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Abstract: This paper presents a thorough comparison of the Transport Layer Security (TLS) v1.2
and Datagram TLS (DTLS) v1.2 handshake in 6TiSCH networks. TLS and DTLS play a crucial role in
protecting daily Internet traffic, while 6TiSCH is a major low-power link layer technology for the
IoT. In recent years, DTLS has been the de-facto security protocol to protect IoT application traffic,
mainly because it runs over lightweight, unreliable transport protocols, i.e., UDP. However, unlike
the DTLS record layer, the handshake requires reliable message delivery. It, therefore, incorporates
sequence numbers, a retransmission timer, and a fragmentation algorithm. Our goal is to study how
well these mechanisms perform, in the constrained setting of 6TiSCH, compared to TCP’s reliability
algorithms, relied upon by TLS. We port the mbedTLS library to OpenWSN, a 6TiSCH reference
implementation, and deploy the code on the state-of-the-art OpenMote platform. We show that,
when the peers use an ideal channel, the DTLS handshake uses up to 800 B less and completes 0.6 s
faster. Nonetheless, using an unreliable communication link, the DTLS handshake duration suffers
a performance penalty of roughly 45%, while TLS’ handshake duration degrades by merely 15%.
Similarly, the number of exchanged bytes doubles for DTLS while for TLS the increase is limited to
15%. The results indicate that IoT product developers should account for network characteristics
when selecting a security protocol. Neglecting to do so can negatively impact the battery lifetime of
the entire constrained network.

Keywords: internet of things; TLS; DTLS; 6TiSCH; TSCH; OpenWSN

1. Introduction

With the Internet of Things (IoT) networking stack fully standardized and opera-
tional [1], the research community and industry now face the daunting task of designing
and deploying network security protocols. The low-power nature and limited computa-
tional capabilities of many IoT devices make the design and integration of these protocols
challenging. IoT product developers have several established and novel security schemes
at their disposal to protect application traffic. On the one hand, there is a new suite of
object security protocols that aim for low-power consumption and optimized encoding
schemes [2,3]. On the other hand, developers can use the well-known transport layer secu-
rity protocols: Transport Layer Security (TLS) [4] and Datagram Transport Layer Security
(DTLS) [5]. Both TLS and DTLS are mature protocols and enjoy extensive support. For
IoT deployments, they are available through state-of-the-art libraries such as mbedTLS [6]
and wolfSSL [7]. These libraries are tailored for constrained environments and provide
open-source, vetted implementations.

In contrast to TLS, DTLS can run over unreliable transport such as UDP. Consequently,
it has been the preferred choice for protecting IoT application traffic, as reliable transport
such as TCP has a non-negligible overhead. In addition to the larger header, the TCP
acknowledgment packets consume much of the already scarce bandwidth in constrained
networks. Although the DTLS record protocol tolerates packet loss, the handshake does
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require reliable message delivery. The handshake performs a key exchange to establish
a shared secret between two peers. The record protocol then uses the secret to encrypt
application traffic. The handshake is arguably the most demanding phase of the DTLS
protocol because of the potentially large message sizes and its reliance on asymmetric
cryptography. To obtain reliability during the handshake phase, DTLS implements multiple
TCP-like features: it adds sequence numbers to the DTLS headers and employs a naive
retransmission mechanism with back-off. DTLS also supports message fragmentation
during the handshake to prevent oversized UDP datagrams that would otherwise result in
IP fragmentation and potential packet loss.

In this article, we compare the network performance of the TLSv1.2 and DTLSv1.2
handshake in constrained environments. We undertake an experimental study of both
handshake protocols when the messages travel over a multihop 6TiSCH network. The
6TiSCH specification is a core technology of the IoT. It extends the TSCH (Time-Slotted
Channel Hopping) MAC layer specified in the IEEE802.15.4 amendment [8] to be IP-
compliant. Originally designed for industrial networks, TSCH has proven to yield robust
and reliable end-to-end communication in a plethora of harsh environments [9] while still
minimizing energy consumption. We quantify how the reliability mechanisms in the DTLS
handshake impact its performance in a 6TiSCH network, compared to the TLS handshake.
We show that changes to the handshake message size or retransmission policy have a
non-negligible impact on the operation of the 6TiSCH network. In the first part of this
work, we ported the mbedTLS library on top of OpenWSN [10], an open-source reference
implementation of 6TiSCH. We run our code on the OpenMote platform, an open hardware
initiative designed for low-power IEEE802.15.4 networks. We show that the reliability
of the underlying communication link significantly impacts the performance of the TLS
and DTLS handshake. In scenarios with 100% end-to-end reliability, the performance
of the DTLS handshake is slightly better. It transmits between 500 B and 800 B less and
completes approximately 0.6 s faster. However, when the end-to-end reliability deteriorates,
the performance of DTLS degrades rapidly. If a transport layer packet has a 5% probability
of getting lost, the median handshake duration for DTLS more than doubles, and it uses
from ±37% to ±45% more bytes. TLS performance remains more stable. The handshake
duration grows between ±10% and ±15%, and the number of exchanged bytes grows
between ±2% and ±15%.

In the second part of the paper, we provide an insightful discussion on the results.
We detail the different mechanisms at work which cause the performance discrepancy
and explain how we can use the many TCP options to limit the TLS handshake and TCP
overhead in constrained environments.

Finally, we propose an improvement for the TLS handshake. We make use of a
Performance Enhancing Proxy (PEP) [11] at the 6TiSCH network gateway to reduce the
spurious retransmissions incurred by the high latency in 6TiSCH networks. The PEP
reduces the number of exchanged bytes during the TLS handshake and the total duration
of the TLS handshake.

The remainder of this article is organized as follows. Section 2 provides the relevant
background on 6TiSCH and the (D)TLS handshake protocol and lists the important dif-
ferences between the TLS and DTLS handshake. Section 3 presents the experiments and
results. Section 4 describes the different algorithms and mechanisms at work throughout
the network stack to successfully complete the handshake, and identifies the root causes for
the results obtained in Section 3. Based on the insights from the previous section, Section 5
implements and evaluates the PEP setup for the TLS handshake. Section 6 sheds some light
on the changes in recently standardized TLSv1.3 and upcoming DTLSv1.3 specifications.
Section 7 discusses related works. Finally, Section 8 concludes this article and presents
avenues for future work.
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2. Background
2.1. TSCH, 6TiSCH, and IPv6

The IEEE802.15.4e amendment [12] first standardized the TSCH mode. It uses a
sparse time-slotted schedule, depicted in Figure 1, combined with channel hopping over 16
distinct frequencies to provide robust communication in multihop networks. Each TSCH
device maintains its schedule. The schedule synchronizes the device’s access to the wire-
less transmission medium and prevents collisions. Channel hopping provides frequency
diversity in the crowded 2.4 GHz ISM band. The schedule consists of a repeating structure,
called “slotframe”. A slotframe, in turn, consists of a group of cells. The individual cells
describe when the device should wake up to communicate with its neighbors and when
it should sleep to save battery. There are three active cell types: transmission slots (Tx),
reception slots (Rx), and shared slots (TxRx). A single cell in the schedule is long enough
to send a maximum length IEEE802.15.4 frame (127 B) and receive a short acknowledgment
frame. While the exact duration of a cell is implementation-specific, 10 ms, 15 ms, and 20 ms
are commonly used.
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Figure 1. A typical TSCH schedule shared between device A and B, containing a Tx, an Rx, and a
TxRx slot for communication.

