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Abstract: This study provides an evaluation of multiple sensors by examining their precision and
ability to capture topographic complexity. Five different small unmanned aerial systems (sUAS) were
evaluated, each with a different camera, Global Navigation Satellite System (GNSS), and Inertial
Measurement Unit (IMU). A lidar was also used on the largest sUAS and as a mobile scanning
system. The quality of each of the seven platforms were compared to actual surface measurements
gathered with real-time kinematic (RTK)-GNSS and terrestrial laser scanning. Rigorous field and
photogrammetric assessment workflows were designed around a combination of structure-from-
motion to align images, Monte Carlo simulations to calculate spatially variable error, object-based
image analysis to create objects, and MC32-PM algorithm to calculate vertical differences between
two dense point clouds. The precision of the sensors ranged 0.115 m (minimum of 0.11 m for MaRS
with Sony A7iii camera and maximum of 0.225 m for Mavic2 Pro). In a heterogenous test location
with varying slope and high terrain roughness, only three of the seven mobile platforms performed
well (MaRS, Inspire 2, and Phantom 4 Pro). All mobile sensors performed better for the homogenous
test location, but the sUAS lidar and mobile lidar contained the most noise. The findings presented
herein provide insights into cost–benefit of purchasing various sUAS and sensors and their ability to
capture high-definition topography.

Keywords: structure-from-motion; terrestrial laser scanning; lidar; OBIA; UAS; precision

1. Introduction

The ability to capture repeat, high-definition topography has rapidly evolved to allow
users to quickly amass data at a variety of spatial and temporal scales [1,2]. Knowledge
of short-term changes within a host of earth surface systems have been significantly
advanced with the aid of high-definition topographic data [3–5], and these data provide
further opportunities to examine human impacts on topography [6]. However, studies
quantitatively assessing multiple widely available and newly evolving topographic data
capturing approaches has been missing in the peer-reviewed literature. This is not to say
examples do not exist [7–10]. However, these examples do not provide an evaluation of
the wide range of sensors available at a single site in a manner that examines the precision
of the sensors and the ability of the sensors to capture topographic complexity. Here, five
different small unmanned aerial systems (sUAS) from Da-Jiang Innovations (DJI) each with
a different camera were employed to fill-in this knowledge gap. A lidar (Sick LD-MRS
for sUAS) was used on the largest sUAS. All sensors captured topography along a local
engineered stream. The same airborne lidar affixed to the largest sUAS was also carried by
hand on the ground to simulate a mobile scanning system mounted on a vehicle moving
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through the landscape. Traditionally, real-time kinematic global navigation satellite systems
(RTK-GNSSs) surveying and terrestrial laser scanning (TLS) data were also collected in
conjunction with the mobile sensing systems to examine spatial quality and representation
of a surface [11,12]. RTK-GNSS and TLS datasets in the current research represent control
data to examine the precision of the various mobile sensing platforms and their ability
to capture the morphometry and topographic complexity in our field site. The findings
presented herein provide insights into cost–benefit of purchasing various sUAS and sensors,
precision of the sensors across a gradient of complex terrain, and their ability to capture
high-definition topography, which is a fundamental boundary condition in numerical and
physical modeling experiments [13] as well as change detection [13,14].

Much of the recent work examining the capability of sUAS sensors to capture complex
topography has focused on validating these platforms against RTK-GNSS and total station
surveying techniques as well as airborne laser scanning (ALS) and TLS [7–9,15]. RTK-GNSS,
ALS, and TLS have often been used as reference data to compare sUAS sensors because
they represent direct measurements of the topography [16] or greater accuracy in their
measurements, particularly in the case of RTK-GNSS, total stations, and TLS surveying
campaigns [17–19]. While a majority of the literature has shown good comparison of results
with traditional surveying techniques, sUAS sensors were found to produce the higher
quality and spatially more continuous topographic data than the ALS data when compared
to RTK-GNSS data [15].

In general, there is a good agreeance between topographic data captured with TLS
and sUAS sensors, but the literature does highlight some inconsistencies in topographic
data captured with both TLS and sUAS sensors when compared with RTK-GNSS data [16].
This is particularly the case in settings with complex, heterogeneous terrain [7,8]. Some
studies found TLS performed better in less complex topography and in areas with limited
or no vegetation, but both TLS and sUAS sensors had difficulty in very densely vegetated
settings [8]. sUAS sensors and TLS have also been noted to have higher discrepancies in
sharp topographic transitions when compared with RTK-GNSS data [7].

These noted differences can be associated with a variety of user and instrumental
errors. The experience of the authors suggests some of the differences may reflect field
protocols/methods associated with the surveying campaigns [20]. In particular, the number,
orientation, and location of positions used when sampling the topography with the TLS can
reduce occlusions in the associated point cloud data [20] or the image geometry networks
of the sUAS data capture [21].

Another important aspect noted with regard to quality of the TLS and sUAS sensor
topographic data production is georeferencing [17]. Georeferencing accounted for up to
50% of the differences between the two data collection approaches, but site topographic
disparities did not yield any significant differences [17]. Several studies have identified
that remaining portions of the error not associated with georeferencing is often captured
in multiple factors: flight paths, sensor location, and sensor parameters (i.e., camera
calibration, image overlap, number of images, image geometry), geometry and number of
GCPs, accurate measurement of GCPs, texture, lighting, weather conditions at the survey
site, and image matching performance [8,17,20,22]. Another component adding to the
differences in the sUAS and TLS might be the height the sUAS data are collected [9], as
it has been shown that lower altitude flights (25–50 m AGL) are more accurate in the
horizontal dimensions, but as a results of “doming” issues may have lower accuracy in
the vertical dimension when compared with higher altitude flights (120–350 m AGL). The
effect of flight patterns and heights should also be considered before flight planning to
reduce systematic error in the image network e.g., [9].

