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Abstract: With the significant advancement of sensor and communication technology and the reliable
application of obstacle detection techniques and algorithms, automated driving is becoming a
pivotal technology that can revolutionize the future of transportation and mobility. Sensors are
fundamental to the perception of vehicle surroundings in an automated driving system, and the use
and performance of multiple integrated sensors can directly determine the safety and feasibility of
automated driving vehicles. Sensor calibration is the foundation block of any autonomous system and
its constituent sensors and must be performed correctly before sensor fusion and obstacle detection
processes may be implemented. This paper evaluates the capabilities and the technical performance
of sensors which are commonly employed in autonomous vehicles, primarily focusing on a large
selection of vision cameras, LiDAR sensors, and radar sensors and the various conditions in which
such sensors may operate in practice. We present an overview of the three primary categories of
sensor calibration and review existing open-source calibration packages for multi-sensor calibration
and their compatibility with numerous commercial sensors. We also summarize the three main
approaches to sensor fusion and review current state-of-the-art multi-sensor fusion techniques and
algorithms for object detection in autonomous driving applications. The current paper, therefore,
provides an end-to-end review of the hardware and software methods required for sensor fusion
object detection. We conclude by highlighting some of the challenges in the sensor fusion field and
propose possible future research directions for automated driving systems.

Keywords: autonomous vehicles; self-driving cars; perception; camera; lidar; radar; sensor fusion;
calibration; obstacle detection

1. Introduction

According to the Global Status Report published by the World Health Organization
(WHO), the reported number of annual road traffic deaths reached 1.35 million in 2018,
making it the world’s eighth leading cause of unnatural death among people of all ages [1].
In the context of the European Union (EU), while there has been a decrease in the reported
annual road fatalities, there is still more than 40,000 fatalities per annum, 90% of which were
caused by human error. For this reason and to improve traffic flows, global investors have
invested significantly to support the development of self-driving vehicles. Additionally,
it is expected that the autonomous vehicles (AVs) will help to reduce the level of carbon
emissions, and hence contribute to carbon emissions reduction targets [2].

AVs or self-driving vehicles provide the transportation capabilities of conventional
vehicles but are largely capable of perceiving the environment and self-navigating with
minimal or no human intervention. According to a report published by the Precedence
Research, the global AV market size reached approximately 6500 units in 2019 and is
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predicted to experience a compound annual growth rate of 63.5% over the period 2020
to 2027 [3]. In 2009, Google secretly initiated its self-driving car project, currently known
as Waymo (and presently a subsidiary of Google parent company Alphabet). In 2014,
Waymo revealed a 100% autonomous car prototype without pedals and steering wheel [4].
To date, Waymo has achieved a significant milestone, whereby its AVs had collectively
driven over 20 million miles on public roads in 25 cities in the United States of America
(USA) [5]. Within the Irish context, in 2020, Jaguar Land Rover (JLR) Ireland has announced
its collaboration with autonomous car hub in Shannon, Ireland, and will use 450 km of
roads to test its next-generation AV technology [6].

In 2014, the SAE International, previously known as the Society of Automotive Engi-
neers (SAE) introduced the J3016 “Levels of Driving Automation” standard for consumers.
The J3016 standard defines the six distinct levels of driving automation, starting from
SAE level 0 where the driver is in full control of the vehicle, to SAE level 5 where ve-
hicles can control all aspects of the dynamic driving tasks without human intervention.
The overview of these levels is depicted in Figure 1 and are often cited and referred to by
industry in the safe design, development, testing, and deployment of highly automated
vehicles (HAVs) [7]. Presently, automobile manufacturers such as Audi (Volkswagen) and
Tesla adopted the SAE level 2 automation standards in developing its automation features,
namely Tesla’s Autopilot [8] and Audi A8′s Traffic Jam Pilot [9,10]. Alphabet’s Waymo, on
the other hand, has since 2016 evaluated a business model based on SAE level 4 self-driving
taxi services that could generate fares within a limited area in Arizona, USA [11].

Figure 1. An overview of the six distinct levels of driving automation that were described in the Society of Automotive
Engineers (SAE) J3016 standard. Readers interested in the comprehensive descriptions of each level are advised to refer to
SAE International. Figure redrawn and modified based on depictions in [7].

Most autonomous driving (AD) systems share many common challenges and limita-
tions in real-world situations, e.g., safe driving and navigating in harsh weather conditions,
and safe interactions with pedestrians and other vehicles. Harsh weather conditions,
such as glare, snow, mist, rain, haze, and fog, can significantly impact the performance
of the perception-based sensors for perception and navigation. Besides, the challenges
for AD in adverse weather are faced in other constrained AD scenarios like agriculture
and logistics. For on-road AVs, the complexity of these challenges increases because of the
unexpected conditions and behaviors from other vehicles. For example, placing a yield
sign in an intersection can change the behavior of the approaching vehicles. Hence, a
comprehensive prediction module in AVs is critical to identify all position future motions
to reduce collision hazards [12,13]. Although AD systems share many common challenges
in real-world situations, they are differed noticeably in several aspects. For instance, un-
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manned tractors in agriculture farm navigates between crop rows in a fixed environment,
while on-road vehicles must navigate through complex dynamic environment, such as
crowds and traffics [14].

While AV systems may vary slightly from one to another, all are complex systems that
consists of many subcomponents. In [15], the architecture of an AD system is introduced
from a technical perspective, which incorporates the hardware and software components
of the AD system, and from a functional perspective, which describes the processing blocks
required within the AV, from data collection to the control of the vehicle. The hardware and
software are the two primary layers from the technical perspective, and each layer includes
various subcomponents that represent different aspects of the overall system. Some of
the subcomponents serve as a backbone within its layer for communications between the
hardware and software layers. In contrast, from the functional perspective, AV systems
are composed of four primary functional blocks: perception, planning and decision, motion
and vehicle control, and system supervision. These functional blocks are defined based on the
processing stages and the flow of information from data collection to the control of the
vehicle. The description of the technical and functional perspective of the architecture of
an AV is represented in Figure 2. The detailed discussion of the AV architectures is beyond
the scope of this paper (see [15] for a more detailed overview).

Figure 2. Architecture of an autonomous driving (AD) system from, (a) a technical perspective that describes the primary
hardware and software components and their implementations; (b) a functional perspective that describes the four main
functional blocks and the flow of information based on [15].
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The sensing capabilities of an AV employing a diverse set of sensors is an essential
element in the overall AD system; the cooperation and performance of these sensors can
directly determine the viability and safety of an AV [16]. The selection of an appropriate
array of sensors and their optimal configurations, which will, in essence be used to imitate
the human ability to perceive and formulate a reliable picture of the environment, is one of
the primary considerations in any AD system.

It is always essential to consider the advantages, disadvantages, and limitations of
the selected group of sensors, i.e., smart sensors and non-smart sensors. The definition of
“smart sensor” has evolved over the past decades along with the emergence of the Internet
of Things (IoT), a system of interrelated, internet-connected objects (devices) that can
collect and transfer data over the wireless network without human intervention. In the
IoT context, a smart sensor is a device that can condition the input signals, process, and
interpret the data, and make decisions without a separate computer [17]. In addition, in the
AV context, range sensors for environment perception, e.g., cameras, LiDARs, and radars,
may be considered “smart” when the sensors provide for example, target tracking, event
descriptions, and other information, as part of their output. In contrast, a “non-smart”
sensor is a device that only conditions the sensor raw data or waveforms and transfers
the data for remote processing. It requires external computing resources to process and
interpret the data to provide additional information about the environment. Ultimately,
a sensor is only considered “smart” when the computer resources is an integral part of
the physical sensor design [18]. Invariably, the overall performance of an AV system is
greatly enhanced with multiple sensors of different types (smart/non-smart) and modalities
(visual, infrared and radio waves) operating at different range and bandwidth (data rate)
and with the data of each being incorporated to produce a fused output [17–19]. Multi-
sensor fusion is effectively now a requisite process in all AD systems to overcome the
shortcomings of individual sensor types, improving the efficiency and reliability of the
overall AD system.

Several reviews have been published recently on the topic of multi-sensor fusion, some
of them describing the architectural structure and sensor technologies in AVs [15,20,21],
or focusing on the processing stages like sensor calibration, state estimation, object and
tracking [22–24], or detailing techniques used for multi-sensor fusion, like deep learning-
based approaches [19,25,26]. Table 1 below summarizes some of the recent studies in sensor
and sensor fusion technologies in AD systems.

Table 1. Summary of recent studies on sensor and sensor fusion technologies.

Reference Summary

Velasco-Hernandez et al. [15]

An overview of the AD architectures—technical and functional architectures depending on
the domain of their definition. Further, the authors highlight the perception stage of

self-driving solutions as a component, detailing the sensing component and sensor fusion
techniques to perform localization, mapping, and obstacle detection.

Fayyad et al. [19] An overview of the state-of-the-art deep learning sensor fusion techniques and algorithms
for perception, localization, and mapping.

Campbell et al. [20]

A summary of sensor technologies, including their strengths and weaknesses, that were
commonly used to develop an autonomous vehicle. Moreover, the authors examined some

of the sensor fusion techniques that can be employed in both indoor and outdoor
environments, and algorithms for obstacle detection, navigation, and

environment modelling.

Wang et al. [21]

A discussion of sensor technology and their performance in various conditions. The authors
surveyed and presented a detailed summary of the multi-sensor fusion strategies in recent

studies and techniques to establish motion model and data association in
multi-target tracking.
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Table 1. Cont.

Reference Summary

Yeong et al. [22]

A summary of advantages and disadvantages of perception-based sensors and the
architecture of multi-sensor setup for obstacle detection in industrial environments.

Moreover, the authors highlighted some of the challenges to temporal synchronize multiple
data streams in AD applications.

Jusoh, S. & Almajali, S. [23]
A discussion of the current state-of-the-art multi-sensor fusion techniques and approaches

for various applications such as obstacle detection, localization, and mapping, in three
major domains, namely robotics, military, and healthcare.

Castanedo, F. [24]
A discussion of the classification of data fusion techniques based on several criteria and
providing a comprehensive overview of the most employed methods and algorithms for

data association, state estimation, and decision fusion tasks.

Kuutti et al. [25]

An overview of deep learning approaches and methods for autonomous vehicle control,
and the challenges to deep learning-based vehicle control. The authors considered these
approaches for three categories of tasks: lateral (steering), longitudinal (acceleration and
braking), and simultaneous lateral and longitudinal control, and discussed the relevant

methods in detail.

Hu et al. [26]

A discussion of the perception-based sensors for intelligent ground vehicles in off-road
environment and a comprehensive review of the current state-of-the-art multi-sensor fusion

approaches. In addition, the author summarized the main considerations of on-board
multi-sensor configurations and reviewed the architectural structure of perception systems

and applications for obstacle detection in diverse environments.

The present review paper will extend across the three major considerations in sensor
fusion for AVs: Firstly, operating principles and characteristics of sensor modalities, includ-
ing a comparison of commercially available hardware; secondly, the three aspects of sensor
calibration, the main open-source calibration systems and their compatibility with commer-
cial sensors; and thirdly, on sensor fusion methods and algorithms for obstacle detection in
AV environments. Section 2 provides an overview of the existing sensing modalities used in
AVs, primarily focusing on cameras, LiDARs, and radars, including their advantages and
disadvantages, and limitations in different environmental conditions. Section 3 discusses
the necessity of sensor calibration in AVs, an overview of an existing calibration package
which addresses all the main aspects required by any calibration system, followed by the
current developments of sensor fusion approaches for obstacle detection and its challenges
for safe and reliable environment perception. Section 4 presents a summary review and
recommendations for future research in AVs.

2. Sensor Technology in Autonomous Vehicles

Sensors are devices that map the detected events or changes in the surroundings
to a quantitative measurement for further processing. In general, sensors are classified
into two classes based on their operational principal. Proprioceptive sensors, or internal
state sensors, capture the dynamical state and measures the internal values of a dynamic
system, e.g., force, angular rate, wheel load, battery voltage, et cetera. Examples of
the proprioceptive sensors include Inertia Measurement Units (IMU), encoders, inertial
sensors (gyroscopes and magnetometers), and positioning sensors (Global Navigation
Satellite System (GNSS) receivers). In contrast, the exteroceptive sensors, or external
state sensors, sense and acquire information such as distance measurements or light
intensity from the surroundings of the system. Cameras, Radio Detection and Ranging
(Radar), Light Detection and Ranging (LiDAR), and ultrasonic sensors are examples of the
exteroceptive sensors. Additionally, sensors can either be passive sensors or active sensors.
Passive sensors receive energy emitting from the surroundings to produce outputs, e.g.,
vision cameras. Conversely, active sensors emit energy into the environment and measure
the environmental “reaction” to that energy to produce outputs, such as with LiDAR and
radar sensors [27–29].

In AVs, sensors are critical to the perception of the surroundings and localization of
the vehicles for path planning and decision making, essential precursors for controlling the
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motion of the vehicle. AV primarily utilizes multiple vision cameras, radar sensors, LiDAR
sensors, and ultrasonic sensors to perceive its environment. Additionally, other sensors, in-
cluding the Global Navigation Satellite System (GNSS), IMU, and vehicle odometry sensors
are used to determine the relative and absolute positions of the vehicle [30]. The relative
localization of an AV refers to the vehicles referencing of its coordinates in relation to the
surrounding landmarks, while absolute localization refers to the vehicle referencing its
position in relation to a global reference frame (world) [31]. The placement of sensors for
environment perception on typical AV applications, their coverage, and applications are
shown in Figure 3. The reader will appreciate that in a moving vehicle, there is a more
complete coverage of the vehicle’s surroundings. The individual and relative positioning of
multiple sensors are critical for precise and accurate object detection and therefore reliably
and safely performing any subsequent actions [32]. In general, it is challenging to generate
adequate information from a single independent source in AD. This section reviews the
advantages and shortcomings of the three primary sensors: cameras, LiDARs and radars,
for environment perception in AV applications.

Figure 3. An example of the type and positioning of sensors in an automated vehicle to enable the vehicles perception of its
surrounding. Red areas indicate the LiDAR coverage, grey areas show the camera coverage around the vehicle, blue areas
display the coverage of short-range and medium-range radars, and green areas indicate the coverage of long-range radar,
along with the applications the sensors enable—as depicted in [32] (redrawn).