To support dynamic traffic patterns on top of the TSCH schedule, the 6TiSCH Working
Group (WG) designed the 6TiSCH Operation Sublayer (6top) Protocol (6P) [13]. 6P is a
pairwise negotiation protocol that enables TSCH neighbors to allocate and delete cells in
their schedules [14]. The protocol defines seven commands: ADD, DELETE, RELOCATE,
COUNT, LIST, SIGNAL, and CLEAR. A device uses these commands to manipulate its
neighbor’s schedule and requests an increase or decrease of the available bandwidth. The
Scheduling Function (SF), a separate module of the 6TiSCH specification, uses the 6P
protocol to implement a specific TSCH cell allocation policy. The policy depends on the
traffic patterns of the upper-layer protocols and applications. The 6TiSCH WG defined
a default scheduling policy called Minimal Scheduling Function (MSF). MSF identifies
two types of cells in the schedule: autonomous cells and managed cells. Nodes install
autonomous cells to provide minimal bandwidth to their neighbors and managed cells to
respond dynamically to a varying traffic load in the network.

6TiSCH networks are IPv6 compliant thanks to the IETF 6LoWPAN adaptation layer.
The 6LoWPAN layer optimizes the limited IEEE802.15.4 payload space by compressing the
headers of upper layers. It also defines mechanisms for the support of operations required
in IPv6, such as neighbor discovery and address autoconfiguration. Since IPv6-compliant
networks must be capable of handling IP packets with a payload of at least 1280 B [15],
6LoWPAN specifies a fragmentation mechanism. The algorithm iterates over the IPv6
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packet and slices it into fragments according to the maximum frame size at the link layer,
127 B for IEEE802.15.4.

2.2. Applicability of TCP in the IoT

The main current transport layer protocols in IP-based IoT scenarios are UDP and TCP.
Due to TCP’s complexity, header size, acknowledgment packet overhead, and unsuitability
for multicast traffic, many IoT deployments prefer UDP. However, the basic TCP protocol
is extendable with many options. Through careful selection of several TCP options, an im-
plementation can become more lightweight [16]. The Lightweight Implementation Guide
(LWIG) group at the IETF defined a set of TCP options to improve TCP’s performance
in constrained networks [16]. Here, we briefly describe the options we use during our
performance evaluation.

2.2.1. Maximum Segment Size

During the TCP handshake a host can announce the maximum TCP segment size
it can accept. The host can arbitrarily choose the value of the Maximum Segment Size
(MSS). The option does not incur any additional overhead in the TCP header. Smaller
segment sizes are useful when constrained devices only have limited memory resources.
Long segments require not only big TCP send and receive buffers but also increase the
6LoWPAN fragmentation rate. Constrained devices need to allocate additional buffers to
store the 6LoWPAN fragments; the loss of a single fragment causes a retransmission of the
entire TCP segment.

2.2.2. Selective Acknowledgments

Selective Acknowledgments (SACK) allow the receiving peer to precisely indicate in
its acknowledgment packet which TCP segments were not received. A single SACK block
adds 10 B to an acknowledgment packet, and it specifies the TCP sequence numbers of the
missing data. This option is only useful when the sender has multiple unacknowledged
segments in flight. Upon reception of a SACK, the sender creates a new TCP segment that
contains only the data the receiver has requested.

2.2.3. Delayed Acknowledgements

Default TCP operation requires a corresponding acknowledgment for every received
segment. Delayed acknowledgments try to reduce the number of acknowledgment packets
on the wire. In a stream of full-sized segments, the receiver can delay the transmission of an
acknowledgment. It can wait for the next segment to arrive. The delayed acknowledgment
then acknowledges both segments cumulatively. There should be an acknowledgment
for at least every second segment. In addition, the delay should not extend more than
0.5 s [17].

2.2.4. Nagle’s Algorithm

Nagle’s algorithm [18], shown in Algorithm 1, limits the amount of data in flight to a
single full-sized segment (=MSS) unless another full-sized segment is available for trans-
mission.

Algorithm 1 Nagle’s Algorithm

1: procedure TRANSMIT(D)
2: if window size >= MSS and |D| >= MSS then
3: Send(D)
4: else
5: if data in flight then
6: Queue(D)
7: else
8: Send(D)
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Constrained devices typically use statically-allocated packet buffers. If the MSS value
corresponds to the internal packet buffer size, Nagle’s algorithm ensures that the buffers
are utilized at maximum efficiency. Without Nagle, many small segments could occupy
buffer spaces foreseen for larger TCP segments, thereby wasting RAM.

2.3. The (D)TLS Handshake Protocol

Both TLSv1.2 and DTLSv1.2 are hybrid cryptosystems. They combine symmetric-key
cryptography (for bulk encryption of application traffic) and public-key cryptography (to
establish keys for the symmetric algorithms) in a single protocol. They consist of four
subprotocols: the record protocol, the handshake protocol, the change cipher specification,
and the alert protocol. The record layer encapsulates the three other subprotocols. The
RFCs specifying (D)TLSv1.2 [4,5] also use the term fragment to refer to the body of a
record layer message. To avoid confusion with messages that are the explicit result of
a fragmentation mechanism—possibly on other layers of the networking stack—in this
article we use the term record fragment to denote the body of a record layer message.

Handshake Flow

The handshake protocol is responsible for negotiating a session that contains a session
identifier, an optional peer certificate (X.509v3), a compression method, a cipher suite, a
master secret, and a boolean value stating if the session is resumable. The handshake
happens in different phases. We illustrated the message flow in Figure 2.

Initially, the peers exchange hello messages (ClientHello and ServerHello) to agree
on a compression method and cryptographic algorithms. The messages also contain
randomness and state the support for session resumption. The client can request additional
functionalities by including extensions in its hello message.

DTLS flight 1

DTLS flight 2

DTLS flight 3

DTLS flight 4

DTLS flight 5

DTLS flight 6

Client Server

Client Hello
Client Verif Req.

Client Hello

Server Hello

Server Certs

Server Key Ex.

Certificate Req.

Server Done
Client Certs

Client Key Ex.

Certificate Ver.

Change Cipher.

