
sensors

Article

A Service-Oriented Real-Time Communication Scheme
for AUTOSAR Adaptive Using OPC UA and
Time-Sensitive Networking

Anna Arestova 1,*,† , Maximilian Martin 2,† , Kai-Steffen Jens Hielscher 1 and Reinhard German 1

����������
�������

Citation: Arestova, A.; Martin, M.;

Hielscher, K.-S.J.; German, R. A

Service-Oriented Real-Time

Communication Scheme for

AUTOSAR Adaptive Using OPC UA

and Time-Sensitive Networking.

Sensors 2021, 21, 2337. https://

doi.org/10.3390/s21072337

Academic Editor: Rupak Kharel

Received: 9 March 2021

Accepted: 24 March 2021

Published: 27 March 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Computer Science 7, Computer Networks and Communication Systems, University of Erlangen-Nürnberg,
91058 Erlangen, Germany; kai-steffen.hielscher@fau.de (K.-S.J.H.); reinhard.german@fau.de (R.G.)

2 Siemens Mobility GmbH, 91058 Erlangen, Germany; maximilian.martin@siemens.com
* Correspondence: anna.arestova@fau.de
† These authors contributed equally to this work.

Abstract: The transportation industry is facing major challenges that come along with innovative
trends like autonomous driving. Due to the growing amount of network participants, smart sensors,
and mixed-critical data, scalability and interoperability have become key factors of cost-efficient
vehicle engineering. One solution to overcome these challenges is the AUTOSAR Adaptive software
platform. Its service-oriented communication methodology allows a standardized data exchange that
is not bound to a specific middleware protocol. OPC UA is a communication standard that is well-
established in modern industrial automation. In addition to its Client–Server communication pattern,
the newly released Publish–Subscribe (PubSub) architecture promotes scalability. PubSub is designed
to work in conjunction with Time-Sensitive Networking (TSN), a collection of standards that add real-
time aspects to standard Ethernet networks. TSN allows services with different requirements to share
a single physical network. In this paper, we specify an integration approach of AUTOSAR Adaptive,
OPC UA, and TSN. It combines the benefits of these three technologies to provide deterministic high-
speed communication. Our main contribution is the architecture for the binding between Adaptive
Platform and OPC UA. With a prototypical implementation, we prove that a combination of OPC UA
Client–Server and PubSub qualifies as a middleware solution for service-oriented communication
in AUTOSAR.

Keywords: AUTOSAR adaptive; OPC UA; time-sensitive networking; vehicle communication

1. Introduction

The automotive industry is rushing towards new trends like autonomous driving
and Car2X [1–3]. Vehicles are becoming increasingly intelligent and interconnected with
the outside world and with each other [4]. The number of new functions in a vehicle is
growing rapidly. Particularly in the context of autonomous driving, the need for special
sensors that perceive the environment and complex sensor data fusion functions has
increased. In addition to the actual control of the vehicle, other components such as
driving assistants and infotainment gain in significance. As a consequence, the amount of
mixed-critical data to be processed and exchanged has grown enormously.

The current state of the art is that each functionality is implemented on an adapted
Electronic Control Unit (ECU). The ECUs are interconnected via proprietary communication
buses like CAN and FlexRay [4]. The rapid growth of data and interconnected functions
encourage the automotive industry to look for more adaptive and high-end performance
software platforms, as well as communication technologies that are able to achieve high
throughput, provide determinism, and keep up with the dynamic communication pattern
of new features.

The Automotive Open System Architecture (AUTOSAR) (https://www.autosar.org,
last accessed on 1 March 2021) is a global development partnership that addresses these
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software platform requirements with the ongoing development of the new standard AU-
TOSAR Adaptive Platform (AP). The new platform offers a high level of flexibility regarding
software allocation, the underlying hardware, and network communication. AP relies
on the dynamic deployment of customer applications and the use of highly parallelized
processors. In comparison, the previous AUTOSAR standard, now called the AUTOSAR
Classic Platform (CP), mainly encounters the requirements of deeply embedded systems [5].
AUTOSAR Adaptive is designed to provide sufficient capacities for the processing of com-
plex functions, e.g., image processing in Advanced Driver Assistance Systems (ADAS) and
Automated Driving Functions (ADF), and to support distributed systems.

Moreover, AP is designed to fully support Ethernet-based communication. To better
support automotive use cases, AUTOSAR specified the service-oriented communication
middleware SOME/IP (Scalable service-Oriented Middleware over Internet Protocol) for
the automotive/embedded field [6] and especially for AP. Some contents of SOME/IP
(events, fields, etc.) are even integrated in AP. Therefore, the Communication Manage-
ment (CM) [2] of AP already includes standardized bindings for SOME/IP, but also for
the data-centric middleware protocol Data Distribution Service (DDS) [7]. Besides the direct
binding of a middleware protocol to CM, gateway solutions represent a further solution
for the binding of additional middleware solutions [8,9]. At the moment, (hard) real-time
capable solutions exist neither with SOME/IP nor with DDS. Nevertheless, AP allows
the specification of other direct middleware bindings, e.g., for OPC UA. The OPC UA
technology supports real-time communication patterns. For a holistic real-time solution,
a deterministic network technology like TSN is required on Open Systems Interconnection
(OSI) layers 1 and 2.

The Open Platform Communications Unified Architecture (OPC UA) is a machine-
to-machine (M2M) communication technology that is established in modern industrial
automation. It is based on a service-oriented architecture (SOA). The focus of OPC UA
is flexible communication using a Client–Server (C/S) and a Publish–Subscribe (PubSub)
communication pattern to connect machines from different vendors. OPC UA satisfies
the vertical communication covering all levels of the automation pyramid including field,
control, supervisory, planning, and management level [10]. Horizontal communication
based on OPC UA is currently only established for controller-to-controller communication.
In addition, OPC UA is seen as the key communication protocol in Industry 4.0 and IIoT
(Industrial Internet of Things) [11]. Additionally, OPC UA empowers connectivity to cloud
solutions [12] and is gaining popularity in smart grids [13].

In 2018, the OPC Foundation started the Field Level Communications (FLC) initiative.
Experts from global players like Cisco, Intel, Siemens, and TTTech join forces to establish
OPC UA on the field level. This shall enable unified and vendor-independent commu-
nication among devices (sensors and actuators) and between field devices, controllers,
and the cloud [14]. Today, fieldbuses like PROFIBUS and Modbus as well as Ethernet-based
protocols like PROFINET and EtherCat can be found on the field level [12]. The FLC
initiative aims to equip OPC UA with features required for industrial use cases (e.g., de-
terminism, safety, security). Real-time capability is achieved with the OPC UA PubSub
communication pattern in conjunction with Time-Sensitive Networking (TSN). In addition,
the FLC initiative is developing methods for the configuration of Quality of Service (QoS)
parameters, including TSN parameters [14].

The Institute of Electrical and Electronics Engineers (IEEE) Time-Sensitive Networking
Task Group (https://1.ieee802.org/tsn/, last accessed on 28 February 2021) provides exten-
sions to Ethernet networks defined in IEEE 802.1 and IEEE 802.3 to enable deterministic
and reliable transmission of time-sensitive network traffic. TSN allows for mix time-critical
network traffic with best-effort services. This so-called network convergence is particularly
beneficial for the implementation of mixed-critical systems. The specification of a number
of TSN standards has been completed while others are still in progress. The TSN Task
Group has initiated several projects to define TSN profiles for different application domains
such as industry, automotive, and aerospace. TSN is an upcoming technology which is only
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used sporadically today. One of the reasons is that there are not many TSN-capable devices
on the market yet and that only few TSN mechanisms are supported. These mechanisms
consist primarily of time synchronization and time-triggered transmission of data packets.

The combination of TSN and OPC UA enables flexible and deterministic communica-
tion for a wide range of devices from different manufacturers lowering the configuration
overhead. Thus, it is not only interesting for industrial automation [10,12,15–17], but also
for other application domains like the automotive [18,19] and railway industry [20].

By integrating the AUTOSAR Adaptive Platform, OPC UA, and TSN, as shown
in Figure 1, the benefits of these technologies can be combined. This solution addresses
the abovementioned challenges of the automotive industry. The goal of this paper is
to show how these three technologies can be integrated and how determinism can be
achieved. We give an overview of the mentioned technologies in Section 2. In Section 3,
we review the related work. We present the integration architecture and discuss the impact
of architectural decisions including crucial aspects of the implementation in Section 4.
Furthermore, we describe an experimental evaluation of the proposed communication
architecture and discuss the results in Section 7. Finally, we conclude our work and give
an insight into future activities in Section 9.

AUTOSAR
Adaptive

OPC UA

Ethernet
TSN

Application

Transport
Middleware

Network

Figure 1. Integration stack of AUTOSAR Adaptive, Open Platform Communications Unified Archi-
tecture (OPC UA), and Time-Sensitive Networking (TSN).

2. Fundamentals

As Figure 1 illustrates, our intention is to provide an OPC UA network binding for
service-oriented communication in AUTOSAR Adaptive. In this scenario, the transmission
of the OPC UA messages shall take place over TSN. In the following, we introduce the three
components in more detail.

2.1. AUTOSAR Adaptive

AUTOSAR is a development partnership of players in the automotive sector. Partners
join forces to develop standardized system functions and functional interfaces for ECUs.
The AUTOSAR Classic Platform is a well-established standard for deeply embedded ECUs.
However, the CP is not fit for highly parallelized and distributed systems as needed
for innovative trends like autonomous driving. The AUTOSAR Adaptive Platform is
an emerging standard that addresses these shortcomings. It is an execution environment
that builds upon any operating system compliant with the Portable Operating System
Interface (POSIX) standard [5].