2.1. Camera

Cameras are one of the most adopted technology for perceiving the surroundings.
A camera works on the principle of detecting lights emitted from the surroundings on a
photosensitive surface (image plane) through a camera lens (mounted in front of the sensor)
to produce clear images of the surrounding [20,30]. Cameras are relatively inexpensive
and with appropriate software, can detect both moving and static obstacles within their
field of view and provides high-resolution images of the surroundings. These capabilities
allow the perception system of the vehicle to identify road signs, traffic lights, road lane
markings and barriers in the case of road traffic vehicles and a host of other articles in the
case of off-road vehicles. The camera system in an AV may employ monocular cameras
or binocular cameras, or a combination of both. As the name implies, the monocular
camera system utilizes a single camera to create a series of images. The conventional RGB
monocular cameras are fundamentally more limited than stereo cameras in that they lack
native depth information, although in some applications or more advanced monocular
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cameras using the dual-pixel autofocus hardware, depth information may be calculated
using complex algorithms [33–35]. As a result, two cameras are often installed side-by-side
to form a binocular came-ra system in autonomous vehicles.

The stereo camera, also known as a binocular camera, imitates the perception of
depth found in animals, whereby the “disparity” between the slightly different images
formed in each eye is (subconsciously) employed to provide a sense of depth. Stereo
cameras contain two image sensors, separated by a baseline. The term baseline refers to
the distance between the two image sensors (and is generally cited in the specifications of
stereo cameras), and it differs depending on the camera’s model. For example, the Orbbec
3D cameras reviewed in [36] for Autonomous Intelligent Vehicles (AIV) has a baseline of
75 mm for both the Persee and Astra series cameras [37]. As in the case of animal vision,
the disparity maps calculated from the stereo camera imagery permit the generation of
depth maps using epipolar geometry and triangulation methods (detailed discussion of the
disparity calculations algorithms is beyond the scope of this paper). Reference [38] uses the
“stereo_image_proc” modules in Robotic Operating System (ROS), an open source, meta-
operating system for robotics [39], to perform stereo vision processing before implementing
SLAM (simultaneous localization and mapping) and autonomous navigation. Table 2
shows the general specifications for binocular cameras from different manufacturers.

Table 2. General specifications of stereo cameras from various manufacturers that we reviewed from our initial findings.
The acronyms from left to right (in second row) are horizontal field-of-view (HFOV); vertical field-of-view (VFOV); frames
per second (FPS); image resolutions in megapixels (Img Res); depth resolutions (Res); depth frames per second (FPS); and
reference (Ref). The “-” symbol in table below indicates that the specifications were not mentioned in product datasheet.

Depth Information

Model Baseline
(mm) HFOV (◦) VFOV (◦) FPS (Hz) Range

(m)
Img Res

(MP)
Range

(m) Res (MP) FPS
(Hz) Ref

Roboception RC Visard
160 160 61 * 48 * 25 0.5–3 1.2 0.5–3 0.03–1.2 0.8–25 [40,41]

Carnegie
Robotics®

MultiSense™
S7 1 70 80 49/80 30 max - 2/4 0.4 min 0.5–2 7.5–30 [40,42,43]

MultiSense™
S21B 1 210 68–115 40–68 30 max - 2/4 0.4 min 0.5–2 7.5–30 [40,44]

Ensenso N35-606-16-
BL 100 58 52 10 4 max 1.3 - [40,45]

Framos D435e 55 86 57 30 0.2–10 2 0.2 min 0.9 30 [40,46]

Nerian Karmin3 2 50/100/250 82 67 7 - 3 0.23/0.45/
1.14 min 2.7 - [40,47]

Intel
RealSense

D455 95 86 57 30 20 max 3 0.4 min ≤1 ≤90
[40,48]D435 50 86 57 30 10 max 3 0.105 min ≤1 ≤90

D415 55 65 40 30 10 max 3 0.16 min ≤1 ≤90

Flir®
Bumblebee2

3 120 66 - 48/20 - 0.3/0.8 - [40,49]

Bumblebee
XB3 3 240 66 - 16 - 1.2 [50,51]

1 HFOV, VFOV, image resolutions, image frame rates and depth information depend on the variant of focal length (optical lens geometry).
2 Specifications stated are in full resolution and monochrome, focusing on the standard 4 mm lens. 3 Offers either 2.5 mm, 3.8 mm or 6 mm
lenses (specifications focus on 3.8 mm lens) but product no longer being produced or offered (discontinued). * A 6 mm lens has a HFOV of
43◦ and a VFOV of 33◦.

Other commonly employed cameras in AVs for perception of the surroundings include
fisheye cameras [52–54]. Fisheye cameras are commonly employed in near-field sensing
applications, such as parking and traffic jam assistance, and require only four cameras to
provide a 360-degree view of the surroundings. Reference [52] proposed a fisheye surround-
view system and the convolutional neural network (CNN) architecture for moving object
segmentation in an autonomous driving environment, running at 15 frames per second
at an accuracy of 40% Intersection over Union (IoU, in approximate terms, an evaluation
metric that calculates the area of overlap between the target mask (ground truth) and
predicted mask), and 69.5% mean IoU.
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The deviation in lens geometry from the ideal/nominal geometry will result in image
distortion, such that in extreme cases, e.g., ultra-wide lenses employed in fisheye cameras,
straight lines in the physical scene may become curvilinear. In photography, the deviations
in camera lens geometry are generally referred to as optical distortion, and are commonly
categorized as pincushion distortion, barrel distortion, and moustache distortion. Such dis-
tortions may introduce an error in the estimated location of the detected obstacles or
features in the image. Hence, it is often a require to “intrinsically calibrate” the camera to
estimate the camera parameters and rectify the geometric distortions [55]. We present a
detailed discussion of the camera intrinsic calibration and the commonly employed method
in Section 3.1.1. Further, it is known that the quality (resolution) of images captured by the
cameras may significantly affected by lighting and adverse weather conditions, e.g., snow,
intense sun glare, rainstorm, hazy weather, et cetera. Other disadvantages of cameras may
include the requirement for large computation power while analyzing the image data [20].

Given the above, cameras are a ubiquitous technology that provides high-resolution
videos and images, including color and texture information of the perceived surroundings.
Common uses of the camera data on AVs include traffic signs recognition, traffic lights
recognition, and road lane marking detection. As the camera’s performance and the
creation of high-fidelity images are highly dependent on the environmental conditions and
illumination, image data are often fused with other sensor data such as radar and LiDAR
data, to generate reliable and accurate environment perception in AD.

2.2. LiDAR

Light Detection and Ranging, or LiDAR, was first established in the 1960s and was
widely used in the mapping of aeronautical and aerospace terrain. In the mid-1990s, laser
scanners manufacturers produced and delivered the first commercial LiDARs with 2000
to 25,000 pulses per second (PPS) for topographic mapping applications [56]. The devel-
opment of LiDAR technologies has evolved continuously at a significant pace over the
past few decades and is currently one of the cores perception technologies for Advanced
Driver Assistance System (ADAS) and AD vehicles. LiDAR is a remote sensing technology
that operates on principle of emitting pulses of infrared beams or laser light which reflect
off target objects. These reflections are detected by the instrument and the interval taken
between emission and receiving of the light pulse enables the estimation of distance. As
the LiDAR scans its surroundings, it generates a 3D representation of the scene in the form
of a point cloud [20].

The rapid growth of research and commercial enterprises relating to autonomous
robots, drones, humanoid robots, and AVs has established a high demand for LiDAR sen-
sors due to its performance attributes such as measurement range and accuracy, robustness
to surrounding changes and high scanning speed (or refresh rate)—for example, typical
instruments in use today may register up to 200,000 points per second or more, covering
360◦ rotation and a vertical field of view of 30◦. As a result, many LiDAR sensor companies
have emerged and have been introducing new technologies to address these demands in
recent years. Hence, the revenue of the automotive LiDAR market is forecasted to reach
a total of 6910 million USD by 2025 [57]. The wavelengths of the current state-of-the-art
LiDAR sensors exploited in AVs are commonly 905 nm (nanometers)—safest types of lasers
(Class 1), which suffers lower absorption water than for example 1550 nm wavelength sen-
sors which were previously employed [58]. A study in reference [59] found that the 905 nm
systems can provide higher resolution of point clouds in adverse weather conditions like
fog and rains. The 905 nm LiDAR systems, however, are still partly sensitive to fog and
precipitation: a recent study in [60] conveyed that harsh weather conditions like fogs and
snows could degrade the performance of the sensor by 25%.

The three primary variants of LiDAR sensors that can be applied in a wide range
of applications include 1D, 2D and 3D LiDAR. LiDAR sensors output data as a series of
points, also known as point cloud data (PCD) in either 1D, 2D and 3D spaces and the
intensity information of the objects. For 3D LiDAR sensors, the PCD contains the x, y, z
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coordinates and the intensity information of the obstacles within the scene or surroundings.
For AD applications, LiDAR sensors with 64- or 128- channels are commonly employed to
generate laser images (or point cloud data) in high resolution [61,62].

• 1D or one-dimensional sensors measure only the distance information (x-coordinates)
of objects in the surroundings.

• 2D or two-dimensional sensors provides additional information about the angle
(y-coordinates) of the targeted objects.

• 3D or three-dimensional sensors fire laser beams across the vertical axes to measure
the elevation (z-coordinates) of objects around the surroundings.

LiDAR sensors can further be categorized as mechanical LiDAR or solid-state LiDAR
(SSL). The mechanical LiDAR is the most popular long-range environment scanning solu-
tion in the field of AV research and development. It uses the high-grade optics and rotary
lenses driven by an electric motor to direct the laser beams and capture the desired field of
view (FoV) around the AV. The rotating lenses can achieve a 360◦ horizontal FoV covering
the vehicle surroundings. Contrarily, the SSLs eliminate the use of rotating lenses and thus
avoiding mechanical failure. SSLs use a multiplicity of micro-structured waveguides to
direct the laser beams to perceive the surroundings. These LiDARs have gained interest
in recent years as an alternative to the spinning LiDARs due to their robustness, reliabil-
ity, and generally lower costs than the mechanical counterparts. However, they have a
smaller and limited horizontal FoV, typically 120◦ or less, than the traditional mechanical
LiDARs [30,63].

Reference [64] compares and analyzes 12 spinning LiDAR sensors that are currently
available in the market from various LiDAR manufacturers. In [64], different models
and laser configurations are evaluated in three different scenarios and environments,
including dynamic traffic, adverse weather generated in a weather simulation chamber,
and static targets. The results demonstrated that the Ouster OS1-16 LiDAR model had the
lowest average number of points on reflective targets and the performance of spinning
LiDARs are strongly affected by intense illumination and adverse weather, notable where
precipitation is high and there is non-uniform or heavy fog. Table 3 shows the general
specifications of each tested LiDAR sensor in the study of [64] (comprehensive device
specifications are presented as well in [65]). In addition, we extended the summarized
general specifications in the study of [64,65] with other LiDARs, including Hokuyo 210◦

spinning LiDAR and SSLs from Cepton, SICK, and IBEO, and the commonly used ROS
drivers for data acquisition from our initial findings.

Laser returns are discrete observations that are recorded when a laser pulse is inter-
cepted and reflected by the targets. LiDARs can collect multiple returns from the same laser
pulse and modern sensors can record up to five returns from each laser pulse. For instance,
the Velodyne VLP-32C LiDAR analyze multiple returns and reports either the strongest,
last, or dual return, depending on the laser return mode configurations. In single laser
return mode (strongest return or last return), the sensor analyzes lights received from
the laser beam in one direction to determine the distance and intensity information and
subsequently employs this information to determine the last return or strongest return.
In contrast, sensors in dual return configuration mode will return both the strongest and
last return measurements. However, the second-strongest measurements will return as
the strongest if the strongest return measurements are like the last return measurements.
Not to mention that points with insufficient intensity will be disregarded [66].

In general, at present, 3D spinning LiDARs are more commonly applied in self-driving
vehicles to provide a reliable and precise perception of in day and night due to its broader
field of view, farther detection range and depth perception. The acquired data in point
cloud format provides a dense 3D spatial representation (or “laser image”) of the AVs’
surroundings. LiDAR sensors do not provide color information of the surroundings
compared to the camera systems and this is one reason that the PCD is often fused with
data from different sensors using sensor fusion algorithms.
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Table 3. General specifications of the tested LiDARs from [64,65] and other LiDARs that were reviewed in the current work. The acronyms from left to right (first row) are frames per
second (FPS); accuracy (Acc.); detection range (RNG); vertical FoV (VFOV); horizontal FoV (HFOV); horizontal resolution (HR); vertical resolution (VR); wavelength (λ); diameter (Ø);
sensor drivers for Robotic Operating System (ROS Drv.); and reference for further information (Ref.). The “-” symbol in table below indicates that the specifications were not mentioned in
product datasheet.

Company Model Channels
or Layers FPS (Hz) Acc. (m) RNG (m) VFOV (◦) HFOV (◦) HR

(◦)
VR
(◦) λ (nm) Ø (mm) ROS Drv. Ref.

