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Abstract: Light Fidelity (LiFi) is a new candidate for wireless networking that utilizes the visible
light spectrum and exploits the existing lighting infrastructure in the form of light-emitting diodes
(LEDs). It provides point-to-point and point-to-multipoint communication on a bidirectional channel
at very high data rates. However, the LiFi has small coverage, and its optical gain is closely related
to the receiver’s directionality vis-à-vis the transmitter, therefore it can experience frequent service
outages. To provide reliable coverage, the LiFi is integrated with other networking technologies such
as wireless fidelity (WiFi) thus forming a hybrid system. The hybrid LiFi/WiFi system faces many
challenges including but not limited to seamless integration with the WiFi, support for mobility,
handover management, resource sharing, and load balancing. The existing literature has addressed
one or the other aspect of the issues facing LiFi systems. There are limited free source tools available
to holistically address these challenges in a scalable manner. To this end, we have developed an
open-source simulation framework based on the network simulator 3 (ns-3), which realizes critical
aspects of the LiFi wireless network. Our developed ns-3 LiFi framework provides a fully functional
AP equipped with the physical layer and medium access control (MAC), a mobility model for the
user device, and integration between LiFi and WiFi with a handover facility. Simulation results
are produced to demonstrate the mobility and handover capabilities, and the performance gains
from the LiFi-WiFi hybrid system in terms of packet delay, throughput, packet drop ratio (PDR),
and fairness between users. The source code of the framework is made available for the use of the
research community.

Keywords: VLC simulation; LiFi; VLC; ns-3; 6G; WiFi; simulation tool

1. Introduction

Over the last two decades, there has been exponential growth in the number of mobile
devices. According to the CISCO visual network index (CVNI), by 2023, around 70%
of the world population will have mobile phones [1]. The increase in mobile phones is
coupled with an emphasis on exploring new use cases for mobile/cellular networks like
the internet of things (IoT) to enable smart homes and smart cities, including vehicular
communication [1]. This rapid expansion in size and scope of mobile networks is expected
to increase data consumption exponentially. The CVNI reports that around 48% of IoT
traffic and around 80% of other mobile traffic will originate from the indoors [2]. Similar
trends in data consumption have been predicted for outdoor mobile networks. To support
a large number of devices and to meet the growing traffic demands, the wireless research
community has been looking for additional spectrum in the higher frequencies band, such
as the millimeter waves (for 5G) in the range of 30 to 300 GHz. However, the increased
use of the radio spectrum can result in increased interference, which can drive down the
throughput. On the other hand, visible light communication (VLC), which relies on the
visible light spectrum in the 430 THz to 730 THz range, is a promising candidate in the
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quest for additional spectrum in the high-frequency range. The VLC’s higher frequency
spectrum ensures high data rates, even over 1 Gbps [3]. Besides, it can provide secure
communication as the visible light cannot penetrate walls and can thus be confined to a
room to avoid eavesdropping. The wide deployment of lighting infrastructure in the form
of LEDs further motivates the use of VLC. More importantly, the LiFi/VLC can co-exist in
an interference-free manner with WiFi and cellular technologies such as LTE and 5G. These
benefits put LiFi as a prime candidate for additional wireless communication technology
in indoors and outdoors. In the indoors, LiFi is expected to be integrated with WiFi to
increase its capacity, provide low latency and higher throughput [4–6]. On the other hand,
in the outdoors, the LiFi communication can be integrated with 5G to enable smart cities,
particularly vehicular communication where low-latency safety-critical information can be
delivered through the visible light medium [7–9].

