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Abstract: COVID-19 infections can spread silently, due to the simultaneous presence of significant
numbers of both critical and asymptomatic to mild cases. While, for the former reliable data are
available (in the form of number of hospitalization and/or beds in intensive care units), this is
not the case of the latter. Hence, analytical tools designed to generate reliable forecast and future
scenarios, should be implemented to help decision-makers to plan ahead (e.g., medical structures
and equipment). Previous work of one of the authors shows that an alternative formulation of the
Test Positivity Rate (TPR), i.e., the proportion of the number of persons tested positive in a given day,
exhibits a strong correlation with the number of patients admitted in hospitals and intensive care
units. In this paper, we investigate the lagged correlation structure between the newly defined TPR
and the hospitalized people time series, exploiting a rigorous statistical model, the Seasonal Auto
Regressive Moving Average (SARIMA). The rigorous analytical framework chosen, i.e., the stochastic
processes theory, allowed for a reliable forecasting about 12 days ahead of those quantities. The
proposed approach would also allow decision-makers to forecast the number of beds in hospitals and
intensive care units needed 12 days ahead. The obtained results show that a standardized TPR index
is a valuable metric to monitor the growth of the COVID-19 epidemic. The index can be computed on
daily basis and it is probably one of the best forecasting tools available today for predicting hospital
and intensive care units overload, being an optimal compromise between simplicity of calculation
and accuracy.

Keywords: COVID-19; test positivity rate; predictive capacity; health system management

1. Introduction

One of the aspects that makes the COVID-19 pandemic difficult to control, is the simul-
taneous presence of significant numbers of both critical and asymptomatic to mild cases.
While, for the former reliable data are available (in the form of number of hospitalizations
and/or beds in Intensive Care Units (ICUs)), this is not the case of the latter [1–3]. In many
instances, in fact, those who contracted the virus are unaware of such a condition and, thus,
enter the status of spreaders or, in the worse case, superspreaders. Such a phenomenon,
commonly referred to as under-ascertainment, is the primary reason for a disease to spread
uncontrolled. Should it be not carefully checked nor effectively counteracted, it can po-
tentially grow indefinitely, posing severe health problems at a global level and severely
impacting whole health systems. Action-wise, such a situation calls for at least two mea-
sures: on the one hand, policy- and decision-makers should plan ahead the needs in terms
of medical structures and equipment, whereas, on the other hand, analytical tools designed
to generate reliable forecast and future scenarios should be implemented. While a number
of effective approaches have been studied and proposed for different epidemics over the
years, this is not the case of the COVID-19 pandemic. In fact, all the efforts so far done to
model and predict such a disease might hardly support the idea that a uniformly “better”
model is available to describe and predict the evolution of such a catastrophic pandemic.
Therefore, even though many valid contributions have been proposed so far [4], it is not
unreasonable to look at those efforts as the building block of one or more best practices.
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In particular, the forecasting problem has been addressed for two of the the most populated
countries in the world, i.e., China [5] and India [6]. A survey including other approaches is
presented here [7]. The complexity of such a task is discussed in Reference [8], where the
authors analyzed three different regional-scale models for forecasting and assessing the
course of the pandemic. Along those lines, it is worth mentioning the excellent article [9],
where the main reasons leading to the failure of forecasting models are presented. Finally,
two different predictive approaches have been proposed for Italy, i.e., one exploiting the
bootstrapped prediction generated by a model of the type ARMA [10] and one based on
the simulated annealing algorithm [11].

The Test Positivity Rate (TPR) is one of the indexes often used worldwide for monitor-
ing the progression of the COVID-19 pandemic; see, for example, the coronavirus testing
dataset [12], which contains an updated picture of the international situation concerning
testing strategies and the associated data for many countries. Until now, the TPR was
mainly studied considering its relationship with confirmed cases [13]; for example, it was
used to estimate COVID-19 prevalence in the different states of U.S. [14]. However, a more
intensive use of diagnosis tests associated with a standardization of the TPR, crucial in
light of differences in the available tests, can solve their limited investigation abilities (see,
e.g., Reference [15]).

In more details, a recent work of one of the authors [16] shows that a standardized
COVID-19 Test Positivity Rate (TPR) can be used to predict hospital overload. In particular,
by observing its trend, it is possible to forecast the course of patients admitted in hospital
and in intensive care units. For example, when the TPR reaches a peak, a growth in
COVID-19 hospitalizations lasting 12–15 days can be inferred.