Mechanical/Spinning
LiDARs

Velodyne

VLP-16 16 5–20 ±0.03 1 . . . 100 30 360 0.1–0.4 2 903 103.3

[67] [51,68–70]
VLP-32C 32 5–20 ±0.03 1 . . . 200 40 360 0.1–0.4 0.33 1 903 103
HDL-32E 32 5–20 ±0.02 2 . . . 100 41.33 360 0.08–0.33 1.33 903 85.3
HDL-64E 64 5–20 ±0.02 3 . . . 120 26.8 360 0.09 0.33 903 223.5
VLS-128
Alpha
Prime

128 5–20 ±0.03 max 245 40 360 0.1–0.4 0.11 1 903 165.5 -

Hesai
Pandar64 64 10,20 ±0.02 0.3 . . . 200 40 360 0.2,0.4 0.167 1 905 116

[71]
[72]

Pandar40P 40 10,20 ±0.02 0.3 . . . 200 40 360 0.2,0.4 0.167 1 905 116 [73]

Ouster
OS1–64
Gen 1 64 10,20 ±0.03 0.8 . . . 120 33.2 360 0.7,0.35,

0.17
0.53 850 85

[74] [75,76]
OS1-16
Gen 1 16 10,20 ±0.03 0.8 . . . 120 33.2 360 0.53 850 85

RoboSense RS-Lidar32 32 5,10,20 ±0.03 0.4 . . . 200 40 360 0.1–0.4 0.33 1 905 114 [77] [78]

LeiShen
C32-151A 32 5,10,20 ±0.02 0.5 . . . 70 32 360 0.09,

0.18,0.36
1 905 120 [79] [80]

C16-700B 16 5,10,20 ±0.02 0.5 . . . 150 30 360 2 905 102 [81] [82]

Hokuyo YVT-35LX-
F0 - 20 3 ±0.05 3 0.3 . . . 35 3 40 210 - - 905 ♦ [83] [84]

Solid State LiDARs

IBEO

LUX 4L
Standard 4 25 0.1 50 2 3.2 110 0.25 0.8 905 ♦

[85]
[86]

LUX HD 4 25 0.1 50 2 3.2 110 0.25 0.8 905 ♦ [87]
LUX 8L 8 25 0.1 30 2 6.4 110 0.25 0.8 905 ♦ [88]

SICK

LD-
MRS400102S01

HD
4 50 - 30 2 3.2 110 0.125 . . . 0.5 - ♦

[85]
[89]

LD-
MRS800001S01 8 50 - 50 2 6.4 110 0.125 . . . 0.5 - ♦ [90]

Cepton
Vista P60 - 10 - 200 22 60 0.25 0.25 905 ♦

[91]
[92]

Vista P90 - 10 - 200 27 90 0.25 0.25 905 ♦ [93]
Vista X90 - 40 - 200 25 90 0.13 0.13 905 ♦ [94]

1 Stated resolution refer to the minimum (or finest) resolutions, as these sensors have variable angle difference between central and more apical/basal beams. 2 The documented maximum detection range is at
10% remission rate (or reflectivity rate, is a measurement of diffuse reflection on surfaces). 3 The indicated FPS refers to the sensor’s non-interlace mode. The detection range and accuracy stated refer to white
paper detections below 15m at center of vertical scan. ♦ Dimension/Size of the sensors are in rectangular shape: width (W) × height (H) × depth (D)—see individual references for actual dimensions.
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2.3. Radar

Radio Detection and Ranging, or Radar, was first established before World War II
and operated on the principle of radiating electromagnetic (EM) waves within the area
of interest and receiving the scattered waves (or reflections) of targets for further signal
processing and establishing range information about the targets. It uses the Doppler
property of EM waves to determine the relative speed and relative position of the detected
obstacles [30], The Doppler effect, also known as Doppler shift, refers to the variations
or shifts in wave frequency arising from relative motion between a wave source and its
targets. For instance, the frequency of the received signal increases (shorter waves) when
the target moves towards the direction of the radar system [95]. The general mathematical
equation of Doppler frequency shift of a radar can be represented as [96,97]:

fD =
2 × Vr × f

C
=

2 × Vr

λ
(1)

where fD is the Doppler frequency in Hertz (Hz); Vr is the relative speed of the target; f is
the frequency of the transmitted signal; C is the speed of light (3 × 108 m/s) and λ is the
wavelength of the emitted energy. In practice, the Doppler frequency change in a radar
occurs twice; firstly, when the EM waves are emitted to the target and secondly, during the
reflection of the Doppler shifted energy to the radar (source).

Commercial radars available on the market currently operate at 24 GHz (Gigahertz),
60 GHz, 77 GHz, and 79 GHz frequencies. Compared to the 79 GHz radar sensors, 24 GHz
radar sensors have a more limited resolution of range, velocity, and angle, leading to
problems in identifying and reacting to multiple hazards and are predicted to be phased
out in the future [30]. The propagation of the EM waves (radar) is impervious to adverse
weather conditions and radar function is independent of the environment illumination
conditions; hence, they can operate at day or night in foggy, snowy, or cloudy conditions.
Among the drawbacks of radar sensors are the false detection of metal objects around the
perceived surroundings like road signs or guardrails and the challenges of distinguishing
static, stationary objects [21]. For instance, the difference between an animal carcass
(static objects) and the road may pose a challenge for radars to resolve due to the similarity
in Doppler shift [98]. Initial findings within the present research using 79 GHz automotive
radar sensor (SmartMicro [22]) demonstrated in [22] showed a high frequency of false-
positive detections within the area of interest. Figure 4 shows an example of the false-
positive detections of objects at about 5–7 m from the mounted sensors.

Figure 4. Visualization (before correction for several degrees of sensor misalignment) of false-positive
detections in current exploratory research. The colored points in the point clouds visualization
represent LiDAR point cloud data and white points represent radar point cloud data. Several false-
positive radar detections are highlighted by the grey rectangle, located at approximately 5–7 m from
the radar sensor. The radar sensor in present setup is in short-range mode (maximum detection range
is 19 m); hence, the traffic cone located at 20 m is not detectable.
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Radar sensors in AD vehicles are commonly integrated invisibly in several locations,
such as on the roof near the top of the windshield, behind the vehicle bumpers or brand
emblems. It is essential to ensure the precision of mounting positions and orientations
of radars in production, as any angular misalignment could have fatal consequences
for operation of the vehicle, such errors including false or late detections of obstacles
around the surroundings [99,100]. Medium-Range Radar (MRR), Long-Range Radar (LRR),
and Short-Range Radar (SRR) are the three major categories of automotive radar systems.
AV manufacturers utilize SRR for packing assistance and collision proximity warning, MRR
for side/rear collision avoidance system and blind-spot detection and LRR for adaptive
cruise control and early detection applications [30]. We reviewed the general specifications
of several radar sensors from various manufacturers, such as SmartMicro, Continental, and
Aptiv Delphi and an overview is presented in Table 4.

Table 4. Summary of the general specifications of radar sensors from SmartMicro, Continental and Aptiv Delphi. The
acronyms (first column from top to bottom) are frequency (Freq), horizontal FoV (HFOV), vertical FoV (VFOV), range
accuracy (Range Acc), velocity range (Vel Range), input/output interfaces (IO Interfaces) and ROS (Robotic Operating
System) drivers for that specific sensors. The “-” symbol in table indicates that the specifications were not mentioned in
product datasheet.

Aptiv Delphi Continental SmartMicro
ESR 2.5 SRR2 ARS 408-21 UMRR-96 T-153 1

Freq (GHz) 76.5 76.5 76 . . . 77 79 (77 . . . 81)

HFOV (◦)

±75
Short-Range ±9 ≥130
Mid-Range ±45 ≥130
Long-Range ±10 ±60 ≥100 (squint beam)

VFOV (◦)
4.4 10

20
15Short-Range 14

Long-Range

Range (m) 1–60

0.5–80 2Short-Range 1–175 2 0.2–70/100 0.15–19.3 3

Mid-Range 0.4–55 3

Long-Range 0.2–250 0.8–120 3

Range Acc (m)

- ±0.5 noise and ±0.5%
bias

-Short-Range <0.15 or 1% (bigger of)
Mid-Range <0.30 or 1% (bigger of)
Long-Range <0.50 or 1% (bigger of)

Vel Range (km/h)

- - -400 . . . +200 4Short-Range −400 . . . +140 4

Mid-Range −340 . . . +140 4

Long-Range −340 . . . +140 4

IO Interfaces CAN/Ethernet 5 PCAN CAN CAN/Automotive
Ethernet

ROS Drivers [101,102] [103] [104]

Reference [51,105–109] [110–112] [113]
1 It is recommended to use PCAN-USB adapter from PEAK System for connections of Controller Area Network (CAN) to a computer via
Universal Serial Bus (USB) [114]. 2 Range indicated for ESR 2.5 (long-range mode) and SRR2 is measured at 10dB and 5 dB, respectively.
3 Range may vary depending on the number of targets in the observed environment and will not achieve a 100% true-positive detection
rate. 4 A negative velocity range indicates the object is moving away from the radar (opening range) and a positive value indicates the
object is moving toward the radar (closing range) [115]. 5 Internet Protocol (IP) address specified on request with a sale unit and is not
modifiable by user [116].

In general, radar sensors are one of the well-known sensors in the autonomous
systems and are commonly employed in AVs to provide a reliable and precise perception of
obstacles in day and night because of its capability to function irrespective of illumination
and adverse weather conditions. It provides additional information, such as speed of the
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detected moving obstacles and can perform mapping in either short, medium, or long-
range depending on the configuration mode. The radar sensor, however, is not generally
suitable for object recognition applications because of their coarse resolutions compared to
cameras. Therefore, AV researchers often fuse radar information with other sensory data,
such as camera and LiDAR, to compensate for the limitations of radar sensors.

3. Sensor Calibration and Sensor Fusion for Object Detection

According to an article from Lyft Level 5, a self-driving division of Lyft in the United
States [117], sensor calibration is one of the least discussed topics in the development
of autonomous systems. It is the foundation block of an autonomous system and their
constituent sensors, and it is a requisite processing step before implementing sensor fusion
techniques and algorithms for AD applications. Sensor calibration notifies the autonomous
system about the sensors’ position and orientation in real-world coordinates by comparing
the relative positions of known features as detected by the sensors. Precise calibrations are
vital for further processing steps, such as sensor fusion and implementation of algorithms
for obstacle detection, localization and mapping, and control. Further, sensor fusion is one
of the essential tasks in AD applications that fuses information obtained from multiple
sensors to reduce the uncertainties compared to when sensors are used individually. The
fusion algorithms are used principally in the perception block of the overall AD architecture,
which involves the object detection sub-processes. Reference [118] presented the Multi-
Sensor Data Fusion (MSDF) framework for AV perception tasks, as depicted in Figure 5.
The MSDF framework consists of a sensor alignment process and several object detection
processing chains, and subsequently integrates the outputs from sensor alignment and
object detection for further processing tasks.

Figure 5. The structure of Multi-Sensor Data Fusion (MSDF) framework for n given sensors. It consists of a sensor alignment
process (estimation of calibration parameters—rotation matrix and translations vector) and an object detection process
which contains n processing chains, each provides a list of the detected obstacles. Figure redrawn based on depictions
in [118], but with the inclusion of an intrinsic calibration process.

Section 3.1 highlights the three categories of calibrations: intrinsic calibration, extrin-
sic calibration, and temporal calibration [119] and provides an overview of an existing
calibration packages which has been employed in the current research. Section 3.2 reviews
the three sensor approaches, namely high-level fusion (HLF), low-level fusion (LLF), and
mid-level fusion (MLF) for object detection and summarizes the commonly employed
algorithms, followed by the challenges of sensor fusion for safe and reliable environ-
ment perception.
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3.1. Sensor Calibrations
3.1.1. Intrinsic Calibration Overview

Intrinsic calibration addresses sensor-specific parameters and is conducted before
implementing extrinsic calibration and obstacle detection algorithms. Intrinsic calibration
estimates the internal or intrinsic parameters of a sensor, e.g., focal lengths of a vision
camera, which correct for systematic or deterministic aberrations (errors). These parameters
are anticipated to be consistent once the intrinsic parameters are estimated [120]. It is
known through personal communication that Velodyne LiDARs are calibrated to 10%
reflectivity of the National Institute of Standards and Technology (NIST) targets. Therefore,
the reflectance of the obstacles below the 10% reflectivity rate may not be detected by the
LiDAR [121]. Algorithms and methods for intrinsic calibration of sensors have received
considerable attention with significant advancement over the last number of years and now,
are well-established in the literature. These algorithms and methodologies may vary from
one sensor to another [122–129]. This subsection aims to provide an overview of the most
used calibration targets and the calibration methodologies for the pinhole camera model.

The pinhole camera model is a well-known and commonly used model (inspired by the
simplest cameras [130]) in computer vision applications, which describes the mathematical
relationship of the projection of points in 3D space on to a 2D image plane [131]. Figure 6
visualizes the camera pinhole model, which consists of a closed box with a small opening
(pinhole) on the front side through which the light rays from a target enters and produces
an image on the opposing camera wall (image plane) [132].

Figure 6. A graphical representation of the pinhole camera. The pinhole (aperture) restraints the
light rays from the target from entering the pinhole; hence, affecting the brightness of the captured
image (during image formation). A large pinhole (a wide opening) will result in a brighter image
but is less clear due to blurriness on both background and foreground. Figure redrawn based on
depictions in [132,133].

From a mathematical perspective (Figure 7), the model involves a 3D camera coordi-
nate system and a 2D image coordinate system to calibrate the camera using a perspective
transformation method [134,135]. The calibration process involves utilizing the extrinsic
parameters (a 3 × 4 matrix that consists of the rotation and translation [R | t] transfor-
mation) to transform the 3D points in world coordinate space (XW, YW, ZW) into their
corresponding 3D camera coordinates (XC, YC, ZC). In addition, it involves employing the
intrinsic parameters (also referred to as the 3 × 3 intrinsic matrix, K [136]), to transform the
3D camera coordinates into the 2D image coordinates (x, y).
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Figure 7. The pinhole camera model from a mathematical perspective. The optical axis (also referred
to as principal axis) aligns with the Z-axis of the camera coordinate system (ZC), and the intersections
between the image plane and the optical axis is referred to as the principal points (cx, cy). The pinhole
opening serves as the origin (O) of the camera coordinate system (XC, YC, ZC) and the distance
between the pinhole and the image plane is referred to as the focal length (f ). Computer vision
convention uses right-handed system with the z-axis pointing toward the target from the direction of
the pinhole opening, while y-axis pointing downward, and x-axis rightward. Conventionally, from a
viewer’s perspective, the origin (o) of the 2D image coordinate system (x, y) is at the top-left corner
of the image plane with x-axis pointing rightward, and y-axis downward. The (u, v) coordinates
on the image plane refers to the projection of points in pixels. Figure redrawn based on depictions
in [125,134,135].