The logical view of the AP architecture is shown in Figure 2. Adaptive Applications
(AAs) run on top of the AUTOSAR Runtime for Adaptive Applications (ARA) [5]. ARA
is organized in so-called functional clusters. The functional clusters either belong to
the Adaptive Platform Foundation or Adaptive Platform Services [5]. Clusters provide C++
interfaces for access to the AUTOSAR runtime. In addition, any Adaptive Application can
be designed to provide services to other Adaptive Applications. In order to give a better
insight into our work, we take a closer look at the Communication Management (CM),
the Execution Management (EM), and the service-oriented approach of AP in general.
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Figure 2. Logical view of Adaptive Platform (AP) architecture including the OPC UA binding, see
([5] Figure 3–1).

2.1.1. Communication Management

The Communication Management [2], also known as ara::com, implements the service-
oriented architecture pattern to achieve flexibility and scalability for distributed processing.
A service is offered by a provider and used by a consumer. Services consist of:

• Events that represent read-only notifications
• Methods facilitating remote procedure calls
• Fields enabling read and write access to data points

AP allows for perform service-oriented communication over different middleware
protocols and interprocess communication (IPC). Network bindings already exist for
SOME/IP, DDS, and signal-based communication (Signal PDU) [5].

AUTOSAR’s service-oriented communication offers a dynamic establishment of com-
munication paths. The central component for runtime discovery is the service registry. Ap-
plications that provide services register them with the service registry. Service-consuming
applications can find services by querying the registry. After that, they can call services
directly at the provider. This process is called service discovery. Similar to service access,
discovery calls are mapped to the specific middleware protocol as well.

2.1.2. Execution Management

The Execution Management [21] is responsible for managing the execution of the plat-
form and user applications. Among other things, it is in charge of the initialization of
the platform as well as the startup and shutdown of applications. It configures the platform
and applications according to a manifest, the Execution Manifest. AUTOSAR manifests
are XML-based files describing services, applications, the underlying machines, and their
configuration [5]. EM works in conjunction with the operating system (OS). One important
aspect of the cooperation between the Execution Manager and the OS is the configuration of
scheduling policies. Thus, more critical applications can be scheduled to run with a higher
priority [21].

2.1.3. Example: Service Interface Realization

The service-oriented approach of AP allows custom applications in AA and platform
applications in ARA to expose data and methods to other applications on the same or on
a different device. This procedure promotes flexible software engineering and the def-
inition of proper interfaces. In addition, the acquisition of sensor data can be realized
in a service-oriented and generic manner. In [22], the authors propose to realize a sensor
interface as a service in AP to simplify the access to different sensor data and to support
the sensor data fusion function. As shown in Figure 3, one AP instance that is running on
ECU X is connected to ECUs integrating different sensors over different communication
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technologies. The adaptive applications running on the platform perform sensor data
fusion for automated driving (AD) functions. Another AP instance (running on ECU Y)
depends on the sensor data. By providing a sensor interface, the AP on ECU X can exchange
the sensor data with AP on ECU Y over a service-oriented middleware like SOME/IP,
DDS, or OPC UA. This exchange can be realized in AP cyclically or on demand. Addi-
tionally, the design of the sensor interface as a service enables a simplified connection of
new sensors.

In this paper, we focus on providing a middleware binding solution to enable such
a service interface-based data exchange over OPC UA.

AA

ARA

AP ECU X

AD Function

Sensor Fusion

AA

ARA

AP ECU Y

SOME/IP , DDS, OPC UA

Camera 
ECU

Camera 
Sensor

Camera 
ECU

Camera 
Sensor

Radar Data 
Processing

Radar ECU

Radar Data 
Processing

Radar ECU Lidar ECU

Lidar 
Sensor

Lidar ECU

Lidar 
Sensor

Sensor Interface Sensor Interface

EthernetEthernet CAN

Sensor 
Processing 

(Radar)

Sensor 
Processing 

(Lidar)

Sensor 
Processing 
(Camera)

AD Function

Sensor Fusion

AD Function AD Function

Figure 3. Realization of sensor interfaces with AP, see ([22] Figure 4.3).

2.2. OPC UA

OPC UA is an open M2M communication standard developed by the OPC Foundation
(https://opcfoundation.org, last accessed on 1 March 2021) that is established in modern
industry automation. It provides a manufacturer-independent and service-oriented archi-
tecture. OPC UA’s goal is to provide universal data exchange over different levels (“from
the sensor to the cloud”). OPC UA features a rich semantic model, so-called information
model, as well as a variety of transport protocol mappings and communication patterns.
It additionally provides specifications for, amongst others, security [23], diagnosis and
auditing [24], and safety [25], which forms a good basis for future vehicle platforms. In the
following, we go into more detail about the communication and information model.

2.2.1. Communication Model

OPC UA offers two communication models: C/S and PubSub. The OPC UA C/S
scheme implements a classic connection-oriented one-to-one communication pattern.
A server acts as an information source while a client consumes information. As shown
in Figure 4, C/S supports different message mappings (Binary, JSON, XML) and transport
protocol mappings (HTTP(S), UA-TCP, etc.). In the first place, the C/S scheme enables
reliable communication between two parties. However, C/S is not designed to be real time
capable. The C/S pattern was recently complemented by PubSub communication [26].
PubSub decouples publishers and subscribers. This means that publishers are able to per-
form connectionless many-to-many communication. PubSub supports different message

https://opcfoundation.org
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mappings and transport protocol mappings as well. While PubSub also allows human-
readable message mapping formats such as JSON, we decided to use the binary message
mapping UA Datagram Protocol (UADP) due to its efficient serialization. PubSub supports
payload transport over Message Queuing Telemetry Transport (MQTT), Advanced Mes-
sage Queuing Protocol (AMQP), User Datagram Protocol (UDP), and raw Ethernet. In case
of the UDP and raw Ethernet mapping, subscribers register to the multicast IP or MAC
address associated with the data of interest. In contrast to C/S, PubSub over UDP or raw
Ethernet has the potential for deterministic data transmission when used in conjunction
with Time-Sensitive Networking as both have a connectionless nature. We chose the UDP
transport protocol mapping in our binding approach because it supports deterministic
transmission and it allows for exploiting IP-based multicast mechanisms.

1 + 2
Data Link 

and Physical 
Layer

3
Network

4
Transport

5 + 6 + 7
Application

Presentation
Session

IEEE 802.1 + IEEE 802.3 (incl. TSN)

OPC UA Client/Server OPC UA PubSub

OPC UA Information Model

UA Binary, JSON, XML

TLS

TCP UDP

IP

UA-TCP, WSS, HTTP, ... MQTT, AMQP

JSON, UADP

UA Secure 
Conversation

Figure 4. OPC UA in the Open Systems Interconnection (OSI) reference model.

2.2.2. Address Space and Information Model

The OPC UA information model is an organizational framework that represents
the information resources of a system. Complex relationships can be modeled using
object-oriented concepts. It is based on the modeling methodology of the address space
model specified in [27]. The address space is an information collection that a server
provides to its clients. Elements of this model are represented as nodes. The specification
of the information model [28] describes standardized nodes of a server address space.
These are the nodes that a blank server contains. Furthermore, custom elements and
types can be defined. An exemplary information model is shown in Figure 5. Moreover,
OPC UA provides methods to perform simple or complex processing of the modeled data
in the address space, e.g., by applying interpolation functions or time series analysis.

Each node is an instance of a node class. Node classes define specific attributes that
describe the nodes and references that define their relationship to other nodes. OPC UA
defines eight node classes. For example, nodes derived from the node class Object may
represent real-world objects like sensors (camera sensor in Figure 5) or whole systems.
Instances of Variable node class are used to represent the content of an object, status and
current image of the camera sensor. The Image value of the camera sensor may have
the type ByteString. Nodes with executable functions are typed by the node class Method,
see method Configure in Figure 5 [27].
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Root

Objects

Sensors

▪ Camera_1

Configure (method)

Image (variable)

Status (variable)

OPC UA Default Folders

Camera object 

containing one method 

and two variables

Figure 5. Exemplary information model for a sensor interface.

The information model can be used as the central information resource for both C/S
and PubSub. PubSub does not necessarily require an information model, nor is it dependent
on C/S. However, the combination of PubSub and C/S through a shared information model
may be advantageous. An OPC UA server may provide sensor interfaces as represented
in Figure 5. Over the C/S communication pattern, OPC UA clients can read or write values.
Using the same information model for the PubSub scheme, OPC UA capable devices can
subscribe to a cyclic transmission of sensor values in a real time or best-effort scheme.
Additionally, PubSub configuration settings can be represented within an information
model (Configuration Model). Thus, the C/S communication scheme can be used to
provide a simple and standardized way to configure PubSub communication.

2.3. Time-Sensitive Networking

Time-Sensitive Networking provides a set of standards that extend Ethernet by the fol-
lowing aspects, see [29]:

• Synchronization of time (802.1AS-2020, etc.)
• Reliability (802.1CB, 802.1Qci, etc.)
• Latency (802.1Qbv, 802.1Qcr, 802.1Qch, 802.1Qbu, etc.)
• Resource Management (802.1Qcc, 802.1Qat, etc.)

