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Abstract: Due to the importance of safety detection of the drum’s rope arrangement in the ultra-deep
mine hoist and the current situation whereby the speed, accuracy and robustness of rope routing
detection are not up to the requirements, a novel machine-vision-detection method based on the
projection of the drum’s edge is designed in this paper. (1) The appropriate position of the point
source corresponding to different reels is standardized to obtain better projection images. (2) The
corresponding image processing and edge curve detection algorithm are designed according to the
characteristics of rope arrangement projection. (3) The Gaussian filtering algorithm is improved to
adapt to the situation that the curve contains wavelet peak noise when extracting the eigenvalues of
the edge curve. (4) The DBSCAN (density-based spatial clustering of applications with noise) method
is used to solve the unsupervised classification problem of eigenvalues of rope arrangement, and the
distance threshold is calculated according to the characteristics of this kind of data. Finally, we can
judge whether there is a rope arranging fault just through one frame and output the location and
number of the fault. The accuracy and robustness of the method are verified both in the laboratory
and the ultra-deep mine simulation experimental platform. In addition, the detection speed can
reach 300 fps under the premise of stable detection.

Keywords: rope arrangement; ultra-deep mine hoist; machine vision; optical projection; boundary
extraction; feature extraction; Gaussian filtering; unsupervised clustering

1. Introduction

Deep resource extraction is an effective method for today’s energy crisis, and it is
also an important strategic goal of China [1,2]. Deep resource mining relies on the safe
work of mine hoists. For mine hoists where rope hoisting is dominant, the failure of rope
arrangement is an important factor affecting the safe and stable operation of hoists [2]. For
ultra-deep mines, high speed and heavy load will be common conditions, which generally
means that a thicker and longer wire rope is required. This can lead to the width of the rope
winding area of the drum and the number of layers of wire rope on the drum increasing.
Then, the possibility of rope winding errors is larger, and the risk is greater, making the
rope fault detection a problem that must be solved for the ultra-deep mine hoist. However,
currently, the detection of the status of the rope arrangement mostly relies on manual
inspections or manual guards. The rope tension sensors and displacement transducer
installed on the wire rope or drum can tell us some signs of the rope arrangement status,
but it is not direct enough, easy to be disturbed, with low accuracy and is unable to find
the rope arrangement fault in time. Therefore, a sensor or a detection method for accurate
full-time automatic detection of the rope arrangement state is very necessary.

At present, machine vision is increasingly being used for the testing and calculation of
specific targets in large-scale projects, and has achieved good results. Such as the calculation
and measurement of large-scale structural parts [3], the calculation of the vibration mode
of cable-stayed bridges [4,5], and the deformation monitoring [6,7] and geometric shape
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detection [8] of bridge structures. Using machine vision to detect the status of the wire
rope is becoming an effective method.

In the use of machine vision to detect the position of the wire rope, Chen et al. [9] use
a customer grade camcorder and an ordinary tripod to detect the frequency of steel wire
ropes on a cable-stayed bridge, achieving the same order of accuracy for cable frequency
identification as that of high-resolution velocimeters. Winkler et al. [10] use digital image
correlation to obtain measurement of local deformations in steel mono strands. Yao et al.
proposed a non-contact video-based measurement for transverse displacements of hoisting
catenaries in mine hoist using mean shift tracking [11,12] and digital image processing
techniques [13]. Wu et al. [14] proposed a non-contact and unmarked machine vision
measurement method for measuring the transverse vibration displacement of hoisting
vertical ropes. In the hoisting cape area, because the video of the rope detection is shot
with the sky as the background, the target and the background are very distinguishable, so
the recognition effect is obvious, and the background of the wire rope to be detected in the
reel area is the same wire rope (such as Figure 1a) and the target and the background are
very similar, thus the same recognition method will be much worse.

Figure 1. Flowchart of the rope arrangement detection method based on optical projection and
machine vision. (a) Take a video of the rope arrangement projection, (b) the image of projection area
in each frame is binarized, (c1) extracting edge curve of graph (b), (c2) smoothing the edge curve of
graph (c1), (d) feature extraction, (e) clustering, assessment and obtain the results.