There is an intuitive motivation behind such a behavior: COVID-19 epidemiological
data show that symptoms, on average, occur 11 days after the contraction of the infection
and that critical patients are admitted in the hospital about 4 days later. If we assume that
the TPR is a measurement of the infections occurring in a given day, in an ideal situation,
the infected people with a critical evolution will be presumably admitted in hospitals
15 days later. More precisely, if the TPR increases in a given day, an increasing number of
active cases (including the unknown ones) can be inferred for the same day, and presumably
the number of infections is increasing too. Thus, after a while the number of hospitalized
people will also increase. In other words, the insight is that the TPR index models the trend
of the COVID-19 infections, and it is designed to embody the unknown cases. Clearly,
for this measure to be valid, all the administered diagnostic tests should be considered in
the TPR calculation, as pointed out in Reference [16]. However, there are known biases
involving diagnostic tests data that are difficult to deal with, e.g., those related to reporting
delays [12]. As a result, the ideal predictive capacity cannot be assumed in practice,
especially if different kinds of tests are used, as in the case of the current Italian situation.

Despite these limitations, the TPR defined in Reference [16] can be effectively used to
deduct important information on the course of the disease, as illustrated in Figure 1, where
the epidemic course in Toscana region in autumn 2020 is depicted. This figure also plots
the time series of patients admitted in hospitals and in intensive care units. An interesting
correlation between the curves can be observed: the TPR peak anticipates the peak of
patients admitted in hospitals and intensive care units.
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Figure 1. The Test Positivity Rate (TPR) index (orange dotted line) predictive capacity.

The aim of this research is to analyze in details similar scenarios, especially when the
TPR is growing considerably, to get to the heart of some hard-hitting questions, left as future
work in Reference [16]: How many days will be needed to reach the peak of hospitalized
people? How many beds in hospitals will be necessary to add? And, in general, which is
the “theoretical” predictive capacity of the TPR index defined in Reference [16]?

Starting from this motivation, we analyzed the TPR index time series, as well as the
hospitalized, and ICU patients time series, to investigate the predictive capacity of the TPR
index, e.g., to individuate the time lags that can be effectively inferred from the available
data. We first introduce the statistical methodology used, and then we present a detailed
analysis for four Italian regions, for which data on antigen tests were available as reported
in Reference [16].

The lagged correlation between the TPR and hospitalized people time series will be
modeled using a rigorous statistical model, i.e., of the type SARIMA (short for Seasonal
Auto Regressive Moving Average). A generalization of the ARIMA (Auto Regressive
Moving Average) class [17], SARIMA models have been introduced to model complex dy-
namics of the type stochastic seasonal in many fields of research, such as economics [18,19],
engineering [20], or hydrology [21]. In epidemiology, SARIMA models have been applied
in a variety of studies: in Reference [22] the authors applied this model for estimating case
occurrence of two diseases: malaria and hepatitis A from January 1980 to June 1995 for the
United States, whereas, in Reference [23], the epidemiological and etiological characteristics
of influenza have been identified by establishing suitable SARIMA models. In particular,
such an approach proved to be accurate in the forecasting of the percentage of visits for
influenza-like illness in urban and rural areas of Shenyang (China). More recently, Refer-
ence [24] used the SARIMA method—in conjunction with models belonging to the class
exponential smoothing—to predict the trend of acute hemorrhagic conjunctivitis disease
and used the obtained outcomes to provide evidence for the government to formulate
policies regarding its prevention in mainland China.

The proposed mathematical model allowed us to estimate a predictive lag of about
12 days of the TPR for the prediction of hospitalized people time series in some Italian re-
gions. Moreover, we defined a methodology to forecast the number of beds in hospitals and
intensive care units needed 12 days ahead. The obtained results show that a standardized
TPR index is a valuable metric to monitor the growth of the COVID-19 epidemic. The index
can be computed daily and it is probably one of the best forecasting tools available today
for monitoring hospital and intensive care units overload, being an optimal compromise
between simplicity of calculation and accuracy.
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2. Material and Methods

The TPR is one of the metrics commonly used to infer the level of transmission of a
disease in a population [25] and, as such, has been also used in the case of the COVID-19
for different purposes; see, for example, References [12,14,26]. However when different
types of tests are used, as it happened during the second phase of the pandemic in Italy,
where antigen tests have been extensively used, the definition of the TPR becomes more
critical. In this study, we will use the basic standardized version of the TPR index defined
by one of the authors [16], which allows to integrate antigen tests in the index calculation.

