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Abstract: In this paper, we present an exhaustive description of an extensible e-Health Internet-
connected embedded system, which allows the measurement of three biometric parameters: pulse
rate, oxygen saturation and temperature, via several wired and wireless sensors residing to the
realm of Noncommunicable Diseases (NCDs) and cognitive assessment through Choice Reaction
Time (CRT) analysis. The hardware used is based on ATMEGA AVR + MySignals Hardware printed
circuit board (Hardware PCB), but with multiple upgrades (including porting from ATMEGA328P to
ATMEGA2560). Multiple software improvements were made (by writing high-level device drivers,
text-mode and graphic-mode display driver) for increasing functionality, portability, speed, and
latency. A top-level embedded application was developed and benchmarked. A custom wireless AT
command firmware was developed, based on ESP8266 firmware to allow AP-mode configuration and
single-command JavaScript Object Notation (JSON) data-packet pushing towards the cloud platform.
All software is available in a git repository, including the measurement results. The proposed eHealth
system provides with specific NCDs and cognitive views fostering the potential to exploit correlations
between physiological and cognitive data and to generate predictive analysis in the field of eldercare.

Keywords: e-Health; internet of things (IoT); elders; independent living; active and assisted
living (AAL); systems engineering; biometric sensors; arduino; noncommunicable diseases (NCDs);
choice reaction time (CRT)

1. Introduction

A special focus in worldwide healthcare perspective is oriented on chronic diseases,
also known as Noncommunicable Diseases (NCDs), given by numerous risk factors espe-
cially in terms of poor income, environmentally and metabolic stressors, physical inactivity,
and negative behavior patterns, which lead to 71% of all deaths globally, whereas over
85% of these deaths, considered as prematurely, emerge in low- and middle- income from
underdeveloped countries. According to World Health Organization (WHO), ageing popu-
lation represents a significantly affected segment by the NCDs [1], especially in the case of
increased rate of the elder segment as forecasted in the next decades, where several public
health recommendations shall be considered in terms of assistive technologies implemen-
tations, caregiver support, home concierge services, specific policies, and regulations for
protecting elders [2].

Given the fast increase of elder population in the global population (by 120% until
2050), the impact of NCDs, plus neurological illnesses [3], and in addition considering the
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current pandemic situation, Internet of Things (IoT) technologies are the best-case scenario
in detecting and alerting caregivers or emergency services in case of changes that can
become a threat to the patient life.

Fortunately, to date, e-Health systems have proven to have great potential in providing
telediagnosis, teleconsultancy, telemonitoring processes for elders and specialists within
the same or different locations with the main benefits of providing access for elders to
supportive care from specialized stakeholders (e.g., caregivers, volunteers, physicians etc.)
and at the same time lowering the elderly caregiving and healthcare costs [4].

Nevertheless, as an in-depth literature review published in 2020 clearly reveals [5]
that there are significant challenges of the IoT technologies acceptance in terms of user
interfaces, easy-to-use features, size, weight, and obtrusiveness, while the measurement
accuracy, especially in the realm of cognition, was addressed in just four studies as reported.
The cognition field refers to Mild Cognitive Impairments (MCIs), dementia, and severe
forms of it, namely Alzheimer’s Disease (AD), a neurodegenerative disorder.

The connection between NCDs and cognitive impairments for the elderly has been
more evidenced in the literature [6,7], with MCI emergence in elders with cardiovascular
disease (i.e., 35%) [8], pulmonary disease (i.e., 25%) [8], and diabetes mellitus disease
(i.e., 20%) [9] being highlighted. As aging influences the decline of cognitive components,
like alertness, attention, reduced stimulus perception, and decision making, there were sev-
eral experiments taken into consideration, especially in the last decades, regarding Choice
Reaction Time (CRT) and Simple Reaction Time (SRT) approaches [10] for consolidating
conclusions in terms of increased reaction time to visual stimuli with age [11].

2. Related Work

As “Internet of Things” semantically means “a world-wide network of interconnected
objects uniquely addressable based on standard communication protocols” [12], in the last
few years, the IoT market has seen a continuous technological increase and aims to connect
a wide range of devices and systems from sensors and actuators, appliances, computers,
and cellular phones. The main challenge envisaged is to create a complex system that can
be integrated “from the supply chain to bedside” but also to be included in the everyday life
of elders to track physiological and psychological changes before the need of hospital care
occurs. Considering the demographic trends that show an ascending need of assistance for
elders, it is desirable to create a system capable of communicating with other devices and
human beings in order for elderly to live longer and more safely at home [12,13].

Asghari, P. et al. [14] defines IoT as an ecosystem that includes smart devices with
sensors, integrated into a network in order to provide to the end users a smart services
environment. Some relevant case studies of examples of IoT wearable sensors and devices
for eldercare have been identified in the literature as follows.

Bose et al. [15] developed a sensor that measures body temperature, heartbeat, acceler-
ation, and blood pressure; the collected data are transferred to the remote-control station via
a developed wireless mesh network architecture (consists of Tags with sensors, Routers and
Coordinator/Gateway). They used an IEEE 802.15.4/Zigbee protocol for WPAN (Wireless
Personal Area Network) in order to provide a low-cost, low-power wireless mesh network
and longer battery life.

Aljehani et al. [16] developed an application for Apple smartwatch that measures heart
rate and locates the patient based on the Internet of Things (IoT) concept. The solution has
two parts: (i) The Alzheimer’s patient wears an IoT device, which is the Apple Smartwatch,
and (ii) an iOS application on the caregiver’s iPhone connected to the patient’s watch in
order to access and store the patient’s heart rate and location data.

Karakaya et al. [17] used a smart watch (with an accelerometer and gyroscope) as an
IoT with a mobile app in order to identify daily activities such as walking, sitting, and
falling with the purpose of predicting elderly people’s activities.

Srinivas et al. [18] developed a health monitoring system based on cloud user au-
thentication. The main objective of their work was to ensure a secure user authentication
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scheme in order to access real-time data acquired by the wearable sensors deployed on the
patient’s body.

Farman et al. [19] elaborated a diagnosis engine system able to predict heart disease
with an 98.5% accuracy and recommend dietary plans and activities. Their proposed
solution has two main data sources: The first one is the wireless body sensor network
based on medical sensors that acquires internal and external physiological data (electrocar-
diogram, electroencephalogram, heart rate, blood pressure, position, activities, respiration
rate, blood sugar, oxygen saturation, and cholesterol levels), transmitted via Bluetooth and
Wi-Fi devices, and the second data source is Electronic Medical Records.

In the realm of cognitive assessment and assistive technologies, there are several
solutions developed for diagnosing AD by gait postural control analysis [20], stimulating
cognitive functions via SenseCam diary method of remembering images [21], MCI and
dementia diagnosis through number-letter cognitive tests deployed on PC correlated with
wearable inertial sensors [22], and preserving cognitive functions through the eWall Open-
Source Cloud-Based eHealth Platform able to provide cognitive training platforms under
the shape of video games [23].