The advantages of VLC have been harnessed in the form of LiFi, which provides a
complete wireless networking system [3]. The LiFi promises to use LED lights as access
points (APs) and provide bidirectional high data rate communication and multiuser access
with dynamic user associations. It is also expected to offer seamless mobility and inter-
operability with other networking systems such as WiFi and long-term evaluation (LTE)
or 5G [3]. However, the LiFi has a higher penetration loss, and a significant portion of
its gain comes from the line of sight (LOS) communication, making it difficult to be used
as a standalone system. Therefore, the LiFi is a complementary technology to WiFi, thus
forming a hybrid networking system. The hybrid system of LiFi and WiFi can be realized
in two ways: Symmetric and asymmetric, as shown in Figure 1. In asymmetric hybrid
systems, the downlink of LiFi is provided through VLC and the uplink is supported via
WiFi. In symmetric hybrid system, the LiFi provides bidirectional communication in which
the VLC provides the downlink communication, and the infrared provides the uplink.
The hybrid network of LiFi/WiFi offers consistency in coverage, increase in capacity, and
lower latency.

Figure 1. Hybrid light fidelity/wireless fidelity (LiFi/WiFi) system.

Although LiFi offers many advantages including the readily available infrastructure in
the form of LED lights, it still needs significant efforts to address issues such as optimization
of physical and MAC layer resources, handling user mobility, including the provision of
seamless handover. The existing work has focused on many of these challenges; for
example, in [10], the LiFi resources are shared among multiple users using the optical
orthogonal frequency division multiplexing (OFDM). Miramirkhani et al. have modeled
power and delay profiles of mobile VLC and provided a power adjustment mechanism
to optimize gain [11]. In [12], the authors carried out experimental work for mitigating
spatial and temporal crosstalk in optical MIMO systems by using decoding algorithms
and equalizers, respectively. In [13], the authors present the theoretical concepts and
techniques involved in developing MATLAB models for a short-range 4 × 4 multiple-in
multiple-out (MIMO) VLC system. Liverman et al. [14] have developed a system called
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WiFo, integrating free-space optical communication (FSO) and WiFi system to provide
higher throughput with seamless handover. Shen et al. [15] have explored the effects of
road surface irregularities on SNR performance of the VLC in the context of vehicular
communication. Guzmán et al. [16] have analyzed the OFDM performance for outdoor
VLC in the presence of sunlight. The authors in [17] have created a hybrid WiFi and
LiFi system to provide LiFi and WiFi aggregated communication channels. The authors
in [9] have developed a VLC enabled system for low-latency, safety-critical intelligent
transportation systems (ITS). Their system can deliver information under sub-millisecond
up to 30 m, and under 10 ms for a distance of 50 m with 99% confidence. In [8], experimental
work has been carried out for joint 5G and VLC vehicular information delivery system. It
is reported that 5G can achieve consistent latency of 9.5 ms and 2.5 ms for VLC. Khreishah
et al. [18] have proposed a framework for energy-efficient AP selection in VLC and WiFi
hybrid systems. The LiFi channel is modeled with different modulation and coding rates
are discussed in [19]. In [20], the user mobility and device orientation change effects on
key performance metrics are explored. In [4], integrated orthogonal frequency division
multiple access (OFDMA)-based LiFi and WiFi systems are explored for load balancing and
handover for mobile users. To avoid excessive handovers in an AP, a selection method is
proposed by serving users simultaneously from multiple APs [21]. The authors in [5] have
proposed a joint user-centric coordination multipoint (CoMP) to improve space diversity
gain and thereby improve the signal-to-noise-to-interference ratio (SINR).

The literature on LiFi is mostly related to optimizing the physical and MAC resources
and mobility and network association schemes [4,8,9,14–20]. Most of the existing work
utilizes bespoke simulation platforms to evaluate and analyze their protocols and research
work [3]. Moreover, these studies have focused on evaluating their solutions in limited
environments containing few access points, thereby lacking the scalability aspect. On the
other hand, it is expected that the addition of LiFi to the hybrid systems will increase
the number of APs making it necessary to evaluate any new algorithm or protocol on
simulation platforms that can provide scalability. In this regard, many modern-day simu-
lators, such as ns-2 ns-3, OMNET++, and GloMoSim are equipped with tools that allow
for the simulation of large-scale networks that can be easily reproduced in the real-world
environment. The capabilities offered by these tools are not fully exploited to provide a
comprehensive simulation platform for LiFi. Among the available networking simulators,
we choose ns-3 for developing our framework for the following reasons:

• The ns-3 has a vibrant research community in terms of researchers, developers, and
users [22].