Following the style of Reference [16], where the Greek letters Θ, Φ, and µ have been
replaced, respectively, with the letters τ, ρ, and ω, for consistency with the statistic notation
later employed, the mean TPR index τ on ω days is defined as follows :

τA
ω =

dayPω × 100
dayTω + dayAω − dayRω − Pr

, (1)

where dayPω , dayTω , and dayAω are, respectively, the average values of new positive cases,
molecular (PCR) tests, and antigen tests done in the last ω days. To compute the TPR index,
the average number of healed patients in the last ω days, dayRω and an estimation for
the number of repeated tests Pr are subtracted from the total number of tests. We assume
that at least one test is done for each healed patient. The number of repeated tests Pr is
computed using the Equation (2), following the approach presented in Reference [16]:

Pr =
dayAω × dayPω

dayTω + dayAω

. (2)

This equation is obtained assuming that the positivity rates for antigen tests and
molecular tests are the same, and, thus, dayA/Pr = dayT/(dayP− Pr). Using this approach,
the computed Pr can be considered an upper bound because the molecular tests positivity
rate is generally greater then the one related to antigen tests, which are mainly used for
screening purposes; see, for example, Reference [27].

Finally, following the style of Reference [16], a factor ρ is added to τ in order to model
the impact of the number of tests on the remaining susceptible individuals, which are
computed removing the total infected cases I from the population N of a given region.
The number of tests are subtracted removing the repeated ones and those used for healed
patients, obtaining the following formula:

ρ =
N − I − dayTω − dayAω + dayRω + Pr

N − I
, (3)

and the TPR index τω is defined as follows:

τω = τA
ω × ρ. (4)

2.1. The Statistical Method Applied

Throughout the paper, the time series of interest, say xt, is always intended to be a
real–valued, uniformly sampled, sequence of data points of length T, formally expressed as

xt :=
{(

xt

)T

t∈Z+

}
. (5)

Furthermore, xt is supposed to be a realization of an underlying stochastic process of
the type SARIMA (short for Seasonal Auto Regressive Moving Average).

Mathematically, SARIMA models take the form of a t-indexed difference equation—
being t as defined in Equation (5)—, i.e.,

φp(B)ΦP(BS)5D
S 5d(xt − µ) = θq(B)ΘQ(BS)αt. (6)
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Denoting with B, d, and D the backward shift operator and the non-seasonal and
seasonal difference operator, respectively, defining 5d = 1− Bd and 5D = 1− BD, we
have φp(B) = 1− φ1B− φ2B2− ....− φpBp, θq(B) = 1− θ1B− θ2B2− ....− θqBp, ΦP(BS) =
1−Φ1BS −Φ2B2S − ....−ΦPBPS, and ΘQ(BS) = 1−Θ1BS −Θ2B2S − ....−ΘqBQS. Here,
φ, θ, Φ, Θ, respectively, denote the non-seasonal autoregressive and moving average
parameters and the seasonal autoregressive and moving average parameters. Finally, αt is
a 0—mean white noise with finite variance σ2. In the present paper, external information
is exploited and embodied in Equation (6) in the form of a matrix of regressors Dj,t−k,
with k ∈ Z+, weighted by a vector of coefficients β j, i.e.,

φp(B)ΦP(BS)5D
S 5d(xt − µ−

s

∑
j=1

β jDj,t−k + ut) = θ0 + θq(B)ΘQ(BS)αt. (7)

This particular extension is usually referred to as REG− SARIMA, to stress the role
played by the possibly lagged (of an amount equals to k temporal lags) regressors, stored in
the matrix Dj,t. These types of models are designed to capture the stochastic dynamics gen-
erated by the residuals obtained by regressing the matrix D (the independent variable(s))
on the time series of interest (the dependent variable). A better insight of the stochas-
tic mechanism governing the REG− SARIMA equation can be gained by re-expressing
Equation (6) so as to emphasize the role played by the term ut in Equation (7), i.e.,

xt − µ−
s

∑
j=1

β̂ jDj,t−k ∼ SARIMA(p, d, q, P, D, Q). (8)

This formulation makes clear the flexibility of this approach, which allows the ex-
traction of the significant lags at which the different regressors impact the time series of
interest, as well as their magnitudes.