Thus, IoT applications based on embedded devices endowed with computational
and Internet communication capabilities present a new paradigm and huge potential for
modern healthcare and eldercare. [24],

Common solutions in monitoring health parameters of patients in wards are based on
commercial off the shelf (COTS) wearable devices collecting different biometric data via
Bluetooth and advancing it to Internet via a Gateway, most often in the form of smartphones,
solutions coming with disadvantages in terms of high components price and increased
power consumption, implicitly in less autonomy, enhanced communication delay, and high
overall cost of the eHealth system. In contrast, using ESP8266 as Wi-Fi node integrated in
the IoT sensors may be an avenue towards low-cost (e.g., prices between $4.00 to $10.00) and
reduced power consumption solutions (i.e., being endowed with three configurable sleep
modes) [25,26] as supporting traditional 802.11 b/g/n. In terms of low power consumption,
Bluetooth 4.0 known as Bluetooth Low Energy (BLE) is superior to traditional Bluetooth
when exchanging small amount of data at high rates.

The IoT Smart devices benefit from a wired or wireless connection. According to
S. Al-Sarawi et al. [27] in order to connect smart devices, there are different wireless
communication technologies and short-range standard network protocols such as Internet
Protocol Version 6 (IPv6), over Low power Wireless Personal Area Networks (6LoWPAN),
ZigBee, Bluetooth Low Energy (BLE), Z-Wave, and Near Field Communication (NFC).

In order to connect the IoT device as local networks or individual IoT devices, different
wireless communication technologies can be used, like Bluetooth and Wi-Fi variants:

Bluetooth is a protocol widely used for IoT application. According to Samie F. et al. [28],
Bluetooth can be divided into the following categories:

• Classic Bluetooth suitable for data stream applications, which offers a high throughput
and bandwidth, but with limited number of nodes in the network;

• Bluetooth Low Energy (BLE), known as Bluetooth smart has the advantage of a lower
power consumption, lower setup time, and unlimited number of nodes and it is
designed for short-rage, low bandwidth, and low latency IoT applications;

• Bluetooth 5.0 (BT v5) doubles the speed of low energy connections.

Wi-Fi is also another protocol used for IoT application. The Wi-Fi communication
technology can be classified as such [28]:

• Conventional Wi-Fi (IEEE 802.11 b/g/n): A high energy consumption makes it unsuit-
able for ultra-low-power IoT devices, but with the advantages of a high bandwidth;

• Low-power Wi-Fi (802.11 ah) or HaLow: Suffers less interference, is able to reduce the
energy consumption and to extend the range of transmission with less data rate for
IoT applications.



Sensors 2021, 21, 1837 4 of 27

Due to the fact that in the IoT field the wireless and battery powered sensors must
be connected to the cloud, the need for long-range and low-power communications with
Low-Power Wide Area Networks (LPWANs) protocols and technologies arose [29].

Although eHealth systems including wearable and ambient sensors may successfully
contribute to elders’ quality of life especially in the context of NCDs [30], the power
dissipation and cost of the IoT sensor nodes are not always taken into consideration in the
specific IOT eHealth market even though these aspects may represent essential advantages
for users in terms of handling operations, efficiency, and taking off [31].

The low-cost eHealth sensors require post-processing of data using filtering algorithms
that eliminate acquisition errors without incurring long latency. Several filtering methods
are used in the literature including Mean Average (MAW), Median Filter (MF), Kalman
Filter (KF), Principal Component Analysis (PCA), etc. The filter parameters must be
adapted according to signal acquisition and the specific measurement characteristics of
biometric signals to be extracted.

As eHealth solutions represent a good candidate for monitoring patients, especially
elders from the point of view of biometric data related to NCDs and/or MCIs, the current
paper is targeting the architecture design, system implementation, and integration at
prototype level based on COTS platforms along with optimizations for reaching a low-cost,
low-energy, communication-efficient eHealth system. The main envisaged targets of the
current work are the following:

Target 1. To define, implement, and integrate an eHealth system architecture and
System-of-Interest (SoI) for monitoring biometric information of elders with NCDs and/or
MCIs in independent living via Systems Engineering Methodology, based on commercial
platforms (MySignals, Arduino).

Target 2. To define and design the mechanical case prototype of the eHealth SoI fitting
the elders needs in independent living.

Target 3. To define and implement from scratch a cognitive assessment sensor in terms
of choice reaction time as cognitive assessment tool and a corresponding measurement
methodology definition.

Target 4. To optimize relevant COTS biometric sensor data (just the relevant sensors
given the literature statement of cognitive decline and NCDs potential connection as
referred in Section 1) by the usage of filtering algorithms.

Target 5. To analyze and optimize the power consumption of SoI.
Target 6. To optimize the short- and long-range communication latency for biometric

data transmission locally and remotely to caregivers’ support.
The eHealth system presented in the herein paper is based on the low-cost eHealth

Platform from Libelium, namely MySignals Hardware (HW) Development Platform—
eHealth and Medical IoT Development Platform for Arduino [32], as opposite to the more
expensive The MySignals Software (SW) Development Platform [33], based on an eHealth
Sensor shield compatible with Arduino and several wired/BLE biometric sensors.

The proposed SoI brings about a novel scientific concept and the integration of a
low-cost COTS eHealth system with software improvement, electronic adaptations, and
mechanical case prototype, centralizing specific NCD related biometric sensors together
with an inhouse cognitive assessment tool for exploiting the NCD and MCI relation among
elders. Thus, the present paper is achieving the targets already stated by approaching an
exhaustive description of the system architecture and prototype implementations.

Besides the benefit of being used by elders, supervised by their caregivers, the pro-
posed eHealth system is highlighting the avenue of deployment within three pilots in
Romania, Italy, and Hungary, where NCD and MCI related data will be stored and classi-
fied in the project cloud to explore correlations and predictive analysis on the structured
and unstructured data, with potential in elaborating MCI countermeasures for elders in
terms of wellbeing recommendations. The pilots, implicitly the system demonstration
together with end-users, are for the time being delayed given the COVID-19 pandemic,
but the authors are trying to overcome the lack of access to primary end users (i.e., elders)
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via co-creation online meetings. Given the uncertainties provided by the pandemics and
delaying the physical meetings and pilots, the authors succeeded to provide specificity
on the eHealth concept, as accepted virtually by the end-users, in terms of: Firstly, taking
into consideration the wider needs of elders in terms of NCDs for the reason they cannot
physically interact with their corresponding General Practitioners; and secondly, providing
them with support in terms of monitoring health in the high spread of SARS-CoV-2 (e.g.,
temperature, pulse oximetry, etc.). Hence, in Section 3, the concept and the eHealth system
architecture, software implementations, and Hardware adaptations on COTS Platforms
are presented, as well as the mechanical prototype CAD (Computer-Aided Design) con-
cept for housing the system. According to Systems Engineering (SE) Methodology, the
materials and methods are described for investigations into several perspectives, such as
short-/long-range communication, data sensors accuracy based on filtering algorithms,
and energy consumption measurements, whereas in Section 4, the results on the perspec-
tives are presented. Section 5 draws up the main conclusions and perspectives in the realm
of eldercare to elders with NCDs and/or MCIs.