Finished

Change Cipher

Finished

Figure 2. The (D)TLS handshake protocol. The initial two messages are only available when DTLS
enforces Denial-of-Service protection.
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In the second phase, the peers transfer cryptographic parameters to derive the shared
master secret. They also swap credential information to perform (mutual) authentication.
Depending on the authentication method and the selected cipher suite, for example, when
they use ECDHE_ECDSA as a key exchange method, the server sends a ServerCertificate
message. This message contains a list of X.509v3 certificates. The first certificate in the
chain is the server’s certificate, the last one is a self-signed certificate, potentially from
a root Certificate Authority (CA), and represents the trust anchor. TLS and DTLS also
support Pre-shared key (PSK) and raw public key (RPK) authentication. Following the
server’s certificate chain and if the client and the server negotiated an ephemeral key
exchange mechanism, the server sends a ServerKeyExchange message. In the case of a static
key exchange algorithm, the client already has all the information necessary to continue
with the key establishment. When the server wishes to perform mutual authentication,
the server requests a client certificate through a CertificateRequest message. The server then
notifies the client with the ServerDone message that it is done sending. In response to a
CertificateRequest message, the client immediately sends its certificate chain. The client
then follows up with the ClientKeyExchange and the CertificateVerify messages. The last two
messages provide the server with the client’s key share and a signature calculated with the
client’s private key over the message transcript. The server can verify the authenticity of
the client and derive the shared master secret.

In the final phase of the handshake protocol, the client sends a ChangeCipherSpec
message, indicating that the newly derived session key was installed. This message
must arrive before the client’s last message, the Finished message. The latter contains the
shared master secret, a string, and a hash of the entire handshake encrypted with the
negotiated encryption algorithm and the new session key. The server responds with its
ChangeCipherSpec message and Finished message. The final round-trip allows both peers to
verify all handshake steps were successful.

2.4. Differences between TLS and DTLS

TLS and DTLS follow the same protocol flow as depicted in Figure 2. However, there
are some significant adjustments to DTLS due to the unreliability of the UDP transport layer.

2.4.1. Record Layer Changes

The DTLS record layer header has two additional fields compared to TLS. An epoch
field and a sequence number field called the Record Sequence Number (RSN). Endpoints
use epoch numbers to determine which cipher suite protected the record fragment. The
endpoints increment the epoch numbers on each ChangeCipherSpec message. Epoch num-
bers resolve the ambiguity situation when data loss occurs during a session renegotiation
or when multiple handshakes happen in close succession. TLS employs implicit sequence
numbers for replay protection. The Message Authentication Code (MAC) over the TLS
records also incorporates the sequence numbers. RSNs play a similar role in DTLS but are
explicitly specified since records can get lost or delivered out-of-order. The DTLS record
layer combines the RSN and the epoch number in a single 64-bit value while computing
the MAC. DTLS increments the RSNs for each record and resets them to zero whenever
the cipher state rolls over due to a session renegotiation. Implementations must therefore
make sure the RSN/epoch pair is unique. DTLS can optionally perform replay detection
by using the sliding window mechanism (defined in RFC 2401 [19]).

DTLS records must fit into a single UDP datagram to prevent buffering of incomplete
records on the DTLS record layer [20]. At the same size, DTLS records should not trigger
IP fragmentation along the way. Loss of a single IP fragment would result in the loss
of the entire datagram. In addition, Network Address Translation (NAT) devices and
firewalls might drop IP fragments; IPv6 does no longer supports IP fragmentation by
default. The DTLS specification [5] states that it is the responsibility of the application to
perform Path Maximum Transmission Unit (PMTU) discovery, but caution is advised due
to the following reasons: (1) the DTLS record framing expands the datagram size thereby
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lowering the effective PMTU from the application’s perspective, (2) DTLS handshake
message can easily exceed the MTU. TLS does not suffer from these limitations since TCP
treats the TLS records as a byte stream and can thus create arbitrarily-sized segments
(potentially limited by the MSS option).

It is noteworthy that both TLS and DTLS support an extension that can explicitly
limit the size of the record fragments, called Maximum Fragment Length (MFL) extension.
When negotiated, MFL limits the size of the record fragments to either 512 B, 1024 B, 2048 B,
or 4096 B. It is, however, not widely support by TLS servers.

2.4.2. Handshake Protocol Changes

The unreliability of the transport layer had a major impact on the design of the DTLS
handshake protocol. Unlike application data, the handshake protocol must exchange its
messages reliably to derive a shared security context successfully. Therefore, the DTLS
handshake protocol implements some of the mechanisms we can find in TCP. The hand-
shake protocol uses a retransmission mechanism and message sequence numbers. Note
that the handshake message sequence numbers are independent of the record layer se-
quence numbers.

The retransmission operation works as follows. The DTLS handshake is divided into
multiple flights, see Figure 2. Each time one of the endpoints sends an entire flight, it
arms a timer. If the timer expires before the endpoint has received an answer, it resends
the full previous flight. Since neither UDP nor DTLS uses acknowledgment packets, it
not possible to inform the endpoint which individual DTLS messages inside the flight
were received well and which ones got lost. Therefore, DTLS retransmits the entire flight.
The default start timeout value is 1 s; it doubles each time the transmission fails, maxing
out at 60 s. Handshake messages can grow larger than the Path Maximum Transmission
Unit (PMTU) mostly due to long certificate chains. To prevent IP fragmentation, the DTLS
handshake layer supports fragmentation. The handshake header has a fragment offset
field and fragment length field to perform reassembly at the receiver side, see Figure 3.

Record Layer Header

Type
Version Epoch Sequence Number

Handshake Layer Header

8 bit 16 bit 16 bit 48 bit 16 bit 8 bit 16 bit 16 bit 24 bit 24 bit

Type
Length Sequence

Number
Fragment
Offset

Fragment Len.
Payload

Len

Figure 3. Illustration of the DTLS headers for a handshake message. In the record layer header, DTLS adds the epoch and
sequence number fields. In the handshake header, DTLS adds sequence numbers, a fragment offset, and fragment length.

DTLS uses a connectionless transport protocol, which makes it vulnerable to two
types of Denial-of-Service (DoS) attacks. The first attack is a resource consumption attack.
A large number of malicious clients send ClientHello packets to exhaust the resources of the
server. The second attack is an amplification attack. Malicious clients spoof the IP address
of a victim device and send ClientHello messages to the server. The server then responds
with the next DTLS flight (containing the ServerHello, ServerCertificate, ServerKeyExchange,
and ServerDone messages), potentially overwhelming the victim device. To mitigate these
attacks, DTLS optionally uses a cookie exchange technique. At the start of the handshake
protocol, the client must replay a cookie provided by the server to demonstrate that it can
receive packets at its claimed IP address. The cookie exchange adds one full Round-Trip
Time (RTT) to the DTLS handshake latency compared to TLS. Figure 2 depicts the technique
in the first two messages. TLS does not suffer from the described attacks since the TCP
handshake occurs before the client sends the first TLS message. It automatically detects
address spoofing.
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3. Handshake Performance Measurements
3.1. Setup

We consider the setting where a constrained 6TiSCH device, acting as a (D)TLS client,
connects to a powerful (D)TLS server, see Figure 4. The constrained device uses the
OpenWSN stack [10]; the powerful host uses the out-of-the-box Linux networking stack.
The TCP/IP network stack of the server is unmodified and is unaware it is communicating
with a constrained device. The (D)TLS handshake always uses mutual authentication
through the exchange of certificates. The certificate chains contain only one X.509 certificate.
The received certificate matches with a stored root certificate, acting as a trust anchor
for authentication.