If the integration constants d and D (introduced in Equation (8)) are certainly useful
to mitigate—if not solve altogether—many stationarity problems, on the other hand they
might not be effective against non-normality and/or eteroschedasticity issues. Unfortu-
nately, the data considered in this paper are affected by both these phenomena; therefore,
as a coping mechanism, the well-known one–parameter Box–Cox data transformation
has been adopted. Presented in the mid-sixties in Reference [28], this method has been
discussed and applied in a wide range of problems (see, among others, Reference [29–31]),
given the widespread acceptance gained over the years. Its mathematical formulation is
quite straightforward and takes the form of a power transformation, i.e.,

xt(λ) =

{
xλ

t −1
λ , if λ 6= 0

ln(xt), if λ = 0.
(9)

By embodying the λ parameter in Equation (7), the model employed in this paper is
finally defined, i.e.,

φp(B)ΦP(BS)5D
S 5d(xt(λ)−

s

∑
j=1

β jDj,t−k + ut) = θ0 + θq(B)ΘQ(BS)αt. (10)

The inference procedures carried out for the estimation of Equation (10) are of two
types: maximum likelihood for the SARIMA parameters {φ, θ, Φ, Θ, d, D} and ordinary
least squares for the vector β. Finally, the hyper-parameters {(p, d, q, P, D, Q)}, as well
as the Box-Cox constant λ (Equation (9)), are estimated within the framework of the
Information Theory as explained in the following section.
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2.2. Estimation of the Model Order and the λ Parameter

Akaike’s Information Criterion AIC [32–34]—one of the most popular model selector
s—will be employed to choose the SARIMA model order, as well as the Box-Cox λ
parameter. The selection of those constants is not a trivial task as it entails the solution of
a conditional multi-objective problem induced by the 6–dimensional vector of unknown
constants Γ ≡ {(p, d, q, P, D, Q)} conditional to the Box-Cox paramter λ. The estimation
method employed to find the “best” conditioned vector of hyper-parameters—that is the
one governing the selected order structure M∗ ≡ (Γ̂∗|λ∗)—relies on the information theory
and, in particular, on the Akaike Information Criterion (AIC). At its core, AIC is based on
an estimate of the expected relative entropy (the Kullback–Leibler divergence) contained
in an estimated model, that is the degree of divergence from the “true” theoretical model.
Assuming Xt to be randomly drawn from an unknown distribution H(x), with density
h(x), estimation of h is done by means of a parametric family of distributions with densities
[ f (x|θ; θ ∈ Θ)], θ the unknown parameters’ vector. Denoting by f (z|θ̂) the predictive
density function, by f the true model, and by h the approximating one, Kullback-Leiber
divergence takes the form

I(h(z); f (z|θ̂)) =
∫

h(z) log h(z)dz−
∫

h(z) log f (z|θ̂)dz, (11)

which, after some algebra, can be written as follows:

L(Xn; H) =
∫

h(z) log f (z|θ̂)dz =
∫

log f (z|θ̂)dH(z). (12)

This quantity can be estimated by replacing H with its empirical distribution Ĥ, so
that L(XT ; Ĥ) = 1

T ∑T
α=1 log f (Xα|θ̂). This is an overestimated quantity of the expected log

likelihood, given that Ĥ is closer to θ̂ than H. The related bias can be written as follows:

b(H) = EH
{

L(Xn; Ĥ)− L(Xn; H)
}

. (13)

Denoting by the Greek letter ξ, the number of estimated parameters, Akaike proved
that b(H) = ξ

T , so that the information based criterion takes the form L(XT ; Ĥ) + ξ
T .

By multiplying this quantity by −2, finally, AIC is defined as

− 2 log L(XT ; Ĥ) + 2ξ. (14)

Elaborating on Reference [35], the correct formulation of AIC for the model expressed
in Equation (10) takes the form

AIC(Γ|λ0) = T log L(xt(λ0)|Γ)+

+

{
T

T − (d + D)

}
2(p + q + P + Q + 1 + δ1 + δ2) + T log 2π + T, (15)

where δ1 and δ2 are as follows (Equations (16) and (17)):

δ1 =

{
1, if d = 0
0, if d 6= 0

, (16)

δ2 =

{
1, if D = 0
0, if D 6= 0.