Table 1 shows the current existing detection methods for rope arrangement detection.
Wu et al. [15] used the method of adaptive gray threshold segmentation on the same
horizontal line to achieve the distinction between the target wire rope and the background,
but this method is based on the difference in the reflective performance of the wire rope
and the rope groove. For the oily wire rope, the tightly wound wire rope and multi-layer
steel wire rope on the drum are not applicable. Xue et al. [16] proposed the method of
using template matching and limiting the size of the target selection area making the target
and the background better to distinguish, and realized the video tracking of the position of
the wire rope. Other video tracking methods, like KCFs (kernelized correlation filters) [17]
and Staple [18], can be used for rope arrangement detection. However, because the target
selection area is limited, the algorithm is easy to lose the target when the rope winding
speed is fast or the skipping span is large. At the same time, when shooting a wide reel,
the image will inevitably be distorted (as shown in the Figure 1a). In addition, because the
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target is deformed greatly, part of the texture information is lost and cannot be retrieved
through distortion correction, thus the video tracking of the position of the wire rope is
very difficult. To sum up, the difficulties of rope detection in ultra-deep mine hoist based
on machine vision are summarized as follows:

1. The target is extremely similar to the background;
2. The wider the scroll, the larger the scroll deformation in the projection image;
3. The detection speed and robustness should meet the requirements of high speed.

Table 1. Existing detection methods for rope arrangement detection.

Methods Timeliness Implementation
Difficulty and Cost

Accuracy of
Detection

Efficiency of
Detection Robustness

Manual inspections or
manual guards

Low (the fault has
occurred) High Moderate Very slow High

Image segmentation [15] Low (the fault has
occurred) Low 80–90% 100 fps Low

Template matching [16] High (happening, at
least two frames) Low 85–90% 30–50 fps Low

Video tracking
(KCF [17])

High (happening, at
least two frames) Low 85–90% 150–200 fps Low

Video tracking
(Staple [18])

High (happening, at
least two frames) Low 90–95% 40–60 fps Moderate

ours High (happening, just
one frame) Low >95% 150–300 fps High

Therefore, this study aims at detecting and diagnosing the problems of rope arranging
faults in ultra-deep mines with wide drums and high speeds, and proposes a new method
for arranging rope detection based on machine vision and optical projection. In this study,
edge projection image is used to detect the state of rope arrangement to make the rope
separated from its complicated and similar background. Using approximate parallel light
irradiation and quantitative calculating, the installation position of the point light source
required by the drum, with different widths to solve the problem of distortion of the wide
reel, is found. For higher detection speed and more accurate detection results, unlike
other video tracking methods that require a comparison of several frames, we get the rope
arrangement at that moment with just the current single frame and consider the detection
results of current frames to judge the rope arrangement fault. In both the laboratory and
the simulation test bed, the purpose of error-free identification of the rope fault is achieved,
and the processing speed exceeds 150 fps (for narrow reels, it can reach 300 fps or more).

The flow of the novel method is shown in Figure 1. First, illuminate the edge of the
reel rope with parallel light, place a pure white background board at its projection position,
then use an industrial camera to shoot the projection of the rope on the background board,
process the projected image, and extract the characteristic value corresponding to each
wire rope. Finally, the unsupervised clustering method is used to classify and get the rope
status detection result.

The arrangement of this paper is as follows: At present, there are few introductions of
the reel-rope projection model, which has a greater impact on the setting of the relevant
parameters of this study. Therefore, this article will describe (in Section 2) how to choose
the drum-rope projection model and the installation position of the point light source, (in
Section 3) how to quickly obtain the boundary curve from the binarized image and then
extract the feature value to ensure that each feature value corresponds to a wire rope or a
rope groove; and (in Section 4) how to use the unsupervised clustering method for such
features’ values for effective and robust classification. And in Section 5, the application
effects in the model machine and the real mine are described.
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The meanings of abbreviations and symbols used in this paper are shown in Table 2.

Table 2. Symbols and abbreviations used in this paper.

Symbols and
Abbreviations Meaning Symbols and

Abbreviations Meaning Symbols and
Abbreviations Meaning

DBSCAN

Density-based
spatial clustering

of applications
with noise

sum() A function to
calculate the sum dy

The height difference
of the projection

intersection point
and the highest
projection point

KCFs Kernelized
correlation filters min() Calculate

minimum η
The ratio between dy

and r

ROI The area of interest find(equation)
A function to find
elements match the

requirement
Nd

The ratio between R
and r

OPTICS

Ordering points to
identify the
clustering
structure

(x,y), (x1,y1)
(x2,y2), (xt,yt)