3. Materials and Methods

The framework is pursued according to Systems Engineering Methodology (in compli-
ance with International Council on Systems Engineering-INCOSE; European Cooperation
for Space Standardization-ECSS), namely beginning with the end-user needs and the so-
lution neutral function of the foreseen eHealth System-of-Interest (SoI) and continuing
with the concept, architecture, proof-of-concept, and prototype along with verifications
and validations [21,22].

3.1. Proposed eHealth System Concept and Architecture Definition

In this context, taking into consideration the fact that the achievement presented herein
stems from a Research and Development Project [34,35] within The Active and Assisted
Living (AAL) European Programme, the proposed eHealth SoI is oriented towards the
needs of elders suffering/being at risk of age-related NCDs and/or MCIs, in support to
independent living in strong communication with a wide segment of stakeholders from
volunteers and family members to professional caregivers and more. Under the “smart
solutions for ageing well” vision fostered by the AAL Programme, the elicited solution
neutral function of the eHealth SoI is shaped by acquiring biometric information from
elders and transmitting it to the main stakeholder group mentioned previously, the latter
with capability in handling and acting accordingly on the received information. The
proposed SoI concept, as seen in Figure 1, comprises short- and long-range communication
protocols as a Wi-Fi and Bluetooth4-enabled therefore scalable base station that offers
two services:

- Embedded C++ application: Offers connection and readout of biometric sensors
(e.g., the blood sugar, blood oxygen level, blood pressure, heartbeat rate, temperature,
CRT sensor, etc.) [36]. It shares data with the cloud via a webservice.

- Web application [37]: Allows management and configuration for the base station. This
option was considered better than OS-dependent smartphone app (iOS/Android).
It will enable configuring the specific sensor, triggering of a certain measurement,
displaying the result of the measurement, and setting the connection parameters used
for cloud interaction, from any device connected to the same network as the base
station (PC/laptop/smartphone).

As settled at the level of technology, for complying with one of the main requirements
of the European AAL perspectives in terms of interoperability and open interfaces for
achieving a European market, the SoI concept is oriented towards Open-Source Hardware
(OSHW) and COTS eHealth Platforms including COTS biosensors. The decision was
also made considering other criteria, such as lowering costs and increasing scalability
and interoperability.
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Figure 1. eHealth System-of-Interest (SoI) conceptual perspective.

By identifying and decomposing primary and secondary value functions of the
eHealth SoI together with the elements of form that sustain them, the system architecture
is emerging via Object-Process Methodology (OPM), where the structural, functional, and
behavioral views in a single coherent architecture are modelled [38]. Hence, in Figure 2,
an Object-Process Diagram (OPD) for the eHealth SoI is shown where the specific relation
of elements of form in terms of building blocks are linked to the processes and operands
for achieving the intended system emergence and functions, as well notifying the system
boundary, accompanying systems, and interfaces.

Figure 2. Object-Process Diagram (OPD) for the eHealth system architecture.
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Based on the eHealth system architecture OPD view, the emergence, as the desired
goal, suggests the primary value functions as automatically collecting biometric data in a
non-obtrusive approach (e.g., unique physiological, physical, behavioral data) from elders
at their dwelling place and further transmitting the data to specific caregivers/volunteers
according to communication protocols established for the proper decisions of elders.

Having an in-depth analysis on system architecture OPD, the value pathway starts
when the system is initialized by the second target user (volunteer/caregiver) with the
elder’s profile and server network connections of the elder’s dwelling-place. Further, when
the elder is properly using the system, there is the display function for elders exclusively
in terms of eHealth sensors availability, the sensors being grouped in a list on the screen.
The elder is able to acquire biometric data, the data are processed by the system, and two
additional scenarios can occur in parallel:

• In the first regime of system development and serviceability, the biometric data are
displayed and further transmitted via the internet exclusively to Information and
Communications Technology (ICT) development teams. In the second regime of daily
usage by the elders, the biometric sensor data are not displayed on the unit screen,
just transmitted to the internet to caregivers/volunteers outside the eHealth system
boundary for specific decisions to be made. The second regime stems from co-design
performed sessions, as required by stakeholders. Thus, the system may accommodate
changing needs, fitting the scenario of internet absence and communication failure for
elders if the two regimes will be combined.

Considering the form aspects, namely instruments along with structural relationships
among them, as illustrated in OPD system architecture, the functional blocks identified
and defined by specific system requirements are the following:

• Biometric Data Acquisition Unit, which must integrate COTS OSHW components for
data acquisition in digital and/or analog format, data processing, and transmission us-
ing analog-to-digital converters, multiplexers, standard communication protocols, etc.

• eHealth Sensors that could be presented as a customizable biometric sensors package
for the primary target group (i.e., elders). According to the system requirements,
the considered biometric sensors are: Blood pressure sensor, pulse oximetry sensor,
body position sensor, temperature sensor, glucometer, spirometer, body weight scale,
and CRT sensor for cognitive assessment. The acquired data by the e-Health central
unit from the sensors (intended to be used individually) are collected, processed, and
automatically sent to the Cloud.

• Power Supply System (PSS), which must provide with power autonomy the eHealth
system with the screen ON and all sensors in operating condition. The user must be
able to charge the system while it is in use; the system must function in “always-on”
mode and not enter in standby mode; the e-Health system is turned OFF using an
ON/OFF button.

• Digital Processing Unit (DPU), which must communicate to transmit information
between the Communication Center, Local User Interface, Biometric Data Acquisition
System, and Power Supply blocks.

• Client–Server Communication Unit uses the network card Wi-Fi System-on-a-Chip
(SoC) in order to send information to the Cloud server, and the system will com-
municate via Wi-Fi with the user’s home wireless router. The system is intended to
communicate with the server using an encrypted channel with HTTP protocol and
secured with SSL/TLS certificates, to send data only when it has real values recorded
from the sensors and at a configurable period of about 10 s.

• Local User Interface (LUI) must display locally the biometric sensors availability, if it
has found at least one Bluetooth-enabled sensor and the sensor pairing. The system,
according to the system architecture, will pursue the parallel functional regimes
described above.
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Further on, as it is presented in the following sections, the prototype implementation
and integration were carried out starting from MySignals Hardware (HW) Development
Platform—eHealth and Medical IoT Development Platform for Arduino [32], which is an
eHealth Sensor shield compatible with Arduino and several wired/BLE biometric sensors.
Based on [32], different technical trade-offs were done in order to accommodate a proper
board and microcontroller, a mechanical prototype case targeting end-users’ operations
in their dwelling places was elaborated, such as improved short (i.e., new BLE manager
development) and long (improved Wi-Fi driver with decreased Wi-Fi data latency) range
communication protocols, increased biometric sensors accuracy by applying different filter-
ing algorithms, and power consumption investigations in different operational scenarios.

Even if IoT wearable sensors and devices are abundantly emerging on the market,
elders’ reluctance to technology together with their acceptance for this type of technology
rise significant challenges for developers. During the co-design sessions, authors identified
these facts, therefore the choice of IoT sensors and devices used in the proposed eHealth
system was not trivial.

3.2. Electronic Architectures and Trade-Offs

The current subsection presents a hardware and software perspective on integration
and implementation of the eHealth SoI, especially considering the functional blocks defined
in the previous system architecture section. The current section presents the hardware
adaptation considering the Arduino OSHWs trade-offs (resulted in the configuration
composed by Arduino Mega2560 board, Libelium HW shield and ESP8266 wireless SoC)
and software implementations.