• It is memory efficient compared to other networking simulators such as OMNET ++,
GloMoSim and ns-2 [23].

• Protocols from ns-3 could be easily reflected in and integrated with real networks [24].
• It has native modules for LTE and WiFi, making it easy to develop a hybrid system

with LiFi [25]. There are many third part 5G new radio (NR) modules that could be
integrated with LiFi to help simulate heterogeneous 5G networks [26].

To harness the above advantages, this work provides a comprehensive implementation
in ns-3 for the LiFi networking technology, including its integration with WiFi. To the best
of the author’s knowledge, the closest simulation tool in this regard is reported in [27],
which consists of the VLC module for ns-3. The proposed work provides point-to-point
communication, error, and SNR models. However, it cannot provide fully functional LiFi
APs capable of providing multiuser access, offer bidirectional communication, support
for user mobility with orientation changes, handover facility, and integration with WiFi.
Our developed open-source framework implements all the critical features of a scalable
LiFi-WiFi system. It provides a physical layer, a MAC layer implementation in the form of
TDMA, the ability to associate users with the AP, mobility modeling, a handover scheme
between LiFi and WiFi APs, and a centralized controller to store information about the
networking devices. To validate our simulation framework, we have evaluated the LiFi
system’s performance in terms of throughput, delay, and fair sharing of mobile users.
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The proposed simulation framework has been made available as an open-source code to
increase the LiFi researchers’ productivity [28].

The rest of the paper is organized as follows: Section 2 starts with a conceptual
overview of the framework. Section 3 provides a brief discussion about the mathematical
foundations of the LiFi system. The ns-3 design of the LiFi framework is presented in
Section 4. The integration between LiFi and WiFi systems including the handover pro-
cess is discussed in Sections 5 and 6, respectively. The evaluation metrics are discussed
in Section 7.

Section 8 describes the simulation setup and the results. In Section 9, we conclude our work.

2. Conceptual Overview of the LiFi Simulation Framework in ns-3

In this work, we have implemented an ns-3 framework for LiFi and provided its
integration with the WiFi. First, we provide necessary mathematical descriptions of the
critical aspects of the LiFi physical and MAC layers. For the physical layer, we describe
the bidirectional LiFi channel, mobility, and packet reception metrics (e.g., SNR, BER). At
the MAC layer, we provide multiuser access using time division multiple access (TDMA)
with resource sharing capabilities and user association/reassociation with the APs. The
mathematical description of LiFi is then developed into ns-3 designs with accompanied
algorithms and their implementation. Once the physical and MAC layers LiFi are realized,
we discuss its integration with the built-in ns-3 WiFi module based on the IEEE802.11
standard. The integration includes, among other techniques, a handover scheme that
monitors critical performance metrics for LiFi users for a certain threshold and switches
the networks accordingly.

3. LiFi System Model

The LiFi systems at the most fundamental level consist of LED transmitters that
employ the principle of intensity modulation to convert the incoming electrical signal to
information before transmission through the optical channel. The LED transmitter can
register new users and serve multiple users over the same optical channel thus forming
a LiFi access point (AP). The receivers are equipped with photodetectors (PD), which
convert the falling light to optical current. Many of the modern receivers are mobile and
equipped with the necessary hardware to model the mobility aspect of the LiFi system and
analyze its effect on receiver gain. From the receiver gain and the channel, an accurate
error assessment can be made for packet reception. A detailed mathematical model of
the underlying components of the LiFi systems is discussed below. In Section 3, the
mathematical models are implemented into an open-source ns-3 framework.

3.1. Physical Layer

The LiFi physical layer represents the over-the-air interface including the channel,
modulation and coding schemes, and packet reception metrics. For the channel, we
consider the optical channel consisting of the LOS and non-LOS (NLOS) components.
For the modulation, we consider the basic modulation schemes such as pulse amplitude
modulation (PAM) and on-off keying (OOK) and advanced modulations such as quadrature
amplitude modulation (QAM). The coding schemes are left as future work. The packet
reception at the physical layer is modeled using the signal-to-noise ratio (SNR) and bit
error rate (BER) models that are based on the considered modulation schemes. Below we
provide the details of the physical layer aspects of the LiFi systems.