To obtain experimental results on the performance of the (D)TLS handshake on top
of 6TiSCH, we port mbedTLS to the OpenWSN project. We implemented 6LoWPAN
fragmentation and the TCP protocol for the OpenWSN stack. We designed two abstraction
layers, called opendtls and opentls, which function as wrappers around the mbedTLS
library and allow OpenWSN applications to trigger the handshake protocol.

Internet

Network 
Gateway

TSCH Network

(D)TLS 
endpoint

OpenVisualizer

serial link

OpenWSN +
mbed TLS

OpenWSN +
mbed TLS

TUN

+ hops

Ethernet
WiFi

Figure 4. Experimental setup.

We perform several experiments using different sets of configuration parameters for
the 6TiSCH network and (D)TLS stack to assess the impact on the handshake performance.
We principally evaluate two performance characteristics: the number of exchanged bytes—
measured at the physical layer—and the handshake duration. Unless noted otherwise, we
use the configuration depicted in Table 1.

Table 1. 6TiSCH and (D)TLS configuration.

Parameter Value

Cipher suite TLS_ECDHE_ECDSA_WITH_AES_128_CCM_SHA256

Curve SECP192R1
DTLS timeout 3 s
Authentication Mutual (single certificate in chain)

Scheduling func. Minimal Scheduling Function (MSF)
Slotframe length 5

Duty cycle 100%
Cells 1 Shared TxRx, 1 autonomous Rx, 3 managed cells

Topology Single hop
TCP options MSS, Nagle, SACK, and Delayed ACKs

UDP header size Compressed to 4 B with 6LoWPAN

We use the OpenMote hardware platform to perform our experiments. The OpenMote
features the CC2538 SoC [21], which has 32 KiB of SRAM and a 32 MHz ARM Cortex-
M3 processor. Additionally, it provides a cryptographic coprocessor for AES and SHA
functions and an acceleration engine for several big integer and elliptic curve operations.
Figure 4 shows the experimental setup. The root node of the 6TiSCH network connects
through a serial interface to a PC implementing the network gateway.

The OpenWSN project also provides the gateway software, called OpenVisualizer,
to connect the mesh network to the Internet. It implements 6LoWPAN compression,



Sensors 2021, 21, 2192 9 of 21

decompression, fragmentation, and reassembly of packets. It uses a tun interface to inject
packets into the kernel of the PC and route them to their final destination.

3.2. Network Stack Configuration
3.2.1. Maximum Transmission Unit and Handshake Message Size

We start investigating the impact of the handshake message size. Sizeable handshake
messages lead to large IPv6 packets which are then fragmented in several 6LoWPAN
fragments. Both the TLS/TCP and DTLS/UDP stack can set an upper bound for the
handshake message size by activating the MFL extension. TLS can also use the MSS
option provided by TCP to limit the TCP segment size. IPv6-compliant IoT devices should
support an MTU of 1280 B [15]. However, the tight memory constraints on low-power IoT
devices make this a challenging requirement. For the OpenMote platform, the combined
RAM usage of OpenWSN, TCP, and mbedTLS only allows IPv6 packets with a maximum
payload size of 864 B. When we use UDP instead of TCP, the software stack can support
IPv6 packets with a maximum payload of 1377 B. Table 2 shows the handshake duration
and the total number of exchanged bytes between both endpoints to establish a secure
connection. We count all the incoming and outgoing bytes on the physical layer that
are part of the handshake, i.e., IEEE802.15.4 frames containing handshake data and TCP
control packets.

Table 2. Impact of the Maximum Transmission Unit (MTU) on the (D)TLS handshake.

SSL Negotiated [B] MTU [B] Latency [s] Bytes [B] NagleMSS MFL µ σ µ σ

TLS

844 - 864 4.495 0.096 3102 5.49 X
844 - 864 4.285 0.076 3358 0.60 -
336 - 356 4.539 0.089 3345 1.25 X
336 - 356 4.241 0.118 3671 3.74 -

DTLS - 1024 1041 3.795 0.064 2680 1.00 -
- 512 529 3.891 0.090 2841 0.83 -

Comparing the TLS handshake with the IPv6 MTUs at 864 bytes and 356 bytes
indicates that larger MTU values result in fewer transmitted bytes. When more TLS data
fits in a TCP segment, it reduces the overhead of the TCP header. Besides, there are fewer
TCP acknowledgments necessary. Activating Nagle’s algorithm further reduces the header
overhead and thus the number of transmitted bytes.

A DTLS client can use the MFL extension to inform the server of the maximum record
fragment size it supports. With an IPv6 MTU of 1377 B, the node can use two MFL sizes:
512 B or 1024 B. The MFL sizes indicate the size of the record fragment. To derive the
IPv6 payload size, we add 13 B for the DTLS record header and 4 B for the 6LoWPAN
compressed UDP header. Similarly to TCP, a higher IPv6 MTU results in fewer datagrams
to complete the handshake and less overhead caused by headers. Compared to TLS, DTLS
uses fewer bytes to complete the handshake. Several factors contribute to this difference.
UDP does not use acknowledgment packets, and UDP has a significantly smaller header
size. The UDP header is even further compressed from the standard 8 B down to 4 B
through 6LoWPAN header compression, while TCP uses an uncompressed header of 20 B.

A varying maximum handshake message size also influences the handshake duration.
To time the duration of TLS, we start the clock when the client sends its syn segment to open
the TCP connection. While timing the DTLS handshake latency, we start the clock when
the client sends the initial ClientHello, triggering DoS protection on the server endpoint. To
prevent spurious DTLS retransmissions, we set the DTLS timeout value to a conservative
3 s. We observe that the MTU only slightly impacts the overall duration of both the TLS
and DTLS handshake. When we activate Nagle’s algorithm in TCP, it incurs an additional
delay. Without Nagle, TCP can pipeline the segments, having multiple unacknowledged
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segments in transit. Nagle’s algorithm minimizes TCP header overhead but limits the
number of unacknowledged segments in flight.