Biometric Data Acquisition System was developed implementing the Libelium eHealth
COTS platform (Figure 3), a development board that allows connecting and processing
data collected from biometric sensors. More precisely, the platform consists exclusively
of a shield with inputs/outputs for Libelium-branded sensors. Based on this platform, a
whole integration process of hardware and software implementation was implemented
coherently, as it can be analyzed in the following sections.

Figure 3. MySignals Hardware (HW) block schematic [EHB2020]. The ESP8266 Wi-Fi card is an
Universal Asynchronous Receiver-Transmitter (UART)-based device.
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The platform can integrate biometric sensors (pulse oximeter, body thermometer,
body position, blood pressure, spirometer, glucometer, body scale) connected wirelessly via
Bluetooth—Bluetooth Low Energy (BLE), or Universal Asynchronous Receiver-Transmitter
(UART); some analog sensors may be additionally connected via the existing eight channels
provided by the on-board Analog-to-Digital Converter (ADC) (depending on required
signal conditioning/gain). It should be mentioned that the development board supports
analog sensors with a maximum of three channels (i.e., digital body position detection
sensor that acquires information through four wires: Three axes of the accelerometer
component and a Ground reference connection).

The Power Supply System (PSS) was implemented as an internal Li-Po rechargeable
battery—Power Bank Voltaic V50 (capacity of 47 Wh) with an autonomy of about 47 h of
online system usage (maximum time usage: 77 days when eHealth system is off, but having
Voltaic’s always-on mode activated). The battery may be recharged from a 230VAC to
5VDC at minimum 2A PSU in around 5 h; the eHealth system may be used normally while
charging. The entire eHealth system has an average power consumption of 120 mA—with
the screen’s backlight off and 200 mA—with the screen’s backlight on (the backlight can be
turned on or off programmatically) in default use-case.

Digital Processing Unit (DPU) was designed as a logical system that is based on
the processing capacity of the Arduino development board used in the eHealth Unit
configuration. Data collected from analog sensors and/or digital devices is usually in a
raw (unprocessed) format, therefore requiring digital filtering;

The Wi-Fi connection is provided by the ESP8266 SoC, using UART interface con-
figured at 115,200 bps. The default AT-command stack was found to be very inefficient
(at least eight commands needed to be used for successful data transmission) and it was
replaced by a custom-designed firmware [39] (modified code is hosted on [39]) to allow
hotspot-SSID (Service Set Identification) configuration and single-command JSON-format
HTTP-PUT (Hypertext Transfer Protocol-PUT) requests. The server receives the data,
processes them, stores them, and displays them in an Admin Center application.

Three boards are stacked: The base board Arduino (connected via USB for power and
debug), the MySignals HW PCB and the ILI9341-powered display PCB.

A Proof-of-Concept (PoC) system [35] was developed using the open-source hardware
development board Arduino UNO R3 (ATmega328P) with the Libelium MySignals shield
as shown in Figure 3. The PoC system was initially implemented using two sensors
(an analog one and a BT-based one, to ensure a certain confidence in estimating the
required program memory size). The program memory was found to be too small (totaling
32 kB, of the currently needed 31 kB), so we ported the main app’s code to a 48 kB-long
program memory included on-Arduino UNO Wi-Fi Rev2. Unfortunately, this platform
was abandoned afterwards when full documentation for BT sensors was not provided by
the manufacturer. As a final solution in the eHealth system prototype development, we
switched to the Arduino Mega (containing ATMEGA2560 with 256 kB of program memory).

The utilized program memory for the ATMEGA2560 MCU of ArduinoMega board,
was around 66 kBytes (including the blue-white background bitmap) for all the desired
sensors, including software code for BLE communication, display, data storage, network
configuration, and Wi-Fi connectivity to the Internet using custom AT command towards
the Wi-Fi card.

In Table 1, one can see the number of Bytes, each software module takes inside the
program memory of the ATMEGA2560 MCU.

The acquisition data rate of the ADC was set to 15 kSa/s and its resolution to 10-bit
for any channel (channels are not sampled in parallel: There is only one ADC peripheral in
ATMEGA2560, and the analog inputs are multiplexed). The generated data size is 15 k of
10-bit per second. These data are postprocessed (in embedded), and a representative value
is sent into the cloud, reducing the required bandwidth for the network card.

Important code sections have been redesigned and rewritten, reorganized modularly,
with the effect of considerably increasing the operating efficiency of the eHealth system.
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The code used for the eHealth Unit and peripherals (biometric sensors, biometric devices,
display, etc.) has been improved and extended (for example CRT sensor) so that the entire
embedded system exceeds the initial performance previously described by MySignals in
terms of significantly lower program memory (see Table 1) and operation of the acquisition
system at a higher speed.

Table 1. ATMEGA2560 program memory occupied for each module in Bytes.

Software Module Name Occupied Program Memory
(in Bytes)

Occupied Program Memory
(Old Implementation)

(in Bytes)

Bitmap 19,968 Not available
issDisplay 26,648 9080
issWi-Fi5 1920 2134
issBattery 634 Not available

issTemperature 2198 2546
issBodyPositionSensor 1890 3782

issSpirometer 2022 3780
issSpO2 1278 774

issBodyScale 3588 2984
issBloodPressure 2346 6096

issGlucometer 1566 1018
Software glue logic 110 444

TOTAL 66,642 35,192

Software architecture was developed to mirror the hardware components (one low-
level driver, one high-level driver, and the app on top of it all). Figure 3 shows a block
schematic of the hardware used in the eHealth platform, and Figure 4a shows the corre-
sponding software modules developed for this system.

In Figure 4b, the partial class diagram of the software is drawn. All sensors’ drivers
are inherited from issModule and use issDisplay. Additionally, all BLE-enabled sensors
use the issBLE class.

In terms of Software implementation, it is schematically split in two parts as follows.
Basic Embedded Software. At the present moment, the eHealth system is using

MySignals configuration, Arduino Mega, and an ESP8266 network card for reasons related
to high program memory consumption (64+ kB); this is around 25% of maximum capacity
and will facilitate software and hardware development perspectives.

Additional Embedded Software Modules. eHealth Unit system benefits from a series
of global software improvements that can be presented modularly in terms of results:

• Better Bluetooth manager (by registering the MAC addresses at boot time and specific
search of the devices by the MAC address later on).

• Better Wi-Fi driver (data communication between eHealth Unit and SAVE Cloud
regulated to communicate minimum required data: One command containing server’s
IP, port, endpoint, and payload).

• Added brightness sensor (in order to control the brightness of the screen).
• Digital signal filtering: Some sensors require data filtering in order to eliminate certain

specific artifacts of the acquired signal, e.g., temperature sensor induces a noisy
signal—the solution found was to apply a median filter.