(17)

By sequentially applying Equation (14) for different combinations of the hyper-
parameters {(p, d, q, P, D, Q))} and conditioning the observed data to a given λ parameter
(which in Equation (15) has been denoted with λ0) a sequence of AIC values is obtained.
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This is the first of the two-step selection strategy adopted in the present paper, which is
usually referred to as MAICE (short for Minimum AIC Expectation) [36] procedure. In the
second step, the order (Γ∗) satisfying:

Γ∗|λ0 = arg min
(Γ̂|λ0)≤Γ̂0

AIC(Γ|λ0), (18)

i.e., the minimizer of the AICs generated by the candidate models, will be the winner
model structure. However, Equations (15) and (18) are not designed to estimate the Box-
Cox λ parameter. To this end, a grid search approach—over a set Λ of B competing
parameters

{
λj; j = 1, 2, . . . , B

}
—has been applied. Each λ has been evaluated in terms

of the contributions given in terms of both data normalization and statistical significance
of the external regressor. Finally, MAICE procedure requires the definition of an upper
bound for all the Γ parameters, as a maximum order a given process can reach. This choice,
unfortunately, is a priori and arbitrary.

3. Results

The data used in this paper are made available by the Italian Civil Protection De-
partment and publicly accessible, free of charge, at the following web address: https:
//github.com/pcm-dpc (accessed on 11 February 2021) In more details, these data—
sampled at a daily frequency—are those necessary to compute the TPR (the number
of new persons tested positive for COVID-19; the number of tests done considering both
molecular (PCR) tests and antigen tests, and the number of healed persons), and those
related to the number of hospitalizations and beds in intensive care units occupied by
patients tested positive for COVID-19. The considered time frame ranges from 2 September
2020 to 10 February 2021 for a total of 353 data points. We have analyzed 4 Italian regions
for which the collection of the data on the antigen-based tests administered from October
2020 to the 15 January 2021, has been possible, i.e., Toscana, Veneto, Piemonte, and Alto
Adige. The interested reader may refer to Reference [16] for the details of the data collec-
tion procedure. Unfortunately, certain data concerning the use of diagnosis tests in the
considered time frame are still not available for the other Italian regions. Figure 2 presents
the TPR and hospitalized time series for Toscana, Veneto, Piemonte, and Alto Adige.

The presented empirical experiment considers two different scenarios, according
to the way the available information is used. Their aim is to answer the hard-hitting
questions that we have set in Figure 1. The first one—which can be defined of the type
real–life—exploits the whole data set and it is designed to analyze the predictive capacity
of TPR, to deliver a “theoretical” time lag between the two series, and prediction which,
by design, cannot be verified being projected into the unknown future. On the contrary,
the second experiment concerns forecasting the number of beds needed in hospitals and
intensive care units after the determined time lag in specific situations in the past, that can
be verified using the available data.
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Figure 2. The TPR index (orange dotted lines) and hospitalized patients time series of Toscana,
Veneto, Piemonte, and Alto Adige.

3.1. Analysis of the TPR Predictive Capacity

In essence, this part of the experiment, being based on the whole data set, can support
only qualitative considerations on the proposed method. In accordance with the intuition
that TPR represents the evolution of infections, the TPR should impact the hospitalization
time series 15 days in advance. Studying the lagged correlations between the TPR time
series and those of patients admitted in hospitals and ICUs, using the SARIMA model,
we have individuated a predictive time lag of about 12 days for all the analyzed regions,
which confirm our intuitive hypothesis. Indeed, a 12 days predictive capacity for the TPR,
with respect to hospitalized patients instead of the hypothesized 15, can be reasonably
expected considering the above mentioned retrospective revisions effect [12]. In Table 1,
we will report the time lag estimated for each region, along with an approximated mul-
tiplier accounting for the positive (negative) variation in the number of beds needed for
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a unit increase (decrease) of the TPR index. Table 2 presents the detailed results of the
SARIMA model.

Table 1. This table presents the results of the regression models with Seasonal Auto Regressive
Moving Average (SARIMA) errors concerning patients admitted in hospitals and intensive care units
for Toscana, Veneto, Alto Adige, and Piemonte regions. The columns Days and Beds indicate the
TPR predictive capacity in days (with the associated t-value) and the estimated variation of beds in
both hospitals and Intensive Care Units (ICUs).

