable result to SRFBN, remarkably
superior to EDSR and RCAN. In particular, there is a tendency that the results on the
stadium scenario are remarkably inferior to other scenarios. It can be explained by the data
preparation step that the size of the entire stadium instance is usually larger than the size of
the input tensor to the framework, so the features learned by these SR algorithms lack visual
correlation. What is more, all SR algorithms achieve relatively high SSIM scores. This is
perhaps due to the small size and simple architecture of remote sensing instances. Normally
these SotA SR algorithms on DIV2K dataset obtain SSIM scores between 0.7 to 0.8.

To further verify the MSF performance with different scaling factors, we conduct
comparison experiments with other SotA methods with three scaling factors. Our MSF
shows the best result for all scaling factors, which indicates the ability of MSF to restore the
high frequency information and texture in remote sensing instances is superior to other
SotA SR methods. Since all algorithms are tested on the same dataset, we speculate the
remarkable effectiveness of our MSF comes more from the multi-task learning strategy
than from the external and internal information. To verify this speculation and quantify
the significance of three modules, we conduct ablation study. The result demonstrates
that framework with MLM module can dramatically promote the performance of SR
methods in reconstruction process. Conversely, the frameworks that solely employ external
information and internal information show only slightly improvement compared with the
LR image.

Nevertheless, the result that the performance of MSF outperforms the combination
of MLM and ULM proves that the number of the subordinate networks in MLM does not
always benefit the SR framework. To further evaluate the relationship between the number
of the subordinate networks and the effectiveness of our proposed method, we compare the
performance and time consumption of MSF with different subordinate networks in MLM.
The result shows that, although adding more subordinate networks to the framework in the
first place promotes the MSF ability to tackle the LR image with unknown Gaussian blur
kernel, too much subordinate networks negatively correlate to the performance. Besides,
the time consumption continuously increases with more blur kernels in MLM. Therefore, it
is a tradeoff between the performance and computational resource.

In addition to the above experiments on synthetic test images, we also conduct
experiments on the real remote sensing instances to test the effectiveness of our MSF.
With no ground truth image, the visualization result shows that our MSF can provide high
frequency information to low resolution remote sensing instance, making the edge of the
instance clearer and the contrast more sharpening. However, it is worth noting that, some
artifacts appeared in the instance. Moreover, though with better visual pleasing instance,
some objects in the instances cannot be classified, so how the features derived from the SR
process can facilitate the classification and object detection tasks needs more research.

5. Conclusions

In this paper, we have proposed a new framework to tackle the super-resolution
problem in remote sensing images by exploiting a multi-task learning strategy and an
unsupervised learning strategy. In order to fully learn the implicitly representative features
among degradation models with different blur kernels, we introduced the multi-task
learning module, in which each subordinate task corresponded to a randomly generated
Gaussian blur kernel and the main network was optimized by the combined results from the
subordinate networks. Coupled with the class-feature capture module, which trained on
the large-scale external dataset to learn the class-relevant information, and the unsupervised
learning module, which estimated the blur kernel within the test image by utilizing the
recurrent information in the text image, our framework overcame the shortcoming of multi-
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task learning strategy and efficiently obtained remarkable results. Various experiments
on the remote sensing dataset DIOR, either with several SotA SR algorithms or with
different scaling factors, demonstrated the effectiveness of our framework when facing
the LR images downsampled by a randomly generated Gaussian blur kernel. On the
benchmark with scaling factor 2, our proposed framework remarkably outperformed
other SR networks, increasing resolution by at least 19%, 13.6%, 4%, and 0.3% in vehicle,
ship, plane, and storage-tank categories, respectively. Besides, the proposed framework
still obtained best performance when facing the super-resolution task with large scaling
factors, diminishing the effect of information loss and super resolving the low-resolution
image with sharp contrast and clear edge. Moreover, we conducted an ablation study to
compare six frameworks, showing the advantage of our proposed MSF and the potential
of the unsupervised super-resolution model on the remote sensed imagery. Finally, we
tested the performance of the proposed framework MSF on the real-world remote sensing
image without ground truth. The result proved the effectiveness of our model’s ability to
super resolve the low-level vision instance while reminding us of the possibility of adding
incorrect information when facing instances with complex structure and diverse details.

However, there are improvements that may benefit our work, such as the more efficient
class-feature capture module, more lightweight strategy for multi-task learning module,
more practical loss function, and more precise blur kernel estimation. We leave these for
future work.
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