Here, we expand on this existing literature and investigate multiple sUAS platforms
and sensors using proven uncertainty measures [23–25], novel object-oriented image analy-
ses techniques, and more traditional approaches to geomorphometric analyses. The goal is
to assess which of the five sUAS platform performs best in complex terrain when compared
against RTK-GNSS and TLS. The importance of this study is several fold: (1) to bring to
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bear multiple sUAS systems at one site at one time to assess performance of the various
sensors for capturing accurate complex topographic data, (2) to inform future research in
complex topography about the potential shortcomings in capturing accurate topography
that is critical to many studies interested in environmental change detection, and (3) inform
scientists from a variety of fields on what to expect from the various sensors that will aid
in future planning and budgeting of research where topography is a critical underlying
boundary condition to the study.

2. Materials and Methods
2.1. Study Area

The study area is a channelized stream located at approximately 35◦36′45.63” N and
77◦22′08.46” W in eastern North Carolina’s Coastal Plain physiographic region (Figure 1).
The channelized stream redirects a natural stream in an artificially modified stream bed,
which flows to the Tar River to help control flooding. Channelization deepened the stream
channel, which increases the stream gradient. Reengineering included placing boulders
and rocks along the channel in attempt to reduce future erosion. A freshly mowed lawn
covers most of the upper slopes of channel. Elevations range 3.5–16.6 m above North
American Vertical Datum of 1988 (NAVD 88) using Geoid 12 B. Slopes range from 0 to 89◦,
while terrain roughness (standard deviation of the slope) ranges from 0 to 10.
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Figure 1. The study area of a channelized stream located in eastern North Carolina, USA.

2.2. Field Data Collection
2.2.1. RTK-GNSS Survey

RTK-GNSS measurements were used in this study to obtain the coordinates of ground
control points (GCPs) to increase the absolute and relative accuracy of the reconstructed 3D
point clouds. Prior to establishing GCPs, we created a benchmark using the Trimble Spectra
Precision SP80 system with a reported high-precision static post-processed precision of
3 mm in the horizontal and 3.5 mm in the vertical (root mean square error (RMSE)) [26].
The +240 channels dual frequency SP80 receiver was used with full utilization of signals
from all 6 GNSSs (GPS, GLONASS, BeiDou, Galileo, QZSS, and SBAS) while collecting data
at 1-s intervals continuously for 8 h. The receiver’s raw file was then automatically adjusted
with the National Oceanic Atmospheric Administration’s (NOAA) Online Positioning User
Service (OPUS) solution using Trimble Business Center v5.10 with an overall benchmark
RMSE of 0.015 m (Table 1).
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Table 1. Online Positioning User Service (OPUS) solution for the benchmark established in this study.

NAD83 2011 (EPOCH: 2010) RMSE State Plane Coordinates: SPC (3200 NC)

N 35◦36’49.946” 0.002 (m) Northing: 207,975.377 (m)
W 77◦22’7.720” 0.006 (m) Easting: 757,366.267 (m)

Ellipsoid height: −25.404 (m) 0.013 (m)
Orthometric height:10.471 (m)
[NAVD88 using GEOID 12B] 0.028 (m)

Overall 0.015 (m)

A total of 19 GCPs were collected and consisted of fixed targets with a 0.9 m diameter
high visibility black and orange right angle pattern with large numbers printed on rugged
polyester. Each target’s perimeter was weighted with a 1.45 kg galvanized steel cable, and
the center included a surveyor staff brass grommet for pinpoint accuracy in RTK-GNSS
measures. The GCPs were distributed randomly by placing targets at breaks-in-slope to
obtain measures that represent the complexity of the topography. Each target’s center was
secured with survey nails driven flush to the ground. Three SP80 receivers were used in the
survey, wherein one was set-up as a base station over the established benchmark. The other
two SP80 receivers were used as rovers and placed over the center of each GCP at 180 fixed
epochs using 1-s intervals averaged in RTK mode. During the survey, an additional 6 TLS
targets were collected to register the TLS point cloud. The maximum standard deviation
for all RTK-GNSS measures combined revealed 0.023 m in the horizontal (base overall error
of 0.015 m + 0.008 m) and 0.028 m in the vertical (base overall error of 0.015 m + 0.013 m).

2.2.2. TLS Survey

TLS data were used as the reference point cloud to compute distances between each
of the 5 sUAS point clouds, the lidar affixed to the largest sUAS (unmanned lidar system
or ULS), and mobile lidar system (MLS) point clouds. TLS data were collected using a
Leica ScanStation P40 with a reported 3D position precision of 3 mm (1 standard deviation)
at 50 m [27]. Twenty-one scan stations were set-up latterly across the channelized stream
no more than 15 m apart to ensure suitable overlap. Registration and georeferencing was
performed in Leica Cyclone (v. 9.x) using six 0.1524 m solid SECO sphere targets. The
21-point clouds were transformed using RTK-GNSS locations (precision of 0.023 m in the
horizontal and 0.028 m in the vertical) associated with the center of each target. The regis-
tration or mean target distance error was 0.002 m. Thus, the overall error does not exceed
0.025 m in the horizontal (0.023 m + 0.002 m) and 0.03 m in the vertical (0.028 m + 0.002 m).
Automatic classification of the points was performed in Agisoft Metashape Pro (v.1.6.2),
where the algorithm misclassified some points as omission errors, and thus these points
were manually classified back into the ground class. We note that the surface does not
represent a true “bare earth” point cloud, as much of the surface was covered with freshly
mowed grass.

2.2.3. ULS and MLS-Based Surveys

A sensor packaged based on a compact lidar was reconfigured for this study in 2
setups: a hand-held ground mobile system, and a sUAS. The package includes: (1) SICK
rugged multi-layer scanner (LD-MRS) Unmanned Aerial Vehicle (UAV) Lidar [28], (2)
intelligent industrial cameras (IDS) Universal Serial Bus (USB) cameras, and (3) a NovAtel
GNSS satellite receiver with a GNSS-inertial integrated Synchronous Position, Attitude
and Navigation (SPAN) A1 navigator [29]. The receiver includes an ADIS16488 Inertial
Measurement Unit (IMU) made by Analog Devices. The angular preciseness is reported
as 0.012◦ for roll, 0.012◦ for pitch, and 0.074◦ for heading (one standard deviation) after
post-processing [29]. In addition, a GoPro camera was used to record live videos during the
process. The sensor package hardware remains the same in both setups. In the handheld
mode, the sensor package is orientated such that the lidar is pointing forward, and a GNSS
antenna is installed on an extension arm to point up. In the sUAS mode, the sensor package
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is attached rigidly to the sUAS body frame with a carbon fiber sensor mount. The antenna
is installed on the top of the sUAS (DJI Matrice 600 Pro).