The perspective transformation method outputs a 4 × 3 camera matrix (P), also re-
ferred to as the projection matrix, which consists of the intrinsic and extrinsic parameters to
transform 3D world coordinate space into the 2D image coordinates. It should be stressed
that the extrinsic calibration parameters in the camera calibration context differ from the
extrinsic calibration process of one or more sensors relative to another sensor. It is known
that the camera matrix does not account for any lens distortion—the ideal pinhole camera
lacking a lens. The general mathematical equation of the perspective method is represented
as [125,134,137,138]:

P = K [R | t ] or P =

 fx s cx
0 fy cy
0 0 1

 r11 r12 r13 t1
r21 r22 r23 t2
r31 r32 r33 t3




Xw
Yw
Zw
1

 (2)

where P is the 4 × 3 camera matrix; [R|t] represents the extrinsic parameters (rotation and
translation) to transform the 3D world points (XW, YW, ZW) into camera coordinates; and
K is the intrinsic matrix of the pinhole camera that consists of the geometry properties of
a camera, such as axis skew (s), optical centers or principal points offset (cx, cy) and focal
lengths (fx, fy). The focal length (f ) of a camera refers to the distance between the pinhole
and the image plane and it determines the projection scale of an image. Hence, a smaller
focal length will result in a smaller image and a larger viewing angle [132]. A detailed
discussion of the projection of 3D world points into a 2D image plane, estimation of camera
lens distortion, and the implementations are beyond the scope of this paper (see [132,133]
for a more comprehensive overview).

Camera calibration (or camera re-sectioning [137]) is the process of determining the
intrinsic and extrinsic parameters that comprise the camera matrix. Camera calibration
is one of the quintessential issues in computer vision and photogrammetry and has re-
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ceived considerable attention over the last number of years. A variety of calibration
techniques, [124–126,133,139–142] to cite a few, have been developed to accommodate
various applications, such as AVs, Unmanned Surface Vehicle (USV) or underwater 3D
reconstructions. Reference [141] classified these techniques into:

• Photogrammetric calibration. This approach uses the known calibration points ob-
served from a calibration object (usually a planar pattern) where the geometry in the
3D world space is known with high precision.

• Self-calibration. This approach utilizes the correspondence between the captured
images from a moving camera in a static scene to estimate the camera intrinsic and
extrinsic parameters.

The well-known Zhang method is one of the most used camera calibration techniques.
It uses a combination of photogrammetric calibration and self-calibration techniques to
estimate the camera matrix. It uses the known calibration points observed from a planar
pattern (Figure 8) from multiple orientations (at least two) and the correspondence between
the calibration points in various positions to estimate the camera matrix. In addition, the
Zhang method for camera calibration does not require the motion information when either
the camera or the planar pattern are moved relative to each other [141].

Figure 8. The most employed patterns for camera calibration. (a) A 7 rows × 10 columns checkerboard pattern. The
calibration uses the interior vertex points of the checkerboard pattern; thus, the checkerboard in (a) will utilize the 6 × 9
interior vertex points (some of which are circled in red) during calibration. (b) A 4 rows × 11 columns asymmetrical circular
grid pattern. The calibration uses the information from circles (or “blobs” in image processing terms) detection to calibrate
the camera. Other planar patterns include symmetrical circular grid and ChArUco patterns (a combination of checkerboard
pattern and ArUco pattern) [128,137,141]. Figures source from OpenCV and modified.

The popular open source “camera_calibration” package in ROS offers several pre-
implemented scripts to calibrate monocular, stereo, and fisheye cameras using the planar
pattern as a calibration target. The calibration result includes the intrinsic matrix of a
distorted image, distortion parameters, rectification matrix (stereo cameras only), cam-
era matrix or projection matrix, and other operational parameters such as binning and
region of interest (ROI). The calibration package was built based on the OpenCV camera
calibration and 3D reconstruction package. Further, the calibration algorithm was imple-
mented based on the well-known Zhang method and the camera calibration toolbox for
MATLAB by Bouguet, J.Y. [128,134].

In general, camera calibration results are no longer applicable if the camera’s zoom
(focal length) has changed. It should be noted that in our experience, radar and LiDAR
sensors are factory intrinsic-calibrated.

3.1.2. Extrinsic Calibration Overview

Extrinsic calibration is a rigid transformation (or Euclidean transformation) that maps
the points from one 3D coordinate system to another, for example, a rigid transformation
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of points from the 3D world or 3D LiDAR coordinate system to the 3D camera coordinate
system. The extrinsic calibration estimates the position and orientation of the sensor rela-
tive to the three orthogonal axes of 3D space (also known as the 6 degrees of freedoms, 6DoF)
with respect to an external frame of reference [119,143]. The calibration process outputs the
extrinsic parameters that consist of the rotation (R) and translation (t) information of the
sensor and is commonly represented in a 3 × 4 matrix, as shown in Equation (2). This sec-
tion aims to provide a comparative overview of existing open-source multi-sensor extrinsic
calibration packages and a summary of algorithms proposed in the literature for extrinsic
calibration of camera, LiDAR, and radar sensors comprising a sensor fusion system.

The studies of extrinsic calibration and the methodologies are well-established in
the literature, see reference [143–151] for example. Though, the extrinsic calibration of
multiple sensors with various physical measurement principles can pose a challenge in
multi-sensor systems. For instance, it is often challenging to match the corresponding
features between camera images (dense data in pixels) and 3D LiDAR or radar point
clouds (sparse depth data without color information) [144]. The target-based extrinsic
calibration approach employs specially designed calibration targets, such as marker-less
planar pattern [51], checkerboard pattern [145], orthogonal and trihedral reflector [51,143,
146,148], circular pattern to calibrate multiple sensor modalities in autonomous systems.
The targetless extrinsic calibration approach leverages the estimated motion by individual
sensors or utilizes the features in the perceiving environment to calibrate the sensors.
However, employing the perceived environment features requires multimodal sensors
to extract the same features within the environment and is sensitive to the calibration
environment [144,149].

A comparative overview of existing extrinsic calibration tools in [146] reported that the
available tools only addressed pairwise calibrations of a maximum of two sensing modali-
ties. For instance, the framework presented in [143] uses a coarse to fine extrinsic calibration
approach to calibrate the RGB camera with a Velodyne LiDAR. The algorithm utilizes a
novel 3D marker with four circular holes to estimate the coarse calibration parameters
and further refine these parameters using the dense search approach to estimate a more
accurate calibration in the small 6DoF calibration parameters subspace. Reference [150]
presented an extrinsic calibration algorithm which utilizes the Planar Surface Point to Plane
and Planar Edge to back-projected Plane geometric constraints to estimate the extrinsic param-
eters of the 3D LiDAR and a stereo camera using a marker-less planar calibration target.
As highlighted in the previous paragraph, each sensing modality has a different physical
measurement principle; thus, sensor setups with more modalities may duplicate the cal-
ibration efforts, especially in mobile robots in which sensors are frequently dismounted
or repositioned. For this reason, reference [145,148] presented a novel calibration method
to extrinsically calibrate all three sensing modalities, namely radar, LiDAR, and camera
with a specially designed calibration target. Table 5 below summarizes the open-source
extrinsic sensor calibration tools, specifically for camera, LiDAR sensor, and radar sensor
extrinsic calibration.
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Table 5. An overview of the available open-source extrinsic sensor calibration tools for multi-sensing modalities, specifically
for LiDAR, radar, stereo camera, and monocular camera. The acronyms of the columns (from left to right) are the referenced
literature (Ref), stereo camera (S), monocular camera (M), LiDAR (L) and Radar (R). The platform and toolbox column
refer to the working environment of the toolbox and a reference link to the open-source calibration toolbox. Further, the
calibration target column summarizes the calibration target used for extrinsic sensor calibration. The symbols Xand
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physical measurement principle; thus, sensor setups with more modalities may duplicate 
the calibration efforts, especially in mobile robots in which sensors are frequently dis-
mounted or repositioned. For this reason, reference [145,148] presented a novel calibration 
method to extrinsically calibrate all three sensing modalities, namely radar, LiDAR, and 
camera with a specially designed calibration target. Table 5 below summarizes the open-
source extrinsic sensor calibration tools, specifically for camera, LiDAR sensor, and radar 
sensor extrinsic calibration. 

Table 5. An overview of the available open-source extrinsic sensor calibration tools for multi-sensing modalities, specifi-
cally for LiDAR, radar, stereo camera, and monocular camera. The acronyms of the columns (from left to right) are the 
referenced literature (Ref), stereo camera (S), monocular camera (M), LiDAR (L) and Radar (R). The platform and toolbox 
column refer to the working environment of the toolbox and a reference link to the open-source calibration toolbox. Fur-
ther, the calibration target column summarizes the calibration target used for extrinsic sensor calibration. The symbols  
and  indicate whether the proposed open-source toolbox can calibrate a particular sensor. The “*” symbol indicates that 
the proposed calibration tool claims to support monocular camera calibration. The “~” symbol indicates that a stereo cam-
era could be calibrated as two separate monocular cameras, but in principle, it is suboptimal. The “-“ symbol indicates 
that the extrinsic calibration tool is not mentioned or openly or freely available to the research community. Based on [145] 
with modification. 
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[159] ~    ROS [160] Planar checkerboard pattern.  
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tag (QR-code like pattern). 3 The extrinsic calibration tool is an enhancement version of the previous work from [161]. 4 
ArUco marker is a synthetic 2D square marker with a wide black border and an inner binary matrix. 
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[51], checkerboard pattern [145], orthogonal and trihedral reflector [51,143,146,148], circu-
lar pattern to calibrate multiple sensor modalities in autonomous systems. The targetless 
extrinsic calibration approach leverages the estimated motion by individual sensors or 
utilizes the features in the perceiving environment to calibrate the sensors. However, em-
ploying the perceived environment features requires multimodal sensors to extract the 
same features within the environment and is sensitive to the calibration environment 
[144,149]. 

A comparative overview of existing extrinsic calibration tools in [146] reported that 
the available tools only addressed pairwise calibrations of a maximum of two sensing 
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calibration approach to calibrate the RGB camera with a Velodyne LiDAR. The algorithm 
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rameters and further refine these parameters using the dense search approach to estimate 
a more accurate calibration in the small 6DoF calibration parameters subspace. Reference 
[150] presented an extrinsic calibration algorithm which utilizes the Planar Surface Point to 
Plane and Planar Edge to back-projected Plane geometric constraints to estimate the extrinsic 
parameters of the 3D LiDAR and a stereo camera using a marker-less planar calibration 
target. As highlighted in the previous paragraph, each sensing modality has a different 
physical measurement principle; thus, sensor setups with more modalities may duplicate 
the calibration efforts, especially in mobile robots in which sensors are frequently dis-
mounted or repositioned. For this reason, reference [145,148] presented a novel calibration 
method to extrinsically calibrate all three sensing modalities, namely radar, LiDAR, and 
camera with a specially designed calibration target. Table 5 below summarizes the open-
source extrinsic sensor calibration tools, specifically for camera, LiDAR sensor, and radar 
sensor extrinsic calibration. 
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the proposed calibration tool claims to support monocular camera calibration. The “~” symbol indicates that a stereo cam-
era could be calibrated as two separate monocular cameras, but in principle, it is suboptimal. The “-“ symbol indicates 
that the extrinsic calibration tool is not mentioned or openly or freely available to the research community. Based on [145] 
with modification. 
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tag (QR-code like pattern). 3 The extrinsic calibration tool is an enhancement version of the previous work from [161]. 4 
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[51], checkerboard pattern [145], orthogonal and trihedral reflector [51,143,146,148], circu-
lar pattern to calibrate multiple sensor modalities in autonomous systems. The targetless 
extrinsic calibration approach leverages the estimated motion by individual sensors or 
utilizes the features in the perceiving environment to calibrate the sensors. However, em-
ploying the perceived environment features requires multimodal sensors to extract the 
same features within the environment and is sensitive to the calibration environment 
[144,149]. 

A comparative overview of existing extrinsic calibration tools in [146] reported that 
the available tools only addressed pairwise calibrations of a maximum of two sensing 
modalities. For instance, the framework presented in [143] uses a coarse to fine extrinsic 
calibration approach to calibrate the RGB camera with a Velodyne LiDAR. The algorithm 
utilizes a novel 3D marker with four circular holes to estimate the coarse calibration pa-
rameters and further refine these parameters using the dense search approach to estimate 
a more accurate calibration in the small 6DoF calibration parameters subspace. Reference 
[150] presented an extrinsic calibration algorithm which utilizes the Planar Surface Point to 
Plane and Planar Edge to back-projected Plane geometric constraints to estimate the extrinsic 
parameters of the 3D LiDAR and a stereo camera using a marker-less planar calibration 
target. As highlighted in the previous paragraph, each sensing modality has a different 
physical measurement principle; thus, sensor setups with more modalities may duplicate 
the calibration efforts, especially in mobile robots in which sensors are frequently dis-
mounted or repositioned. For this reason, reference [145,148] presented a novel calibration 
method to extrinsically calibrate all three sensing modalities, namely radar, LiDAR, and 
camera with a specially designed calibration target. Table 5 below summarizes the open-
source extrinsic sensor calibration tools, specifically for camera, LiDAR sensor, and radar 
sensor extrinsic calibration. 

Table 5. An overview of the available open-source extrinsic sensor calibration tools for multi-sensing modalities, specifi-
cally for LiDAR, radar, stereo camera, and monocular camera. The acronyms of the columns (from left to right) are the 
referenced literature (Ref), stereo camera (S), monocular camera (M), LiDAR (L) and Radar (R). The platform and toolbox 
column refer to the working environment of the toolbox and a reference link to the open-source calibration toolbox. Fur-
ther, the calibration target column summarizes the calibration target used for extrinsic sensor calibration. The symbols  
and  indicate whether the proposed open-source toolbox can calibrate a particular sensor. The “*” symbol indicates that 
the proposed calibration tool claims to support monocular camera calibration. The “~” symbol indicates that a stereo cam-
era could be calibrated as two separate monocular cameras, but in principle, it is suboptimal. The “-“ symbol indicates 
that the extrinsic calibration tool is not mentioned or openly or freely available to the research community. Based on [145] 
with modification. 
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1 The toolbox binds with the commonly employed ROS and includes a monocular camera detector for extrinsic calibration, 
but reported results relate to stereo camera only [145]. 2 LiDARTag (point clouds) and AprilTag (images) is a visual fiducial 
tag (QR-code like pattern). 3 The extrinsic calibration tool is an enhancement version of the previous work from [161]. 4 
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[51], checkerboard pattern [145], orthogonal and trihedral reflector [51,143,146,148], circu-
lar pattern to calibrate multiple sensor modalities in autonomous systems. The targetless 
extrinsic calibration approach leverages the estimated motion by individual sensors or 
utilizes the features in the perceiving environment to calibrate the sensors. However, em-
ploying the perceived environment features requires multimodal sensors to extract the 
same features within the environment and is sensitive to the calibration environment 
[144,149]. 