3.2.2. TSCH Schedule

Until now, the experiments use a schedule at 100% duty cycle and a single-hop
network, see Table 1. All slots are either allocated for transmission or reception. Figure 5
shows the handshake duration when the network uses a more realistic duty cycle, and it is
up to two hops deep. The MSF algorithm maintains the schedule. We choose a conservative
DTLS timeout to prevent spurious retransmissions when lowering the duty cycle of the
nodes. For both TLS and DTLS, we maximize the handshake message size, and we activate
Nagle’s algorithm for TCP. For the single-hop setup, the latency of both the TLS and
DTLS handshake is quite similar. Below a 25% duty cycle, the delay induced by the TCP
acknowledgment packets becomes more significant. When we repeat the same experiment
with a two-hop network, the behavior is similar and amplified.
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Figure 5. The duration for the (D)TLS handshake increases fast when the TSCH schedule is
sparsely allocated.

3.3. Handshake Reliability

IEEE802.15.4 provides a reliable link and physical layer. Channel hopping and ded-
icated cells in the schedule mitigate many transmission errors due to multipath fading
and collisions. The link layer uses acknowledgments, and OpenWSN performs up to
15 retransmissions combined with a back-off mechanism to minimize loss. However, con-
strained devices can drop IEEE802.15.4 frames due to limited packet buffer space on the
constrained devices. To test how both TLS and DTLS behave when the lower layers do not
provide 100% reliability, we set up an experiment where 6LoWPAN fragments have a 5%
probability of being dropped when traversing the 6TiSCH network.

Figure 6 shows the results for the TLS handshake. We compare the lower whiskers
(which correspond to a handshake with no losses) with the median. We notice, with Nagle
active, an increase between±10% and±2% in the number of transmitted bytes for an MTU
of 356 B and 864 B, respectively. Similarly, we see an increase between ±10% and ±15%
when Nagle is not active. Comparing the handshake duration, we measure an increase
between ±15% and ±10% with Nagle active and ±11% with Nagle inactive. We also notice
that when TCP uses a larger MSS, the worst-case scenario deteriorates quickly.
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Figure 6. Limiting the MTU, by negotiating a small Maximum Segment Size (MSS) in the TCP
handshake, reduces the number of bytes retransmitted and improves the handshake duration.

We conclude that a lower MSS/MTU results in more bytes exchanged to establish the
secure connection due to the header overhead. However, when there are losses, the small
TCP segments allow to more precisely indicate, through the TCP SACK option, which
segments require retransmission. When the receiver can accurately indicate which losses
occurred, the transmitter can minimize the data it has to retransmit.

In a second experiment, we look at the behavior of the DTLS handshake over lossy
links and compare it to the values obtained for TLS. Figure 7 depicts the comparison
between the lossy TLS and DTLS handshake. For an MTU of 529 B and 1041 B we measure
an increase of ±31% and ±45%, respectively. Handshake duration roughly doubles.
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Figure 7. Loss of a 6LoWPAN fragment causes significant retransmission activity during the DTLS
handshake. A properly configured TCP stack recovers the lost fragment with minimal impact on the
6TiSCH network.
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The lack of control over the retransmission mechanism of DTLS results in a drastic
increase in the number of bytes exchanged and total handshake duration. Since UDP
combines many DTLS records of a flight in large datagrams, losing a single 6LoWPAN
fragment results in the loss of all DTLS records. DTLS will then have to retransmit the
entire flight.

4. Insights: The (D)TLS Handshake over 6TiSCH
4.1. Handshake Reliability

The results obtained in the previous section show that the retransmission behavior
of DTLS is ill-suited for constrained networks. First, both endpoints must be capable of
estimating network latency correctly to set an appropriate static value for the retransmission
timeout. The default DTLS timeout of 1 s is too aggressive in most scenarios. Estimating
network latency in a 6TiSCH network is tricky because it depends on the number of hops
packets need to traverse, the density of the TSCH schedule (bandwidth), and the size of
the packet. The 6TiSCH network fragments large IPv6 packets into multiple 6LoWPAN
frames. The 6TiSCH devices send each fragment in an available active slot in the TSCH
schedule. A network with a depth of multiple hops, combined with a sparse schedule,
induces high latency on an end-to-end connection. The constrained endpoint in the 6TiSCH
network should be aware of these factors impacting the RTT. An arbitrary DTLS endpoint
on the Internet probably does not know that its messages will travel over a constrained
6TiSCH network.

Secondly, the cryptographic computations necessary to complete the handshake often
take a long time on low-power devices, especially when they lack hardware accelera-
tion. The RTT can significantly increase when constrained devices are computing the
cryptographic functions, see Figure 8a. Unless the Internet DTLS endpoint has a very
conservative initial retransmission value for the DTLS handshake, the network and crypto-
graphic latency will cause many spurious retransmissions. Since DTLS retransmits entire
flights—which can easily reach more than 1000 B for flights four and five—this has dire
consequences for the operation of the 6TiSCH network.

Powerful
DTLS Endpoint

Constrained
DTLS Endpoint

DTLS handshake message

Crypto
Latency

DTLS handshake message

Network
Latency

(a) No distinction between network and cryptographic
latency

Powerful
TLS Endpoint

Constrained
TLS Endpoint

Network
Latency

TLS handshake message

Crypto
Latency

TCP acknowledgment

TLS handshake message

(b) TCP can compute the network latency

Figure 8. Computational-intensive computations can cause spurious retransmissions during the DTLS handshake. TCP’s
acknowledgments indicate that the TCP segment arrived correctly and no retransmission is necessary, even if a reply is not
immediately received.

TLS relies on TCP to provide the necessary handshake reliability. TCP segments carry
entire or partial TLS records, with each segment having its retransmission timer. Contrary
to UDP, TCP uses acknowledgment packets in combination with its retransmission timers.
The acknowledgments provide TCP with RTT estimation capability, see Figure 8b. The
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retransmission timer is initialized at 1 s upon completion of the TCP handshake and gets
updated throughout the connection lifetime. TCP’s adaptive RTT estimation provides a
significant advantage over the static timeout values of DTLS. However, the estimation
happens on a per-segment basis and does not account for possible 6LoWPAN fragmen-
tation. Smaller TCP segments can traverse the TSCH network quickly since they do not
require 6LoWPAN fragmentation. Larger segments exhibit a much higher RTT due to
6LoWPAN fragmentation. When multiple small TCP segments are followed by a large
segment, the Retransmission Timeout (RTO) value is too aggressive and causes a spurious
retransmission of the large segment. We can limit the impact of spurious retransmissions by
activating TCP’s SACK option [22]. The option is advantageous in a scenario where multi-
ple TCP segments are on the wire, and segments successfully received are interleaved with
segments lost. A receiver can then add one or more SACK blocks to its acknowledgment
packet to precisely indicate which segments need retransmission.