Coordinate points Lg
The width of the

drum

G(x) Gaussian filtering
function R

The radius of the
central circle of the
torus or the drum

Ng
The ratio between

Lg and 2 × r

dist()
A function to
calculate the

distance
r

The radius of the
section circle of

torus or the radius
of the rope

Hlight

The installation
height of the point

light source

diff()
A function of
differential
algorithm

SC, SC1, SC2

The central circle
projection of the

torus
P Points of eigenvalues

sign() A function to
extract symbols SY

The external
projection of the

ring
d Distance between

points of eigenvalues

abs()
A function to
calculate the

absolute value
α

The angle between
the projection light

and the plane of
the central circle of

the torus

β The skip angle

2. How to Get the Required Projection

In order to obtain a clear cross-sectional projection of the multiple loops of steel
wire rope on a drum, it is necessary to project the light on the plane composed of the
light source and the axis of the drum, and the projection light should be approximately
parallel to the projection of all steel wire ropes on this plane. The wire rope loops on
the reel are approximately parallel to each other, so, in theory, parallel light needs to
be used to get the projection of the rope. In reality, we can use a point light source at
long distances to produce approximate parallel light. From this point of view, the farther
the point light source is installed the better; however, considering the difficulty of long-
distance installation, site limitations, susceptibility to external interference and projection
light intensity requirements, the actual installation height is limited. Therefore, finding
a suitable installation height is very important. The flowchart of this section is shown in
Figure 2.
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Figure 2. The flowchart of how to get the required projection.

2.1. Projection Model of the Drum’s Rope Arrangement

Because the diameter of the drum is much larger than that of the wire rope, the wire
rope wound on the drum can be regarded as a ring arranged along the axial array of the
drum when calculating the projection of the rope arrangement of the drum. The projection
of a single torus is the shape formed when the central circle of the torus extends the radius
of the torus cross-section both inside and outside.

Theorem 1. The shortest distance from any point on the torus projection to the central circle
projection of the torus is the radius of the torus section circle.

Proof of Theorem 1. A sphere with the same radius as the cross-section circle of the torus,
whose center moves around the central circle of the torus, passes through the space that is
the whole space of the torus. Therefore, the projection of a torus is a collection of projections
of a sphere centered on a point on the central circle of the torus. Because the projection of a
sphere at any projection angle is a circle, and the projection of a circle is an ellipse, so the
projection of a torus is the collection of all circles with the ellipse projection of the central
circle of the torus as the center of the circle, and the radius of the cross-section circle of the
torus as the radius. �

Namely:

∀ (x, y) ∈ SC
x2

(R×cos(α))2 +
y2

R2 = 1

∃ (xt, yt) ∈ SY min(dist((x, y), (xt, yt))) = r
(1)

where SC represents the central circle projection of the torus, SY represents the external
projection of the ring, R is the radius of the central circle of the torus, r is the radius of
the section circle of torus, and α represents the angle between the projection light and the
plane of the central circle of the torus (the same below).

2.1.1. Projection of the Single Coil Wire Rope

The projection of the single coil wire rope is considered. Figure 3 below shows the
projection of the torus corresponding to a steel wire rope when the angle α, between the
projection light and the plane where the central circle of the ring is located, is 90◦, 60◦, 30◦

and 0◦. The four small circles in the four small figures correspond to the positions of 90◦,
60◦, 30◦ and 0◦ on the dividing circle of the torus, respectively. In general, the projection of
the torus produced by the usually installed point light source is between α = 30◦ (Figure 3c)
and α = 0◦ (Figure 3d).
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Figure 3. Projection of the single coil wire rope under four projection angles. (a) α = 90◦; (b) α = 60◦;
(c) α = 30◦; (d) α = 0◦. The four small circles in (a–d) correspond to the projection of a small sphere at
the positions of 0◦, 30◦, 60◦ and 90◦, respectively.

2.1.2. Projection of Multi Coil Wire Ropes

When multi circle wire ropes are projected, there will be projection interference be-
tween two adjacent wires, which will affect the follow-up classification effect and reduce
the reliability of detection. When the angle α between the projection light and the axis of
the torus increase, the resolution of a single wire rope in the projection will reduce. An
index is needed to represent the relationship between the resolution of a single wire rope
and the angle α. Therefore, the ratio η between the height difference (dy) of the projection
intersection point and the highest projection point and the section radius (r) of the wire
rope is used as the projection quality index (as shown in the Figure 4). The larger η, the
higher the resolution of single wire rope in projection.

In the Figure 4, ‘A’ is the intersection point of the projection outer rings of two
torus. Namely:

(x1, y1) ∈ SC1, (x2, y2) ∈ SC2,
x1

2

(R×cos(α))2 +
y1

2

R2 = 1

(x2−2×r)2

(R×cos(α))2 +
y2

2

R2 = 1

∃ Intersection A (xt, yt > 0) s.t. (xt, yt) ∈ SC1, (xt, yt) ∈ SC2

(2)

where R is the radius of the drum and r is the radius of the wire rope. (x1, y1) and (x2, y2)
are points on the projection of the outer rings of the two torus, respectively.
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Then calculate dy and η as follows:

min( dist((x1, y1), (xt, yt))) = r
min(dist((x2, y2), (xt, yt))) = r

dy = R + r− yt
η =

dy
r × 100%

(3)

Set the ratio of drum diameter to wire rope diameter as Nd:

Nd =
R
r

(4)

Figure 4. Projection interferogram of two torus. The area of interest (ROI) is shown in the green
rectangle. A is the intersection point of the projection outer rings of two torus.