A comparative overview of existing extrinsic calibration tools in [146] reported that 
the available tools only addressed pairwise calibrations of a maximum of two sensing 
modalities. For instance, the framework presented in [143] uses a coarse to fine extrinsic 
calibration approach to calibrate the RGB camera with a Velodyne LiDAR. The algorithm 
utilizes a novel 3D marker with four circular holes to estimate the coarse calibration pa-
rameters and further refine these parameters using the dense search approach to estimate 
a more accurate calibration in the small 6DoF calibration parameters subspace. Reference 
[150] presented an extrinsic calibration algorithm which utilizes the Planar Surface Point to 
Plane and Planar Edge to back-projected Plane geometric constraints to estimate the extrinsic 
parameters of the 3D LiDAR and a stereo camera using a marker-less planar calibration 
target. As highlighted in the previous paragraph, each sensing modality has a different 
physical measurement principle; thus, sensor setups with more modalities may duplicate 
the calibration efforts, especially in mobile robots in which sensors are frequently dis-
mounted or repositioned. For this reason, reference [145,148] presented a novel calibration 
method to extrinsically calibrate all three sensing modalities, namely radar, LiDAR, and 
camera with a specially designed calibration target. Table 5 below summarizes the open-
source extrinsic sensor calibration tools, specifically for camera, LiDAR sensor, and radar 
sensor extrinsic calibration. 

Table 5. An overview of the available open-source extrinsic sensor calibration tools for multi-sensing modalities, specifi-
cally for LiDAR, radar, stereo camera, and monocular camera. The acronyms of the columns (from left to right) are the 
referenced literature (Ref), stereo camera (S), monocular camera (M), LiDAR (L) and Radar (R). The platform and toolbox 
column refer to the working environment of the toolbox and a reference link to the open-source calibration toolbox. Fur-
ther, the calibration target column summarizes the calibration target used for extrinsic sensor calibration. The symbols  
and  indicate whether the proposed open-source toolbox can calibrate a particular sensor. The “*” symbol indicates that 
the proposed calibration tool claims to support monocular camera calibration. The “~” symbol indicates that a stereo cam-
era could be calibrated as two separate monocular cameras, but in principle, it is suboptimal. The “-“ symbol indicates 
that the extrinsic calibration tool is not mentioned or openly or freely available to the research community. Based on [145] 
with modification. 
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1 The toolbox binds with the commonly employed ROS and includes a monocular camera detector for extrinsic calibration, 
but reported results relate to stereo camera only [145]. 2 LiDARTag (point clouds) and AprilTag (images) is a visual fiducial 
tag (QR-code like pattern). 3 The extrinsic calibration tool is an enhancement version of the previous work from [161]. 4 
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[51], checkerboard pattern [145], orthogonal and trihedral reflector [51,143,146,148], circu-
lar pattern to calibrate multiple sensor modalities in autonomous systems. The targetless 
extrinsic calibration approach leverages the estimated motion by individual sensors or 
utilizes the features in the perceiving environment to calibrate the sensors. However, em-
ploying the perceived environment features requires multimodal sensors to extract the 
same features within the environment and is sensitive to the calibration environment 
[144,149]. 

A comparative overview of existing extrinsic calibration tools in [146] reported that 
the available tools only addressed pairwise calibrations of a maximum of two sensing 
modalities. For instance, the framework presented in [143] uses a coarse to fine extrinsic 
calibration approach to calibrate the RGB camera with a Velodyne LiDAR. The algorithm 
utilizes a novel 3D marker with four circular holes to estimate the coarse calibration pa-
rameters and further refine these parameters using the dense search approach to estimate 
a more accurate calibration in the small 6DoF calibration parameters subspace. Reference 
[150] presented an extrinsic calibration algorithm which utilizes the Planar Surface Point to 
Plane and Planar Edge to back-projected Plane geometric constraints to estimate the extrinsic 
parameters of the 3D LiDAR and a stereo camera using a marker-less planar calibration 
target. As highlighted in the previous paragraph, each sensing modality has a different 
physical measurement principle; thus, sensor setups with more modalities may duplicate 
the calibration efforts, especially in mobile robots in which sensors are frequently dis-
mounted or repositioned. For this reason, reference [145,148] presented a novel calibration 
method to extrinsically calibrate all three sensing modalities, namely radar, LiDAR, and 
camera with a specially designed calibration target. Table 5 below summarizes the open-
source extrinsic sensor calibration tools, specifically for camera, LiDAR sensor, and radar 
sensor extrinsic calibration. 

Table 5. An overview of the available open-source extrinsic sensor calibration tools for multi-sensing modalities, specifi-
cally for LiDAR, radar, stereo camera, and monocular camera. The acronyms of the columns (from left to right) are the 
referenced literature (Ref), stereo camera (S), monocular camera (M), LiDAR (L) and Radar (R). The platform and toolbox 
column refer to the working environment of the toolbox and a reference link to the open-source calibration toolbox. Fur-
ther, the calibration target column summarizes the calibration target used for extrinsic sensor calibration. The symbols  
and  indicate whether the proposed open-source toolbox can calibrate a particular sensor. The “*” symbol indicates that 
the proposed calibration tool claims to support monocular camera calibration. The “~” symbol indicates that a stereo cam-
era could be calibrated as two separate monocular cameras, but in principle, it is suboptimal. The “-“ symbol indicates 
that the extrinsic calibration tool is not mentioned or openly or freely available to the research community. Based on [145] 
with modification. 
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1 The toolbox binds with the commonly employed ROS and includes a monocular camera detector for extrinsic calibration, 
but reported results relate to stereo camera only [145]. 2 LiDARTag (point clouds) and AprilTag (images) is a visual fiducial 
tag (QR-code like pattern). 3 The extrinsic calibration tool is an enhancement version of the previous work from [161]. 4 
ArUco marker is a synthetic 2D square marker with a wide black border and an inner binary matrix. 

ROS [158] 3D marker with four circular holes pattern.

[159] ~ X X

Sensors 2021, 21, x FOR PEER REVIEW 18 of 37 
 

 
Sensors 2021, 21, x. https://doi.org/10.3390/xxxxx www.mdpi.com/journal/sensors 

[51], checkerboard pattern [145], orthogonal and trihedral reflector [51,143,146,148], circu-
lar pattern to calibrate multiple sensor modalities in autonomous systems. The targetless 
extrinsic calibration approach leverages the estimated motion by individual sensors or 
utilizes the features in the perceiving environment to calibrate the sensors. However, em-
ploying the perceived environment features requires multimodal sensors to extract the 
same features within the environment and is sensitive to the calibration environment 
[144,149]. 

A comparative overview of existing extrinsic calibration tools in [146] reported that 
the available tools only addressed pairwise calibrations of a maximum of two sensing 
modalities. For instance, the framework presented in [143] uses a coarse to fine extrinsic 
calibration approach to calibrate the RGB camera with a Velodyne LiDAR. The algorithm 
utilizes a novel 3D marker with four circular holes to estimate the coarse calibration pa-
rameters and further refine these parameters using the dense search approach to estimate 
a more accurate calibration in the small 6DoF calibration parameters subspace. Reference 
[150] presented an extrinsic calibration algorithm which utilizes the Planar Surface Point to 
Plane and Planar Edge to back-projected Plane geometric constraints to estimate the extrinsic 
parameters of the 3D LiDAR and a stereo camera using a marker-less planar calibration 
target. As highlighted in the previous paragraph, each sensing modality has a different 
physical measurement principle; thus, sensor setups with more modalities may duplicate 
the calibration efforts, especially in mobile robots in which sensors are frequently dis-
mounted or repositioned. For this reason, reference [145,148] presented a novel calibration 
method to extrinsically calibrate all three sensing modalities, namely radar, LiDAR, and 
camera with a specially designed calibration target. Table 5 below summarizes the open-
source extrinsic sensor calibration tools, specifically for camera, LiDAR sensor, and radar 
sensor extrinsic calibration. 

Table 5. An overview of the available open-source extrinsic sensor calibration tools for multi-sensing modalities, specifi-
cally for LiDAR, radar, stereo camera, and monocular camera. The acronyms of the columns (from left to right) are the 
referenced literature (Ref), stereo camera (S), monocular camera (M), LiDAR (L) and Radar (R). The platform and toolbox 
column refer to the working environment of the toolbox and a reference link to the open-source calibration toolbox. Fur-
ther, the calibration target column summarizes the calibration target used for extrinsic sensor calibration. The symbols  
and  indicate whether the proposed open-source toolbox can calibrate a particular sensor. The “*” symbol indicates that 
the proposed calibration tool claims to support monocular camera calibration. The “~” symbol indicates that a stereo cam-
era could be calibrated as two separate monocular cameras, but in principle, it is suboptimal. The “-“ symbol indicates 
that the extrinsic calibration tool is not mentioned or openly or freely available to the research community. Based on [145] 
with modification. 

Ref S M L R Platform Toolbox Calibration Target 

[145] 1  *   ROS [146] 
Styrofoam planar with four circular holes and a copper plate 

trihedral corner reflector. 

[148] ~    - - 
Checkerboard triangular pattern with trihedral corner retrore-

flector. 
[152]     MATLAB [153] LiDARTag 2 and AprilTag 2. 

[154] 3  *   ROS [155] 
Planar with four circular holes and four ArUco markers 4 

around the planar corners. 

[156]  *   ROS [157] 
ArUco marker on one corner of the hollow rectangular planar 

cardboard marker. 
[143] ~    ROS [158] 3D marker with four circular holes pattern. 
[159] ~    ROS [160] Planar checkerboard pattern.  

1 The toolbox binds with the commonly employed ROS and includes a monocular camera detector for extrinsic calibration, 
but reported results relate to stereo camera only [145]. 2 LiDARTag (point clouds) and AprilTag (images) is a visual fiducial 
tag (QR-code like pattern). 3 The extrinsic calibration tool is an enhancement version of the previous work from [161]. 4 
ArUco marker is a synthetic 2D square marker with a wide black border and an inner binary matrix. 

ROS [160] Planar checkerboard pattern.
1 The toolbox binds with the commonly employed ROS and includes a monocular camera detector for extrinsic calibration, but reported
results relate to stereo camera only [145]. 2 LiDARTag (point clouds) and AprilTag (images) is a visual fiducial tag (QR-code like pattern).
3 The extrinsic calibration tool is an enhancement version of the previous work from [161]. 4 ArUco marker is a synthetic 2D square marker
with a wide black border and an inner binary matrix.

Reference [145] proposed a novel extrinsic calibration tool that utilizes a target-based
calibration approach and a joint extrinsic calibration method to facilitate the extrinsic
calibration of three sensing modalities. The proposed calibration target design consists
of four circular, tapered holes centrally located within a large rectangular board and
a metallic trihedral corner reflector located between the four circles at the rear of the
board (Figure 9). The corner reflector provides a strong radar reflection as the Styrofoam
board is largely transparent to electro-magnetic radiation. Additionally, the circular edges
provide an accurate and robust detection for both LiDAR (especially when intersecting with
fewer LiDAR beams) and camera. The authors of this system established three possible
optimization configurations for joint extrinsic calibration, namely:

• Pose and Structure Estimation (PSE). It estimates the latent variables of the true board
locations and optimizes the transformations to a precise estimate of all calibration
target poses employing the estimated latent variables.

• Minimally Connected Pose Estimation (MCPE). It relies on a reference sensor and
estimates the multi-sensing modalities transformations to a single reference frame.

• Fully Connected Pose Estimation (FCPE). It estimates the transformations between all
sensing modalities “jointly” and enforces a loop closure constraint to ensure consistency.



Sensors 2021, 21, 2140 19 of 37

Figure 9. The proposed calibration target design to jointly extrinsic calibrate multiple sensors (radar,
camera, LiDAR). It consists of four circulars, tapered holes centrally located within a large rectangular
board at the (a) front of the board, and a metallic trihedral corner reflector (circled in orange) located
between the four circles at the (b) rear of the board. Figure source from [146,147] and modified.

The proposed calibration tool [146] has bindings with the commonly employed ROS
middleware and provides the joint optimization configurations to estimate the sensor
poses from simultaneous calibration board detection in multiple locations. It outputs a
transformation matrix (P) that can be used to transform the detections from the source
reference frame to target reference frame and the poses of the sensor with respect to the
parent link for visualization (in ROS). They compared the PSE, MCPE, and FCPE joint
optimization results based on multiple variables, such as the required number of calibration
board locations and the MCPE reference sensor selections. The results demonstrate that
the FCPE joint optimization provided better performance than both MCPE and PSE when
employing more than five board locations. A detailed discussion of each joint optimization
configuration and its algorithm, and the geometry of the calibration board are beyond the
scope of this paper (see [146,147] for a more comprehensive overview).

The current authors utilized and reviewed the calibration tool from reference [146]
to extrinsic calibrate the Velodyne VLP-32C LiDAR sensor, SmartMicro UMRR-96 T-153
radar sensor, and Falcon-IQ EZIP-T030(E) Internet Protocol (IP) industrial zoom monocular
camera in an initial multi-sensor setup [22]. Observations and recommendations arising
from this work include:

• Ensure that the edges of the circles have sufficient contrast with the background,
specifically when calibrating the cameras outdoors as was necessary in our case.
Though, it is recommended in [146] that calibration of sensors be done indoors to
avoid strong wind which may overturn the calibration board.

• Ensure that the camera lenses are protected from rain droplets to reduce noise when
calibrating the sensors outdoors, particularly during rainy and blustery weather
conditions.