4.2. Fragmentation

The maximum size of a (D)TLS record is 16,535 B. A (D)TLS record is the unit of
protection, meaning that the encryption and Message Authentication Code (MAC) are
calculated over an entire record. The record must be fully received before it can be pro-
cessed. In theory, both (D)TLS endpoints require an output and input buffer of 16,535 B
to store records. Typically, constrained devices do not have sufficient RAM for buffers of
this size. Several approaches are available to ensure the size of the incoming and outgoing
handshake messages is limited.

By default, the DTLS handshake protocol supports the fragmentation of handshake
messages to make sure that they do not exceed the PMTU, see Figures 3 and 9. Large
handshake messages can frequently occur when the messages contain certificate chains. In a
6TiSCH network, the PMTU depends on the number of 6LoWPAN fragments the individual
constrained devices along the path can handle. In addition, the constrained destination
must store all the fragments before reassembly. When the nodes are IPv6-compliant (MTU
of 1280 B), they should at least be capable of storing 11 6LoWPAN frames.

To give the other endpoint an early warning about the limited PMTU, DTLS clients
can use the MFL extension. When supported, MFL limits the size of the record fragments
to 512 B, 1024 B, 2048 B or 4096 B. The main drawback is that MFL is optional and thus not
supported by all DTLS endpoints. In addition, MFL negotiation can only be triggered by
the DTLS client; the DTLS server cannot indicate to the client it wishes to limit the record
fragment size. To address these issues the “record size limit” extension was defined. It is
valid for all (D)TLS version and supposed to replace the deprecated MFL extension [23].

TLS endpoints do not have a built-in fragmentation mechanism to limit the size of
the handshake messages, but TLS depends on TCP to appropriately size its segments
Figure 9. A constrained device can make use of TCP’ Maximum Segment Size (MSS) option
to explicitly set an upper bound to the segment size. In addition, TLS could use the MFL
extension to reduce the record fragment size.

To analyze the impact of different MFL and MSS sizes on the fragmentation load in
the network, we set up an experiment that measures the 6LoWPAN buffer pressure on
the constrained (D)TLS endpoint. We do not consider the buffer pressure of the inter-
mediate router nodes since they use fast fragment forwarding. 6LoWPAN fragments are
not reassembled on the routers and are forwarded directly to the next hop [24]. As long
as intermediate routers have sufficient active slots—allocated by the SF algorithm—their
buffers should not overflow. Figure 10 shows the results for varying configurations for
both TLS and DTLS. We notice that for large handshake messages, Nagle’s algorithm
increases the buffer pressure (see the top plot). Recall that Nagle will try to fill up a
TCP segment before transmission. The larger TCP segments require many 6LoWPAN
fragments. We can clearly distinguish two phases in the handshake protocol. The ini-
tial peak corresponds to the reception of a group a 6LoWPAN fragments containing
the ServerCertificate, ServerKeyExchange, CertificateVerify, and ServerDone messages. The
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second bump is the accumulation of 6LoWPAN fragments being queued for transmis-
sion, after the node has prepared its ClientCertificate, ClientKeyExchange, CertificateVerify,
ChangeCipherSpec, and Finished messages. Without Nagle, the endpoints are free to split
the TLS record data over several smaller segments, resulting in fewer 6LoWPAN fragments
per IPv6 datagram. It does increase the total amount of bytes, as shown in Table 2, due to
more header overhead and additional TCP acknowledgments.
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Figure 9. The different layers on which fragmentation occurs before a handshake message is sent by
the IEEE802.15.4 radio.
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Figure 10. Measured buffer pressure on the constrained endpoint for different network configurations.
The y-axis shows the number of packets in the queue. The x-axis shows the number of calls to the
packet allocation function in OpenWSN.

The behavior changes when we lower the handshake message size to 356 B. The initial
peak, caused by the incoming server handshake messages, has completely disappeared.
Since the segments are smaller, the receiving side needs to store fewer 6LoWPAN fragments
before it can reassemble the original packet. Next, the node quickly prepares several short
TCP segments (maximum size is 356 B), containing the ClientCertificate, ClientKeyExchange,
CertificateVerify, ChangeCipherSpec, and Finished messages. When Nagle is not active, not
all TCP segments are used at maximum capacity, which leads to more buffer spaces being
occupied. With Nagle activated, fewer segments are created.

The DTLS handshake behaves similarly to a TLS connection that uses a large IPv6
MTU and Nagle’s algorithm. DTLS sends entire flights at once, automatically causing
many 6LoWPAN fragments in transit. A constrained endpoint must correctly receive all
fragments before reassembly can take place. Forcing a lower handshake message size with
the MFL extension reduces the buffer pressure for incoming messages, but does nothing to
alleviate buffer pressure for outgoing messages.

4.3. Burst Traffic

Section 2 shows how 6TiSCH uses its SF to manage the available bandwidth on the
link-layer by allocating and deleting slots in the TSCH schedule. It is also the responsibility
of the SF to ensure that limited packet buffers used by the constrained endpoint do not
overflow, which would lead to packet loss. 6TiSCH defines a default MSF but allows
developers to design their own SF. Of particular interest in our scenario is an SF that
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handles bursty network traffic. Domingo-Prieto et al. [25] proposed a fully distributed SF
that manages the TSCH schedule through a Proportional, Integral, and Derivative (PID)
control algorithm. The authors show that their approach obtains promising results in case
of sudden traffic surges.

Alternatively, we could extend the 6P commands to build a virtual tunnel in the TSCH
schedule. The tunnel would allow a burst of IEEE802.15.4 frames to traverse multiple hops
quickly to the gateway. All 6P commands follow the same generic structure, defined in [13],
containing 2 B of opaque metadata. The SF and not by the 6P protocol interprets these 2 B.
We could use the opaque metadata to instruct the SF to forward the slot allocation request
recursively to its parent until it reaches the root, see Figure 11. Similarly, a slot deletion
request can recursively clean up the previously allocated slots.

Gateway

Intermediate hop

(D)TLS endpoint

A

B

C Tx

Rx Tx Tx

Tx

Rx

Rx RxTx Tx

Figure 11. Slots are allocated in an interleaved, continuous manner to build a tunnel from the (D)TLS
endpoint (C) over the intermediate hop (B) to the gateway (C).

Besides the 6P protocol, a constrained device could use TCP’s traffic congestion algo-
rithms. However, the traditional congestion mechanisms—Additive Increase/Multiplicate
Decrease (AIMD) and TCP slow start—are not well-suited for wireless networks. The
congestion mechanism increases or decreases the size of the congestion window, which is
typically up to 4 times the MSS [26]. Alternatively, RFC6928 [27] defines an experimental
new value for the initial congestion window, which in practice results in an initial window
of 10 times the MSS. The latter is nowadays used in many TCP implementations [16]. In
case of bursty traffic like the TLS handshake, an initial small congestion window could
limit the sending rate if a low enough MSS was negotiated and rapidly allow for more data
in flight. Nagle’s algorithm, see Algorithm 1 can also help limit congestion by maximizing
the efficiency of the buffer space on the constrained devices.