It allows network flows with different Quality of Service (QoS) requirements to share
a single physical network. Our focus will be the Time-Aware Shaper (TAS) as specified
in IEEE 802.1Qbv [30] as it provides explicit support for time-triggered transmission of
packets. TAS components reside in egress ports of a switch or an end system device,
see Figure 6a. Each egress queue is assigned a gate that opens and closes according
to a schedule defined in a gate control list. The gates are controlled by the gate driver.
As shown in Figure 6a, the gate associated with the egress queue for scheduled traffic (time-
and safety-critical traffic) opens for 3 ms and remains closed for 7 ms within a cycle of
10 ms. Egress ports of switches typically have eight egress queues. This allows for mapping
each value of the PCP field of the VLAN tag directly to one egress queue. Otherwise,
an explicit mapping is required. One or several queues can be dedicated to scheduled
traffic. Usually, only one queue is assigned for time- and safety-critical traffic [31,32]. Other
egress queues share the remaining time window of the TAS cycle or further subdivide
the cycle into separate transmission slots. The serialization of network traffic on wire
according to the TAS configuration in Figure 6a is shown in Figure 6b.

Time-aware scheduling requires all network participants to have the same notion
of time. In the context of TSN, it is achieved by time synchronization protocols such as
the Precision Time Protocol (PTP) published in IEEE 1588 [33] or the PTP profile gPTP for
TSN, specified in IEEE 802.1AS-2020 [34]. Furthermore, the IEEE 802.1 TSN working group
defines the standard IEEE 802.1Qcc [35] to improve the administration of TSN networks,
which also includes calculating and configuring TAS schedules for involved network and
end-system devices.
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Figure 6. Methodology of Time-Aware Shaping (TAS). (a) shows the TAS components for transmis-
sion selection within an egress port. (b) shows the corresponding serialization of the network traffic
on wire.

3. Related Work

The main contribution of this paper is the architecture for the binding between Adap-
tive Platform and OPC UA. Furthermore, we examine TSN as link layer technology. More
specifically, we are presenting a network binding that exposes AUTOSAR service com-
ponents (events, methods, fields) with the methodology of OPC UA. To the best of our
knowledge, we are the first to propose a direct binding of the aforementioned technologies.
While implementations of OPC UA over TSN already exist and numerous works have been
published on this subject, the usage of OPC UA over TSN for real-time communication
in AUTOSAR Adaptive is a novel concept. In the following, we want to provide an insight
into literature that addresses the current state of the AUTOSAR Adaptive communica-
tion model, the benefits of the combination of OPC UA and TSN in factory automation,
and OPC UA considerations in the automotive industry.

Regarding future automotive software platforms, AUTOSAR Adaptive is considered
as a key technology to tackle the challenges of autonomous driving and Car2X in [1,4]. The au-
thors in [4] state that AUTOSAR Adaptive will facilitate the development of a standardized
platform for connected cars due to its wide range of platform services. While these works
concentrate on the applicability and suitability of AUTOSAR Adaptive as a future vehicle plat-
form, our research initially focuses on the binding concept of AUTOSAR Adaptive, OPC UA,
and TSN and the evaluation of this combination for the in-vehicle communication. However,
we also address the advantages of AP.

On the communication level, AP covers service-oriented communication with SOME/IP
and DDS over Ethernet at the moment, but there is still a lack of a real-time communication
scheme. TSN is such an option located on layer 2 of the OSI reference model. Although
less dominant in literature, the automotive industry considers TSN a future trend in vehicle
communication [3,4,36]. The authors of [3] identify TSN as appropriate technology for future
car technology as it is expected to reduce wiring efforts. They clarify that, after chassis and
engine, the wiring harness of a car is ranked third in both cost and weight. We have chosen
to integrate TSN in order to be able to provide deterministic end-to-end latency for real-time
communication in AP. The aforementioned advantages favor the use of the technology.

In the industrial domain, TSN is represented in many works [8,10–12,15–17,32,37–39]. Since
TSN is only represented at the lower layers of the OSI model, it is often considered together with
a high-level protocol. The best-known representative in this case is OPC UA. Several publications
regard the combination of TSN and OPC UA as future real-time communication candidate at
the field level [10,11,15,16,32,37]. TSN offers a variety of mechanisms such as EEE 802.1Qbv,
IEEE 802.1Qch, IEEE 802.1Qcr, and IEEE 802.1Qbu to guarantee timely response [37]. OPC
UA, on the other hand, provides a connectionless and multicast-capable PubSub pattern and
flexible configuration of data to be published [16]. Ref. [32] shows with example calculations
that OPC UA over TSN outperforms current Ethernet-based fieldbus systems, especially because
it allows the use of a Gigabit physical layer. In [16], the authors evaluated the performance
of OPC UA over TSN using the open-source implementation open62541 of OPC UA that
supports C/S and PubSub. Our implementation also uses the open62541 stack due to
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the real-time performance considerations discussed in the following. The authors of [16]
showed that this PubSub implementation allows submillisecond publishing intervals
with jitter in the nanosecond range. Others propose OPC UA PubSub for the delivery of
TSN stream requirements to network components that are able to reserve and configure
the necessary resources in TSN networks [37–39]. OPC UA offers a rich information model
that simplifies the configuration process [39] and the discovery of publishers [37]. Our
work concentrates on the real-time capability achieved through the combination of both
technologies. The configuration aspect is a future topic that we are planning to address,
as mentioned in Section 9.

To put the potential of OPC UA into context, researchers have compared the perfor-
mance of open62541 with implementations of the middleware Robot Operating System
(ROS), DDS, and MQTT in [40]. Their benchmarks show a performance advantage of
open62541 over MQTT and ROS implementations and a similar performance compared to
the eProsima FastRTPS DDS stack. The authors additionally highlight the rich information
model of OPC UA.

OPC UA is also a technology that is researched by the automotive industry. The the-
sis [18] evaluates OPC UA for Car2X communication. The author concludes that OPC UA
C/S brings considerable advantages for Car2X: It offers a suitable security model and facil-
itates interoperability. Furthermore, Ref. [9] proposes a gateway enabling interoperability
between VSOMEIP (GENIVI’s SOME/IP stack (https://github.com/GENIVI/vsomeip,
last accessed on 1 March 2021) and OPC UA applications to assure vehicle interoperability
in the IIoT context. Such a gateway solution can also be applied to translate OPC UA C/S
messages to SOME/IP Client–Server messages and vice versa in the AUTOSAR Adaptive
context. The authors only worked with the Client–Server pattern and did not provide
a direct binding of OPC UA concepts to SOME/IP or AUTOSAR Adaptive concepts, in con-
trast to our solution. In [8], the same authors extend their gateway solution by an OPC UA
PubSub and VSOMEIP Notify–Subscribe gateway application. On the link layer, the au-
thors use raw Ethernet. The gateway application was tested in a small setup in which one
or several OPC UA modules communicated with a VSOMEIP module over a gateway node.
All applications were distributed on separate devices. The evaluation showed that the end-
to-end transmission latency did not exceed the exchange interval chosen in the range of
1 ms to 10 s. Our binding approach avoids the overhead of an intermediate application. It
additionally embeds TSN as link layer and is able to reliably perform cyclic publishing at
a 1 ms interval even in stress scenarios.

4. Materials and Methods

The following software and hardware components were necessary to implement
the communication scheme described herein.

4.1. AUTOSAR Adaptive Platform Implementation and Tooling

The reference implementation and further AUTOSAR tooling is accessible for AU-
TOSAR members. In case of universities and non-profit organizations and within the scope
of ATTENDEES membership, no annual administration fees have to be paid. We have used
the AUTOSAR Adaptive reference implementation of the release 19-03.

4.2. OPC UA Implementation and Tooling

OPC UA provides a high variety of open- and closed-source stacks, tooling,
and documentation (IEC 62541). We have used the open62541 stack that is available on
GitHub (https://github.com/open62541/open62541, last accessed on 2 March 2021)
for our binding approach.

4.3. TSN Mechanisms

To be able to use the TSN TAS mechanisms on end-system devices, either a TSN-
capable network interface card like Kontron PCIE-0400-TSN should be used or the avail-

https://github.com/GENIVI/vsomeip
https://github.com/open62541/open62541
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able network interface card should be adapted for the TSN queuing discipline TAPRIO
(https://tsn.readthedocs.io/qdiscs.html, last accessed on 15 February 2021). Addition-
ally, a high-precision time synchronization protocol like PTP, see the Linux PTP Project
(http://linuxptp.sourceforge.net/, last accessed on 18 March 2021), should be installed
on all communicating devices. When connecting end devices over a switch, the switch
must support TAS and provide a time synchronization mechanism.

5. Binding Architecture

In the following subsections, we explain fundamental architectural concepts of our
integration approach. We will go into detail about the mapping of AUTOSAR service com-
ponents, types, configuration parameters, and service discovery to OPC UA methodology.
Additionally, we discuss the approach for a binding implementation for real-time sys-
tems. The represented binding approach aims at combining the benefits from the adapted
automotive platform AP, the rich information and communication model of OPC UA,
and the real-time features of TSN.

5.1. Protocol Binding

Our concept integrates OPC UA C/S and PubSub inside a single binding. Both
OPC UA facets provide access to a single information model for the AUTOSAR Adap-
tive services, see Section 5.3. This covers the use case of simultaneous C/S and PubSub
communication in the same application. For example, PubSub is suitable for real-time com-
munication, while C/S provides access for diagnostics, management, and configuration.

Figure 7 shows that C/S and PubSub are integrated side by side in an AUTOSAR ser-
vice provider. An OPC UA stack is placed inside the binding and contains the information
model as well as the two protocol implementations. The information model is the shared
data source for both protocols.

Client/Server

AUTOSAR

E

PubSub

EventsEvents Methods Fields

OPC UA Information Model

Figure 7. Overview of the combined OPC UA C/S and PubSub binding inside an AUTOSAR
service provider.