• Software Relationship: eHealth System to Cloud. Currently, the data transmission
to the SAVE Cloud, which ensures synchronous viewing of collected data (see Fig-
ure 5), has been successfully completed and the data transmission format has been
established as a JSON template based on JavaScript principles. Prior to this step, the
data transmission between PC and server was implemented via same HTTP POST
requests on a locally node.js server-side JavaScript application. Finally, tests and
demonstrations were performed to observe the operation of the system in real cases.
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Figure 4. (a) The software stack block diagram. With yellow: Drivers already available as separate applications, in
MySignals examples. With green color: High-level drivers developed by authors. (b) The software’s (partial) class diagram
highlighting public (+) or private (-) members or methods.

For reasons of available program memory, ATMEGA2560 was chosen as a main
MCU. The prototype therefore uses the configuration composed by Arduino Mega2560
board, Libelium HW shield, and ESP8266 wireless SoC as network chip (on a ESP-01 PCB)
connected via UART interface.
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Figure 5. SAVE Cloud interface for Admin Centre showing last 3 measurements (in the middle one the scale was not used).

3.3. Mechanical Prototype

The case concept rationale is given by the following main features:

• High-touch case concept, referring to the involvement of elder’s attention and trust
in the system; the concept tries to build a connection between the elder and the
technology in terms of handling operations.

• Easy access to biosensors, referring to the natural movement for the elders, namely
pulling and pushing the drawers for accessing the biosensors;

• Simple sensors repository and natural approach of handling, given the fact that the
repository looks like drawers, where sensors are just introduced in compartments
without complicated grips or interfaces.

• Robust design, where the design is related to a traditional chest-of-drawers, just at a
smaller scale.

• Ergonomic control panel for elders, given the existence of an on/off button on the top
near a Thin Film Transistor (TFT) screen listing the biometric sensors’ availability.

The mechanical design of the assembly was developed using SolidWorks CAD soft-
ware (Dassault Systèmes, Vélizy-Villacoublay, France) following several meetings that took
place in order to establish the concept. Thus, it is structured in the form of a tower with
drawers and the component devices incorporated, as seen in Figure 6.

Each system component has its own place, especially designed and marked in order
to facilitate the use and storage of the devices (as shown in Figure 7). The “chest-of-
drawers” concept with labels on the drawers indicating the sensor location stem from
co-design physical interactions with the end users (especially elders), therefore the eHealth
mechanical concept is as required on behalf of elders, whereas technology acceptance is
positive. The component situated on the top, which incorporates the screen, was designed
at a 14-degree angle so the user can easily read the data shown on the screen and the battery
is placed in the lower part in order to allow easy access to charging ports.

3.4. Short and Long Range Communication Latency

The ESP8266 network card was used for Internet connectivity. It boots initially in
AP-mode unless it can connect to a Wi-Fi network previously used. It then enters normal
operation as a network component that provides wireless data service. Regarding range of
communication and consumed power, the following report (Table 2) resides in a University
internal study, unpublished yet.
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Figure 6. Device assembly incorporation: (a) Physical prototype and (b) 3D model design.

Figure 7. Drawer sections for device storage (a). Libelium biometric sensors in photos (b).

Table 2. Range of communication and consumed power per SoC.

Wireless
Card/SoC Technology Range (m) Typical Current

(mA)
Peak Current

(mA) Comments

ESP8266 802.11 b/g/n 385 172 250 2400 MHz
XB24 ZigBee 110 33 40 2400 MHz

SX1272 LoRa 2000+ 109 125 868 MHz
FS1000A 433-ASK 94 38 40 433 MHz

3.5. Analog Sensor’s Processing and Accuracy

Literature overview on biometric signal filtering methods reveals a study [40], similar
to the approach herein using (the default) Arduino UNO board and MySignals HW—
eHealth and Medical IoT Development Platform for evaluating the main physiological
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parameters (i.e., body temperature, EMG, BP, SPO2, blood glucose, EKG) of the human
body. The authors use a routine of amplifying, measuring, and filtering the data collected
from the sensors using a python software application.

Another comprehensive work [41] considers enhancing the accuracy of their low-cost
body sensors through the usage of signal filtering algorithms. The study addresses an
extensive approach in evaluating certain filtering methods as Moving Average Window
(MAW), Principal Component Analysis (PCA), and Kalman Filters (KF). The authors
evaluated the filters performance having as reference the signals provided by certain
certified sensors (i.e., body thermometer and GSR sensor) and concluded, by comparing
the Mean Square Error (MSE), the Normalized MSE (NMSE), and the Signal-to-Noise Ratio
(SNR), that the MAW filter applied on five samples provides the most significant result
followed closely by PCA used rarely in the literature for noise reduction of the biometric
signals. On the other hand, the work revealed that KF is not appropriate for filtering body
thermometer and GSR sensor data as it returned higher errors.

Also, the smoothing EWMA (Exponential Weighted Moving Average) filter [42] is
used in another study for certain e-Health sensors. Band pass filters (BPF) have been used
for filtering EEG signal [43], KF for Physical activity tracking, and Hidden Markov Models
(HMMs) for periodical movements [44].

The targeted eHealth sensors are the pulse–oximeter and the body thermometer.
Given the paper perspective fostering the potential exploitation of centralizing non-

communicable disease (NCDs) biosensors and cognitive decline CRT [6–10], the targeted
sensors mentioned above were effectively measured and processed given the following:
These corresponding physiological parameters (such as pulse rate, oxygen saturation, tem-
perature) are related to cardiovascular diseases and pulmonary diseases, and also further
sought as support in monitoring health in the high spread of SARS-CoV-2 virus, as stated
and required by the SAVE project stakeholders; the rest of the sensors, even though they
are important according to stakeholder requirements, provide either filtered processed
signals (blood pressure sensor, glucometer) or maximum value (spirometer, weight) once
per measurement cycle.

In Section 4, a qualitative evaluation of the biometric data filtering methods will be
presented in accordance with the methods investigated in the literature and applied to the
biometric signals collected by the eHealth prototype.

Physiological data used in this study are real, collected from a male human subject,
aged 35–40 years, without any known medical problems. The study was deployed in
laboratory conditions based on experimental methodologies with respect to biometric
devices utilization (i.e., body thermometer, pulse oximeter).

Regarding the experimental methodology, there were two scenarios defined according
to temperature and pulse oximetry measurements. In the former scenario, the subject holds
the temperature sensor tight inside the left-hand fist for a period of 50 s after which he
releases it; in the latter scenario, the pulse oximeter is worn during a session that includes
three rounds of moderate effort and three rounds of rest pursuing fitness activities and
break in standing conditions.

The fingertip pulse-oximeter instantly communicates the data acquired (i.e., pulse
rate and blood oxygen saturation) over a BLE wireless connection. The body thermometer
measures the skin temperature and communicates with the eHealth Unit via wire transmit-
ting an analogue signal. Three eHealth signals will be considered consequently further on:
One Temperature log that lasts 120 s with a sampling rate of 65 acquisitions per second
and two logs that lasts 275 s, collected with a sampling rate of 8 acquisitions per second. In
Section 4.2., the data acquired from two of the eHealth sensors will be processed in order
to enhance the signal properties using several filters approached in the literature that are
described theoretically further on.