The IETF draft on lightweight TCP [16] also mentions the use of the Explicit Congestion
Control (ECN) bit in combination with TCP to limit network congestion. ECN allows a
router (intermediate node) to signal a warning for looming congestion by setting a bit in
the IP header of a packet, for example, when the internal buffer reaches 75% of its capacity.
An ECN-enabled TCP receiver echoes back the congestion warning to the TCP sender by
setting the ECN flag in its next acknowledgment. The sender then triggers congestion
control measures as if a packet loss had occurred.

Finally, the use of delayed acknowledgment packets can also help reduce congestion.
TCP’s delayed acknowledgments are meant to reduce the number of acknowledgment
packets sent within a TCP connection, thereby reducing network overhead. However, it
is well-known that delayed acknowledgments should not be used in combination with
Nagle’s algorithm since this would impact network throughput.
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Congestion control is not available when using UDP, and DTLS does not incorporate
any of the TCP congestion control mechanisms. DTLS can, however, still use the 6P
tunnel-building mechanism described above. Alternatively, the Datagram Congestion
Control Protocol (DCCP) [28] can carry DTLS messages. It provides congestion control for
unreliable datagrams.

5. Performance Enhancing Proxy for TLS/TCP

Even though TCP’s adaptive retransmission algorithm is a clear improvement over
the static timers used in DTLS (see Figure 7) it is still oblivious of the fragmentation
occurring at the 6LoWPAN layer and the additional RTT this incurs. The latter can cause
spurious retransmissions which are particularly expensive in constrained networks. In
the experiments presented in Section 3, we solve this issue by dropping the initial synack
segment during the TCP handshake. It causes a retransmission of the synack segment
but opens the connection with a more conservative fallback RTO value of 3 s instead of
1 s [29]. It ensures that TCP does not start with round-trip time (RTT) estimation that is too
aggressive, triggering needless retransmits during the TLS handshake. It is not possible to
easily change the initial TCP RTO from user space. Updating this value in the code would
require the recompilation of the Linux kernel.

To solve the problem in a more elegantly, we use a TCP Performance Enhancing
Proxy (PEP) [11]. PEPs are a commonly used technique to accelerate TCP connections
over satellite links without tampering with the TCP implementation details. It operates as
follows:

1. The PEP intercepts a TCP connection before the segments are sent to the satellite,
and it terminates the connection as if the interceptor is the intended destination. It
immediately sends an acknowledgment back to the original sender.

2. It forwards the TCP segments further to the actual destination, but it accounts for the
specifics of the satellite link, notably a long RTT.

3. In case of segment loss, the PEP takes care of retransmissions.

For the original TCP endpoints, the TCP PEP remains transparent. In a 6TiSCH
network, the PEP can be cohosted with the network gateway (root). The network gateway
intercepts the TCP connection and quickly generates acknowledgments for segments
originating from the Internet, thereby preventing retransmissions due to fragmentation-
induced latency. Since the network gateway is aware of the specifics of the 6TiSCH
network, it can calculate a novel RTT, which takes into account the fragmentation rate
and the allocated bandwidth in the 6TiSCH network. We implement the TCP PEP in
OpenVisualizer and assess its performance, see Table 3.

Table 3. Performance-enhancing proxy and TLS.

SSL Negotiated MTU [B] Latency [s] Bytes [B] NagleMSS µ σ µ σ

TLS 844 864 3.323 0.125 3098 2.13 X
844 864 3.209 0.083 3359 1.15 -

We notice that the TLS handshake takes one second less to complete compared to
Table 2. Since the PEP acknowledges the segments coming from the server, we no longer
need to drop the initial synack to force TCP to use a more conservative initial RTO. Surpris-
ingly, the TLS handshake even completes faster than the DTLS handshake, even though it
exchanges more bytes in total. However, the initial DoS protection of DTLS immediately
triggers 6LoWPAN fragmentation and adds reassembly delays, while the TCP handshake
packets are small and quickly traverse the 6TiSCH network. DTLS’ MTU is also larger—
1041 B vs. 864 B—which again causes more delays during fragment reassembly. The TCP
acknowledgments are small and do not require fragmentation. It limits their impact on
the overall duration of the handshake. We can conclude that DTLS spends a significant
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amount of time waiting for all the 6LoWPAN fragments because of the high fragmentation
rate of the UDP datagrams.

6. Improvements in (D)TLSv1.3

In 2013, the IETF started working on a new version of the TLS protocol, called
TLSv1.3 [30]. TLSv1.3 entered RFC status in March 2018. The latest iteration of the TLS
protocol contains some significant improvements that are also interesting for low-power
devices. Not only does the new specification improve the security of the protocol but it
also reduces the latency of the handshake phase. It now takes one full RTT less to complete.
While TLSv1.2 takes two full RTTs until application data can be exchanged, TLSv1.3 by
default only requires one RTT. The client tries to guess the key exchange algorithm the
server is going to pick, allowing the client to send its key share during the first RTT. In case
the client picks an unsupported algorithm, the server requests a new key share. Since the
number of possible key exchange algorithms is drastically reduced in TLSv1.3 compared to
TLSv1.2, there is a good chance the client chooses a supported algorithm.

At the time of writing, the DTLSv1.3 specification [31] is still in draft status at the IETF.
In addition to the changes it inherits from the TLSv1.3 specification—faster handshake
completion—it also updates some features specific to DTLS. It omits superfluous version
numbers and type fields in the headers, it has a novel variable-length record header with
support for a connection identifier and uses fewer bits to encode sequence and epoch
numbers. However, the most important change concerning constrained devices is the
introduction of a new content type called ACK. A DTLSv1.3 endpoint can use acknowl-
edgment messages when it detects disruptions during the reception of a DTLS flight. The
draft proposes to arm a timer for 1/4 of the duration of the current retransmission timer
timeout after a disruption is detected. When the timer expires, the endpoint generates an
acknowledgment for the parts of the flight that were well-received and correctly processed
by including a list of the record numbers in the acknowledgment message. Upon reception
of an acknowledgment the sender disables the retransmission timer and retransmits only
the record fragments that were lost.

7. Related Work

The literature contains several works that study the performance of TLS and DTLS in
the context of the IoT. They majorly focus the cryptographic overhead of the protocols and
propose alternative schemes to offload the resource-demanding computations, in particular
asymmetric cryptography [32–35].