From the top-level perspective, the Adaptive Application provides data through
mechanisms of the Adaptive Platform. The OPC UA binding inside the platform dispatches
the data from the Adaptive Application into the information model, so that it is accessible
via OPC UA C/S and PubSub.

From the bottom-level perspective, all service components (events, methods, fields)
are accessible through C/S. PubSub is currently only used to transmit event data be-
cause PubSub does not match the concepts of methods and fields. The representation of
the service components in OPC UA is described hereinafter.

5.2. Service Component Mapping

The three service components (events, methods, fields) are mapped to the concepts of
OPC UA. The information model plays a central role as an interstation for data transferred
between the network layer and the Adaptive Application.

5.2.1. Events

With the existing bindings (SOME/IP, DDS), the call of the send method from the Adap-
tive Application triggers the transmission of a network message with event data. However,
we chose a different approach for our binding. A send call from the application level only

https://tsn.readthedocs.io/qdiscs.html
http://linuxptp.sourceforge.net/
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writes data into the OPC UA information model. The SourceTimestamp of the node is
updated upon each write access. As AUTOSAR events are fire-and-forget notifications
from the perspective of the Adaptive Application, the timestamp indicates the time at
which the event was sent by the application.

The actual transmission of event data are realized separately. Figure 8 depicts the pub-
lishing mechanism for OPC UA PubSub: Once the provider applications send data (1),
they are stored in the information model. A separate thread triggers a publishing rou-
tine at a configured interval (2). This means that data are retrieved from the information
model and assembled into a PubSub network message. Cyclic publishing takes the place
of event-based publishing for a couple of reasons. First, it addresses the requirements
of cyclic (hard) real-time transmission as realized with TSN TAS. Second, the OPC UA
PubSub specification [26] assumes cyclic publishing as well. Third and last, cyclic pub-
lishing over PubSub allows for group events. All events of an event group are transferred
inside a network message in each and every cycle. This reduces the overhead caused by
protocol headers. A consumer application can detect whether an event was sent since
the last cycle by comparing the included timestamps. Once the network message is ready
for transmission, the publishing routine sends it to a multicast address (3). It is transmitted
over a TSN-based network. Consumers that have subscribed to an event of the trans-
mitted event group receive the message and record an event sample (4). In more detail,
the binding unpacks event data and stores them in an event sample cache that is specific to
the event. The Adaptive Application in the consumer can either poll the sample cache for
new samples or register a callback to be notified about new samples.

Application (Provider)

ara::com Binding

Information Model

1: Send(event)

2: Publish() 3: Transmit(eventGroup)

Application (Consumer)

ara::com Binding

4: Sample(event)

Figure 8. Transmission of an event from a provider to a consumer.

As event data are stored inside the information model of an OPC UA server, clients
can access them directly via C/S methodology. More specifically, clients browse through
the information model of the server and read the variable node that belongs to the respective
event. The client may be either a standalone OPC UA application or a part of a consumer’s
network binding. Clients may also use so-called subscriptions [41]. They are part of
OPC UA C/S methodology (not to be confused with PubSub). Subscriptions allow clients
to subscribe to data points. The server then monitors these items and notifies clients
about changes.

5.2.2. Methods

AUTOSAR Adaptive methods are remote procedure calls (RPCs). A service consumer
calls a method with a list of parameters and, optionally, receives a return value with
the result. This concept can be mapped one-to-one to OPC UA method nodes. An OPC
UA client calls a server method by passing input arguments. The OPC UA server uses
a callback mechanism to run the function registered by the Adaptive Application. After
completion, the server returns a list of output arguments.

Methods are only implemented for C/S access. We do not intend to realize them using
OPC UA PubSub since PubSub does not support a matchable concept.

5.2.3. Fields

An AUTOSAR field has, unlike an AUTOSAR event, a certain value at any time.
Conceptually, it inherits features of methods and events. The value of a field can be
accessed using a getter method. Writable fields contain an additional setter method.
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Consumers can subscribe to fields. When a field value is updated, it notifies subscribed
consumers with the same mechanism as regular AUTOSAR events. We decided not to map
fields in the same way. Instead, we realized fields as variable nodes in the information
model. The access level of the variable node specifies whether the node can be written by
a client. This substitutes the existence of getter and setter methods. Clients can subscribe to
it using the OPC UA subscription mechanism. Notifications triggered by the subscription
substitute the functionality that is realized as event in SOME/IP and DDS.

More technically, variable nodes for fields have an attached data source. This means
that the nodes do not store the value themselves but manage callbacks that handle read
and write access. Figure 9 visualizes this concept. The OPC UA server of a provider
redirects every read and write request to a callback function. The particular callback
function is the get handler or set handler of the binding, respectively. This handler, again,
calls a get or set callback registered by the Adaptive Application. From the consumer
perspective, the OPC UA client within the binding writes or reads the respective variable
node inside the server information model. Event data are directly transmitted between
the Adaptive Application and the OPC UA client through the ara::com interface. The OPC
UA client does not have an information model.

Application

ara::com

OPC UA Server
Variableset get

Variableset get

notify

Consumer Provider
Application

ara::com

OPC UA Client

get set

Figure 9. Field mapping architecture.

Subscriptions regularly use sampling (polling) to detect value changes. This would lead to
a performance penalty since it would trigger the get callback of the application periodically, e.g.,
at an interval of 50 ms. We recommend to use OPC UA’s so-called exception-based model [41]
(Section 5.12.1.2) instead. This concept avoids sampling and requires the overlying logic (here:
the binding) to notify the OPC UA stack about value changes proactively. The subscription
then triggers a notification to subscribed counterparts.

Fields are only implemented for C/S access. We do not intend to realize them using
OPC UA PubSub since PubSub does not support a matchable concept.

5.3. Deployment Parameters Mapping

AUTOSAR specifies a development methodology for Adaptive Applications. This
includes a standardized approach to describe components using the AUTOSAR manifest,
see Section 2.1.2. The manifest section that specifies how a service and its components are
mapped to a specific communication technology is called ServiceInterfaceDeployment, see
Figure 10. For example, it assigns protocol-specific numeric identifiers to services or events
and provides structures and parameters to group AUTOSAR events for joint transmission.
A service interface can be instantiated multiple times with ServiceInstanceDeployment.
The resulting service instances are derived from a protocol-specific ServiceInterfaceDeploy-
ment. The ServiceInstanceDeployment contains parameters and concrete configurations
specific to a service instance. Service instances can be again mapped to machines to
obtain communication configurations in a ServiceInstanceToMachineMapping. The Servi-
ceInstanceToMachineMapping maps e.g., multicast IP addresses to service instances and
assigns communication connectors of the machine to the instance. We designed a Ser-
viceInterfaceDeployment and a ServiceInstanceDeployment for OPC UA. Furthermore,
we mapped the parameters of the deployments to concepts available in OPC UA.
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Figure 10. Protocol-specific ServiceInterfaceDeployment and ServiceInstanceDeployment in AU-
TOSAR Adaptive, see [42]. (0..*) denotes the association to none or at least one object.

We have integrated the AUTOSAR service interface artifacts as a custom-designed
OPC UA information model. Figure 11 shows the representation of a service instance
in the information model from the perspective of a client. It is the AUTOSAR service
representation of the exemplary camera sensor introduced in Figure 5. In more detail,
a folder Services is placed inside the preexisting Objects folder of the OPC UA address
space. The Services folder contains object nodes for every service interface offered by
the provider (here: Camera_Service_Interface). Each service interface object contains
OPC UA variable nodes with a numeric identifier (ID) and numeric version information
(Major, Minor) of the service interface. Additionally, this object contains another object
for every service instance of the respective interface (here: Camera_Instance_1). Service
instance objects, again, have a numeric identifier and folders for the service components
(events, methods, fields). Objects for specific service components exist inside each folder.
These objects have two nodes: a numeric identifier variable (ID) and the actual content of
the component (Value, Method). In this example, we represent the status of the camera as
an event, the configuration routine as a method, and the image as a field.

Root

Objects

Services

▪ Camera_Service_Interface

ID

MajorVersion

MinorVersion

▪ Camera_Instance_1

ID

Events

▪ Status_Event

ID

Value (including timestamp)

Methods

▪ Configure_Method

ID

Method

Fields

▪ Image_Field

ID

Value

OPC UA Default Folders

AUTOSAR

Service Interface

AUTOSAR

Service Instance

AUTOSAR Event

AUTOSAR Method

AUTOSAR Field

Figure 11. Representation of an AUTOSAR service instance in the OPC UA information model.
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The object nodes mentioned above are derived from custom object type definitions (Ser-
viceInterfaceType, EventType, etc.). To promote interoperability, these definitions can later
be consolidated in a specified OPC UA information model, called Companion Specification.