The relationship between η and α and Nd is calculated, and the results are shown in
the Figure 5. It is found that when η is less than 50%, the projection of wire rope is easily
affected by oil stain, irregular bulge and noise in the projection image, which makes the
robustness of the subsequent classification effect not high. η is related to α and Nd, and η
decreases monotonically relative to α. η is related to the ratio Nd of drum diameter to wire
rope diameter. The larger Nd is, the smaller η is.

2.2. Determine the Installation Position of Point Light Source

Considering that the horizontal installation of the point light source is easily disturbed
by the environment, it is generally selected to install the point light source in the vertical
direction of the drum center. According to the relationship between η, α and Nd determined
in Section 2.1, the installation height Hlight of the point light source is calculated according
to the Equation (5):

Hlight ≥
Lg

2× tan(α)
(5)

where Lg is the width of the drum. The ratio of the installation height of the light source
and the width of the drum is µ:

µ =
Hlight

Lg
=

1
2× tan(α)

(6)
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For commonly used Nd and α, the values of µ are shown in Table 3.

Figure 5. α is the angle between projected light and torus axis, and η is the ratio of height difference
of the wire rope projection to the wire rope radius. Nd is the ratio of the diameter of the drum to the
diameter of the wire rope, usually designed as 40~80.

Table 3. The values of µ for commonly used Nd and η.

η (%) Nd = 40 Nd = 60 Nd = 80

50 7.20 8.81 10.19
60 10.68 12.96 15.00
70 16.95 20.91 24.07
80 31.83 39.24 45.47

The ratio of the drum width to the wire rope diameter Ng is also the maximum number
of winding coils of the drum:

Ng =
Lg

2× r
(7)

For the mine hoist, the load capacity determines the radius of the wire rope R, the
radius of the wire rope limits the radius of the drum, and the lifting height determines the
length of the rope, which also determines Ng. Ng and the radius of the wire rope determine
Lg. According to Nd and the selected η, µ can be determined and the suitable range of
Hlight can be determined.

The larger the installed height Hlight of the point light source, the more space and
power of the point light source are needed. It is also necessary to select Hlight according
to the space limitation of the site and the difficulty of light source arrangement. Under
comprehensive consideration, the installation height of the point light source is selected
according to the standard of 70% of η.

3. Boundary Extraction and Feature Extraction of Rope Arrangement Projection

The projection image of drum rope arrangement (partly shown in Figure 6a) has its
unique characteristics:

1. There is a big difference between the shadow area and the illumination area;
2. The gray value of shadow area in the image is stable and average, and there is no

light noise;
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3. The upper limit of the gray value of the illumination area of the light source in the
image is affected by the change of the light intensity of the external environment, and
the lower limit is affected by the light intensity of the point light source here;

4. Due to the influence of dust and oil on the wire rope, the project of the wire rope may
be irregular and the gap between each other becomes unclear;

5. Due to the influence of dust and oil on the background plate, there may be discrete
dark spots in the light source area of the image (as shown in Figure 6c).

Figure 6. Projection of the drum rope arrangement boundary. (a) and (c) are the original projection
of the projection edge of the drum rope arrangement; (b) and (d) are, respectively, binary images
of (a) and (c); (e) and (f) are figures after edge recognition by the Canny algorithm; (g) is the
contour curve obtained by the method proposed in this study and (h) is the result of graph (g) after
smoothing filtering.

It is necessary to design the boundary contour acquisition method according to these
characteristics to obtain smooth boundary contour curve without repeated region, so as
to ensure the accuracy of the subsequent extracted feature values and one-to-one corre-
spondence with each wire rope or rope groove. The flowchart of this part can refer to
Figure 1.

3.1. Boundary Extraction

There are many methods to obtain contour curve, among which the typical ones are
Roberts [19,20], Sobel [20,21], Prewitt [20,22], LoG (Laplacian of Gaussian) and Canny [23,24]
operators. The LoG operator can always detect more details than the Canny operator in
the same scale, while the Canny operator is not easy to be disturbed by noise.