The SICK Lidar scans at 4 elevation angles simultaneously [28]. The field of view is
approximately 110◦ horizontal and 3.2◦ vertical (evenly divided into 4 layers). The aperture
size is approximately ±0.4◦ vertical and ±0.04◦ horizontal. The horizontal scans are 0.125◦

apart. The default scan rate is 12.5 Hz. A complete scan is associated with a single pose.
It takes approximately 10 ms to complete 1 scan, and we are synchronizing to the middle
of the scan. The discrepancy in timing is up to ±5 ms and ±2.5 ms on average for each
point and is considered part of the error sources. The specification of this lidar includes a
conservative estimation of ranging accuracy, with noise σR ∼ 0.1 m (quantization step
0.04 m) and systematic error bR ∼ 0.3 m. The systematic error could be calibrated in
advance of the survey flight.

The sensors in this package are tightly integrated and precisely synchronized with
each other. The lidar directly sends a hardware timing trigger signal to the GNSS re-
ceiver/navigator, and the IDS camera receives a timing trigger signal from it. The trigger
signals can help establish synchronization at the millisecond level. Furthermore, to achieve
higher accuracy in position and orientation measurements, we did not use the real-time
solutions from the GNSS receiver/navigator to produce the point cloud. Instead, post-
processed differential GPS/RTK-GNSS solution with respect to a nearby reference GNSS
station in Greenville, NC, was used for positioning. Similarly, post-processed, tightly cou-
pled RTK-GNSS-IMU integration solution was employed. Both were calculated through
the NovAtel Waypoint and Inertial Explore software suite. The Inertial Explore software
also provided us with post-processed kinematic positioning solution (the same as the
NovAtel Waypoint software). The post-processed orientation and positioning accuracy
was expected to be better than the real-time solution from the SPAN receiver. Since the
post-processed orientation and positioning solution was sufficiently accurate, we did not
need to provide any additional corrections to the point cloud. However, we did include
laser calibration targets placed at surveyed locations in the raw 3D point cloud presented
in this work. We used the 3D point cloud observed on these targets to validate the accuracy
and precision of the over-all point cloud (±0.08 m, one standard deviation).

2.2.4. sUAS-Based Surveys

Two professional and three consumer-grade sUAS were evaluated for capturing
topographic complexity (Figure 2). The first professional sUAS is a DJI Matrice 600 Pro
mounted with the DJI Ronin-MX gimbal caring a Sony a7iii camera, which is referred to
in this study as MaRS. The second is a DJI Inspire 2 carrying a Zenmuse X4S camera. The
three consumer-grade sUAS include a DJI Phantom 4 Pro, DJI Mavic 2 Pro, and DJI Mavic
Air Mini. The specifications of each platform and their respective camera are shown in
Table 2.

Table 2. Specifications of the five small unmanned aerial systems (sUAS) and their respective sensor used in this study.

Aircraft Wind Resistance Flight Time Sensor Lens Aperture Shutter Speed ISO Range Resolution

MaRS 18 mph 20 min BSI CMOS 28 mm f/2–f/22 Global: 1/8000–30 s 100–51,200 24 MP
Inspire 2 22 mph 27 min 1” CMOS 24 mm f/2.8–f/11 Global: 1/2000–8 s 100–12,800 20 MP

Phantom 4 Pro 22 mph 30 min 1” CMOS 24 mm f/2.8–f/11 Global: 1/2000–8 s 100–6400 20 MP
Mavic 2 Pro 18–24 mph 31 min 1” CMOS 28 mm f/2.8–f/11 Rolling: 1/8000–8 s 100–12,800 20 MP

Mavic Air Mini 18 mph 30 min 1/2.3” CMOS 24 mm f/2.8 Rolling: 1/8000–4 s 100–3200 12 MP
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10 October 2020).

Atmospheric conditions can impact the quality of the images as well as flight safety.
Prior to and during flight operations, the notices to airmen (NOTAMs; identifies where a
pilot can fly) information was obtained in addition to aviation weather report (METAR) and
terminal aerodrome forecast (TAF) from the National Weather Service Aviation Weather
Center at www.aviationweather.gov. All flights were conducted by Federal Aviation
Administration Part 107 certified remote pilots on 27 November 2019 with southwest
winds of 5.4–7.2 m/s, visibility > 9.66 km, sky cover broken at 1800 m above ground level,
and temperatures between 17.2 and 22.2 ◦C. Since multiple flights were conducted in 1 day,
a uniformly cloudy day was preferred in an attempt to decrease shadows, which would
reduce the quality of the 3D reconstruction.

DJI Ground Station GS Pro (v.2.0) was used to plan all flight missions because of
its compatibility with each aircraft and pilot control over several flight parameters. Our
goal was to set all flight parameters equal for comparison purposes; however, this was
not practical due to unique camera and aircraft features (see Table 3 for detailed flight

https://www.dji.com/
www.aviationweather.gov
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parameters used in this study). For example, due to the unique configuration of MaRS
(e.g., aircraft’s size and weight), the flight planning software restricts the aircraft to hover
and capture at a point. This makes the velocity different from equal distance interval;
therefore, any photos with blur will be quantified and eliminated in this study before image
processing for fair comparison. Two flights were carried out by each of the 5 aircraft (a
total of 10 flights). The Shooting angle of perpendicular to main path was chosen, meaning
the sUAS faced the same direction perpendicular to the main flight lines. The main flight
lines were chosen using a single parallel pattern (zig-zag scheme) flown at 30◦ and then
120◦. These 2 course angles will then be combined into a crosshatch pattern. We also chose
a −70-degree gimbal pitch angle because when combined with a double hatch pattern
in the flight planning missions, image geometry will be increased, which has shown to
reduce systematic error. All cameras were set to auto for shutter speed and image sensor
sensitivity (ISO), and focus was set to infinity.
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Table 3. Parameters for each flight using DJI GS Pro 3-Map area mission.