3.1.1. Channel Model

The LiFi channel consists of a LOS component that communicates through a direct
path over the air, and the non-LOS (NLOS) paths that can be formed due to the reflections
from the walls, ceiling, and other objects. The LiFi system predominately relies on the LOS
gain; however, it has been demonstrated in [29] that at certain positions in the room, the
gain from the NLOS channels can be enough to provide communication.
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The LiFi channel gain is affected by multiple factors such as the angle of arrival
(AOA), which is heavily affected by the user device orientation, the angle of emission at the
transmitter (Tx), and the user device field of view (FOV). For multiple LiFi APs supporting
multiple users, the gain for a user k from a particular AP i along the LOS component can
be calculated as below [29].

Hi,k
LOS =

(ml + 1)A

2π(h + d)2 cosm (∅) Tx g (ψi,k)cos(ψi,k) Π(ψi,k/ψcon ) (1)

where Hi,k
LOS is the LOS of user k from AP i, h is the vertical distance of the user device from

the AP, d is the horizontal distance on the floor, m is the Lambertian order of emission, A
is the PD area, and g (ψi,k) is the optical concentrator gain. The Lambertian order is given
as m = −ln(2)

ln(2)(cos(Φ1/2))
, where Φ1/2 is the semi-angle at half transmit power. The function

Π(ψi,k/ψcon) represents whether device orientation is within the field of view (FOV) of
AP. For within FOV the Π(ψi,k/ψcon) < 1 it is 1, and 0 otherwise. Equation (1) above ∅
represents the angle of irradiance of the transmitter, and ψ represents the AOA of the
receiver. Both these angles can be calculated for access points/transmitters installed at
position (xt, yt, zt) and the receiver located at position (xr, yr, zr) as below [20,30,31]:

cos(∅) =
−ntx ∗ d

d
(2)

where ntx is normal vectors to the transmitter, d is the distance vector between the trans-
mitter and user device, and d is the Euclidean distance between the transmitter and the
receiver. The cosine of AOA can be calculated as below [20]:

cos(ψ) =
(xt − xr)

d
sin(θ) cos(ω) +

(yt − yr)

d
sin(θ) cos(ω) +

(zt − zr)

d
cos(ω) (3)

where ω is the angle between the projection of the user device normal nu along the positive
axis on xy-plane, and θ is the angle between nu and the z-axis. More discussion about how
to produce angle θ is provided in Section 3.2.

For the NLOS channels, we consider the first-order reflections from the walls, which
are assumed to arrive simultaneously at the receiver [32]. The reflected arrays have two
paths: First, from AP to the small area on the wall represented as wall area (WA); second, a
reflected path from WA to the user device [32].

Hi,k
NLOS =

<
∑
j=1

(ml + 1)ρj∆WA
2π d2

S,jd
2
R,j

cosml
(
∅Sj
)
cos
(
ΨSj
)
cos
(
ΨRj

)
(4)

where d2
S,j is the distance from the source AP to the WA, d2

R,j is the distance of point source
on the wall to the user device, < represents the number of reflection sources, and ∅Sj is
the angle of transmission between the source and reflection j. In Equation (2), ΨSj and
ΨRj indicate the angle of incidence at the point receiver on the wall and the user device,
respectively. The values for these parameters are specified based on [29,33]. The total gain
from the LiFi channel can be calculated as below.

Hi,k = Hi,k
LOS + Hi,k

NLOS (5)

The uplink and downlink channels’ symmetry allows us to use (1–4) for both the
downlink and uplink.

Our open-source simulation framework has implemented only the first-order reflec-
tions from the walls and ceiling. The research community can add higher-order reflections
to the existing framework trivially.
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3.1.2. Packet Reception Metrics

At the LiFi physical layer, we evaluate packet reception based on the signal-to-noise
ratio (SNR) and the error models. The packet reception depends on whether SNR is above
a certain threshold, which depends on the optical gain of the channel, the PD responsivity,
and the noise.