The work presented by Vučinić et al. [36] considers the performance of transport
layer security in constrained environments. The authors focus only on the DTLS protocol,
but they investigate its performance in combination with two duty-cycled MAC-layer pro-
tocols: X-MAC, a preamble sampling protocol [37] and beacon-enabled IEEE 802.15.4 [38].
The results on handshake duration in multihop, duty-cycled networks, obtained through
the Contiki Cooja simulator [39], are similar to ours. Our work extends the previous by
considering the TLS standard as well, using the constrained IPv6-enabled 6TiSCH stack, im-
plementing the experiments on state-of-the-art hardware, and presenting the side-by-side
performance comparison with DTLS in different scenarios.

RFC7925 [40] describes generic DTLS and TLS profiles for constrained IoT devices.
It does not alter the protocols but recommends specific configuration options to make
the protocols reasonably implementable on most devices. Some of the recommendations
made are:

• Set the initial timeout for the DTLS handshake to 9 s.
• Mandatory client support for the MFL extension.
• Session resumption (which requires less messages to be exchanged and only symmet-

ric cryptography). In addition, when the server is constrained instead of the client,
support for client-side handshake state storage [41].

• Use TLS-FALSESTART [42] to shave off one RTT and speed up the handshake duration.
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• Optionally, use of the (D)TLS heartbeat extension [43] to verify whether the peer is
still alive and keep the connection up (preventing a new handshake).

The first two recommendations are straightforward. Since the original default timeout
value of 1 s is too aggressive for most constrained networks, a more conservative choice
is proposed. The RFC argues that 9 s is big enough to absorb large latency variance due
to slow computations or intrinsic network characteristics [40]. The mandatory client-side
MFL support allows notifying the server of limited buffer space on the client. However,
the server can ignore the extension. The remaining recommendations focus on preventing
a new full handshake by either keeping the connection alive or using restricted versions
of the handshake protocol. The TLS-FALSESTART and heartbeat extension necessitate
additional code to the stack, while session resumption forces either the server or client to
store state information.

8. Conclusions

In this article, we investigate the network performance of the TLSv1.2 and DTLSv1.2
handshake when messages are transferred over a 6TiSCH network. Although DTLS
has been the defacto security protocol for the IoT in the past years, we show that some
caution is advised when using it to protect application traffic in low-bandwidth, multihop
networks. The unreliability of the underlying transport layer forced the DTLS designers
to reimplement several TCP-like features in the DTLS handshake protocol. However,
these mechanisms are less flexible than their TCP counterpart. On the one hand, DTLS’
handshake outperforms TLS’ handshake when it has an ideal communication link between
both peers. It uses between 500 B and 800 B less, and completes roughly 0.6 s faster. On
the other hand, the performance of the DTLS handshake degrades rapidly when the link
quality deteriorates, the performance of the TLS handshake remains more stable in the
same conditions. When transport layer packets have a 5% probability of getting lost, the
DTLS handshake duration more than doubles, and it uses between ±37% and ±45% more
bytes. The TLS handshake duration grows between ±10% and ±15%, and the number
of exchanged bytes grows between ±2% and ±15%. The different TCP options allow
a developer to tailor the TCP stack and the TLS handshake to the characteristics of the
constrained network.

Besides the handshake comparison, we also propose an improvement for the TLS
handshake based on a TCP PEP. The PEP aims to resolve the issues that arise when 6LoW-
PAN fragmentation adds network latency, hidden to the TCP retransmission mechanism.
Experimental results show that the PEP accelerates the handshake and removes any spuri-
ous retransmissions.

Our current work focuses on analyzing the performance of TLSv1.3 and DTLSv1.3 in
constrained networks.
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1. Vilajosana, X.; Watteyne, T.; Chang, T.; Vučinić, M.; Duquennoy, S.; Thubert, P. IETF 6TiSCH: A Tutorial. IEEE Commun. Surv.

Tutor. 2019, 22, 595–615. [CrossRef]
2. Selander, G.; Mattsson, J.; Palombini, F.; Seitz, L. Object Security for Constrained RESTful Environments (OSCORE); Technical Report

RFC8613; RFC, Ed.; 2019. Available online: https://datatracker.ietf.org/doc/rfc8613/ (accessed on 1 February 2021).
3. Selander, G.; Mattsson, J.; Palombini, F. Ephemeral Diffie-Hellman Over COSE (EDHOC); Technical Report Draft-Selander-Lake-

Edhoc-05 [Work-in-Progress]; RFC, Ed.; 2021. Available online: https://datatracker.ietf.org/doc/draft-ietf-lake-edhoc/05/
(accessed on 1 February 2021).

4. Dierks, T.; Rescorla, E. The Transport Layer Security (TLS) Protocol Version 1.2; Technical Report RFC5246; RFC, Ed.; 2008. Available
online: https://datatracker.ietf.org/doc/rfc5246/ (accessed on 1 February 2021).

5. Rescorla, E.; Modadugu, N. Datagram Transport Layer Security Version 1.2; RFC 6347; RFC, Ed.; 2012. Available online:
https://datatracker.ietf.org/doc/rfc6347/ (accessed on 1 February 2021).

6. ARM. ARM MBEDTLS; Arm. 2020. Available online: https://tls.mbed.org/ (accessed on 1 February 2021).
7. wolfSSL. wolfSSL; wolfSSL. 2020. Available online: https://www.wolfssl.com/ (accessed on 1 February 2021).
8. IEEE. IEEE Standard for Low-Rate Wireless Networks; IEEE Std 802.15.4-2015 (Revision of IEEE Std 802.15.4-2011); IEEE: Piscataway,

NJ, USA, 2016; pp. 1–709.
9. Watteyne, T.; Mehta, A.; Pister, K. Reliability through Frequency Diversity: Why Channel Hopping Makes Sense. In Proceedings

of the Symposium on Performance Evaluation of Wireless Ad hoc, Sensor and Ubiquitous Networks (PE-WASUN), Tenerife,
Canary Islands, Spain, 26–30 October 2009; pp. 116–123.

10. OpenWSN. OpenWSN; OpenWSN. 2020. Available online: https://openwsn.atlassian.net/wiki/spaces/OW/overview (accessed
on 1 February 2021).

11. Kojo, M.; Griner, J.; Montenegro, G.; Shelby, Z. Performance Enhancing Proxies Intended to Mitigate Link-Related Degradations; Techni-
cal Report RFC3135; RFC, Ed.; 2001. Available online: https://datatracker.ietf.org/doc/rfc3135/ (accessed on 1 February 2021).

12. IEEE. IEEE Standard for Local and Metropolitan Area Networks—Part 15.4: Low-Rate Wireless Personal Area Networks (LR-WPANs)
Amendment 1: MAC Sublayer; Technical Report 802.15.4; IEEE: Piscataway, NJ, USA, 2016.

13. Wang, Q.; Vilajosana, X.; Watteyne, T. 6TiSCH Operation Sublayer (6top) Protocol (6P); Technical Report RFC8480; RFC, Ed.; 2018.
Available online: https://datatracker.ietf.org/doc/rfc8480/ (accessed on 1 February 2021).
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