Parameter MaRS Inspire 2 Phantom 4 Pro Mavic 2 Pro Mavic Air

Shooting angle Perpendicular to path Perpendicular to path Perpendicular to path Perpendicular to path Perpendicular to path
Capture mode Hover and capture at a point Equal distance interval Hover and capture at a point Equal distance interval Equal distance interval

Capture interval N/A 2.0 s N/A 2.0 s 2.0 s
Flight course mode Inside mode Inside mode Inside mode Scan mode Scan mode

Speed 3.5 m/s 12.4 m/s 3.5 m/s 2.8 m/s 3 m/s
Altitude (m) 23 23 23 23 23

Front overlap 80% 80% 80% 80% 80%
Side overlap 80% 80% 80% 80% 80%
Course angle 30◦ and 120◦ 30◦ and 120◦ 30◦ and 120◦ 30◦ and 120◦ 30◦ and 120◦

margin 0 0 0 0 0
Gimbal pitch angle −70◦ −70◦ −70◦ −70◦ −70◦

Waypoints qty 167 38 35 52 56
Flight length (m) 909 m 953 787 m 1515 m 1693

Cover area 0.30 ha 0.54 ha 0.30 ha 0.56 ha 0.56 ha
GSD 0.5 cm/px 0.6 cm/px 0.6 cm/px 0.7 cm/px 0.9 cm/pix
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2.3. Data Processing and Analysis

A workflow was created in this study by combining the methods of several proven
data processing and analysis techniques into one. Once the images and GCPs were collected
in the field, structure-from-motion (SfM) techniques were used in the workflow to align
the images by identifying and matching common features on overlapping images into tie
points (Figure 3). A quality control assessment was performed on the image network by
checking for errors in the potential mismatching of tie points [23]. Different camera model
parameters were then tested to evaluate their performance [23]. Monte Carlo simulations
were generated to randomly select different GCPs as control so that the xyz error of each
georeferenced image network could be assessed [23,24]. The refined image network was
then used in the following 2 ways. First, to generate dense clouds that were classified
as ground points so that a Digital Elevation Model (DEM) and orthomosaic could be
created to generate image objects. Second, a Monte Carlo approach was used once again,
but this time to simulate photogrammetric and georeferencing precision estimates that
were incorporated into the M3C2-PM algorithm to detect any significant changes between
two-point clouds [24,25,30]. Finally, the mean of the vertical differences between two-point
clouds were assigned to an object when more than 1 point fell within that object. The results
were object-based vertical difference maps that detect any changes that are statistically
significant at the 95% confidence level.
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Section 2.2).

2.3.1. sUAS Image Alignment

After acquiring overlapping images of the terrain from different flight pattern angles,
we used the automatic image quality feature in Agisoft Metashape Pro (v.1.6.2) to exclude
any poorly focused images, which can have an adverse effect on the image alignment.
While Agisoft Metashape Pro recommends disabling images with a quality value of less
than 0.5 units, we chose a more conservative value by removing any images with a quality
value less than 0.8 units (note: no more than 4 images were removed from each network,
meaning the great majority of all images captured were well focused). SfM was then used
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to reconstruct 3D geometry by identifying and matching common features on overlapping
images into tie points. Images were aligned using Agisoft Metashape Pro by executing
the “align images” function with the following parameters: “high” accuracy, generic pre-
selection, and 50,000 key points (the maximum number of features) and 5000 tie points (the
maximum number of matching common features). A bundle adjustment was then carried
out using camera parameters of focal length (f ), principal point (cx, cy), and radial distortion
(k1, k2, k3). This least-squares global optimization approach reduces image residuals by
adjusting camera parameters, camera orientations, and the 3D point positions [23,31]. The
output from this procedure results in a more reliable aligned image network based on
the estimated camera positions from the imagery alone and a resulting sparse cloud. A
quality control assessment was then performed on this initial network by checking for
errors associated with the potential mismatching of tie points or images that may need
removal (R v.4.0.2 was used to visualize the results). Image networks with the lowest
camera reprojection errors were attained, which is the image RMSE in pixels or square root
of the averaged squared distances between the projected reconstructed valid tie points and
their corresponding original projections detected on the photos. Once an image network
was checked for errors due to the potential mismatching of tie points or images, the GCPs
were slowly added into the network.

GCPs were identified as markers on the images and added to the network by first
performing a “free” bundle adjustment where no GCPs are set as control [23]. This allowed
for the quality of the GCP image observations to be captured in pixels before linking the
GCP ground coordinates to the network. Georeferencing to an established coordinate sys-
tem was then achieved by matching the identified GCPs with their 3D ground coordinates
accompanied by another bundle adjustment using all GCPs as control points. Networks
with the lowest marker RMSE of the distances between the estimated positions of each
marker and the corresponding independent source of higher accuracy (GCP 3D coordinate)
were obtained and the results were visualized using R. A total of 5 image networks were
produced and ready to be tested with different camera models for the best results.

2.3.2. sUAS Camera Model Optimization

Two different camera model parameter sets were assessed for each of the 5 networks
by evaluating their performance on the basis of which provided the smallest RMSE (to-
tals to 10 evaluations because there were 5 networks each tested with 2 camera models
(5 networks × 2 camera models = 10)). Camera model parameter sets tested in this study
were models B and C, as shown in Table 4. These models were found to be conservative
when compared to other model parameter sets tested in another study [23]. A conservative
model was preferred because it improves the overall network performance by decreasing
the RMSE on both check and quality control points. Therefore, we split the GCPs, wherein
half was designated as control and the other half was designated as quality. Following the
novel study by [23], we adopted their Monte Carlo approach used in Agisoft Metashape Pro
along with the sfm_georef v.3.0 software by [25] to estimate error using 50 different random
selections of GCPs as control. Since the principle of Monte Carlo simulation follows the
law of large numbers theorem by averaging the results over many trial runs, it provides a
more reliable result of the expected error. The results supported the use of camera Model B
for all networks except one, the Mavic Air Mini. With the camera models fixed, another
bundle adjustment was carried out using all GCPs as control to capture the final parameter
values used to assess the overall quality of each network or GCP error (Table 5).