The Moving Average Window (MAW) Filter is often used to smooth the signal by
averaging a predefined set of input samples of the data array. The MAW Filter introduces
a delay due to the computational effort that is proportional to window length and can
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be removed. The MAW filters a sequence of n elements: x1, x2..., xn using a window
characterized by size parameter k > 0, where kth moving average of the given sequence is
defined in (1–3) as follows:

y1 =
1
k
(x1 + x2 + . . . + xk) (1)

y1 =
1
k
(x2 + x3 + . . . + xk+1) (2)

yn−k+1 =
1
k
(xn−k+1 + xn−k+2 + . . . + xn) (3)

EWMA (Exponential Weighted Moving Average) is a variation of moving average
filter characterized by weighting factors that decrease exponentially with respect to the
definition (4):

y[n] = α
n

∑
k=0

(1− α)k x[n− k] (4)

where y[n] is the current value, y[n − 1] the previous value, and α ∈ (0,1).
Kalman Filter (KF) requires low computational power and provides estimates of

variables taking into account the measurements observed over time. KF provides an
estimate of position and velocity taking into account the previous estimate for each sample
of signal x with respect to the Equation (5):

X̂k = Kk·Zk + (1− Kk)·X̂k−1 (5)

where Zk is the measured data, X̂k−1 is the previous estimate, and Kk is Kalman gain.
Hence, KF uses for each state the best average factor and takes into account estimates of
the past signal.

The Median Filter (MF) is used in order to remove noise by sliding a predefined
window over the data array. The MF is preferred for removing noise in digital signals
with good results in terms of smoothing the regions of the signal but affecting edges. In
addition, the MF is used for digital processing where speckle noise and salt-and-pepper
noise are common. The 1D median filter replaces the central value of the window by the
median value in (6):

y[1, m] = median{x[i], i ∈ w} (6)

where w represents a neighborhood [1, m] of the vector.

3.6. Control Circuitry and Power-Consumption Investigations

The current measurements were performed using the T3DSO1302A digital sampling
oscilloscope from Teledyne/LeCroy, by measuring the voltage drop on a low-side shunt
as seen in Figure 8. Two channels were used with the stock T3PP350 passive probes: CH1
for triggering on UART3-TX and CH2 for actual current measurement (voltage drop on
0.925 Ω resistor). Logfiles were saved as 3-columnMatlab (Mathworks Inc., Natick, MA,
USA) friendly file format (timestamp, channel1_amplitude, channel2_amplitude). Sam-
ple rate was set to maximum 1 GSa/s for all measurements smaller than the available
1.4 Mpoints oscilloscope memory (the only one longer than that, was the display initial-
ization measurement, where we had to drop the sample rate to 50 MSa/s). The 1 GSa/s
sample rate was used to catch high-speed variations in current consumption of the Wi-Fi
SoC (ESP8266EX) running up to 160 MHz.

3.7. Choice Reaction Time (CRT) Measurement Methodology and Sensor Implementation

Starting from the premise that reaction time to visual stimuli increases with age [45],
especially in terms of chromatic light flashes discrimination [11,46], the Choice Reaction
Time (CRT) methodology in this initiative is based on a visual CRT in a specific paradigm
based on several visual stimuli and two response buttons.
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Figure 8. The T3DSO1302A oscilloscope used in current measurement (a); the current-measurement rig (b).

The methodological principle in this study resembles with the one in the [10], where it
was designed a target letter to be responded by pressing one button, whereas distractor
letters to be responded by pressing the second button.

Thus, the present methodology imposes a trichromatic RGB (red, green, and blue)
light-emitting diode (LED) stimulus with the following procedures: The blue LED color
represents the target, and when the blue stimulus lights up, the elder has to discriminate,
select, and execute the right button (R); the red or green LED colors represent distractors
and when the red or green stimulus lights up, the elder has to discriminate, select, and
execute the left button (L). Physiological data used in this study were real, collected from a
male human subject, aged 35–40 years, without any known medical problems. The study
was deployed in laboratory conditions based on experimental methodologies with respect
to CRT utilization.

Regarding the CRT setup, the subject sits on the chair and manipulates the CRT device
with both hands, supporting the device with the index fingers and pressing the two buttons
with the thumbs. As in [10], stimulus duration and stimulus onset asynchronies (SOA)
are set at 200 ms and 2500 ms, respectively. If the elder presses the correct button for
the respective led (Right for Blue, and Left for Red and Green) the timer stops and the
stimulus-to-response time interval is logged; otherwise, the timer continues running until
stop condition occurs (correct button is pressed or 2500 ms have elapsed since last stimulus
occurrence). The whole experiment lasts 5 min. The measurements are performed as
in-house testing for methodology and sensor verification and validation. The CRT sensor
is comprised from two tactile switches and one 5 mm RGB-LED. The LED segments are CA
(common anode) and the current through them is limited by the 1 kΩ resistors (Figure 9).
The tactile switches put microcontroller’s inputs to ground whenever they are pressed. The
microcontroller’s switch inputs have the weak pull-up enabled.

Figure 9. CRT sensor equivalent electrical schematic.
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The state machine implementing the measurement is described below (Figure 10).

Figure 10. Methodology for the CRT measurements.

Authors performed a SRT test (1 stimuli, 1 button) and found out that running the
test in embedded provided an average of 220 ms with a standard deviation of 70 ms,
whereas the running of this test on the computer indicated 607 ms average and similar
70 ms standard deviation. The conclusion was that the extra time was wasted on the route
from the mouse to the PC, through all the hardware and software stack, into the preemptive
non-real-time OS, and finally into the high-level application.

4. Results
4.1. Control Circuitry and Power-Consumption Investigations

Power-consumption investigation (setup and procedure):
Required hardware: The Arduino MEGA2560 baseboard with a MySignals Hw shield

and ESP8266-based network card, oscilloscope [Figure 11, PC Required software: Arduino
IDE, the embedded application [36], which adds triggering and timing measurements was
uploaded on the ATMEGA MCU. The PC application [47] used to process the acquired data.

Procedure: An oscilloscope was connected to the CH1 as trigger, tied to UART-TX4
line of the ATMEGA chip. CH2 monitors the voltage drop on shunt resistor (see Figure 8b).
The oscilloscope is armed then the application [36] is uploaded into the MCU. The internal
logfile with time measurements is printed in the UART console: Copy this content into a
file1. Save the oscilloscope trace onto a USB stick as Matlab-compatible format file2. Run
the PC application [47] on these files (file1 and file2) and get the stats output (Table 3).
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Figure 11. A sample snapshot from the oscilloscope, triggered on CH1 (CH2 shows the current, that
is, the voltage drops across the R resistor in Figure 8b. The highest icc consumption in this picture
can be computed as: 166 mV/0.925 Ω = 179.45 mA.

Table 3. Total current measurements extracted in several conditions of e-Health system operation.