The representation of AUTOSAR events in OPC UA PubSub is based on PubSub-
specific configuration structures. Figure 12 shows the configuration structures involved
in the PubSub publishing process, including a selection of parameters. Our mapping speci-
fies how parameters from the AUTOSAR interface deployment are mapped to these OPC
UA configuration parameters. The PubSub configuration model exposes a lot of optional
configuration parameters that we did not use for our mapping approach. Particularly
relevant structures are PublishedDataSet, DataSetWriter, WriterGroup, and PubSubConnec-
tion. DataSetWriters generate so-called DataSetMessages based on parameters provided
in a PublishedDataSet. In our mapping, a DataSetMessage can contain the data of a single
or several event samples. The DataSetMessage contains further parameters like type encod-
ing. In more detail, the DataSetWriter processes data extracted from the information model,
called DataSet in the PubSub context. DataSetWriters complement DataSets with an identi-
fier DataSetWriterId which contains the numeric identifier of an AUTOSAR event in our
mapping. As explained before, events can be grouped. This is done using WriterGroups
that aggregate multiple DataSetMessages. The result is a NetworkMessage. A WriterGroup
adds the WriterGroupId that we use to store an identifier of an event grouping. Further-
more, the WriterGroup is responsible for cyclic publishing. It is therefore configured with
a publishing interval. The PubSubConnection is the configuration structure for the network
transport. It contains the PublisherId which is a unique identifier of the publisher. We use
this field to store the numeric identifiers of the AUTOSAR service interface and service
instance. For example, the PublisherId has a length of 32 bits. The 16 bits interface identifier
is stored in the upper half of the PublisherId, the 16 bits instance identifier in the lower
half. Additionally, the PubSubConnection stores the destination address of the PubSub
messages (in our case a multicast address).

Information
Model

Data
Collection

DataSet
Writer

Network
Message

WriterGroup

Data
Collection

DataSet
Writer

PubSub
Connection

DataSet DataSetMessage NetworkMessage

PublishedDataSet
Parameters
● DataSetMetaData
● DataSetClassId
● ConfigurationVersion

DataSetWriter
Parameters
● DataSetWriterId

WriterGroup
Parameters
● WriterGroupId
● PublishingInterval
● Security Settings

Connection
Parameters
● PublisherId
● Address

Figure 12. PubSub publishing sequence including configuration parameters (derived from OPC UA
Part 14 [26] (Figure 6)).

Figure 13 shows a summary of the mapping described above. Configuration struc-
tures of OPC UA are mapped to AUTOSAR concepts. An OPC UA binding contains
a single UA_Server. A UA_Server contains a variable number of PubSubConnections
(in open62541). A PubSubConnection is created for each ServiceInstanceToMachineMap-
ping. For every EventGroup in AUTOSAR a WriterGroup is added to the PubSubConnec-
tion. In addition, finally, a DataSetWriter is added to the WriterGroup for every correspond-
ing EventDeployment in AUTOSAR. A PublishedDataSet is created for the parameteriza-
tion of each DataSetWriter.
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Figure 13. Mapping of AUTOSAR and OPC UA configuration entities for events (extension of [26]
(Figure 17)). (0..*) denotes the association to none or at least one object.

5.4. Type Mapping

Key functionality of the binding is type mapping. A consistent strategy is required to
convert AUTOSAR-level data into OPC UA-compatible data that are eventually serialized
into an on-wire byte stream. The consumer side must have the same understanding of
data types to properly deserialize the byte stream and convert it into high-level AUTOSAR-
compatible data. For this purpose, OPC UA provides a comprehensive data modeling
framework that can be exploited in different ways.

AUTOSAR supports basic types (Integer, Float, etc.) as well as structured types which
are compositions of basic types. A general constraint is that instances of these structured
types must be written in one transaction, i.e., as a whole. It must not be possible to modify
single structure elements separately. Therefore, it is not possible to map structure elements
to separate OPC UA variable nodes. The following sections propose two options for type
mapping. The first option is based on OPC UA container type variant. The second option
makes use of custom data types.

5.4.1. Variant-Based Mapping

Variant-based mapping makes only minimal use of OPC UA’s rich data modeling.
This strategy is based on variants, a generic container type. Variants can hold any other data
type as scalar or as an array [43]. This facilitates to map structured data types in AUTOSAR
to nested variant arrays in OPC UA. It follows the paradigm “Everything is in a variant”.

The variant-based mapping completely decouples providers and consumers on OPC
UA level. No explicit exchange of OPC UA data types is necessary. As a result, this ap-
proach does not ensure type safety on an OPC UA level. The OPC UA stack only processes
the variants and passes data values to the higher level AUTOSAR logic. Type safety and
information interpretation are realized on an AUTOSAR level. Therefore, applications that
do not run on top of AUTOSAR must perform type binding on application level.

5.4.2. Custom Data Type Mapping

This option especially covers the use case of communication between AUTOSAR
and non-AUTOSAR applications. OPC UA applicants regularly make use of custom type
modeling to represent complex data structures in the address space. That raises the need
for the binding to support type mapping based on custom type definitions. The usage of
custom types must be fully transparent to any AUTOSAR application.

In more detail, the OPC UA information model contains a set of predefined data
types. Among them is the subtype Structure, which, again, contains subtypes. Model
designers can create custom subtypes of Structure. The subtypes have an attribute of type
StructureDefinition. This attribute contains (among other values) an array of elements that
describe the single structure elements. OPC UA transfers values of Structure data types
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in a byte string. To decode the byte string, the information defined in the StructureDefinition
is needed.

Several options exist for the exchange of data type definitions. They differ in the time
of exchange. Consumer applications can receive type definitions at compile-, startup-,
or at runtime. Compile-time exchange is realized by compiling and linking source files
with type definitions into consumer applications. When using startup-time exchange,
the consumer reads a binary file containing type definitions. Runtime type exchange can
be realized with C/S communication between consumer and provider. Setting up a central
directory for type definitions is another option. In [44], we are presenting details about
type exchange options.

5.5. Service Discovery Mapping

As its name already suggests, AUTOSAR Adaptive focuses on the flexible and dynamic
interaction between vehicle components. Service consumers are capable to find matching ser-
vice providers. The Adaptive Platform allows communication path establishment at design-,
startup-, or runtime. For the two latter approaches, a central service registry is specified
in the AUTOSAR standard. The registry implements three discovery operations: Service
providers announce their service with Offer and withdraw it using StopOffer. Subscriber
applications query the registry for a specific Service by calling Find. The registry concept
itself is abstract and protocol-agnostic. It must be mapped to a specific protocol.

We evaluated OPC UA discovery mechanisms for usage as service registry. OPC UA
specifies two discovery mechanisms: Local Discovery Server (LDS) and Global Discovery
Server (GDS). The LDS keeps track of OPC UA servers running on a host system and
exposes them publicly. The GDS, on the other hand, can be used for discovery across multi-
ple subnets. Since intersubnet discovery may be required by certain use cases, we chose
the GDS for the role as registry. A GDS exposes an information model that contains UA
methods for registration and query of OPC UA applications [45].

Since not all properties of an OPC UA application match the properties of an AU-
TOSAR service, we designed an explicit mapping of service properties to properties of OPC
UA applications. The GDS provides certificate management services, too. This capability
may be exploited for encryption and authentication.

In a later phase of our research, we found that some requirements cannot be fully met
with a GDS-based service registry. Two major shortcomings had an impact. First, the GDS
does not implement a concept that corresponds with the TTL (time to live) of an AUTOSAR
service. Second, the GDS does not allow domain specific extensions. This means that
additional domain specific attributes cannot be attached to an application record. For
these reasons, we decided to come forward with a proposal for an alternative registry
concept. This custom service registry is a domain specific OPC UA server. In the binding
specification, we describe an information model with data types (e.g., ServiceRecordData-
Type) and methods (e.g., OfferService). Both directly map the AUTOSAR concepts.

Beside these centralized discovery approaches, a distributed option is introduced
in the AUTOSAR standard [46]. With the distributed approach, a single responsible
registry is not needed. The registry information is distributed among participants via
broadcast communication. Applications hold a self-administered view of the registry.
We are seeking to implement the distributed discovery using OPC UA PubSub in the future.
Therefore, we added data types to the custom service registry that represent registry
operations (i.e., Offer, StopOffer, Find). Instances of the types are transmitted inside
PubSub messages. While being specific about data types, we left the publisher configuration
(e.g., WriterGroups, DataSetWriters) unspecified. If a domain with a single responsible
registry and a domain with distributed registry need to be connected, a discovery bridge
can link these domains [46]. The discovery bridge also holds a local registry and acts
as a broker between the domains.



Sensors 2021, 21, 2337 17 of 29

6. Binding Implementation for Real-Time Systems

We developed the OPC UA integration (binding) based on the AUTOSAR reference
implementation version 19-03. It is written in C++. With respect to OPC UA, we decided to
use the open-source implementation open62541. It is written in the C programming language.
Its source code is available on GitHub. We used the GDS implementation that is available
with .NET Standard Stack from the OPC Foundation (https://github.com/OPCFoundation/
UA-.NETStandard-Samples/tree/master/Samples/GDS, last accessed on 1 March 2021).
Microsoft’s .NET Core allows running .NET applications on diverse platforms, including
Linux. The following subsections explain noteworthy aspects of the implementation.

6.1. Multithreading Support

For the sake of responsiveness and execution speed, the AUTOSAR platform uses mul-
tithreading. In general, real-time systems must implement measures to guarantee integrity
and determinism in multithreading scenarios. For this purpose, open62541 introduces
different levels of multithreading support. With activated multithreading support, API
calls (e.g., UA_Server_read and UA_Server_write) are mutually exclusive. This means
that a write operation cannot be preempted by a read operation. For a deterministic
PubSub-only publisher, we assume two threads: a publishing thread with read access to
the information model and an application thread with write access to it. The time-critical
functionality of both threads would be mutually exclusive. One thread would have to
wait for the completion of the other. For determinism, both threads must have reentrant
(i.e., lock-free) information model access. Hence, the aforementioned multithreading
mechanisms are inapplicable.