• Additional or modified scripts may be required to match the ROS sensor message
types of the board detector nodes depending on the employed ROS sensor drivers.
For instance, a Continental ARS430 radar was utilized in [146] and exploited the
AutonomouStuff-provided ROS messages which output the detections in an Au-
tonomouStuff sensor message array format [101]. However, the ROS driver from
SmartMicro radars outputs the detections in a ROS sensor message type of Point-
Cloud2 format [113]. Table 6 summarizes the sensor message types for each board
detector node (as input requirements) of the extrinsic calibration tool.

• Ensure that the edges of the four circles are detected (covered) with sufficient points
within the LiDAR point cloud. We examined and compared the elevation angles of
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the Velodyne VLP-32C with the Velodyne HDL-64E ([162], utilized in [146]). The
results indicated that the vertical laser points of HDL-64E are distributed uniformly
between −24.9◦ to 2◦. In comparison, the vertical laser points of Velodyne VLP-32C
are concentrated in the middle of the optical center between −25◦ to 15◦, as shown in
Figure 10. Hence, the position and orientation of the lidar relative to the calibration
board may have a significant effect on reported location of circles detected within the
lidar data.

• It is suggested in [146] to position the calibration board in a spacious area and capture
at least ten calibration board locations in the FoV of all sensors. However, it is not
recommended to hold the calibration board, which can affect the detections of the
corner reflector (by the radar sensor).

• The stereo camera employed in [146] was constructed from two monocular cameras;
namely IDS Imaging UI-3060CP Rev. 2; and exploited the “stereo_image_proc” module
in ROS [39] to create the disparity image of the perceived surroundings.

Figure 10. A graphical representation of the vertical laser points of the (a) Velodyne HDL-64E and the
(b) Velodyne VLP-32C. Reference [145] utilizes the Velodyne HDL-64E which consists of 64 channels
(layers), and the vertical laser beams are distributed uniformly across the vertical FoV between−24.9◦

to 2◦. The initial sensor configurations employed by the current authors [22] employs the Velodyne
VLP-32C which consists of 32 channels (or layers) where the vertical laser beams are concentrated in
the middle of the optical center across the vertical FoV between −25◦ to 15◦. Based on sensor user
manual [68].

Table 6. An overview of the ROS topic message types as input requirements for each calibration board detector node, namely
monocular camera detector (mono_detector), LiDAR detector (lidar_detector), stereo camera detector (stereo_detector),
and radar detector (radar_detector). Based on reference [145,152]. A detailed overview of the ROS sensor message types is
available in reference [163].

Detector Subscribed Topic Name ROS Sensor Message Types

LiDAR /velodyne_points sensors_msgs::PointCloud2

Stereo

/ueye/left/image_rect_color
/ueye/left/camera_info

/ueye/right/camera_info
/ueye/disparity

sensor_msgs::Image
sensor_msgs::CameraInfo
sensor_msgs::CameraInfo

stereo_msgs::DisparityImage

Monocular /ueye/left/image_rect_color
/ueye/left/camera_info

sensor_msgs::Image
sensor_msgs::CameraInfo

Radar /radar_converter/detections radar_msgs::RadarDetectionArray 1

1 AutonomouStuff, an automotive platform that offers solutions for developing and deploying AD applications, who provide the generic
radar output messages that are not currently available in the commonly employed ROS sensor messages module (deprecated in latest
version of ROS1).
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Based on this revision of extrinsic calibration tools available to the research commu-
nity, it is noticed that most of them addressed only pairwise calibrations of two sensing
modalities, with the notable exception of extrinsic calibration tool described in [145] which
facilitates joint extrinsic calibration of more than two sensing modalities (radar, camera, and
LiDAR) and has bindings with ROS middleware. Other open source extrinsic calibration
tools include Kalibr that provides multiple camera calibration or camera-IMU extrinsic
calibration and Calirad, that facilitates the extrinsic calibration and temporal calibration of
the radar, camera, and LiDAR sensors. It is emphasized again that individual sensors are
intrinsic calibrated before implementing extrinsic calibration.

In contrast to target-based extrinsic calibration methods, targetless extrinsic calibration
approach methods estimate motion of the sensors or features in the perceiving surround-
ings, such as road markings to determine extrinsic calibration of the sensors.

3.1.3. Temporal Calibration Overview

Temporal calibration is the process of determining the synchronicity (or relative
time delay) of multiple sensor data streams with potentially different frequencies and
latencies in a multi-sensor setup [119]. For instance, the camera usually captures images at
30 FPS or less, while a LiDAR sensor may scan at a rate as low as 5 Hz. One approach of
synchronizing the sensor data is to establish the closest match between the message header
timestamps obtained at endpoints (computer). However, in principle, synchronization
based on message timestamps is suboptimal because sensors may have unknown latencies,
such as communication transfer delays or pre-processing delays in the sensor circuitry [118].
These unknown latencies may not be determinable directly and will likely differ from one
sensor to another. The approximate time synchronizer method in the ROS message filter
module [164] matches the messages from each sensing modality (or topic in ROS term)
based on their header timestamps as a means of time synchronization using an adaptive
algorithm. The adaptive algorithm first determines the latest message among the heads
of the topic-specific queues as a reference point, and approximately synchronize these
messages based on the estimated reference point and within a given threshold.

We utilized the approximate time synchronizer method in [164] to synchronize the
sensor data in an initial multi-sensor setup [22]. The results demonstrated that an average
of 86.6 per cent of sensor messages with varying frequency of operation were synchronized
within a threshold of 50 milliseconds. Further, the most prolonged unsynchronized periods
between the camera and LiDAR were found to be 850 milliseconds; between LiDAR and radar,
it was 870 milliseconds; and between camera and radar, it was 880 milliseconds. Another
synchronization method based on messages header timestamps in ROS is the exact time
synchronizer [164], which requires the incoming messages to have an exact timestamp for
synchronization. A comprehensive overview of the adaptive algorithm employed in the
approximate time synchronizer method and the usage of the methods are beyond the scope
of this paper (see [164] for a more detailed overview).

Temporal calibration is often overlooked and is crucial in multi-sensor fusion applica-
tions, such as self-driving vehicles which must perform complex sensing and estimation
tasks in real-time, such as state estimations and obstacle detections [118]. There are two
approaches to temporally calibrate the sensors: external synchronization that utilizes external
hardware for time synchronization and internal synchronization, exploiting the attaching
timestamps on each sensor measurement for synchronization [165,166]. The external syn-
chronization approach uses a central hardware clock as an external source of time or a
reference clock to temporal-synchronize the sensors and is precisely relatable to a real-time
standard such as Universal Time Coordinated (UTC) standard time. For instance, refer-
ence [167] utilizes an external Novatel SMART6-L Global Positioning System (GPS) as a
reference clock and exploits the GPS timestamps information to synchronize the system
(or computer) clock. Conversely, the internal synchronization approach synchronizes the
sensors based on the associated timestamps without the external source of time to obtain a
consistent view of time across all sensor networks. Reference [168] proposes the passive
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synchronization algorithms to determine the time offsets when the device and sensor clocks
drift, and can significantly reduce the synchronization error, even in the presence of an
unknown latency and for sensors with significant clock errors.

A complete sensor-to-sensor calibration, also known as the spatial-temporal calibra-
tion, involves extrinsic calibration of the sensors to a unified coordinate space and temporal
calibration to estimate the relative time delays between sensor data streams. Reference [169]
presents a spatial-temporal calibration method that uses the estimated continuous-time
moving object trajectories from Gaussian Processes (GPs) and a target-based approach
to calibrate the sensors relative to one another. It utilizes estimated object velocities to
estimate relative time delays between sensors. These [169] experiments demonstrated that
the proposed algorithm could reliably determine the time delays up to a fraction of the
fastest sensor sampling rate. The implementation of the method proposed in [169] has been
open sourced in [170] and it has bindings with ROS middleware. Additionally, it applies
to any multi-sensor setup once the employed multi-sensor can determine the 3D position
of a moving “target”. An insightful discussion of the employed GP algorithms is beyond
the scope (see [169–171] for a more comprehensive overview). Further, through personal
communication, the target detections become unstable from six meters or more depending
on the tracker size. The materials from which the calibration tracker is constructed include
(Figure 11) [172]:

• Styrofoam or cardboard to fabricate the triangular planar pattern,
• Printed AprilTag marker with a size of approximately 17 cm in length, located at the

front of the triangular planar and,
• Cardboards to assemble a trihedral corner reflector where the three inner sides of the

reflector are overlaid with aluminum foil and attached at the rear of the triangular pla-
nar.

Figure 11. The proposed triangular calibration target design to spatial temporal calibrates the sensors
(camera, radar, LiDAR). (a) Front view of the calibration board consists of a printed AprilTag marker
with a size of approximately 17 cm in length. (b) The trihedral corner reflector is attached at the rear of
the triangular board in which the inner sides are overlaid with aluminum foil. The calibration target
in figure is constructed based on and reference [169–171] and through personal communication [172].

Other spatial-temporal calibration methods include employing a target-based ap-
proach and the spatial-temporal relationships of the target measurements (positions) to
estimate the time delays and the sensors extrinsic parameters [173]. In [174], the PolySync
bus (external hardware) was employed to publish a synchronized timestamp based on the
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IEEE 1588 Precision Time Protocol (PTP), to all computers as a means of time synchroniza-
tion during the data acquisition process.

To summarize, estimating the time delays between multiple sensors operating at
different frequencies is vital, especially in time-critical autonomous systems, to precisely
perform autonomous tasks in real-time, such as obstacles detection, and vehicle state
estimation, and ultimately to prevent collisions.

3.2. Sensor Fusion

Sensor fusion is an essential aspect of most autonomous systems, e.g., on-road self-
driving cars and autonomous Unmanned Ground Vehicles (UGV). It integrates the acquired
data from multiple sensing modalities to reduce the number of detection uncertainties
and overcome the shortcomings of individual sensors operating independently. Moreover,
sensor fusion helps to develop a consistent model that can perceive the surroundings
accurately in various environmental conditions [175]. For instance, camera and radar
fusion may provide high-resolution images and the relative velocities of the detected
obstacles in the perceived scene. Table 7 below qualitatively summarizes the strengths
and weaknesses of the commonly utilized perception-based sensors in AVs based on
their technical characteristics and other external factors, such as weather and illumination
conditions.

Table 7. A comparison of the commonly employed sensors in self-driving cars; camera, LiDAR, and
radar, based on technical characteristics and other external factors. The “X” symbol indicates that
the sensor operates competently under the specific factor. The “~” symbol indicates that the sensor
performs reasonably well under the specific factor. The “
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Plane and Planar Edge to back-projected Plane geometric constraints to estimate the extrinsic 
parameters of the 3D LiDAR and a stereo camera using a marker-less planar calibration 
target. As highlighted in the previous paragraph, each sensing modality has a different 
physical measurement principle; thus, sensor setups with more modalities may duplicate 
the calibration efforts, especially in mobile robots in which sensors are frequently dis-
mounted or repositioned. For this reason, reference [145,148] presented a novel calibration 
method to extrinsically calibrate all three sensing modalities, namely radar, LiDAR, and 
camera with a specially designed calibration target. Table 5 below summarizes the open-
source extrinsic sensor calibration tools, specifically for camera, LiDAR sensor, and radar 
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and  indicate whether the proposed open-source toolbox can calibrate a particular sensor. The “*” symbol indicates that 
the proposed calibration tool claims to support monocular camera calibration. The “~” symbol indicates that a stereo cam-
era could be calibrated as two separate monocular cameras, but in principle, it is suboptimal. The “-“ symbol indicates 
that the extrinsic calibration tool is not mentioned or openly or freely available to the research community. Based on [145] 
with modification. 

Ref S M L R Platform Toolbox Calibration Target 

[145] 1  *   ROS [146] 
Styrofoam planar with four circular holes and a copper plate 

trihedral corner reflector. 

[148] ~    - - 
Checkerboard triangular pattern with trihedral corner retrore-

flector. 
[152]     MATLAB [153] LiDARTag 2 and AprilTag 2. 

[154] 3  *   ROS [155] 
Planar with four circular holes and four ArUco markers 4 

around the planar corners. 

[156]  *   ROS [157] 
ArUco marker on one corner of the hollow rectangular planar 

cardboard marker. 
[143] ~    ROS [158] 3D marker with four circular holes pattern. 
[159] ~    ROS [160] Planar checkerboard pattern.  

1 The toolbox binds with the commonly employed ROS and includes a monocular camera detector for extrinsic calibration, 
but reported results relate to stereo camera only [145]. 2 LiDARTag (point clouds) and AprilTag (images) is a visual fiducial 
tag (QR-code like pattern). 3 The extrinsic calibration tool is an enhancement version of the previous work from [161]. 4 
ArUco marker is a synthetic 2D square marker with a wide black border and an inner binary matrix. 
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[51], checkerboard pattern [145], orthogonal and trihedral reflector [51,143,146,148], circu-
lar pattern to calibrate multiple sensor modalities in autonomous systems. The targetless 
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[51], checkerboard pattern [145], orthogonal and trihedral reflector [51,143,146,148], circu-
lar pattern to calibrate multiple sensor modalities in autonomous systems. The targetless 
extrinsic calibration approach leverages the estimated motion by individual sensors or 
utilizes the features in the perceiving environment to calibrate the sensors. However, em-
ploying the perceived environment features requires multimodal sensors to extract the 
same features within the environment and is sensitive to the calibration environment 
[144,149]. 

A comparative overview of existing extrinsic calibration tools in [146] reported that 
the available tools only addressed pairwise calibrations of a maximum of two sensing 
modalities. For instance, the framework presented in [143] uses a coarse to fine extrinsic 
calibration approach to calibrate the RGB camera with a Velodyne LiDAR. The algorithm 
utilizes a novel 3D marker with four circular holes to estimate the coarse calibration pa-
rameters and further refine these parameters using the dense search approach to estimate 
a more accurate calibration in the small 6DoF calibration parameters subspace. Reference 
[150] presented an extrinsic calibration algorithm which utilizes the Planar Surface Point to 
Plane and Planar Edge to back-projected Plane geometric constraints to estimate the extrinsic 
parameters of the 3D LiDAR and a stereo camera using a marker-less planar calibration 
target. As highlighted in the previous paragraph, each sensing modality has a different 
physical measurement principle; thus, sensor setups with more modalities may duplicate 
the calibration efforts, especially in mobile robots in which sensors are frequently dis-
mounted or repositioned. For this reason, reference [145,148] presented a novel calibration 
method to extrinsically calibrate all three sensing modalities, namely radar, LiDAR, and 
camera with a specially designed calibration target. Table 5 below summarizes the open-
source extrinsic sensor calibration tools, specifically for camera, LiDAR sensor, and radar 
sensor extrinsic calibration. 