Region Days Hospitalized
t-Value Beds Days ICU t-Value Beds

Toscana 12 2.34 54 12 2.05 9

Piemonte 12 3.82 86 12 2.03 36

Veneto 13 2.07 82 13 2.52 12

Alto Adige 12 1.92 30 12 5.60 8

Table 2. This table presents the detailed results of the experiment presented in Section 3.1, for studying
the SARIMA lagged correlation between the TPR time series and those of patients admitted in
hospitals and ICUs. The last two columns Days and Beds indicate the TPR predictive capacity in
days and the number of additional beds in hospital or ICU after 12 days for each TPR unit.

Toscana

SARIMA(2, 1, 0)(1, 0, 1) Box Cox trans: λ = 1.2 βt−value = 2.34
φ1 φ2 Φ1 Θ1 β Days Beds

Hosp: 0.45 0.18 0.91 −0.69 100.61 12 54
s.e. 0.08 0.09 0.063 0.13 43.00

SARIMA(2, 1, 0)(0, 0, 1) Box Cox trans: λ = 1.2 βt−value = 2.05
φ1 φ2 Θ1 β Days Beds

ICU: 0.12 0.29 0.15 10.18 12 9
s.e. 0.09 0.09 0.09 4.98

Veneto

SARIMA(2,1,1)(1,0,1) Box Cox trans: λ= 1.4 βt−value=2.07
φ1 φ2 θ1 Φ1 Θ1 β Days Beds

Hosp: 0.73 0.21 −0.76 0.77 −0.60 341.70 13 82
s.e. 0.11 0.09 0.08 0.15 0.19 164.82

SARIMA(0,1,1)(0,1,1) Box Cox trans: λ = 1.34 βt−value = 2.52
θ1 Θ1 β Days Beds

ICU: 0.06 −0.67 20.72 13 12
s.e. 0.09 0.09 8.22

Alto Adige

SARIMA(3, 1, 0)(0, 1, 1) Box Cox transf: λ = 1.69 βt−value = 1.92
φ1 φ2 φ3 Θ1 β Days Beds

Hosp: 0.27 −0.25 0.36 −1.00 182.07 12 30
s.e. 0.08 0.08 0.09 0.07 94.66

SARIMA(0, 0, 3)(0, 1, 2)) Box Cox transf: λ = 1.98 βt−value = 5.60
θ1 θ2 θ3 Θ1 Θ2 β Days Beds

ICU: 1.06 1.04 0.63 −0.58 −0.30 27.12 12 8
s.e. 0.06 0.07 0.06 0.13 0.10 4.84

Piemonte

SARIMA(10,1,1)(1,1,1) Box Cox: λ = 3 βt−value = 3.82
φ3 φ5 φ6 φ10 Θ1 Φ1 θ1 β Days Beds

Hosp: 0.22 0.11 0.31 0.19 0.16 0.21 −1.0 211,187.31 12 86
s.e. 0.08 0.07 0.08 0.07 0.09 0.09 0.05 55,285.44

SARIMA(3,1,0)(0,1,1) Box Cox: λ=1.2 βt−value=2.03
φ1 φ2 φ3 θ1 β Days Beds

ICU: 0.38 0.36 0.17 −0.83 60.33 12 36
s.e. 0.08 0.08 0.08 0.08 29.74
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As estimates of future values which are yet to realize, these predictions can be mainly
exploited to make qualitative inferences. For example, in the Veneto region, if the TPR
increases of one unit, the model estimates that 82 additional beds may be needed in the near
future (after 12 days). As for the ICUs, we can expect 12 additional beds. Vice versa, if the
TPR decreases in Veneto, a similar amount of beds should be subtracted. In the considered
regions, the average variation of beds in hospital and ICUs are 63 and 16, respectively.

3.2. Forecasting Hospital Overload

The second scenario envisioned, has been designed to carry out a precise evaluation
of the performances delivered by the proposed method. To do so, we employed a test set
with the same length but different starting point, as illustrated in Table 3. In practice, both
structure and parameters of each SARIMA models has been estimated on the training set
(this time with different sample sizes but same starting points) and, as already mentioned,
evaluated on a “unknown” portion of data. Such a quantitative evaluation has been
conducted considering different scenarios on all the studied regions: two in which the TPR
was growing considerably in Toscana and Alto Adige; one associated to the beginning
of the “red zone” (In the three-tiered system issued in Italy to combat the spread of
COVID-19, the “red zone” indicates an high-contagion-risk area where non-essential shops
and markets are closed and residents are only allowed to leave their homes for work, health
reasons or emergencies.) in Piemonte; one characterized by a slow growth of the TPR index
in Veneto; and one associated to a fast lowering of the TPR indicator in Veneto.