Contributors of the open62541 project propose a lock-free mechanism that guarantees
a consistent view on the information model and data integrity. What they describe in [16]
is a copy-and-replace technique: The underlying data structure of the information model
is a hash map pointing from the node identifier to the node representation in memory.
Each node is treated as immutable, i.e., it cannot be modified once it has been inserted
into the hash map. For modifications, it is possible to replace the node with a modified
copy. The replacement is performed using an atomic compare-and-swap (CAS) operation.
This way, the information is always consistent, even if a write operation is interrupted mid-
update. Information model access can be reentrant. The implementation of this mechanism
comes with the open62541 major branch.

The binding implementation uses this concept. However, since the binding is a com-
plex scenario that requires deterministic behavior in a multithreading environment, it re-
quires further measures. In the following subsection about real-time memory management,
we build upon this concept and extend it.

6.2. Real-Time Memory Management

The implementations of the Adaptive Platform and open62541 make recurring use of
dynamic memory management, i.e., heap allocations with malloc/free in C or new/delete
in C++. The paper [47] points out the following problems with regular dynamic memory
management: sufficiency (refusal of allocation), memory leaks, fragmentation, and timeli-
ness (undefined timing behavior).

For these reasons, it is highly discouraged to use dynamic memory management in real-
time systems requiring deterministic behavior. Some embedded systems avoid the use
of dynamic memory management, and thus the heap, altogether [48]. However, both
the Adaptive Platform and OPC UA are in nature dynamic. AUTOSAR Adaptive requires
dynamics for its scalability. OPC UA information model has a database character. Hence,
it is not possible to eliminate dynamic memory management in the whole application.

We tackled this problem by eliminating dynamic allocations only in time-sensitive
paths. As Figure 14 shows, dynamic memory management is restricted to the system
startup phase. Buffers that are needed for real-time operation are preallocated. A freeze
event introduces the real-time phase in which the buffers are used.

https://github.com/OPCFoundation/UA-.NETStandard-Samples/tree/master/Samples/GDS
https://github.com/OPCFoundation/UA-.NETStandard-Samples/tree/master/Samples/GDS
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Figure 14. Real time application lifecycle.

In more detail, the complete program path reaching from the platform method for
sending an event to the actual PubSub message generation logic must be examined. Timely
generation of network messages is especially crucial in conjunction with TAS setups with
cyclic transmission of real-time data. If a packet is not ready to be sent when a cycle starts,
it must wait until the next cycle.

In a first step, we replaced all dynamic containers (like the STL container vector) with
preallocated custom containers. Using a standard STL container with a custom allocator,
as shown in [49], would have been possible as well.

In a second step, we extended the concept of immutable nodes described above. It is
problematic that a new node is allocated upon each write access to a node. We decided
to preallocate two buffers for each node that stores event data. Upon node modifica-
tion, the node currently referenced by the hash map is copied to the other buffer. Once
the modification is complete, the reference in the hash map is changed to the other buffer
(buffer alternation).

In the last step, we handled the remaining dynamic allocations in the message gen-
eration functionality. It is beneficial that all memory allocation during the generation of
a PubSub message is freed after the message is sent. Thus, we could redirect all allocations
within the message generation to a preallocated buffer. Knowing that none of the allocated
memory is needed after sending the message, the subsequent publishing routine can write
into the buffer again starting at address 0.

An alternative to the restriction of dynamic memory management is the usage of
a real-time memory allocator. Such allocators pursue to overcome the variable runtime
and fragmentation inherent to regular allocators. One example is the TLSF allocator
described in [50]. Allocations have constant runtime, i.e., O(1). A drawback is that current
implementations do not support thread safety. It must be provided by the integrator.

6.3. System Level Synchronization

Event data generated on the application level of a service provider have to pass
through different system levels until it is finally transmitted on wire. Figure 15 shows these
different levels and data flows (blue lines). The yellow dashed line visualizes the data
flow of an event: Data are sent from the application level to the OPC UA information
model using methods of the Adaptive Platform (specifically ara::com). The information
model is a buffering stage that holds data in nodes. The separate publisher thread accesses
the nodes and assembles a network message that is sent through an operating system
socket. The Ethernet TSN network interface, again, is a buffering instance that holds
packets until the start of the assigned time slot (see Section 2.3).

At the moment, scheduled cyclic execution of Adaptive Applications is not yet realized
as platform functionality. For this reason, we used oversampling on the publishing level
in order to reduce event sample loss. This means that the publishing interval is shorter
than the assumed minimal send interval of the application. Figure 15 shows a factor 2
oversampling, i.e., the publishing is triggered twice as often as the application sends data.
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Figure 15. Information propagation through system levels.

The TSN adapter and the application space must have a common notion of time. This is
achieved by synchronizing a system clock (here: CLOCK_REALTIME) to the adapter’s PTP
Hardware Clock (PHC), which itself was synchronized with the PHC of other TSN participants.
It is thereby possible to start the generation of PubSub messages at a specified time relative
to the TSN cycle start (offset). This method cannot only guarantee that a network message
is ready for transmission upon cycle start, but it also ensures that the data are up-to-date.
The cyclic publishing is technically realized within a dedicated thread. Its core is a loop that
in each iteration waits for the next scheduled cycle (using POSIX method clock_nanosleep),
executes the publishing, and calculates the next wakeup time.

It is also possible to introduce a second offset that synchronizes the application-level
data provisioning and the OPC UA publishing. The Adaptive Applications sends event
data at a specified time before the publishing routine reads data from the information
model. One way to realize this is by using the POSIX method clock_nanosleep in the im-
plementation of an AUTOSAR application. It should be noted that this behavior is not part
of the AUTOSAR platform. It must be implemented by the application programmer.

6.4. Real-Time Scheduling Considerations

To achieve system-wide real time, deterministic network transmission is not the only re-
quirement. Holistic system design must also cover determinism on the application level. In the
AUTOSAR environment, Execution Management (see Section 2.1.2) allows the configuration
of scheduling and resources. It works together with the operating system to initialize the run-
time scheduling of applications [5]. The Deterministic Client, as introduced in the Execution
Management Specification [21], is supposed to support the event and time-triggered execution
of Adaptive Applications in the future. It offers a deterministic worker pool, distribution
of activation time stamps to Adaptive Applications, and random numbers generation [21].
Not all details about the Deterministic Client are given yet. EM is not responsible for the per-
formance of the scheduling. It is the responsibility of the operating system. In order to
provide real-time resources to applications, the person or the tool integrating applications into
platforms and machines is in charge of allocating enough resources, assigning appropriate
scheduling policies and priorities, and monitoring deadlines. The configuration of resources
using the support of the Execution Management can be specified in the AUTOSAR manifest.
In this case, scheduling parameters in the manifest are based on the operating system interface
POSIX (IEEE 1003.1 [51]). Real-time scheduling policies SCHED_FIFO (First In, First Out) and
SCHED_RR (Round Robin), as well as non-real-time policy SCHED_OTHER can be selected
as valid scheduling policies for applications using EM [21]. Other scheduling policies such
as SCHED_DEADLINE are not prohibited, but they may not be portable across different
AP implementations [5]. The scheduling policy SCHED_FIFO allows realizing scheduling
algorithms such as the rate-monotonic scheduling with fixed priority assignments [52] (p. 354).
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One prerequisite is the reliable determination of the worst-case execution time (WCET)
of an application that is an important metric for schedule calculation. The operating system
strongly affects the WCET as it introduces task scheduling overhead, interferences between
running tasks, and system call execution. Unfortunately, in general-purpose systems with
real-time extension (e.g., Real-Time Linux), the upper bound of the WCET is difficult to
estimate and may be too pessimistic compared to special-purpose embedded systems [53].

Another prerequisite is the ability to preempt the execution of threads, e.g., as provided
in the Linux PREEMPT_RT patch (https://wiki.linuxfoundation.org/realtime/start, last
accessed on 18 March 2021). High priority threads must be able to preempt running low
priority threads. The fixed assignment of priorities complicates the addition of new threads
with latency bounds at runtime. As a result, the old schedule may become invalid and
applications could miss their deadlines. Thus, all applications demanding tight latency
bounds should be known and considered before runtime to achieve an optimal or near-
optimal schedule.

As AP promotes flexibility and scalability, distribution of applications across different
AUTOSAR platforms and machines is possible. For distributed cyclic real-time applications,
it means an increased complexity to create a feasible schedule to satisfy all end-to-end
latency requirements. The end-to-end latency of communicating applications comprises
the execution of the provider applications, the transmission of the messages over IPC
or a TSN network in our case, and the execution of the consumer applications. If the
network is involved, both the network and the task schedules have to be coordinated. One
solution to address task and TSN network scheduling has already been investigated in [54].
In future works, we will elaborate on the subject matter in more detail.

6.5. TSN Configuration and Parameter Mapping

During our research, the OPC Foundation was working on a specification for a config-
urable transport mapping of OPC UA PubSub to TSN. The specification was in draft state and
not publicly available. This means that a generic mapping solution as it would be useful for
the AUTOSAR network binding was not yet available. The configuration of TSN (TAS) must
be done under consideration of the holistic system design, anyway. This includes the definition
of streams for different service classes, e.g., real-time or best-effort. TSN scheduling configu-
ration is a field of its own that is currently under investigation, as discussed in our previous
work [29]. Specific capabilities of the employed TSN devices must be taken into account as
well. Temporarily, we set the TSN configuration manually. This includes the setup of time
synchronization (e.g., PTP), VLAN configuration (VLAN ID and priority mapping) as needed
by IEEE 802.1Qbv and the installation of a TSN schedule (cycles, slots).