Table 4. Camera models and their parameters tested in this study.

Camera Model Parameters Included

Model B focal length (f ), principal point (cx, cy), radial distortion
(k1, k2, k3)

Model C focal length (f ), principal point (cx, cy), radial distortion
(k1, k2, k3), tangential distortion (p1, p2)
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Table 5. Errors and camera models used when accessing ground control point (GCP) error and
generating precision estimates.

Aircraft
Image Coordinates (pix)

GCP Ground RMSE (m) Camera Model
Reprojection RMSE GCP Image RMSE

MaRS 0.50 0.33 0.03 B
Inspire 2 0.79 0.30 0.03 B

Phantom 4 Pro 0.75 0.34 0.03 B
Mavic 2 Pro 0.82 1.49 0.03 B

Mavic Air Mini 1.95 0.45 0.03 C

2.3.3. sUAS GCP Error Assessment

The image alignment and camera model optimization steps above were repeated,
but this time the errors and camera model for each aircraft were included in the bundle
adjustment, as shown in Table 5. Again, we followed [23] using their Monte Carlo approach
in Agisoft Metashape Pro to calculate the control and quality GCP RMSE using 50 different
random selections of GCPs as control. The quality of each survey was then visualized in R.

2.3.4. sUAS Dense Point Cloud Generation

With high-quality networks generated from each SfM-based survey, we generated a
dense point cloud for each and classified as ground points. In this process, all GCPs were
marked as control and the errors and camera model for each aircraft were included in the
bundle adjustment. Dense point clouds were generated using the settings of “high” quality
and “aggressive” depth filtering. Next, the automatic classification procedure in Agisoft
Metashape Pro was used, which first divides the dense point cloud into cells where the
lowest point of each cell is triangulated into a terrain model. A candidate point is classified
as ground if it is within a certain distance of an angle between the terrain model and a
classified ground point. We tested different parameters on the basis of trial and error for
cell size, max distance (distance between candidate ground point and terrain model), and
max angle (angle between the terrain model and line that connects a classified ground
point with a candidate ground point). A visual inspection of the automatic classification of
ground points indicated another round of filtering was needed, which was accomplished
through manual classification, followed by another visual inspection of the results. Results
were 3D point clouds of classified ground returns ready to have their xyz spatially variable
precision estimates added.

2.3.5. sUAS Spatially Variable 3D Precision Estimates

We implement the novel Monte Carlo approach by [24] to derive 3D precision (1 standard
deviation) maps containing the variation of both photogrammetric and georeferencing un-
certainties. The Python script associated with [24] was edited for use in Agisoft Metashape
Pro (v.1.6.2) for this study. In the automated analysis, image networks were created without
error before random variables were sampled proportional to normal distributions using
the RMSE of the original image residuals (it is assumed that the RMSE is equivalent to
1 standard deviation). The random errors were then added to the observations and control
measurements followed by a bundle adjustment. The sampling procedure was repeated
a total of 500 cases for each image network (5 image networks × 500 cases = 2500). The
sfm_georef software [25] was then used to compile the Monte Carlo outputs into xyz
precision estimates for each spare tie point. CloudCompare v.2.11 (cloudcompare.org)
was then used to interpolate the xyz point precisions onto their individual grids using
the 6 nearest neighbors and median to ensure all dense points had a precision value. The
results were a total of 5 dense clouds with associated 3D precision estimates suitable for
measuring any significant change from the TLS dense cloud.

2.3.6. Vertical Difference Estimations Using M3C2-PM and M3C2

The SfM-based dense clouds were initially compared with the TLS dense cloud. The
M3C2 algorithm [30] was used in CloudCompare to calculate distances between them
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because each dense cloud contains a uniquely defined structure. The M3C2 algorithm
works by estimating and orienting surface normals at a scale of the local surface roughness
before measuring the mean surface change along the normal direction [30]. The main
parameters to adjust are core points (a sub-sampled version of the TLS dense cloud),
normal scale (the diameter of a local neighborhood around each TLS core point used to
compute a normal), projection scale (the diameter of the cylinder used to define the two
sub-clouds to compute distance along the normal direction), and max depth (the cylinder
height). In this study, the core points were subsampled to a value of 0.10, the normals were
set to multiscale so that the scale where the cloud was most planar was selected (0.25–5 with
increments of 0.25), and the max depth was set to 2. The initial 3D differences calculated by
the M3C2 algorithm along with the 3D precision maps were then input into the M3C2-PM
algorithm [23] to process confidence bounds and significant changes in the SfM dense
clouds. For the ULS and MLS datasets, significant changes were calculated using in the
M3C2 algorithm using the same parameters as above (core points = 0.10, normals = 0.25–5
with increments of 0.25, and max depth = 2). The results were a total of 7 dense clouds
with their respective statistically significant vertical differences from the TLS surface.

2.3.7. Object-Based Image Analysis (OBIA) Vertical Difference Mapping

The vertical differences between 2 point clouds can be structured as a grid with a
regular shape and size or objects with varying shapes and sizes. Object-based image
analysis (OBIA) offers the opportunity to match the differences between 2 point clouds
to relatively homogenous objects rather than a grid cell in which the topography might
be heterogenous in structure. OBIA has been used to classify topography from SRTM
DEMs [32], detect landslides from airborne Lidar DEMs [33], classify undersea topography
using SRTM30_PLUS DEMs [34], classify TLS point clouds [35], detect change for landslide
monitoring [36], and correct airborne lidar point clouds to generate object-based DEMs [37].
While the application of OBIA in sUAS SfM-derived DEMs has gained attention [38,39], an
object-based approach to detecting change in SfM-based dense clouds is missing. In this
study, OBIA is used to map the vertical differences between SfM-based dense clouds and
TLS, ULS and TLS, and MLS and TLS. We expect that an object is more representative of a
topographic feature than an individual grid cell that is within that region.