Scenario minIcc(mA) avgIcc (mA) maxIcc(mA) Time Duration (us)

display with backlight 86 125 164 32
display without backlight 62 120 170 36

drawString 73 121 179 76
display init 73 153 170 6,567,216

In the figure above (Figure 11), triggering is made on CH1, when a byte is sent via
UART3-TX. The current channel (CH2) measures the voltage drop on a low-side resistor of
0.925 Ω. Two logs are extracted and synchronized using a PC C++ application [47]: The
one from the oscilloscope, and the time-log kept in the RAM memory then sent by the
eHealth system via UART at the end of benchmarking, after oscilloscope triggering, just
as below:

• 22:07:48.130→ Init: 0 us to 284 us -> 284 (1 samples);
• 22:07:48.130→ disp.init(): 284 us to 6,567,184 us -> 6,566,900 (1 samples);
• 22:07:48.130→ disp.setBacklight(HIGH): 6,567,184 us to 6,567,216 us -> 32 (1 samples);
• 22:07:48.130→ disp.drawString(ISS app started!): 6,567,216 us to 6,567,292 us -> 76

(1 samples);
• 22:07:48.130→ disp.setBacklight(LOW): 6,567,292 us to 6,567,328 us -> 36 (1 samples).

In Table 3, we have measured the graphic driver in various scenarios (initialization,
switched-on backlight, switched-off backlight, and drawing a string on the display).

Wireless card improvements determination (setup and procedure):

Required hardware: PC, ESP8266 board (e.g., ESP-01 [48]) on a USB-to-UART board
Required software: Arduino IDE, ESP8266 embedded test application [49], node.js PC
web-application [50] (as local cloud), python PC test scripts.
Test procedure (for improved version): Connect the ESP8266 board via USB-to-UART board
to the PC. Enter boot mode. Program the [48] application into the Wi-Fi SoC. Reset. On PC,
start the node.js web-based application [50], this will enable a listening TCP server, which
will log the incoming data packets. Start the test by running the txFastTest.py script; it will
output files similar to txFastResult.txt from [49].
Test procedure (for initial version): Similar to above, but change the Wi-Fi SoC application
to default AT stack, and change the python script to run to txSlowTest.py
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Extracted data returned by python scripts will present data similar to Tables 4 and 5.

Table 4. Improvements made in changing the AT-command stack of the ESP8266 802.11 chipset.

Operation Min Required Time
(ms)

Max Required Time
(ms)

Avg Required Time
(ms)

Old, default
AT-command stack 15,075 18,091 15,100

New stack 7046 10,046 7273

Table 5. Old stack time-spending.

Communication Phase Min (ms) Max (ms) Avg (ms)

CIPSTART 1009 4022 1028
CIPSEND 13,058 13,801 13,065

CIPCLOSE 1005 1008 1006

We compare below (Table 4) the improvements made in changing the AT-command
stack of the ESP8266 802.11 chipset. A speed comparison is made by sending the same
189-bytes data packet to a locally implemented cloud. Statistics were extracted from
3600 packets.

In Table 5, one can see the old stack time-spending; most of the time is wasted
negotiating the data in the HTTP-PUT packets, between the host (AVR) and the wireless
card. Statistics were extracted from 3600 packets.

4.2. Analog Sensor’s Processing and Accuracy

Filtering performance setup and test procedure
Required hardware: PC, Arduino MEGA2560 board
Required software: Arduino IDE, embedded application
Test procedure: Program the ATMEGA2560 microcontroller with the embedded applica-
tion [36] (and enable the filtering tests—see main file). Read log printed in UART console
on the PC.

It is worth mentioning that Signal Filters may be used in different scenarios specific to
each eHealth parameter to be measured taking into account the compromise between filters’
smoothing and/or signal details preservation features. For instance, in order to smooth
noisy eHealth signals as body temperature or oxygen saturation (Figure 11), MAW and
EWMA provide a good response. On the other hand, in order to filter eHealth signals where
velocity and points of local minima and maxima are to be considered (i.e., temperature, or
even betterpulse rate) as shown in Figures 12 and 13 KF provides the expected response.

According to the sampling rate of the signals, the following filters will be tuned with
different parameters in order to achieve the expected filter response. In the following
two images, KF is applied on 1000 frames decimated signal of temperature and 30 frames
decimated signal of oxygen saturation and pulse rate.

Regarding the temperature signal evaluation scenario, the subject is asked to position
the sensor in contact with his skin and after a period of time to remove it. The purpose of
the measurement is to detect the global maximum of the signal.

The authors considered applying KF on 1000 frames decimated signal, MAW on
50 samples window, MF on 500 samples window, and EWMA on 10 samples window.
According to Figure 12, all filtering algorithms behave similarly, noting that KF manifests a
delay in the first stage of the signal, which does not affect the temperature detection.
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Figure 12. Temperature data filtered in original view (a) and detailed view (b).

Figure 13. Pulse rate raw (a) and filtered data (b).

Regarding the pulse rate and oxygen saturation signal evaluation scenario, the subject
is asked to place its finger between the two plates of the pulse oximeter. The device
provides instant results already processed. In this paradigm, it is necessary for the data to
be post-processed taking into account the acquisition errors caused by acquisition digital
noise specific to this range of low-cost biometric devices. In order to gain its performance,
it is desirable to filter and/or analyze regions of the signals acquired and eliminate non-
compliant features (i.e., impulsive noise, salt and pepper noise, etc.).

Given that the pulse oximeter device acquires 2 biometric signals (i.e., pulse rate
and oxygen saturation), the authors considered the raw pulse rate data according to their
acquisition requirements and that the data should not be enhanced by biometric signal
filtering methods. On the other hand, the raw oxygen saturation data are noisy and
biometric signal filtering methods must be applied.

As it can be observed in Figure 13, signal filtering can be bypassed in the case of
Pulse rate filtering because it causes significant loss in signal amplitude despite the smooth-
ing benefits.

Figure 14 shows off the low quality of the Oxygen Saturation sensing and the serious
need of signal filtering. The authors applied KF on 30 samples decimated signal, MAW on
200 samples window, MF on 100 samples window, and EWMA on 100 samples window.
The mean value of the Oxygen saturation vector is 97.6095%, and according to the authors,
it is desirable to extract the long-term characteristic of the signal (i.e., MF100). Otherwise, in
order to extract short-time features of the Oxygen Saturation, the authors may recommend
KF, MAW200, and EWMA100.
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Figure 14. Oxygen Saturation raw (a) and filtered data (b).

Further on, the authors implemented certain processing algorithms by an embedded
controller unit and measured the processing time. Tables 6 and 7 show time measurements
for various window-size of moving average and median filters running on 16 MHz AT-
MEGA2560MCU. The devices (i.e., pulse oximeter is characterized by an acquisition rate
of 0.1 s and a resolution of 1%, whereas the body thermometer may be sampled at up to
15 KSa/s).

Table 6. Time measurements for various window-size of moving average, running on a 16 MHz
ATMEGA 2560 MCU.

Filter Type Window Size
(Samples)

Total Size
(Samples)

Total Measured
Processing Time

@ 16 MHz (in
Microseconds).

Resolution: 4 us

Approx. Window
Processing Time

(in Microseconds)

Moving Average 1 1000 15,232 15.23
2 1000 16,252 16.26
4 1000 18,324 18.39
10 1000 24,504 24.75

100 1000 117,228 130.25
500 1000 541,776 1,083.55
1000 1000 1,044,372 1,044,372.00

Table 7. Time measurements for various window-size of median filter, running on a 16 MHz
ATMEGA 2560 MCU.