7. Performance Evaluation and Results

In this section, we evaluate the performance of the implemented communication
scheme. The evaluation is a proof of concept to show that the combination of the three
technologies is beneficial for future automotive systems. This includes a brief analysis of
the memory consumption of a provider and a detailed analysis of the timing behavior of
the service provider.

7.1. Memory Analysis

To evaluate the readiness of this scheme for low-end IoT devices, we measured
the RAM usage of a sample application. We ran the test on a VM with Ubuntu 18.04.3
LTS. Version 1.0 of the open62541 stack was statically linked to the AUTOSAR platform
(i.e., one single binary). The AUTOSAR test application is a small provider that pub-
lishes 30 Byte of payload periodically. We used the Linux tool top for the measurement.
The results show that the AUTOSAR provider including open62541 consumes 6.3 MB. By
measuring the memory usage of a standalone OPC UA instance with the same properties,
we found that the OPC UA middleware consumes approximately 40% of the memory of
the whole AUTOSAR instance. It must be noted, however, that the memory consump-

https://wiki.linuxfoundation.org/realtime/start
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tion of an AUTOSAR application heavily depends on the platform functionality used
as well as deployment and linking aspects. The generalizability of this measurement is
strongly limited.

7.2. Timing Analysis

Accurate and reliable timing behavior is a crucial feature of critical real-time sys-
tems. After introducing the setup for our timing analysis, we examine the performance
of the TSN link layer and the timeliness of the publishing routine as intermediate steps.
Finally, we present the observed latencies of an end-to-end scenario. This timing analysis
only focuses on the evaluation of event transmission via OPC UA PubSub. We do not
evaluate the timing behavior of the OPC UA C/S communication as there are no stringent
determinism requirements for C/S best-effort communication. However, we successfully
tested the functionality of the C/S mapping (events, methods, fields) with an information
model similar to the example in Figure 11. The PubSub event data are retrieved from
the same information model as used in the OPC UA C/S mapping.

7.2.1. Setup

As shown in Figure 16, our test setup involves two entities: A Fujitsu (Tokyo, Japan)
desktop computer acts as the provider (Celsius M-720, Intel Xeon CPU E5-1620, 4 cores,
3.60 GHz). An embedded computer from Adlink (Taipei, Taiwan) is the subscriber (MXC-
2300-3E1(G), Intel Atom E3845 processor, 4 cores, 1.91 GHz). We additionally equipped
both devices with the network interface card Kontron PCIE-0400-TSN that supports among
others the TSN standards IEEE 802.1AS and IEEE 802.1Qbv to enable time-triggered
injection of OPC UA frames. Provider and consumer are connected end-to-end over a 1
Gigabit Ethernet physical layer.

Fujitsu Celsius M-720
with

Kontron TSN NIC

Adlink MXC-2300
with

Kontron TSN NIC
and

Intel I210 NIC

Figure 16. Test setup for the timing analysis.

We equipped the CentOS operating system with a Linux real-time kernel (4.18.0-
80.11.2.rt9.157.el8.x86_64). It is a standard (“vanilla”) kernel that received real-time ca-
pabilities through the patch PREEMPT_RT. To achieve determinism, it replaces locking
primitives with preemptive implementations, introduces priority inheritance and con-
verts interrupt service routines into threads [55]. The patch enables the usage of real-time
scheduling policies (Round Robin, FIFO) and priorities for threads. Timing analysis of
PREEMPT_RT and further explanations can be found in [56].

7.2.2. Link Layer Timing

Since the proper operation of the TSN link layer is crucial to the following tests,
we briefly introduce steps to configure and test the precision of TSN TAS with the setup
described above.

It is advisable to run TSN configuration steps automatically, e.g., with a shell script.
The script starts with the synchronization of PTP hardware clocks of the network interfaces
with the tool ptp4l. To optimize the system’s timing behavior, the script instructs all CPUs
to run at maximum frequency. Another timing tweak is to configure the IRQ affinity so
that the interruption of the TSN network interface is processed by a single CPU core. Then,
Linux’s traffic control is configured with the queuing discipline FIFO (tc qdisc). In a next
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step, the script adds a VLAN interface and sets egress map of the new VLAN device
(mapping socket buffer priority to VLAN priority PCP) using vconfig. Finally, the TSN
schedule is set with the custom tsntool.

We used the tool netlatency (https://github.com/kontron/netlatency, last accessed
on 1 March 2021) to measure the latency and jitter characteristics of the end-to-end con-
nection. The provider side generates UDP frames at an interval that is synchronized with
the TSN cycles of 1 ms. Various timestamps are recorded and written into the frames. For
example, timestamps are recorded before the packet enters the Linux packet scheduler,
before the packet is passed to the network interface, and upon reception in the inter-
face of the remote device. This allows for tracing the timing behavior of different stages
within the process. Frames are sent through the Kontron interface with the configured
schedule. They are assigned a high-priority TAS slot that starts 50 µs after the cycle start
and is open for 100 µs. The consumer side captures the frames through the I210 interface,
adds receive timestamp information, and saves the results. After a specified count of
captured frames (here: 10,000), the tool generates and prints statistics. We used the packet
generator Ostinato (https://ostinato.org/, last accessed on 1 March 2021) to simulate net-
work load. The tool flooded the interface with bulk load which was scheduled as best-effort
traffic. We verified the arrival of bulk packets at the remote station with the Linux tool
tcpdump. The output of netlatency showed that all timestamp frames arrived at the remote
station with a maximum jitter of 1 µs. The reason for this low jitter is that packets were
prevented from sending by the closed TAS gate before the actual beginning of the high-
priority slot, even if they arrived too early at the hardware egress queue of the network
interface card. The worst-case latency from the start of the interval on the sending device
until the reception on the remote device was 51 µs. The overhead caused by the packet
scheduler and the kernel driver, i.e., the latency measured from sending the frame by the
netlatency application until the actual enqueuing in the network interface, is less than or
equal to 25 µs, see Table 1. The link layer evaluation proves that TSN TAS complies with
the scheduled times. However, this evaluation shows that we have to consider a small
overhead caused by the packet scheduler and the kernel driver when synchronizing and
scheduling real-time applications. We point out that this measurement depends, among
others, on the used hardware and the length of the transmitted message.

Table 1. Worst-case (WC) measured latencies on different levels of the publishing process.

Level Description WC Latency

AP App Duration of the AP application that processes and prepares
the data to be transmitted. 46 µs

PubSub App
Duration of the OPC UA publishing application that wraps up

the data prepared by the AP app in an OPC UA NetworkMessage
before forwarding it to the network interface card.

94 µs

TSN Sched
Latency caused by the network scheduler and kernel driver after
calling the send method by the publishing application and before

enqueuing in the network interface card.
25 µs

7.2.3. Publishing Timeliness

When using TAS, it is crucial that packets with time-sensitive content are ready for
transmission when their dedicated timeslot starts (see Figure 15). More specifically, the binding
must pass event data messages to the underlying TSN (TAS) device reliably on time.

We first analyzed the timeliness of the provider’s publishing using OPC UA PubSub.
This is the time between the scheduled start of the publishing and completion of the pub-
lishing routine. The handover of the PubSub message to the operating system network
stack (socket access) is included. Neither the behavior of the provider application nor
the message handling in a remote consumer was considered. The publishing thread was
started with the SCHED_FIFO policy and the highest priority (99). Assigning a thread to

https://github.com/kontron/netlatency
https://ostinato.org/
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a single CPU core reduces jitter. To simulate CPU load, we used the Linux tool stress which
spawned 10 threads performing dynamic memory allocations.

The final results show that the publishing latencies in a load scenario are distributed
in a compact cluster with a maximum latency of 94 µs, see Table 1. For the following
AUTOSAR test, we allow 120 µs for the publishing. This is the maximum latency measured
in the stress scenario plus a safety gap (e.g., for packet scheduling overhead). It represents
the offset shown in Figure 15.

7.2.4. End-to-End Latency

Based on this insight, we extended the test and realized an end-to-end scenario: One
AUTOSAR provider application sends event data with the current timestamp (and re-
dundant copies) to the consumer application. The clocks of both network interfaces are
synchronized with the Linux tool ptp4l. A system clock is synchronized to the PTP hard-
ware clock of the interface using phc2sys. Hence, the transmission time can be determined
in the consumer by calculating the timestamp difference on application level. This end-
to-end measurement covers a comprehensive set of steps that make up the system timing
behavior. It includes the link layer timing and the publishing timeliness outlined above.
We chose this evaluation method because it is close to real-world scenarios, yet simple
enough to extract clean performance figures.

In more detail, we first configured a TSN schedule that reserves a 50 µs slot for
critical traffic within a 1 ms cycle, see Figure 17. The slot must be sufficiently long for
the content to be transmitted and some additional jitter, e.g., caused by time synchronization
deviation and hardware. For the consumer side, we wrote two applications. The first
is a simple OPC UA-only application that processes incoming timestamp data to show
the compliance of our binding with existing OPC UA implementations. We pursued
to process messages as straightforwardly as possible. Its message processing logic is
completely free of dynamic allocations. The second is an AUTOSAR instance that uses
the Standard Template Library (STL) container deque inside the binding implementation
to buffer incoming events. This container performs dynamic allocations regularly.

Queue dedicated for 
real-time traffic

Queues dedicated for 
best-effort traffic

Gate open

Gate closed

Gate open

Gate closed

Execution time of AP application (AA)  
and OPC UA publisher including 

packet scheduling overhead (OPCUA)

t [µs]

AA
TSN and application cycle

0 60 180 230 ... 1000

OPCUA

Real-time traffic TAS slot

Figure 17. Time-Sensitive Networking and application cycle of the AUTOSAR provider.