OBIA was performed using the TLS point cloud and sUAS imagery that had the
highest quality, which was the MaRS imagery (>0.92 units). After completing the sUAS-
SfM data processing workflow in earlier steps, we created a 6 mm horizontal resolution
orthomosaic from the MaRS imagery in Agisoft Metashape Pro. We then generated objects
using the multiresolution segmentation algorithm in eCognition Developer 9.5.1 [40].
The algorithm first segments individual pixels of an image before merging neighboring
segments together until a heterogeneity threshold is reached [40]. The heterogeneity
threshold is determined by the following parameters: scale (defines the maximum standard
deviation of the homogeneity criteria based on the weighted layers), color (digital value of a
pixel), shape (defines the textural homogeneity of the image objects by totaling smoothness
and compactness), smoothness (optimizes objects by how similar their boarders are to a
square), and compactness (optimizes objects by how similar pixels clustered in an object are
to a circle). The scale determines the size of objects where a smaller scale value produces
smaller homogeneous objects, and a larger scale value produces larger heterogenous
objects. To help identify an optimal scale for defining topographic features, we tested
4 segmentations using scale parameters ranging from 25 to 100 at an interval of 25. Two
pairs of criteria were weighted to a value of 1 to define the relative homogeneity for the
image objects. The first criterion color/shape was set to 0.8/0.2 for all layers so that
spectral information was weighted most heavily for segmentation. The second criterion
smoothness/compactness was set to 0.5/0.5 for all layers so that compact and non-compact
segments were favored equally. After segmentation, the statistically significant point
cloud outputs from the M3C2-PM and M3C2 procedures were then averaged for each
object when more than 1 point falls within an object using ArcGIS Pro version 2.2 (http:

http://www.esri.com/
http://www.esri.com/
http://www.esri.com/
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//www.esri.com/) (10 October 2020) Data Management tools. The results were object-
based vertical differences significant at the 95% confidence level maps, 1 for each of the
7 datasets tested in this study.

3. Results
3.1. Image Network Quality Control Assessment

An initial visual examination of each aircraft’s sparse cloud of photogrammetric tie
points did not permit a useful means of determining outliers in the estimated positions.
Therefore, the RMSE between the projected reconstructed tie points and their correspond-
ing original projections detected on the photos were calculated for each photo in each
aircraft’s network (Figure 4a,d,g,j,m) following the work of [26]. The image networks for
MaRS and Mavic Air did not show any photos with anomalously high image residuals
(Figure 4a,m), and thus no photos were removed from these networks. However, the
Inspire 2 (four photos), Phantom 4 Pro (one photo), and Mavic 2 Pro (three photos) had
photos with anonymously high RMSE magnitudes, and thus these photos were removed
from further processing of each of these networks (Figure 4d,g,j). We chose to remove no
more than 30% of all tie points spread throughout each of the five image networks. This
resulted in a threshold of >0.5 pixels for all image networks with one exception, all tie
points that had image residuals >1.5 pixels were removed from the Mavic Air network due
to the large range of RMSE values (Figure 4m). The removal of some of these tie points
reduced the overall image RMSE from 0.51 to 0.50 pixels for MaRS, 0.85 to 0.79 pixels for
Inspire, 0.78 to 0.75 pixels for Phantom 4 Pro, 0.97 to 0.82 pixels for Mavic 2 Pro, and 2.03 to
1.95 pixels for Mavic Air.

The overall image RMSE was then set for tie point “accuracy” (this is really the error),
and the GCP field precision was set for marker “accuracy” before including all 19 GCPs
as control in each bundle adjustment. The resulting overall errors (xyz) showed some
discrepancies exceeding 0.3 m for Inspire 2 (Figure 4e) and Mavic 2 Pro (Figure 4k) when
compared to the other three networks (Figure 4b,h,n). However, these GCPs were not
considered as outliers, and all GCPs were used for further processing of each of the five
networks. Overall, MaRS produced the most reliable image network with the smallest
errors (Figure 4).

3.2. Ground Control Assessment

As expected, the random selections of GCPs set as control have consistently lower
errors than when compared to those GCPs randomly selected as quality (Figure 5). This
is because the GCPs set as control contain bias, as they were used to georeference each
point cloud at each simulation. Additionally, the higher errors of the GCPs randomly
selected as quality indicates that the chosen parameters were effective at not overfitting
the control points. For the xy positional errors, MaRS, Inspire 2, and Phantom 4 Pro all
provided satisfactory low errors on the random GCPs set as quality (median RMSE ranges
0.06–0.061 m). However, MaRS provided a noticeably lower z positional error on randomly
selected GCPs set as quality (median RMSE = 0.099 m) when compared to all other aircraft
(median RMSE = 0.125 m for Inspire 2, 0.13 m for Phantom 4 Pro, 0.16 m for Mavic 2 Pro,
and 0.14 m for Mavic Air). In reviewing the results of the xyz positional errors combined,
we found that MaRS performed the best with a median RMSE of 0.11 m, while Mavic 2 Pro
performed the worst with a median RMSE of 0.225 m.

http://www.esri.com/
http://www.esri.com/
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Figure 4. Assessment of network quality control for MaRS (a–c), Inspire 2 (d–f), Phantom 4 Pro (g–i),
Mavic 2 Pro (j–l), and Mavic Air (m–o). (a,d,g,j,m) Root mean square error (RMSE) tie point image
residuals in pixels for each image in each of the five networks where red indicates before image
removal and black indicates after image removal. GCPs included as control in the bundle adjustment
with a distribution of their overall error (xyz) (b,e,h,k,n), and 3D errors and GCPs where the vectors
are the horizontal error magnified by 200 (c,f,i,l,o). The image root mean square error (RMSE) is the
square root of the averaged squared distances between the projected reconstructed valid tie points
and their corresponding original projections detected on the photos.
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Figure 5. RMSE on control and quality points for Monte Carlo analysis on each sUAS-structure-from-motion (SfM) aircraft.
A total of 50 self-calibrating bundle adjustments were carried out with a marker precision of 0.03 m and different random
selections of 10 GCPs used as control points and 9 GCPs used as quality points. The center line in each box represents the
median RMSE, and the box extends between the 25th and 75th percentiles. The whiskers represent the full range of the
results, while the circles represent any outliers. In the figure, (a) xy is the horizontal errors, (b) z is the vertical errors, and
(c) xyz is the horizontal and vertical errors combined.
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Figure 7. Object-based mean vertical differences of the original point clouds significant at the 95%
confidence level between (1) TLS and SfM-based surveys using the M3C2-PM algorithm (c–g), and
(2) TLS and MLS (h), and TLS and ULS (i) using the M3C2 algorithm, all in meters. Object-based
slope was determined using the TLS (a), and terrain roughness was determined using the standard
deviation of the slope derived from the TLS (b). All objects are overlying a hill shade image.
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4. Discussion