Table 5. An overview of the available open-source extrinsic sensor calibration tools for multi-sensing modalities, specifi-
cally for LiDAR, radar, stereo camera, and monocular camera. The acronyms of the columns (from left to right) are the 
referenced literature (Ref), stereo camera (S), monocular camera (M), LiDAR (L) and Radar (R). The platform and toolbox 
column refer to the working environment of the toolbox and a reference link to the open-source calibration toolbox. Fur-
ther, the calibration target column summarizes the calibration target used for extrinsic sensor calibration. The symbols  
and  indicate whether the proposed open-source toolbox can calibrate a particular sensor. The “*” symbol indicates that 
the proposed calibration tool claims to support monocular camera calibration. The “~” symbol indicates that a stereo cam-
era could be calibrated as two separate monocular cameras, but in principle, it is suboptimal. The “-“ symbol indicates 
that the extrinsic calibration tool is not mentioned or openly or freely available to the research community. Based on [145] 
with modification. 
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[51], checkerboard pattern [145], orthogonal and trihedral reflector [51,143,146,148], circu-
lar pattern to calibrate multiple sensor modalities in autonomous systems. The targetless 
extrinsic calibration approach leverages the estimated motion by individual sensors or 
utilizes the features in the perceiving environment to calibrate the sensors. However, em-
ploying the perceived environment features requires multimodal sensors to extract the 
same features within the environment and is sensitive to the calibration environment 
[144,149]. 

A comparative overview of existing extrinsic calibration tools in [146] reported that 
the available tools only addressed pairwise calibrations of a maximum of two sensing 
modalities. For instance, the framework presented in [143] uses a coarse to fine extrinsic 
calibration approach to calibrate the RGB camera with a Velodyne LiDAR. The algorithm 
utilizes a novel 3D marker with four circular holes to estimate the coarse calibration pa-
rameters and further refine these parameters using the dense search approach to estimate 
a more accurate calibration in the small 6DoF calibration parameters subspace. Reference 
[150] presented an extrinsic calibration algorithm which utilizes the Planar Surface Point to 
Plane and Planar Edge to back-projected Plane geometric constraints to estimate the extrinsic 
parameters of the 3D LiDAR and a stereo camera using a marker-less planar calibration 
target. As highlighted in the previous paragraph, each sensing modality has a different 
physical measurement principle; thus, sensor setups with more modalities may duplicate 
the calibration efforts, especially in mobile robots in which sensors are frequently dis-
mounted or repositioned. For this reason, reference [145,148] presented a novel calibration 
method to extrinsically calibrate all three sensing modalities, namely radar, LiDAR, and 
camera with a specially designed calibration target. Table 5 below summarizes the open-
source extrinsic sensor calibration tools, specifically for camera, LiDAR sensor, and radar 
sensor extrinsic calibration. 

Table 5. An overview of the available open-source extrinsic sensor calibration tools for multi-sensing modalities, specifi-
cally for LiDAR, radar, stereo camera, and monocular camera. The acronyms of the columns (from left to right) are the 
referenced literature (Ref), stereo camera (S), monocular camera (M), LiDAR (L) and Radar (R). The platform and toolbox 
column refer to the working environment of the toolbox and a reference link to the open-source calibration toolbox. Fur-
ther, the calibration target column summarizes the calibration target used for extrinsic sensor calibration. The symbols  
and  indicate whether the proposed open-source toolbox can calibrate a particular sensor. The “*” symbol indicates that 
the proposed calibration tool claims to support monocular camera calibration. The “~” symbol indicates that a stereo cam-
era could be calibrated as two separate monocular cameras, but in principle, it is suboptimal. The “-“ symbol indicates 
that the extrinsic calibration tool is not mentioned or openly or freely available to the research community. Based on [145] 
with modification. 

Ref S M L R Platform Toolbox Calibration Target 
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1 The toolbox binds with the commonly employed ROS and includes a monocular camera detector for extrinsic calibration, 
but reported results relate to stereo camera only [145]. 2 LiDARTag (point clouds) and AprilTag (images) is a visual fiducial 
tag (QR-code like pattern). 3 The extrinsic calibration tool is an enhancement version of the previous work from [161]. 4 
ArUco marker is a synthetic 2D square marker with a wide black border and an inner binary matrix. 

X X X

Weather Conditions

Sensors 2021, 21, x FOR PEER REVIEW 18 of 37 
 

 
Sensors 2021, 21, x. https://doi.org/10.3390/xxxxx www.mdpi.com/journal/sensors 

[51], checkerboard pattern [145], orthogonal and trihedral reflector [51,143,146,148], circu-
lar pattern to calibrate multiple sensor modalities in autonomous systems. The targetless 
extrinsic calibration approach leverages the estimated motion by individual sensors or 
utilizes the features in the perceiving environment to calibrate the sensors. However, em-
ploying the perceived environment features requires multimodal sensors to extract the 
same features within the environment and is sensitive to the calibration environment 
[144,149]. 

A comparative overview of existing extrinsic calibration tools in [146] reported that 
the available tools only addressed pairwise calibrations of a maximum of two sensing 
modalities. For instance, the framework presented in [143] uses a coarse to fine extrinsic 
calibration approach to calibrate the RGB camera with a Velodyne LiDAR. The algorithm 
utilizes a novel 3D marker with four circular holes to estimate the coarse calibration pa-
rameters and further refine these parameters using the dense search approach to estimate 
a more accurate calibration in the small 6DoF calibration parameters subspace. Reference 
[150] presented an extrinsic calibration algorithm which utilizes the Planar Surface Point to 
Plane and Planar Edge to back-projected Plane geometric constraints to estimate the extrinsic 
parameters of the 3D LiDAR and a stereo camera using a marker-less planar calibration 
target. As highlighted in the previous paragraph, each sensing modality has a different 
physical measurement principle; thus, sensor setups with more modalities may duplicate 
the calibration efforts, especially in mobile robots in which sensors are frequently dis-
mounted or repositioned. For this reason, reference [145,148] presented a novel calibration 
method to extrinsically calibrate all three sensing modalities, namely radar, LiDAR, and 
camera with a specially designed calibration target. Table 5 below summarizes the open-
source extrinsic sensor calibration tools, specifically for camera, LiDAR sensor, and radar 
sensor extrinsic calibration. 

Table 5. An overview of the available open-source extrinsic sensor calibration tools for multi-sensing modalities, specifi-
cally for LiDAR, radar, stereo camera, and monocular camera. The acronyms of the columns (from left to right) are the 
referenced literature (Ref), stereo camera (S), monocular camera (M), LiDAR (L) and Radar (R). The platform and toolbox 
column refer to the working environment of the toolbox and a reference link to the open-source calibration toolbox. Fur-
ther, the calibration target column summarizes the calibration target used for extrinsic sensor calibration. The symbols  
and  indicate whether the proposed open-source toolbox can calibrate a particular sensor. The “*” symbol indicates that 
the proposed calibration tool claims to support monocular camera calibration. The “~” symbol indicates that a stereo cam-
era could be calibrated as two separate monocular cameras, but in principle, it is suboptimal. The “-“ symbol indicates 
that the extrinsic calibration tool is not mentioned or openly or freely available to the research community. Based on [145] 
with modification. 
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1 The toolbox binds with the commonly employed ROS and includes a monocular camera detector for extrinsic calibration, 
but reported results relate to stereo camera only [145]. 2 LiDARTag (point clouds) and AprilTag (images) is a visual fiducial 
tag (QR-code like pattern). 3 The extrinsic calibration tool is an enhancement version of the previous work from [161]. 4 
ArUco marker is a synthetic 2D square marker with a wide black border and an inner binary matrix. 
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The research on multi-sensor fusion systems in AVs for environment perception and
object detection is well-established in the literature [19,21,30,167,176–178]. Presently, three
primary sensor combinations for obstacle detection are prevalent in the literature, including
camera-LiDAR (CL); camera-radar (CR); and camera-LiDAR-radar (CLR) sensor combinations.
A survey conveyed by [21] showed that the CR sensor combination is the most employed
in the multi-sensor fusion systems for environment perception, followed by CLR and
CL. The CR sensor combination offers high-resolution images while obtaining additional
distance and velocity information of surrounding obstacles. For instance, Tesla utilized the
CR sensor combination and other sensors, such as ultrasonic sensors, to perceive vehicle
surroundings [8]. Similarly, the CLR sensor combination can provide resolution at a greater
range, and precisely understands the surroundings through the LiDAR point clouds, and
depth map information. It also improves the safety redundancy of the overall autonomous
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system. For instance, Waymo and Navya [179] used the CLR sensor combination for
environment perception in their AVs.

3.2.1. Sensor Fusion Approaches

There are three primary approaches to combine sensory data from various sensing
modalities in the MSDF frameworks: high-level fusion (HLF), low-level fusion (LLF), and
mid-level fusion (MLF) [180]. In the HLF approach, each sensor carries out object detection
or a tracking algorithm independently and subsequently performs fusion. For instance,
reference [30] utilized the HLF approach to fuse the processed data, i.e., radar signals
and LiDAR point clouds independently and subsequently used a non-linear Kalman Filter
method to detect obstacles and state tracking. The HLF approaches are often adopted due
to a lower relative complexity than the LLF and MLF approach. However, HLF provides
inadequate information as classifications with a lower confidence value are discarded if,
for example, there are several overlapping obstacles.

Contrarily, with the LLF approach, data from each sensor are integrated (or fused) at
the lowest level of abstraction (raw data). Therefore, all information is retained and can
potentially improve the obstacle detection accuracy. Reference [181] proposed a two-stage
3D obstacle detection architecture, named 3D-cross view fusion (3D-CVF). In the second stage,
they utilized the LLF approach to fuse the joint camera-LiDAR feature map obtained from
the first stage with the low-level camera and LiDAR features using a 3D region of interest
(RoI)-based pooling method. They evaluated the proposed method on KITTI and nuScenes
datasets and reported that the object detection results outperformed the state-of-the-art 3D
object detectors in the KITTI leaderboard (see reference [181] for a more comprehensive
summary). In practice, the LLF approach comes with a multitude of challenges, not least in
its implementation. It requires precise extrinsic calibration of sensors to accurately fuse
their perceptions of the environment. The sensors must also counterbalance ego-motion
(3D motion of a system within an environment) and be temporally calibrated [180].

The MLF, otherwise known as feature-level fusion, is an abstraction level between
LLF and HLF. It fuses multi-target features extracted from the corresponding sensor data
(raw measurements), such as color information from images or location features of radar
and LiDAR, and subsequently perform recognition and classification on the fused multi-
sensor features. Reference [182] proposed a feature-level sensor fusion framework to detect
targets in a dynamic background environment with limited communication capability.
They utilized the Symbolic Dynamic Filtering (SDF) algorithm to extract the low-dimensional
features from multiple infrared sensors in different orientations and in the presence of
changing ambient light intensities and subsequently fusing the extracted features as clusters
with the agglomerative hierarchical clustering algorithm for moving target detection. The
MLF, however, appears to be insufficient to achieve a SAE Level 4 or Level 5 AD system
due to its limited sense of the environment and loss of contextual information [183].

3.2.2. Sensor Fusion Techniques and Algorithms

Sensor fusion techniques and algorithms have been extensively studied over the
last number of years and now, are well-established in the literature. However, a recent
study [184,185] revealed that obtaining the current state-of-the-art fusion techniques and
algorithms is an arduous and challenging task due to multidisciplinary and variants of
proposed fusion algorithms in the literature. The study of [19] classified these techniques
and algorithms into classical sensor fusion algorithms and deep learning sensor fusion
algorithms. On the one hand, the classical sensor fusion algorithms, such as knowledge-
based methods, statistical methods, probabilistic methods, et cetera, utilize the theories of
uncertainty from data imperfections, including inaccuracy and uncertainty to fuse sensor
data. Reference [186] proposes a real-time roundabout detection and navigation system in
a road environment utilizing a combination of the proposed “Laser Simulator” algorithm
to detect objects and the knowledge-based fuzzy logic (FL) algorithm for decision making.
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On the other hand, the deep learning sensor fusion algorithms involve generating
various multi-layer networks that enable them to process raw data and extract features to
perform challenging and intelligent tasks, e.g., object detection in an urban environment
for AV. In the AV context, algorithms, such as Convolutional Neural Network (CNN) and
Recurrent Neural Network (RNN) are among the most employed algorithms in perception
systems. Reference [187] proposed an advanced weighted-mean You Only Look Once
(YOLO) CNN algorithms to fuse RGB camera and LiDAR point cloud data to improve
the real-time performance of object detection. YOLO detector was first created in 2016
by [188] and has achieved a significant milestone over the last number of years. It is a
single-stage detector that predicts bounding boxes and produces class probabilities with
confidence scores on an image in a single neural network (one evaluation only). The
YOLO based model provides fast detection speed of 45 FPS with 59.2% average precision
(AP, an evaluation metric that measures object detection or information retrieval model
performances) on the VOC 2007 dataset [188]. Besides, the latest YOLOv4 released by [189]
in April 2020, achieves state-of-the-art results at a real-time speed on the MS COCO dataset
of approximately 65 FPS with 43.5% AP (and 65.7% AP50—IoU above 50%) on an NVIDIA®

Tesla® V100 Graphical Processing Unit (GPU). In [190], the authors proposed a CNN-based
method to detect aggressive driving behaviors through emotions using near-infrared light
and thermal cameras. They conducted score-level fusion using the CNN output scores from
near-infrared light images and thermal images to improve the detection accuracy. Their
proposed method achieved a high classification accuracy of emotions and demonstrated
that their proposed technique achieved better performance than the conventional methods
for emotion detection.