As for the REG− SARIMA model, as described in the Methods section, the model
order has been defined using the MAICE procedure and constraining the Box-Cox λ
parameter to 0 (i.e., log—transforming the data). However, being an exhaustive search
of the “best” REG− SARIMA model either unfeasible or impractical for computational
reasons, the competition set has been built following the Box-Jenkins procedure, as illus-
trated, e.g., in Reference [17]. Almost all the parameters of the final models are statistically
significant and generate a sequence of residuals which can be deemed acceptable in terms
of whiteness. Most of the times, the Maximum Likelihood algorithm converged quickly,
with the only exception of the Piemonte region. In this case, a “sparse” data generating
process in the autoregressive part involved a lengthy estimation approach—of the type trial
and error—for the definition of the “best” (in AIC sense) model’s non-seasonal structure.

Table 3. Forecasting dates in different situations: training and test set.

Region Situation Training Set Obs Test Set Obs

Toscana fast growing 02/09/20–10/31/20 60 01/11/20–15/11/20 15

Piemonte red zone start 02/09/20–06/11/20 66 07/11/20–22/11/20 15

Veneto slow growing 02/09/20–09/12/20 99 13/12/20–28/12/20 15
Veneto fast lowering 02/09/20–29/12/20 136 15/01/21–30/01/21 15

Alto Adige fast growing 02/09/20–04/11/20 64 05/11/20–20/11/20 15

As already pointed out, the adopted MAICE Equation (18) is constrained to a specific
value of the Box-Cox constant, which, therefore, has been set to λ0 = 0. As for the maximum
order Γ0, it has been arbitrarily chosen on a case by case basis (see the Methods section
for details).

The results of the forecasting experiments are summarized in Figure 3. The reader
will certainly notice that the best forecasting results are obtained in the last experiment con-
cerning the fast TPR lowering scenario in the Veneto region, where more data are available.
However, all the other examples provide reasonable results, and most importantly, when a
fast growing of the TPR was present in the preceding of the cut, significant increases in
hospitalizations are estimated. The determined increments are generally comparable to the
generic estimations presented in Table 1.
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Figure 3. Forecasting hospitalized patients growth in 5 different scenarios for regions: Toscana, Alto
Adige, Piemonte, and Veneto (also including a fast lowering example). The orange dotted lines
represent the TPR index.

4. Discussion

The proposed approach is general and can be exploited in any region/state under the
condition that a set of requirements, below reported, are satisfied:

1. The data on the antigen tests administrated are provided;
2. The time series of new positive cases should include the daily number of new positives

tested using only antigen tests;
3. The TPR should reach a peak before the hospitalized and ICU patients reach theirs.

The third criterion captures the same effect dealt with in Reference [1,3]. In particular,
in Reference [1], it is stated that: “the peak of the cases curves shifts when they are adjusted
for under-ascertainment”. The rationale behind this idea is that the peak of unknown
infections necessarily precedes the one related to the hospital admissions.

In general, when the first two requirements hold, then the 3rd one should hold, as
well. Vice-versa, if this is not the case, probably other anomalies or errors occur in the data.
Moreover, issues concerning tests reliability cannot be excluded a priori—especially when
the ratio between hospitalized and positive cases growth considerably (e.g., due to tests
specificity issues which might be related to new variants [37]). Should one or more of the
above mentioned requirements be unfulfilled, the predictive properties of TPR might be
affected. If this is the case, an integration effort should be made to collect the missing data,
and/or correct possible errors. For example, even though requirement 2 was not met for
the Alto Adige region, we were able to analyze the TPR by manually adding the missing
information to the time series of the new positives [16].
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At this point, it is worth to compare the TPR index with other COVID-19 key indicators,
commonly used for monitoring purposes [38], to the end of assessing their predictive
properties. In particular, we have chosen the following indicators, designed to measure the
dynamical behavior of the infections, i.e.,

• Growth rate: positives daily variation;
• Incidence: fraction of COVID-19 positives per 100,000 individuals;
• The reproduction number Rt: number of secondary infections generated from a case

at time t.