Our investigation of multiple sUAS systems at one site at one time using proven
uncertainty measures [23,24] and object-oriented image analyses techniques [40] provides
insights into future planning and budgeting of research where fine topographic data are
critical. Sensor quality issues resulted from several factors such as sensor size, shutter
speed, terrain roughness, and land cover. Only three of the seven sensors tested in this
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study were deemed suitable for accurate topographic mapping. Our findings, discussed
in detail below, led us to posit that only one sUAS had the best tradeoffs between sensor
quality, cost, portability, and functionality in capturing complex topography in an accurate
manner deemed essential for environmental change detection, geomorphological and/or
mapping, engineering geology problems, and environmental management designs.

4.1. Identifying the Best Sensor

The best sensor used in this study was the SonyA7iii (MaRS aircraft) because it had
the largest sensor size, finest resolution of 24 MP (24 million pixels are recorded in a single
image), wide range in global shutter speed for reducing motion blur, and a wide range of
values for getting the proper exposure (Table 2). A larger sensor is better because it allows
more photosites to capture light that is translated into more pixels, thus producing better
images with higher quality resolution. The advantage of a high-resolution camera is that
there are more pixels to work with when defining an object on the Earth’s surface. This
is helpful to the SfM process when accurately matching tie points of corners and lines of
features on the ground, as demonstrated by the Sony A7iii sensor (MaRS aircraft) having
the strongest image quality network with the lowest RMSE tie point image residuals (see
Figure 4a). In addition to the resolution of the sensor, the Sony A7iii camera has the largest
range in global shutter speed. A sensor that deploys a global shutter is preferred because
the sensor scans the entire area of an image simultaneously, allowing less time for motion
blurred images. The Sony A7iii’s large sensor can also produce images with the right
amount of exposure, or amount of light per unit area reaching the sensor. Getting proper
exposure requires a delicate balance of lens aperture, shutter speed, and scene illuminance
or ISO, and the Sony A7iii has the largest range for each when compared to all other
cameras (Table 2). A strong image network of properly exposed images will only improve
the orthomosaic and thus OBIA results because the heterogenous threshold is based on
color and shape when defining image objects.

4.2. Performance of Various Sensors in Complex Terrain

The performance of the sensors on areas with different slopes and terrain roughness
were tested because sensor performance can be influenced by the terrain being measured [8].
All sensors worked best for slopes less than 40% (or <22◦) with a low terrain roughness
(≤6) (note: terrain roughness is the standard deviation of the slope). Areas with high
terrain roughness (>6) proved most challenging for camera sensors with rolling shutter
speed (Mavic 2 Pro, Mavic Air) and the ULS and MLS. The disadvantage of a rolling shutter
is that the sensor takes time to scan the entire area of an image sequentially from the top
to bottom causing motion blur in the images, which is detrimental to many of the SfM
algorithms used to generate point clouds. However, we did disable any images with a
quality <0.8 units from image processing. While lidar’s advantage over SfM techniques is
the ability of the laser to penetrate vegetation to capture ground measures [8], we found
that the laser easily scatters among rocky terrain creating noise in the data. Camera sensor
resolutions higher than 20 MP with global shutter speed (MaRS, Inspire 2, Phantom 4
Pro) performed well in both the heterogeneous and homogeneous terrain examined in this
experiment.

While this study found that all sensors performed well for an area with a low terrain
roughness (defined by ≤6 standard deviations of the slope), it was noted that the land
cover was mowed lawn. In another study, sensor performance was poor for an area of
homogenous terrain because the sensor was capturing reflectance from a white sandy
beach [8]. The homogenous spectral signatures of a white sandy beach captured during
sunny skies complicate the SfM process from detecting variation needed to match grain
features of corners and lines associated with color gradients in the imagery.

A uniform cloudy day helped reduce the impacts from shadows during the collection
of the imagery and to decrease reflectance issues in sand locations shown in the imagery
derived from MaRS (e.g., see Figure 8) and Inspire 2. The Phantom 4 Pro, Mavic 2 Pro,
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and Mavic Air imagery in comparison all had poor exposure for the sandy pools (e.g.,
see Phantom 4 Pro imagery in Figure 8). The only difference between the Inspire 2 and
Phantom 4 Pro sensors is the ISO range, where the Phantom 4 Pro ISO speed is about
half that of Inspire 2. To properly capture exposed images of the sandy pools during our
uniform cloudy day, we needed the minimum sensor requirements of Inspire 2 (see Table 2).
However, there are other factors to consider that may affect the ability of the sensors to
capture the shape of the terrain.

The vertical profile for the rough terrain (profile 1 in Figure 8) is shown in detail by
taking smaller 1 m segments of the rock steps (Figure 9a,c) and sand pools (Figure 9b,d).
The Mavic Air captured the shape of the rock steps better than the Mavic 2 Pro, despite
noticeable differences in lens aperture, shutter speed, ISO range, and resolution between
the two sensors (see Table 2). This likely reflects differences in a combination of Mavic 2
Pro’s wide-angle lens (28 mm), manufacturer pre-processing conversion of raw imagery
data, and land cover, but this supposition would require further testing. While the MaRS
data closely follow the TLS for the sand pool in Figure 9b, there was a positive bias in the
data when examining the second sand pool profile in Figure 9d. The MaRS’ wider lens
(28 mm) may have caused some optical distortion in the raw images, in addition to the
image geometry used in this study. The Inspire 2 provided mixed results on the flatter,
sandy surfaces (Figure 9b,d), underestimating the surface in one location in comparison to
the TLS (Figure 9b) and more closely approximating the shape of the surface compared
to MaRS (Figure 9d). The Phantom 4 Pro does a relatively good job of representing the
morphometry, but consistently overestimates the height (Figure 9).
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4.3. Insights into Cost–Benefit of Purchasing Various sUAS and Sensors