A measuring cycle is scheduled to begin 60 µs before the start of the publishing
(see Figure 17). This is the longest measured duration for this operation (46 µs) plus a safety
buffer. Once the application thread wakes up (return of Linux method clock_nanosleep),
the provider application retrieves the current timestamp and sends it wrapped into an event.
The publishing is scheduled 120 µs before the start of the high-priority TSN slot. (To cal-
culate a more precise schedule, other delays such as context switching by the operating
system must be considered.) It retrieves previously sent event data from the information
model and sends the network message through the network stack of the OS. By starting
the AUTOSAR application and the publishing sufficiently long before the gate of the real-
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time egress queue opens, it is ensured that a message will not miss its slot. In case of
a missed slot, a cyclic message would have to wait until the next cycle. Once the message
(135 Byte) reaches the remote station, the high priority consumer application captures
a timestamp itself and calculates the difference to the timestamp in the received packet.
This is the total end-to-end transmission time.

Our requirement was to keep the end-to-end latency less than or equal to the cycle
times. We tested our binding with an application and TSN cycle of 1 ms. Based on
10,000 measuring cycles, the maximum end-to-end latency measured with OPC UA-only
consumer was 253 µs (see Figure 18). Latencies are distributed over a 19 µs interval. For
the AUTOSAR consumer, a substantially higher maximum latency of 598 µs was caused
by an outlier. This result shows that the usage of STL containers with dynamic memory
allocations prevents compliance with stringent determinism requirements. The results also
show that the provider did not miss a TSN time slot and that the TAS schedule regulated
the occurring jitter. Every slot was filled with exactly one packet.
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Figure 18. Distribution of end-to-end transmission times between a provider and a consumer application.

Additionally, we verified the robustness of the setup with an endurance test of eight
consecutive hours (28,800,000 messages). Again, the provider did not miss a time slot. Our
changes in the information model memory management (alternating buffers for nodes) led
us to test data integrity. By comparing the redundant timestamp copies within the event
samples, we found that no sample was corrupt.

Generally, the performance expectation of an AUTOSAR provider with OPC UA
middleware and TSN can be derived from existing evaluations of OPC UA over TSN. This
is due to the fact that in this case AUTOSAR only acts as a thin wrapper with little influence
on the overall timing. The paper [16] shows, for example, that ultra-low latencies can be
achieved at a cycle time of 100 µs. However, the application WCET is a limiting factor
for the cycle time if end-to-end latency takes application execution and the transmission
of messages into account. In practice, several real-time applications will share the same
computing, network, and memory resources. For example, ADAS functions are complex
and resource-intensive. Thus, further and more detailed analyses on resource scheduling
and allocation have to be carried out. The main purpose of the timing analysis is to show
that real-time communication over AP, OPC UA PubSub, and TSN can be realized with
a certain configuration and scheduling effort. The current AUTOSAR Adaptive Platform
development pursues to simplify this effort.

8. Binding Architecture Validation

Based on our experiences and the measurements described above, we have evaluated
the proposed software architecture on the basis of common criteria for software quality
characteristics described in ISO 9126 [57], see Table 2. We found that interoperability
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and scalability are strong advantages of the platform. Adaptability and conformance
with existing specifications open the way for simplified customizability and portability.
Simple reuse of software components is facilitated by AUTOSAR Adaptive. These aspects
have the potential to reduce development and maintenance costs. The memory efficiency
allows operation on devices that are commonly used in vehicle automation. However,
the runtime efficiency of the proposed architecture heavily depends on the underlying
operating system and its process scheduling. A misconfigured or overstrained scheduler
can impair overall system dependability. In addition, the architecture lacks maturity as the
development of all involved technologies is still ongoing. Nonetheless, the non-satisfied
characteristics are currently being addressed by the AUTOSAR development partnership,
the OPC Foundation, and the IEEE 802.1 TSN Task Group.

Table 2. Compliance of the proposed architecture with quality characteristics. (3: mostly or fully
compliant, (3): partially compliant, 7: not compliant).

Characteristic Evaluation Annotation

Interoperability 3
The architecture enables communication with other AP
instances and with OPC UA-only communication partners.

Security 3
AP and OPC UA provide a wide range of security features.
TSN offers filtering and policing methods in IEEE 802.1Qci.

Time Behavior (3)

Our evaluation example shows that ultra-low end-to-end
latency (<1 ms) is achievable in stress situations. How-
ever, more extensive tests have to be performed to examine
the behavior of the OS and the AP more closely.

Memory Efficiency 3
Memory requirements can be met with devices that are com-
monly used in vehicle automation.

Scalability 3
The Publish–Subscribe pattern realized by OPC UA PubSub
promotes scalability inside a vehicle network.

Operability (3)

The user can operate and control each technology of the ar-
chitecture. AP can be configured and parameterized using
AUTOSAR manifests. OPC UA is configurable over the in-
formation model. TSN in end-systems is configurable over
tools like tsntool. However, the scheduling of applications
and network streams has to be done by the user at the mo-
ment.

Understandability 3
AP, OPC UA, and TSN are well documented in code, stan-
dards, and dedicated documentation.

Adaptability (3)

The proposed architecture can be adapted to new environ-
ments by adjusting AUTOSAR manifests, OPC UA config-
uration over the information model, and TSN configura-
tions using TSN tools. However, network and application
scheduling are complex tasks that need to be done sepa-
rately for every system setup.

Conformance 3
The technologies used in our architecture are compliant
with AUTOSAR, OPC UA, and TSN specifications.

Maturity 7
All involved technologies are still in development and are
not yet mature.

Fault Tolerance (3)
Our endurance test showed that all values arrived on time
and no value was lost. However, the generalizability of this
measurement is naturally limited to the specific setup.

9. Conclusions

By proposing an integration approach of the AUTOSAR Adaptive Platform, OPC UA,
and TSN, we presented a holistic solution for modern vehicle communication. Particularly,
we showed that a combination of OPC UA C/S and PubSub qualifies as middleware for
the Adaptive Platform. Our main contribution is the binding concept between the Adaptive
Platform and OPC UA that harmonized the architectures of both technologies. We proved
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the concepts with a prototype and presented notable tweaks of the implementation. Fur-
thermore, we used this implementation to deploy a TSN test setup and verified a deter-
ministic communication schema in an end-to-end scenario. However, as our evaluation
shows, the scheduling effort of AP applications, OPC UA PubSub, and TSN should not
be underestimated.

The merit of the AUTOSAR Adaptive platform is its development methodology that
enables efficient software engineering. By using OPC UA as a communication protocol,
the Adaptive platform adopts a widespread standard that provides a rich information and
communication model. This allows manufacturers to purchase commercial off-the-shelf
components and avoids vendor lock-in. Similarly, TSN is expected to be implemented by
network components that are available in a competitive market. The convergence of real-
time and best-effort traffic in a single physical network saves costs and weight. However,
further work needs to be done to promote determinism in Adaptive Applications. Time and
data determinism must be guaranteed using elaborate resource management and schedul-
ing. The AUTOSAR Deterministic Client [21] aims to address these requirements.

In addition, the TSN standardization is still in progress. Thus, there is still a lack
of appropriate and ready-to-use TSN hardware to realize reliable automotive systems.
Furthermore, the configuration of TSN-capable devices has not yet been fully investigated.
The configuration aspect of TSN devices will not be part of the TSN standardization [35].
There is especially a need for concepts to configure end-systems. However, some papers
have already addressed this problem by proposing OPC UA as a possible solution [32,37,38].

In the long run, we pursue the integration of our binding specification into the official
AUTOSAR Adaptive release alongside existing network bindings. This step would address
the rising relevance of OPC UA and TSN across domains.
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Abbreviations

The following abbreviations are used in this manuscript:
AA Adaptive Application
AD Automated Driving
ADAS Advanced Driver Assistance Systems
ADF Automated Driving Function
AMQP Advanced Message Queuing Protocol
AP AUTOSAR Adaptive Platform
ARA AUTOSAR Runtime for Adaptive Applications
AUTOSAR Automotive Open System Architecture
C/S Client–Server
CAS Compare-and-Swap
CM Communication Management
CP AUTOSAR Classic Platform
DDS Data Distribution Service
ECU Electronic Control Unit
EM Execution Management
FLC Field Level Communications
GDS Global Discovery Server
HTTP Hypertext Transfer Protocol
HTTPS Hypertext Transfer Protocol Secure
IEEE Institute of Electrical and Electronics Engineers
IIoT Industrial Internet of Things
IP Internet Protocol
IPC Interprocess Communication
JSON JavaScript Object Notation
LDS Local Discovery Server
M2M Machine-to-Machine
MDPI Multidisciplinary Digital Publishing Institute
MQTT Message Queuing Telemetry Transport
OPC UA Open Platform Communications Unified Architecture
OS Operating System
OSI Open Systems Interconnection
PHC PTP Hardware Clock
POSIX Portable Operating System Interface
PTP Precision Time Protocol
PubSub Publish–Subscribe
QoS Quality-of-Service
ROS Robot Operating System
RPC Remote Procedure Call
SOA Service-Oriented Architecture
SOME/IP Scalable Service-Oriented Middleware over Internet Protocol
STL Standard Template Library
TAS Time-Aware Shaper
TCMS Train Control and Management Systems
TCP Transmission Control Protocol
TLS Transport Layer Security
TSN Time-Sensitive Networking
TTL Time to Live
UADP Unified Architecture Datagram Protocol
UDP User Datagram Protocol
WCET Worst-Case Execution Time
XML Extensible Markup Language
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