Table 4 shows the pure predictive capacity with respect to hospitalizations of these
COVID-19 indicators, for comparison with the TPR. While the TPR can be considered
as a measure of the number of infections that occur on a certain day, also accounting for
unknown cases, indicators based on officially reported positive cases (e.g., incidence and
growth rate), measure the variation of official cases in a given area. Assuming that critical
cases are admitted into hospitals within 4 days after tested positive, such a delay can be
taken as an approximate “upper bound” for their pure predictive capacity.

As for the reproduction number it has to be said that, being based only on the known
(detected) cases, is not designed to capture the hidden variations generated by the (un-
known) asymptomatic. For example, Italy and the UK experienced during the summer a
strong reduction of the Rt values, which exhibited values below one. However, the data
released at the beginning of the month of September, showed that, unfortunately, the virus
did not stop spreading in summertime, and the Rt failed to properly react to the ongoing
spreading situation. Thus, it is not unreasonable to assume the Rt predictive capacity to
be approximately less or equal 4 days, consistently with other available indicators based
on officially reported cases. Moreover, it might not be unlikely the reduction of such a
prediction horizon, considering the computation time actually needed for this indicator to
be released.

The impact of under-ascertainment (the ratio of confirmed cases to the true number of
cases) on the reproduction number is also discussed in Reference [1], where the correlation
between testing and the amount of unknown cases is investigated. In essence, the Rt—
being based on the number of cases officially reported—should be expected to embody
biasing components, to an extent directly proportional to the quota of unknown cases.

On the contrary, the TPR, as we have demonstrated, adds an approximate extra time of
11 days (the average number of days between the infection and symptoms’ onset) leading
to a pure predictive time lag of about 15 days, and a “theoretical” one of about 12 days.

Table 4. Pure predictive capacity in days of different COVID-19 indicators with respect to hospital-
ization.

Metrics What It Represents Days

TPR Number of active cases in a region also 15
embodying the unknown portion of asymptomatic

Growth rate Variation of detected positive cases in a region 4

Incidence Number of known cases in a region 4

Rt index Variation of the infections dynamics in a region 4

Last but not least, TPR precision clearly depends also on the data collection process
adopted, which should be designed and implemented to guarantee the lowest possible
error rates in the transmission of the test results. This also is to minimize the negative
impact arising from the above mentioned retrospective revisions. Indeed, it would be
possible to define more precise TPR measures provided that the data were organized
in a more structured form, as discussed in Reference [16]. It is a fact that, by collecting
and making available additional information—often readily available to the health care
provider—the TPR would significantly improve its reliability. For example, it might be pos-
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sible to gain precious insight by simply studying the effectiveness of different test typologies
(diagnosis, screening, surveillance for health care operators and so forth) and associating
specific accuracy information to the different types of tests administered. Clearly, the more
(quality) information enter the TPR the more valuable its contribution in the description
and prediction of the COVID’s dynamics. For example, data collection could be improved
developing point-of-care instant screening tests [39], incorporating TPR data transmission
and calculation, as depicted in Figure 4. In this scenario, an improved TPR could be
fruitfully exploited for monitoring, surveillance, and forecasting purposes, as well as to
integrate electronic health records with information retrieved by sensors [39]. Nevertheless,
results obtained in this study emphasize the effectiveness of the proposed approach.

Figure 4. Developing point-of-care (instant) screening tests for COVID-19: data collection, sensors
technology, TPR calculation, and information flows.

5. Conclusions

In this paper, we have presented a forecasting method for the short term prediction
of the impact of COVID-19 disease on the public health system. To this end, we have
provided enough evidence about the goodness of the TPR as a leading indicator for
both the number of people hospitalized and, out of this group, for those who required
a bed in intensive care units. The theoretical framework chosen—that is the time series
analysis—has been particularly useful for the dynamic comparison and the exploitation of
the information contained in the TPR time series. In our simulations, the model chosen,
of the type REG− SARIMA, was able to generate reliable predictions from a minimum
of 8 to 12 lags. However, especially in light of new developments of the disease—which
take the form of many variants—the prediction performances of the REG − SARIMA
model might be affected, if not impaired altogether. Therefore, future directions include
the study of a more appropriate model, e.g., of the type regime-switching. Furthermore,
additional external information (e.g., the time varying percentage of critical cases) could be
fruitfully exploited in a Bayesian theoretical framework (e.g., of the type Bayesian Hidden
Markov Models [40]) or using heuristic based approaches (e.g., like the Dempster–Shafer
techniques [41]). Finally, we will consider the remaining Italian regions as soon as time
series of “enough” length become available.
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