SNR =
P2

r r2

σ2 (6)

where P2
r is the received optical power, which can be obtained by dividing the channel

gain given in Equation (5), over the squared distance of the transmitter and the receiver, r2

is the responsivity of the PD, and σ2 is the total noise. For noise, we consider the thermal
noise coming from the electronics in the user device and transmitter, and the ambient noise
from the natural lighting.

The error probability or bit error rate (BER) performance for LiFi networks can be
evaluated in terms of SNR and the modulation schemes. For some of the commonly used
modulation schemes, the bit error performance is listed below. For on-off keying (OOK)
and pulse amplitude modulation (PAM) schemes, the BER can be calculated as below [27].

BERPAM =
2 ∗ (M− 1)

M
Q

(√
SNR
M− 1

)
(7)

where Q is the tail probability of the normal function, and M is the modulation order. As
the OOK is a subset of PAM its order is kept as 2. The packet corruption can be determined
from the BER value as below [27].

PERPAM = 1− (1− BERPAM)
8∗p

log 2(M) (8)

3.2. Mobility Modeling

The LiFi is expected to support mobile devices with strict QoS requirements in terms of
delay, reliability, and throughput. Since the LiFi channel gain fluctuates significantly with
changes in user movement or with device orientation changes. These changes in channel
gain can be significant enough to cause service outages and can, therefore, negatively
affect critical QoS metrics. Therefore, it is of paramount importance to provide accurate
mobility models that can be used as a basis to associate users with an accurate network and
perform handovers in case of the service outage. Fortunately, in this regard, most modern
mobile devices are equipped with the necessary hardware in the form of a gyroscope and
accelerometer to assess user mobility.

In our simulation implementation, user mobility encapsulates both the user movement
and device orientation changes. The user movement pattern is assumed to be random in an
area bounded by dimensions Dmax and Dmin with a step size of Dk, uniformly distributed
over the bounded area µ(Dk) = [Dmax, Dmin]. The random movement affects ω angle in
the positive direction along xy-plane, and the vertical angle θ of a mobile device with the
AP, normally distributed with a mean θmean. We adopt the ns-3 random waypoint mobility
model for modelling user mobility, which provides support for random user (bounded
or unbounded) movement. To add the random user device orientation aspects, we adopt
the work in [20], which provides a statistical model based on real subjects’ movement in
a typical indoor scenario. A mobile device’s random orientation can be represented as
a correlated Gaussian random process with a mean of 29.67 and variance of 7.78. The
correlated samples for the user device orientational θ can be generated using the first-order
autoregression model (AR) as below [20]:

θ[n] = c0 + c1θ[n− 1] + w[n] (9)
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where w[n] is a white noise process with the variance of σw. The coefficients c0, c1, and the
variance σw for the random process are generated as below [20].

c0 = (1 − c1)E[θ], c1 = 0.005
Ts

Tc,θ, E[θ], σw =
(

1− c12
)

σθ (10)

where Ts is the sampling time and Tc,θ is the coherence time of the random process θ.
These representations along with algorithms presented in [20] are adopted for the random
waypoint mobility model in ns-3.

3.3. AP Design with Multi-User Access Using TDMA

The LED-based light bulbs can be offered as APs by equipping them with capabilities
such as multiple user access and dynamic user association/reassociation. The multiple-user
access can be provided by sharing the AP resources (e.g., optical channel and queues) be-
tween users via MAC protocols such as time division multiple access (TDMA), carrier sense
multiple access with collision avoidance (CSMA/CA), and code division multiple access
(CDMA). On the other hand, dynamic user association is achieved with the modification
to the MAC layer through provisions of protocols such as beacon framing or association
request/response mechanism.

Our simulation framework provides an implementation of multiuser access through
TDMA that shares the same physical medium in time. Generally, in TDMA, the same
frequency channel is divided into multiple time slots: The friction of time allocated to a
user to transmit or receive data in the uplink or downlink. The slot’s time is determined by
the amount of channel bandwidth and the deployed modulation scheme. Each user can
have one or more of these slots and is allowed to transmit or receive data only in those
time slots.