Due to feature 3 of the rope arranging projection image, the light intensity of the
image in the whole-day monitoring video will change greatly, and the detection result
of the Canny operator is more sensitive to the double threshold parameters of the edge.
If the Canny operator is used directly to the original image, it is easy to produce multi-
edge or edge interruption problems (Figure 6e), which will affect the rope arrangement
detection result. Using gray threshold segmentation to get the binary image first, and then
using Canny or LoG operator-based edge detection methods can effectively suppress this
problem, but there is still a problem of multiple values in the same column (Figure 6f). In
addition, due to feature 5 of the rope arrangement projection image, when there is an oil
stain or other foreign matters in the background plate (Figure 6c,d), the binary image will
inevitably have the problem of multiple regions.

Therefore, limiting the light intensity of the external environment and increasing the
light intensity of the point light source appropriately can obtain the gray image with stable
gray value. The ideal binary image can be obtained by gray threshold segmentation, and
this threshold is applicable to the whole video cycle.
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Then according to feature 2 of the rope arrangement projection image, the edge curve
is calculated as follows:

ti = find(img(:, i) == 1), Si = ti(1) , i ∈ (1, n) (8)

where S is the edge curve and n is the total number of image columns, img() is a two-
dimensional array which represents the ROI of the frames, and find(equation) is a function
of find elements that match the equation. The image of the contour curve is shown in
Figure 6g.

3.2. Feature Extraction

In order to extract the characteristic value of the above-mentioned contour curve S,
the uniqueness of the eigenvalue should correspond to each wire rope or rope groove. The
peak value or valley value of the curve can meet this condition, so the peak value of the
contour curve is selected as the characteristic value. However, due to feature 4 of the rope
ranging projection image mentioned above, the oil and dust on the surface of the wire rope
will make the curve S not smooth (as shown in Figure 6g, there will be fluctuations near
the peak value or valley value of the original curve, showing the phenomenon of multi
peak or multi valley value), which will affect the peak value feature extraction. Therefore,
it is necessary to carry out low-pass filtering on curve S with the minimum influence on the
peak value of the data curve. Mean filtering, middle finger filtering and Gaussian filtering
are common low-pass filtering methods. Qiao et al. [25] used Gaussian filtering to smooth
the original data in the first step. Compared with mean filter and median filter, Gaussian
filter can obtain a smooth curve and retain the peak value better. Therefore, this paper used
the Gaussian filter to smooth the contour curve S.

The Gaussian filtering method is shown in Equation (9), in which the variance σ is
the key parameter. σ determines the size of the filtering window and the weight of the
data in the window, and is often designed as a fixed value. In view of the fact that there
may be multiple wavelet peaks at one large peak of curve S, in order to obtain a smooth
curve S1, the fixed value of σwill be larger for the whole curve, so that all peaks of the S1
curve obtained will be reduced. Therefore, an adaptive algorithm is designed to calculate
σ. In each filtering window, the algorithm adjusts σ according to the situation that the data
fluctuates violently in this window, so that where there are multiple wavelet peaks, σ takes
a larger value to ensure that there is only one peak value, while in other places, σ takes a
smaller value to retain a larger peak value.

G(x) = 1√
2πσ

e
(x−d)2

2σ2 , x ∈ [1, 2, . . . , 2d + 1]

SFi = [Si−d, Si−d+1, . . . , Si+d]× G′
sum(G)

;
(9)

First, the fluctuation of curve s is calculated as follows:

DS = sign(diff(S))
DDS = abs(diff(DS))

(10)

where diff() is a function of differential algorithm, sign() is a function to extract symbols
and abs() is a function to calculate the absolute value. As the curve S wave is a group of
discrete points, it is linearized by the Gaussian function:

GDDSi = [DDSi−d, DDSi−d+1, . . . , DDSi+d]×
G′

sum(G)
(11)

where sum() is a function to calculate the sum.
Then, σ is calculated according to the fluctuation of curve S:

σi = a× eGDDSi + b (12)
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Generally, set a to 1 and b to 0. Figure 7 is the result of the first frame of video 4 (shown
in Section 5.2) using our method. The blue line is the fluctuation value of the calculated
curve S where there are small peaks, the fluctuation value is 2, where there are normal
peaks and troughs, the fluctuation value is 1, and the rest is 0.

Figure 7. The volatility index of curve S and σ corresponding to curve S of frame 1.

Then use Equation (13) to calculate the filtered data:

Gi(x) = 1√
2πσi

e
(x−d)2

2σi
2 , x ∈ [1, 2, . . . , 2d + 1]

SFi = [Si−d, Si−d+1, . . . , Si+d]× Gi
′

sum(Gi)

(13)

The peak value and valley value are calculated using the method of finding the peak
value. The valley value is greatly affected by the projection quality, so the peak value is set
as the characteristic value of curve S that is needed.