Filter Type Window Size
(Samples)

Total Size
(Samples)

Total Measured
Processing Time

@ 16 MHz (in
Microseconds).

Resolution: 4 us

Approx. Window
Processing Time

(in Microseconds)

Median filtering
(O(N2) sorting

was used)
1 1000 3888 3.88

2 1000 7504 7.51
4 1000 18,524 18.59
10 1000 82,124 82.95

100 1000 5,978,944 6643.27
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Column 4 shows the amount of time it takes the MCU to process an entire 1000 samples-
buffer using windows of various sizes, whereas the fifth column shows the amount of time
spent by the MCU to output one post-processed sample (equals to column 4 divided by
number of windows).

Total samples considered (i.e., 1000 samples) are equivalent to about 120 s of acquired
signal from pulse oximeter device (approximately eight samples per second) and 2 s of
acquired signal from body thermometer sensor (approximately 1000 samples per second)
requiring different signal processing approaches. The desired sample buffer for any sensor
should cover up to 10 s (more than that would disturb the elder). The maximum amount of
8-bit samples the MCU can store in its 8 KB RAM memory is around 2000 (reserving some
RAM space for the application static memory and stack). Given the maximum acquisition
data rate for the SPO2, 80 samples are enough to cover 10 s, and for the temperature
sensor—2000 samples will cover 2 s.

Hence, the body thermometer signal may be enhanced using large window-sized
moving average (i.e., 1000 samples) considering the fact that moving average filtering is
10 times faster than median filtering and on the other hand, oxygen saturation signals may
use median filtering as well as moving average filtering. However, the temperature sensor
is recommended to be post-processed with 1000-sized window moving average filtering.

Taking into account the approached described above, the authors consider as mini-
mum hardware requirements 8 kB SRAM (for the application + required memory for the
filters) and a 10-bit A/D converter (for reading analog sensors, keeping only 8 bits for the
25 . . . 50 degrees Celsius range, with 0.1C resolution)

Filtering was implemented as much as possible in-place, to trade-off filtering speed
over utilized RAM.

4.3. Choice Reaction Time (CRT) Measurements and Results

CRT measurement setup and procedure
Required hardware: ATMEGA board with CRT test fixture [Figure 12]
Required software: CRT measurement test application [51]
Procedure: program the embedded app (.ino file in [51]) in the ATMEGA microcontroller
and open the UART console on the PC. Keep track on the R, G, or B led and press as fast as
possible, either the left or right buttons (according to description of Section 3.7). A logfile
is printed in the console, as a 4-column table: Timestamp, correct-pressed, color, reaction
time. Process the data using the xlsx sheet in [51].

For the mouse reaction time, use a PC with mouse, and then run the Python mouse.py
application in [51]

The CRT measurement was performed by generating pseudo-randomly stimuli events
(swiching-on LED R xor G xor B for the RGB LED). The setup was described in Section 3.7.

The proportion of occurrence of these events were measured over two experiments of
5 min and are as shown below in Table 8:

Table 8. Probability of Choice Reaction Time (CRT) stimulus occurrence.

Color Probability of Occurrence (%)

Red 32.22
Green 34.73
Blue 33.05

The average CRT time for R and G colors is in range of 360–380 ms whereas the Blue
is 466 (as seen in Figure 15). This might be due to the expectance that 66% of the time, the
left button should be pressed, and only 33% of the time the right one.
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Figure 15. Average CRT and standard deviation (sigma) as function of color. Blue is target color, Red
and Green are distractions.

Two 5-min runs were made, and the results are plotted in the Figure 16. If the
button was not pressed correctly the first time, then that measurement was not taken into
consideration for statistics.

Figure 16. CRT (ms) for each color as function of iteration.

Across all colors, the number of wrong presses was around 10%, with an average CRT
time of 416 ms in the first run, and 16% with 385 ms average CRT, in the second run.

5. Conclusions

The proposed eHealth SoI smart solutions for ageing well is an incorporated solution
oriented to support elders, suffering by/being at risk of age related NCDs and/or MCIs,
in staying in their familiar surroundings for as long as possible, while still be safe and
optimally cared for by the stakeholders (volunteers, family members and professional
caregivers).

The proposed system offers the possibility to incorporate other biometric sensors, such
as blood sugar and pressure, body positioning, etc., though not tested in the current study,
except for the pulse rate, oxygen saturation and temperature together with a cognitive
assessment sensor in terms of elders’ choice reaction time measurements.

The work was structured based on Systems Engineering Methodology, making use
of commercial MySignals Hardware (HW) Development Platform—eHealth and Medical
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IoT Development Platform for Arduino. The elder’s biometric parameters are acquired
via wearable sensors and transmitted to the envisaged stakeholder through a short- and
long-range communication protocols (Wi-Fi and Bluetooth4) by using embedded C++ and
web applications.

From a software point of view, the MySignals HW shield implementation was sub-
optimal, the authors spent some effort to generate documentation and reverse-engineer
(for porting to another, more capable, baseboard) and assemble everything into a working
product. High-level drivers had to be written on top of original low-level drivers:

• issDisplay: Provides font selection, font orientation, backlight on/off.
• issBitmap [52]: Provides picture storage in 2 bpp and retrieval, with speed-optimized

drawing capabilities, which speculate pixel-after-pixel datastream towards the SPI
connected display.

• issWi-Fi with its counterpart in 8266-modified driver, replaced the slow stock driver
(at least 2 times improvement).

• issBLE: An improved BT-BLE device manager, which accelerates data access by at
least 3 times.

• issBodyPosition/issTemperature/issSPO2/issBloodPressure/issBodyScale: OOP-
approach as derived classes from issModule (proper class hierarchy).

In addition, the authors developed a test-framework (issMeasurements), which can
be easily ported on any embedded platform, to be able to track hotspots and current
consumption, and provided in the digital report all software required to do so.

With regards to PCB-production halt, the authors started a design and implementation
of a PCB capable to at least replace the original MySignals HW shield.

As required in the co-design sessions with stakeholders, the herein eHealth system
presented a mechanical case concept developed from scratch, electronic adaptations, and
software implementations for a system based on composite commercial platforms (MySig-
nals, Arduino) highlighting specific filtering/processing biometric signals, lowering range
transmission rate and power consumption. Another point to be mentioned is the reason
authors considered implementing CRT tests in embedded way, being that most studies they
found were using a mouse connected to a computer with OS—and that could potentially
add a large delay that might not even be deterministic. A cognitive assessment sensor via
CRT has been added in order for the proposed eHealth system to provide specific NCD
and cognitive separate and interconnected views via non-obtrusive biometric assessment
means, with the potential to consolidate the future literature by exploiting the correlations
between physiological and cognitive data and generating predictive analysis into the realm
of eldercare. As planned in the SAVE AAL Project, when the physical access to elders will
be available in the context of COVID-19 pandemics, the system demonstration of the pilots
from Romania, Italy, and Hungary will gather the needed data to update and consolidate
the relationships between NCDs and MCIs, with paramount potential in contributing to
the relevant literature by using the proposed eHealth Internet-connected embedded system
defined and implemented on elders’ needs as elicited during COVID-19 pandemics.
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