There are also tradeoffs between sensor quality, cost, portability, functionality, and
maintenance. While MaRS has the highest quality sensor, it is more expensive than Inspire
2 (second most expensive), Phantom 4 Pro (third most expensive), Mavic 2 Pro (fourth
most expensive), and Mavic Air (least expensive). In addition, MaRS is not as portable
as the other aircraft because of its weight and large size (1.7-m diameter with propellers
and frame arms unfolded). However, the functionality of MaRS makes it attractive to the
authors, as the aircraft has a higher pay load so that heavier sensors can be carried such
as the DJI Ronin-Mx gimbal carrying the Sony A7iii camera and the SICK lidar system.
Another con is that MaRS requires more maintenance and experience because there are
many individual parts that work together such as the aircraft, gimbal, GNSS, IMU, and the
sensor that all require individual attention. While the next best sensor to the MaRS Sony
A7iii is the Inspire 2 Zenmuse X4S camera, the Inspire 2 aircraft itself is more portable,
requires less experience, and is easier to maintain. Given all these pros and cons, the
authors prefer MaRS or Inspire 2 for measuring complex topography. However, we agree
with another study [41] that the Phantom 4 Pro provides the best tradeoff between sensor
quality, cost, portability, and functionality for capturing topographic data.

4.4. Potential Shortcomings in Capturing Accurate Topography

While 19 GCPs were placed throughout our study site (the area is relatively small
at 160 m2), a survey design with more GCPs has potential to improve our results. This is
because a shortcoming in SfM is vertical “doming” of the surface, which is a systematic
error partially due to inaccurate correction of radial camera lens distortion (e.g., [9,24]).
Topographic doming can be mitigated by the collection of more GCPs, but an accurate
correction of the radial distortion is also required [9,42,43]. While we addressed photogram-
metric issues of over-parameterization during camera self-calibration to include radial
and tangential distortions, which has shown to decrease the doming effect [24], we used
the JPEG-format image files pre-processed using onboard geometric adjustments by DJI.
Lens distortion modelled in our DJI-based imagery photogrammetric workflow does not
represent the true physical optics; instead, the residual distortions represent the generic
lens geometry correction applied by DJI [42]. Therefore, the default DJI camera settings
should be changed to include the raw (uncorrected) imagery for modeling and correcting
systematic error due to lens distortion [42]. The choice of a self-calibrated camera calibra-
tion during bundle adjustment may still increase the doming effect in our results. Instead,
a pre-calibrated camera model, such as derived by a common checkerboard routine, should
be considered [44]. Another problem that may increase the systematic error is that the SfM
algorithm estimates the internal camera parameters or camera pose a priori. An approach
to manipulate the equations solved for SfM to eliminate all camera pose parameters has
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been presented [45]. However, the benefits of pose-free SfM still needs investigated before
an agreed and easily implemented approach is employed to the community.

Doming is also caused by near parallel imaging directions chosen during flight plan-
ning [21,24,42,43]. We aimed to increase image geometry by choosing a −70-degree gimbal
pitch angle with a double hatch pattern in the flight planning missions, which has been
shown to reduce systematic error [46]. Another consideration that may increase systematic
error is flight height. Systematic error has shown to be inversely proportional to flight
height [9]. In this study, the pilots were restricted to fly below 30 m due to Federal Avi-
ation Administration rules applied to the airspace, and thus it was not an option to fly
above the 120 m threshold shown to reduce systematic error [9]. Therefore, alternative
systematic-error correction methods (e.g., [43]) may help improve the results.

The art and science of capturing and processing accurate topographic data involves
field survey requirements and rigorous photogrammetric workflows to compensate for the
potential shortcomings in SfM-derived topographic data. In this study, we used current best
practices when considering measurement precision (random error, e.g., standard deviation)
in our analysis of the different sensors. However, a rigorous handling of measurement
accuracy (systematic error or mean bias) is also necessary to correct for the systematic
error so that these errors do not compromise precision-based changes in topography [42].
Future research should consider combining a rigorous precision (e.g., [23,24]) and accuracy
(e.g., [42]) approach to collecting and processing accurate topographic data.

5. Conclusions

We brought together multiple sUAS systems simultaneously to assess their perfor-
mance in a channelized stream with varying slopes and terrain roughness to help aid in
future planning and budgeting of research where complex topographic change detection is
critical. Five different commercially available sUAS from DJI were compared: (1) Matrice
600 Pro mounted with the DJI Ronin-MX gimbal caring a Sony a7iii camera, referred to as
MaRS; (2) Inspire 2 carrying a Zenmuse X4S camera; (3) Phantom 4 Pro; (4) Mavic 2 Pro;
and (5) Mavic Air Mini. A rigorous field and photogrammetric workflow must be repli-
cated to reduce error and maintain consistency when comparing two or more datasets.
Our workflow uses several proven data processing and analysis techniques by combining
structure-from-motion to align images, Monte Carlo simulations to calculate spatially vari-
able error, object-based image analysis to delineate topographic features, and MC32-PM
algorithm to calculate statistically significant change detection for each topographic fea-
ture. This workflow can be used to monitor change in similar environments with complex
topography.

Our results demonstrate that sUAS sensors with a rolling shutter speed, such as Mavic
2 Pro and Mavic Air Mini, should not be considered for monitoring environmental change.
Instead, sUAS sensors with fine resolutions (≥20 MP), a wide range in global shutter
speed, lens aperture, and ISO should be considered, such as MaRS, Inspire 2, and Phantom
4 Pro. Overall, the MaRS sensor achieved the lowest vertical median RMSE (0.06 m) and
horizontal median RMSE (0.099 m) in complex topography and might be improved if
the camera is pre-calibrated. It would also be a valuable direction for future research to
assess, report, and incorporate error when comparing two or more datasets. Scientists and
funding agencies seeking the best tradeoff between sensor quality, cost, portability, and
functionality should consider a system such as Phantom 4 Pro. We hope that this study
will stimulate the application of sUAS to topographic change detection and environmental
monitoring.
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