The filter window size of the three methods is set to the same as d. Since the half
period of wavelet peak is about 2–4 pixels, in order to ensure the robustness of filtering
effect, d should not be less than 4. For different window sizes, the retention of peak valley
difference by the three filtering methods is shown in Figures 8 and 9. Our method can
keep the ratio of peak to valley difference higher than 95% for different window sizes.
In order to ensure the robustness of the filtering effect in the whole video, we set d as 6
(the mean period of wavelet peak). The average ratio of the peak to valley difference in
frame 1 to frame 1000 of video 4 using our method is 95.4%, while Gaussian smoothing
is 92.8% and mean smoothing is 89.2%. Meanwhile, the average retention rate of the
peak valley difference at the projection of the wire rope here is 96.5%, and the average
retention rate of the peak valley difference at the projection of the rope groove is 90.5%.
Figure 9 shows the peak values (eigenvalues) of frame 1 of video 4 with the novel adaptive
Gaussian smoothing.
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Figure 8. Peak value and valley value of curve S after filtering by three methods in frame 1. The
original peak value and valley value are manually annotated.

Figure 9. The retention of peak valley difference by the three filtering methods with different window
sizes. The upper limit is the average retention rate of the peak valley difference at the projection of
the wire rope, and the lower limit is the average retention rate of the peak valley difference at the
projection of the rope groove.

4. Unsupervised Clustering

The eigenvalues obtained above grows into strip curve distribution. Figure 10 [26]
shows the classification result of eight common clustering classification methods on five
selected linear datasets [26]. Among the common clustering algorithms, spectral cluster-
ing [27], DBSCAN (density-based spatial clustering of applications with noise) [28], OP-
TICS [29] (ordering points to identify the clustering structure) and Gaussian mixture [30]
are better for this kind of data classification [26]. However, OPTICS has high time com-
plexity and is time-consuming [31], so it is not suitable. Spectral clustering and Gaussian
mixture need to take the number of categories as the initial condition, which is not suitable
for the case of an unknown number of categories in this study. Whereas, DBSCAN does not
need to know the number of categories in advance, clusters dense data sets of any shape, is
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good at finding outliers, needs just two parameters and has relatively low complexity and
fast operation. Therefore, this paper uses DBSCAN to cluster the eigenvalue data.

Figure 10. Classification effect of five data sets under eight common clustering classification methods. Datasets: (a) The
noisy-circles dataset; (b) the noisy-moons dataset; (c) the aniso dataset; (d) the normal rope projection dataset; (e) the
abnormal rope projection dataset.

4.1. DBSCAN

DBSCAN is one of the unsupervised density clustering methods. The principle [28,32]
is as follows:

Consider a set of N data points Z ≡ {zn}N
n=1.

We start by defining the ε-neighborhood of point zn as follows:

Nε(zn) = {z ∈ Z|dist(z, zn) < ε} (14)

Nε(zn) are the data points that are at a distance smaller than ε from zn. We consider
dist() to be the Euclidean metric (which yields spherical neighborhoods), but other metrics
may be better suited depending on the specific data. Nε(zn) can be seen as a crude estimate
of local density. zn is considered to be a core-point if at least minPts (a free parameter of the
algorithm that sets the scale of the size of the smallest cluster one should expect.) are in its ε-
neighborhood. Finally, a point zi is said to be density-reachable if it is in the ε-neighborhood
of a core-point. From these definitions, the algorithm can be simply formulated:

1. Until all points in Z have been visited; do

(1) Pick a point zi that has not been visited;
(2) Mark zi as a visited point;
(3) If zi is a core point; then:

(1) Find the set C of all points that are density reachable from zi.
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(2) C now forms a cluster. Mark all points within that cluster as being visited.

2. Return the cluster assignments C1, . . . , Ck with k the number of clusters. Points that
have not been assigned to a cluster are considered noise or outliers.

Note that DBSCAN does not require the user to specify the number of clusters but
only ε and minPts. While it is common to heuristically fix these parameters, methods such
as cross-validation can be used for their determination. Finally, we note that DBSCAN is
very efficient since efficient implementations have a computational cost of O(n log(n)).

4.2. Automatic Optimization of DBSCAN Distance Setting

For linear data such as rope arrangement projection, the parameter minPts is able to
be determined. The key is how to determine the parameter ε. From the classification results
of Figure 10d,e datasets, the eigenvalues of rope and rope groove can be distinguished
correctly using Euclidean metric to calculation the parameter ε, but the eigenvalues of
wrong rope arrangement cannot be classified correctly.

Consider the rope arrangement process. When the rope arrangement is normal and
the projection angle α is approximately 0◦, the theoretical rope arrangement projection is
shown in the Figure 11. The red points (P1, P2, . . . , Pn) are the eigenvalues (peak values)
extracted above, and the distance between two adjacent points is d1 to dn−1 in order.
Figure 12 shows the error chart of their distance value, di is the longest, which can help us
divide the data before and after it into two categories.