In addition, with the advent of 3D sensors and diverse applications for understanding
the 3D environment of the surrounding AV, there is an increased research focus on 3D object
detection. Reference [191] leverages their previously proposed VoxelNet framework in [192]
and presented two feature-level fusion approaches called PointFusion and VoxelFusion
to combine the RGB and point cloud data for 3D object detection. According to [192],
VoxelNet is a generic 3D object detection network that unifies feature extraction and
bounding box prediction processes into a single stage, end-to-end trainable deep network.
The PointFusion method uses the known calibration matrix to project 3D points onto
the image and, subsequently extracts image features from a pre-trained 2D CNN and
concatenate them at the point level. Subsequently, they leveraged the VoxelNet architecture
to process the concatenated features and the corresponding points jointly. In contrast, the
VoxelFusion method projects the non-empty 3D voxels created by the VoxelNet onto the
image and extract features within the 2D ROIs and consequently concatenates the poo-led
image features at the voxel level.

Reference [193] presented a PointFusion framework that leverages the image data and
raw point cloud data for 3D object detection. They utilized the CNN and PointNet [194]
architectures to process the image and point cloud independently and subsequently com-
bine the resulting outputs to predict multiple 3D box hypothesis and their corresponding
confidences. The PointNet architecture is a novel neural network that provides a unified
architecture for applications ranging from 3D classification to scene semantic parsing for
processing raw point cloud data. Other deep learning-based sensor fusion algorithms, to
name a few, include:

• ResNet, or Residual Networks, is a residual learning framework that facilitates deep
networks training [195].

• SSD, or Single-Shot Multibox Detector, is a method that discretizes bounding boxes
into a set of boxes with different sizes and aspect ratios per feature map location to
detect objects with variant sizes [196]—it overcomes the limitation of YOLO small and
variant-scale object detection accuracy.

• CenterNet [197] represents the state-of-the-art monocular camera 3D object detection
algorithm, which leverages key-point estimation to find center points of bounding
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boxes and regresses the center points to all other object properties, including size, 3D
location, orientation, and pose.

Table 8a below summarizes the strengths and weaknesses of the sensor fusion ap-
proaches: HLF, LLF, and MLF, and presents an overview of the sensor fusion techniques
and algorithms for obstacle detection, namely YOLO, SSD, VoxelNet, and PointNet, in
Table 8b. The readers interested in detailed discussions about sensor fusion techniques
and algorithms for various applications ranging from perception, including 2D or 3D
obstacle detection and lane tracking, to localization and mapping are advised to refer
to [19,20,23–25,184,191–206].

Table 8. (a) A comparative overview of the sensor fusion approaches, namely high-level fusion (HLF), low-level fusion
(LLF), and mid-level fusion (MLF) [30,180,204–206]. (b) Table below summarizes some of the sensor fusion techniques and
algorithms that were successfully established in the art for obstacles detection, namely YOLO, SSD, VoxelNet, and PointNet.
Further, table below presents a summary of the advantages and drawbacks of each algorithm.

(a)

Sensor Fusion Approaches Descriptions Strengths Weaknesses

High-Level Fusion (HLF)

Each sensor carries out detection
or tracking algorithm separately
and subsequently combines the
result into one global decision.

Lower complexity and requires less
computational load and

communication resources. Further,
HLF enables standardizing the

interface towards the fusion
algorithm and does not necessitate
an in-depth understanding of the

signal processing
algorithms involved.

Provides inadequate information
as classifications with a lower

confidence value are discarded.
Furthermore, fine-tuning the

fusion algorithms has a negligible
impact on the data accuracy

or latency.

Low-Level Fusion (LLF)

Sensor data are integrated at the
lowest level of abstraction (raw
data) to be of better quality and

more informative.

Sensor information is retained and
provides more accurate data (a

lower signal-to-noise ratio) than the
individual sensors operating

independently. As a result, it has the
potential to improve the detection
accuracy. In addition, LLF reduces

latency where the domain controller
does not have to wait for the sensor

to process the data before acting
upon it. This can help to speed up

the performance—of particular
importance in time-critical systems.

Generates large amount of data
that could be an issue in terms of

memory or communication
bandwidth. Further, LLF requires
precise calibration of sensors to
accurately fuse their perceptions
and it may pose a challenge to

handle incomplete measurements.
Although multi-source data can
be fused to the maximum extent,
there is data redundancy, which
results in low fusion efficiency.

Mid-Level Fusion (MLF)

Extracts contextual descriptions
or features from each sensor data

(raw measurements) and
subsequently fuses the features
from each sensor to produce a

fused signal for
further processing.

Generates small information spaces
and requires less computation load
than LLF approaches. Further, MLF

approach provides a powerful
feature vector and the features
selection algorithms that detect

corresponding features and features
subsets can improve the

recognition accuracy.

Requires large training sets to find
the most significant feature subset.

It requires precise sensor
calibration before extracting and

fusing the features from
each sensor.

(b)

Algorithms Descriptions Advantages and Drawbacks Reference

YOLO

You Only Look Once (YOLO) is a
single-stage detector, which

predicts bounding boxes and
produces class probabilities with
confidence scores on an image in

a single CNN 1.

- Provides real-time detections.
- Less accurate than SSD.
- Poor detection of dense

obstacles, e.g., flocks of birds,
because each grid can
propose only 2 bounding
boxes.

- Poor detection of small
obstacles.

- High localization error.

[19,187,188]
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Table 8. Cont.

Sensor Fusion Approaches Descriptions Strengths Weaknesses

SSD

Single-Shot Multibox Detector
(SSD) is a single-stage CNN

detector that discretizes bounding
boxes into a set of boxes with

different sizes and aspect ratios to
detection obstacles with variant

sizes.

- Provides real-time and
accurate obstacle
detections.

- Pose a challenge to detect
smaller obstacles but
performs better than YOLO.

- Poor extractions of features
in shallow layers.

- Loss of features in deep
layers.

[19,196,200]

VoxelNet

A generic 3D obstacle detection
network that unifies feature

extraction and bounding boxes
prediction into a single-stage,

end-to-end trainable deep
network. In other words,

VoxelNet is a voxelized method
for obstacle detection using point

cloud data.

- Does not require to extract
features manually.

- Requires large volume of
data and memory for
training.

[192,202]

PointNet

Presents a permutation-invariant
deep neural network which learns

global features from unordered
point clouds (two-stage

detection).

- Able to handle point clouds
in any order, e.g.,
permutation independence
on the order of point
clouds.

- Difficult to generalize to
unseen point
configurations.

[194,202]

1 CNN, or Convolutional Neural Network, is a specialized neural network that is used to process data that has an input shape like a 2D
matrix, such as images.

3.2.3. Challenges of Sensor Fusion for Safe and Reliable Environment Perception

Undoubtedly, the multi-sensor fusion technologies, based on extensive research, have
achieved relatively comprehensive advantages in autonomous systems ranging from hu-
manoid robots to AVs. These systems are often equipped with an array of sensors that
could generate a large volume of data per hour. For instance, an AV could generate approx-
imately 383 GB to 5.17 TB (Terabyte) of data per hour [207]. Therefore, it requires large
computational power to process these data. Reference [208] reviewed the computing plat-
form implementation of an SAE Level 4 AV from a leading autonomous driving company
and examined several existing processing solutions for AD. In addition, they presented
and prototyped an AD computing architecture and software stack that is secure, modular,
dynamic, energy-efficient, and high performance. Their prototype system consumes an
average of 11 Watt (W) of power and can drive a mobile vehicle at 8 km per hour, using an
ARM Mobile System on Chip (SoC). From the software perspective, combining reinforce-
ment learning (RL) techniques with supervised learning algorithms could help to reduce
computational power, training data requirements, and training time.

RL is a machine learning (ML) method that uses the feedback from their actions and
experiences to train ML models in an interactive environment. In contrast, supervised
learning algorithm utilizes labelled data to train ML models (refer to reference [25] for a
more detailed overview). However, it is challenging to train and annotate data from all
possible scenarios, including but not limited to location, terrain, and weather, which an
AV may encounter in the real-world. Although collaboration and sharing of data could
benefit the development of autonomous systems, it is unlikely as companies researching
autonomous systems are unwilling to share resources due to the fear of diluting their
competitive advantage [25,209]. Additionally, the performance of an ML/DL for object
detection and localization and mapping are influenced by the employed dataset’s quality;
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hence, poor data quality could lead to the proverbial “garbage-(data)-in and garbage-(data)-
out”. The founder and CTO of Roboflow wrote that 33% out of 15,000 samples (or images)
in Udacity Dataset 2 are not annotated and the annotated bounding boxes (or objects of
interest) are oversize [210].

The functional safety of the utilized DL models in multi-sensor AVs can also be a
challenge due to the opaque nature of DL algorithms. Reference [25] highlighted that it is
critical to further research the available safety validation methods and the interpretability of
neural networks before deploying DL models on the road. In addition, autonomous systems
that utilize DL architectures are vulnerable to adversarial attacks. The attackers overlaid
typical images with adversarial samples (or perturbed images) that represent subtle changes
to the inputs of the DL systems but resulted in misclassification of objects with high
confidence scores [25]. Other sensor fusion challenges include biases in collected datasets,
overfitting of training datasets, imprecision, and uncertainty in the data measurements,
such as noise relating to calibration errors, quantization errors, loss of precisions, missing
values, et cetera. Transforming multi-sensor data into a standard frame of reference may
also pose a challenge in sensor fusion implementations.

From an environmental perspective, one of the remaining challenges of sensor fusion
for reliable and safe perception is the performance of vision sensors in harsh weather
conditions such as snow, fog, sandstorms, or rainstorm. Such conditions can impact the
vision and range measurements of vision sensors, leading to a decrease in visibility distance
and resulting in erroneous and misleading outputs. In a worst-case scenario, sensors may
experience a partial or complete sensor failure, which can be disastrous for AVs and their
surroundings. Hence, based on learned experiences and historical data, it is important to
evaluate the risk of failure early in the process and enable drivers to interrupt or completely
disengage the autonomous systems [19].

In general, quality data is the key to a safe and reliable environment perception.
DL/ML models employ these data to learn about the environment’s features and perform
object detection. Thus, it is essential to cleanse and pre-process the data before implement-
ing DL/ML algorithms. However, DL algorithms are prone to malicious attacks, which can
be disastrous in safety-critical systems, such as AVs. Further research and extensive testing
of autonomous systems are essential to assess all possible solutions to prevent malicious
attacks and evaluate all possible sensors and system failure risks and alternative solutions
in the case of sensors or system failures. A detailed discussion about the sensor fusion
challenges, including adversarial attacks and possible preventions is beyond the scope of
this paper (see [16,19,25,211–214] for a more comprehensive overview).

4. Conclusions and Future Research Recommendations

In this paper, we presented a complete overview of the perception block in the AD
systems. We surveyed the technical performance and capabilities of sensors from various
manufacturers in different conditions, mainly focusing on vision cameras, LiDAR sensors,
and radar sensors. We also presented an overview of the three main categories of sensor
calibration, which may be considered a foundation block of any autonomous systems and
summarize the existing open-source multi-sensor calibration packages that can calibrate
multiple sensors simultaneously. Finally, we reviewed some of the fusion algorithms that
were successfully established in the literature and highlighted some of the challenges in
the sensor fusion field and possible future research directions for AD systems.

The area of AVs is vast and consists of a wide range of technical disciplines and
technologies, from electronics, sensors, and hardware to algorithms for vehicle state control
and decision-making, and economic, legal, and social aspects. Sensors are elementary to the
perception of surroundings, localization and mapping, and vehicle state control. Currently,
AVs primarily incorporate multiple, complementary sensors, such as IMUs, radars, LiDARs,
and cameras to overcome the limitations of individual sensors operating independently.

It is essential to calibrate sensors before the implementation of algorithms for pro-
cessing data. A precise sensor calibration allows the AV to understand its position and
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orientation in the real-world coordinates. We examined the three main categories of sensor
calibration, each of which is necessary: namely, intrinsic calibration, extrinsic calibration,
and temporal calibration and related algorithms. Additionally, we provided a comparative
overview of several existing open-source calibration packages that have been successfully
employed in recent research. It is apparent that most existing open-source calibration tools
for extrinsic and temporal calibration only address pairwise calibration of a maximum of
two sensing modalities.

The approaches to sensor calibration in recent studies focus on offline methods to
calibrate the sensors. The offline method to sensor calibration utilizes the specially designed
calibration targets to provide accurate calibration results, but it is not flexible. For instance,
the vehicle is required to recalibrate if there is a geometry change between the sensors.
Moreover, external factors, such as temperature and vibrations, may affect the calibration
accuracy as multi-sensor are commonly factory calibrated. Therefore, it is critical to
further research online and offline calibration techniques to automatically detect and refine
calibration parameters to provide precise estimation of the presence and position of objects
in autonomous operation.

The development of reliable and efficient obstacle detection in self-driving vehicles
is critical to achieving autonomous driving. The practical approach in recent studies for
safe and reliable obstacle detection is to combine information from multimodal sensors,
such as distance information, velocity, color distribution, et cetera, to provide accurate,
robust, and reliable detection results. We reviewed the three primary approaches of sensor
fusion: namely high-level fusion, mid-level fusion, and low-level fusion and subsequently
reviewed recently proposed multi-sensor fusion techniques and algorithms for obstacle de-
tection. Similarly, we highlighted several challenges of multi-sensor fusion for reliable and
safe environment perception. The main challenges are environmental conditions, invulner-
ability to malicious attacks in DL models, poor quality datasets, or datasets not addressing
all possible environments for the AV, and the computation cost to process large volumes
of datasets in real-time. Therefore, companies and researchers must evaluate the risk of
failure and implement alternative solutions for drivers to handle worst-case scenarios.

Further developments to improve object detection performance in all possible scenar-
ios, including harsh weather conditions, are essential to providing safe and reliable scene
perception. It is critical to developing accurate, robust, and reliable object detection algo-
rithms that can distinguish obstacles against the environment. One approach to providing
a more reliable and accurate obstacle detection is to enhance existing sensor fusion algo-
rithms through deep learning approaches or deep reinforcement learning approaches [215].
Another approach would be to invest in sensors hardware technology to provide a higher
resolution of the surroundings [19].
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