Figure 11. Projection diagram of rope arrangement without rope arrangement fault. “di” is different
from the others, while the average of the others is 2 × r.

Figure 12. Distance between two adjacent peaks. The mean distance between the two adjacent peaks
is 2 × r as d1.

When the rope arrangement is abnormal, there are two kinds of errors (rope skipping
error and rope clamping error). When the rope skipping error occurs, the current winding
wire rope leaves the current rope groove and goes to the later rope groove, which may
span one or more rope grooves. The projection of spanning one rope groove is shown in
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Figure 13, and the error diagram of the corresponding characteristic point spacing is shown
in Figure 14. The skip angle (as β in Figures 13 and 14 below) is 180◦ in total.

Figure 13. Projection diagram of the rope arrangement in the case of the rope skipping fault.
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When the rope clamping error occurs, the current winding steel wire rope leaves the
current rope groove and climbs above the previous rope, which often jumps one rope or
more. The projection is shown in Figure 15, and the error diagram of the corresponding
characteristic point spacing is shown in Figure 16. The skip angle (as β in Figures 15 and 16
below) is 120◦ in total. In addition, while β is near 60◦, the peak near the skipping rope will
be covered or exposed, making the total numbers of eigenvalues (red points in Figure 15b)
decrease by 1 or not.

A good distance threshold needs to enable DBSCAN to correctly classify the eigenval-
ues in the whole process of the rope arrangement faults, that is, to ensure that the distance
calculation value of the wrong rope arrangement sequence is sufficiently distinguishable
from the distance calculation value of the normal rope arrangement sequence. According to
Figures 12, 14 and 16, the threshold we need here should be the bilateral threshold. Thus, if
the distance between two eigenvalues satisfies the following formula, the latter eigenvalue
is the ε-neighborhood of the eigenvalue ahead.{

a× 2r− e1 < di < a× 2r + e1
b× 2r− e2 < di < b× 2r + e2

(15)
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Figure 15. Projection diagram of the rope arrangement in the case of the rope clamping failure. (a) β
increases from 0◦ to 60◦. (b) β increases from 60◦ to 120◦.

Figure 16. Distance between the two adjacent peaks. The mean distance between the two adjacent
peaks is 2 × r as d1.

5. Application Effect

In order to test the effectiveness and real-time of this method, we carried out exper-
iments in the laboratory environment and the ultra-deep mine simulation experimental
platform, which is close to the ultra-deep mine working condition. According to the
above, the parameter η was set to 70% both in the laboratory and ultra-deep well simu-
lation test bench, the projection distance was calculated, and the point light source was
installed accordingly.
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5.1. Application Effect in the Laboratory

The drum width of the laboratory is large, and the installation distance of the point
light source was calculated to be 10 m. The hardware layout is shown in the Figure 17.
And the specific parameters are shown in the Table 4. The LED light source was installed
10 m above the drum with a white background plate under the drum, and an industrial
camera was installed on the side with the field of view facing the projection area on the
background plate.

Figure 17. Hardware setting diagram of the laboratory reel rope guiding detection.

Table 4. The specific parameters of experiments in the laboratory.

Drum’s
Width

Drum’s
Diameter

Light Source’s
Distance

Rope’s
Diameter

Number of
Rope Winding Nd η

Camera
Resolution

Camera
Frame Rate

0.5 m 0.3 m 10 m 0.005 m 95 60 70% 1920 × 1680 60 fps

By giving a transverse force to the wire rope winding the drum, the rope arrangement
fault was artificially created. We took the projection of the rope in the whole process. The
effectiveness and real-time performance of the detection method under different conditions
were verified by setting a different number of rope arrangement faults. By setting the
distance between the industrial camera and the projection, the pixel size of the ROI area
was changed to find the appropriate resolution of the ROI area.

A total of four groups of videos were taken, among which videos 1 and 2 were not
set with the rope laying fault, videos 3 and 4 were set with one and two rope laying faults,
respectively. Video 1 was shot far away from the drum, video 2 was shot nearby, videos
3 and 4 were shot a moderate distance away from the drum. Four image datasets are
obtained by clipping the ROI regions in video images. The predicted frame numbers and
time consumption of the rope laying fault using our method are shown in Table 5. Among
them, the prediction results before and after the fault in video 4 are shown in Figure 18.
The detection time is the total time consumed to detect all the frames in the video and the
detection speed is calculated as mean frames detected per second.

5.2. Application Effect in the Ultra-Deep Well Simulation Test Bench

The ultra-deep well simulation test bench is a 10:1 model of a hoist with a lifting
height of 1500 m, a lifting speed of 18 m/s and a payload of 50 t. The drum width of the
laboratory is small, and the installation distance of the point light source is calculated to
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be 3.5 m. The hardware layout is shown in the Figure 19 and the specific parameters are
shown in the Table 6. The LED light source was installed 3.5 m above the drum with a
white background plate under the drum and on a red plate, and an industrial camera was
installed on the side with the field of view facing the projection area. The smallest graph of
Figure 19 shows the actual projection image.

Table 5. The specific parameters of the videos and the results of detection.

Videos Total
Frames

Image Size
(Pixel × Pixel)

Row Rope
Wrong?

Error
Sequences

Error Sequence
Prediction

Detection
Time (s)

Detection
Speed (fps)

Video 1 2700 730 × 50 No \ None 11.8 228
Video 2 2399 1700 × 211 No \ None 25.5 94
Video 3 1199 1347 × 110 Yes 1–857 1–857 7.8 153

Video 4 2159 1347 × 110 Yes (1) 567–1427
(2) 1429–2159

(1) 565–1427
(2) 1427–2159 14.1 153

Figure 18. The prediction results before and after the fault in video 4.

Figure 19. Hardware setting diagram of the drum rope guiding detection for the ultra-deep well
simulation test bench.
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Table 6. The specific parameters of experiments in the ultra-deep well simulation test bench.

Drum’s
Width

Drum’s
Diameter

Light Source’s
Distance

Rope’s
Diameter

Number of
Rope Winding Nd η

Camera
Resolution

Camera
Frame Rate

0.15 m 0.8 m 3.5 m 0.01 m 14 80 70% 1920 × 1680 60 fps

A total of two groups of videos were taken, of which video 1 did not set the rope fault
and video 2 set one rope fault. Two image datasets are obtained by clipping the ROI region
in the video image. The results are shown in Table 7.

Table 7. The specific parameters of the videos and the results of detection.

Videos Total
Frames

Image Size
(Pixel × Pixel)

Row Rope
Wrong?

Error
Sequences

Error Sequence
Prediction

Detection
Time (s)

Detection
Speed (fps)

Video 5 3565 470 × 70 No \ None 11.5 310
Video 6 5585 462 × 70 Yes 1128–3423 1126–3423 17.1 326

6. Discussion and Conclusions

In this study, through the research of the drum rope projection model, the appro-
priate point-light installation positions corresponding to different drums are calculated
quantitatively. The corresponding image processing and edge curve detection algorithms
are designed according to the characteristics of rope projection. The Gaussian filtering
algorithm is improved to adapt to the situation that the curve contains wavelet noise when
extracting the eigenvalues, and the results show that this method can retain the peak to
the maximum extent. Then, the optimization of the distance calculation function of the
DBSCAN method is proposed in order to get a clustering classification method that is
suitable for the linear data set and an unknown number of classifications.

The results of the experiments in the laboratory and the ultra-deep mine simulation
experimental platform show that:

1. For the different widths of the drum, this method can always detect the rope arrange-
ment state stably and at high speed;

2. If the ROI area width of the projection image exceeds 50 pixels, the subsequent correct
detection can be ensured;

3. The detection speed is related to the image size. When the image width is set to
70 pixels, the detection speed of the reel with 14 turns exceeds 300 fps. However,
when the image width is set to 50 pixels, the detection speed of the reel with 95 turns
exceeds 200 fps;

4. The detection sensitivity of this method is higher than that of human eye observation,
and it can detect the rope arranging fault earlier.

Compared with other methods and manual inspection, the innovation of this study
lies in that:

1. This study reduces the dimension of the difficulties of the detection of rope arrange-
ment by projection;

2. This study replaces the problem of inevitable image distortion and overlap distortion
in wide-roll shooting with the installation space requirement of the light source, which
can be easily solved;

3. This study can judge the rope arrangement fault using a single frame instead of
the comparison of at least two frames, which has lower robustness during high-
speed detection;

4. The proposed adaptive Gaussian filtering method ensures the correct extraction of
eigenvalues, and the designed distance thresholds of the DBSCAN method enables it
to classify eigenvalues earlier and more accurately;
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5. It can be adapted to the detection of wide reels in ultra-deep mines; the detection
speed of the reel with 95 turns can exceed 200 fps.

This paper presents a high-speed, high-accuracy and high-robust reel rope detection
scheme for ultra-deep mines with high-speed and heavy load, which is an important part
of ensuring the safety of ultra-deep mines. It is hoped that this projection detection method
can provide a new idea for detection in other similar occasions.

7. Patents
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