The TDMA slots are bundled into frames consisting of control slots for transmission
control signal and data slots for data transmission. The control slots are used for manage-
ment purposes such as advertisement of time synchronization information between the AP
and the mobile stations, and beacons slots that are used for user association/reassociation.
At the start of each frame, some numbers of slots are reserved to broadcast the time infor-
mation of the slots allocated to each user, and at the end of each frame, the access point
broadcasts beacons that contain its address and transmit power. The beacon messages are
responded to by the user devices with addresses of their own and the detected SNR level.
Lastly, the user device can transmit or receive actual information during the data slots.

The LiFi APs have a small coverage area and thus they can support only a small num-
ber of users; however, they can be served at much higher data rates due to larger available
bandwidth. However, higher data rate is not the only metric that needs improvement, as
many of the modern applications expect diverse quality of service (QoS) requirements
in terms of delay, throughput, and reliability. Besides, internet-enabled devices can have
several applications running simultaneously. A device can have a Skype and Zoom video
or audio call, while simultaneously having active browsing sessions and a download or
upload going in the background. Video and audio calls have stringent delay and through-
put requirements. On the other hand, for best-effort (BE) traffic (e.g., web browsing) and
background traffic (e.g., email and file uploads), violations in throughput and delay re-
quirements are tolerable. An AP typically must support all these services simultaneously
with available time and frequency resources. We provide a heuristic scheduling scheme
to distribute frame slots among users according to the aforementioned QoS requirements
to support these service requirements. The QoS categories are adopted from the cate-
gories mentioned in the IEEE 802.11 standards [34]. The video and voice streams are
allocated more slots compared to the background, and the best effort traffics. In a single
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TDMA frame, the data slots are distributed between the users according to the following
piecewise equation.

f =


nvo ∗ t, AC_VO
nvi ∗ t, AC_VI

t, AC_BE, AC_BK
(11)

where nvo is the number of slots chosen for the traffic with video streaming category, nvi is
the number of slots for VoIP, t represents time slot, AC_VI is for access category (AC) video
streaming, AC_VO for voice streaming services, AC_BE represents best-effort traffic, and
AC_BK is for the background traffic. The total number of data slots in a single frame can be
calculated based on the number of users and their traffic classes as below.

TD = vo ∗ nvo + vi ∗ nvi + bk + be (12)

where TD is the total number of time slots for the data frame, vo is the number of slots per
video user and nvo is the number of video users, vi is the number of slots per audio users
while nvi is the total number of audio users, and bk and be represents slots for background
and best-effort traffics. Apart from the data frames, the AP periodically controls frames
containing all the critical information about time synchronization, and the association and
feedbacks. The time allocated for the control frame is fixed, which can be represented as Tc.
The total transmission time for a single frame consists of the data frame duration calculated
in Equation (12), and the control frame duration and guard time. The frame transmission,
Tf , can thus be calculated according to the following equation.

Tf = Gtime + (TD + Tc) ∗ t (13)

where Gtime is the guard time and Tc is the control frame time. At the MAC layer, multiple
data and controller frames and a beacon frame are encapsulated into one super-frame.
The super-frame starts with the broadcast of a control frame containing information about
the time synchronization (e.g., when each user can transmit or receive data), followed by
data frames. At the end of each super-frame, a beacon frame is broadcasted through the
downlink carrying key information about the AP. The total number of slots in a super-frame
can be calculated below:

Ts = Tf ∗ n + I (14)

where Ts is transmission time of superframe, I is the interframe gap, and n is the total
number of frames in the super-frame.

In this framework, we have only incorporated TDMA; however, other MAC protocols
such as CSMA/CA, CMDA, and orthogonal frequency division multiplexing can be easily
integrated. For CSMA, the ns-3 already has a module available that can be updated with
minor modifications to work with this framework. Similarly, the ns-3 spectrum module
provides frequency-dependent communication and can be modified to work as an OFDMA
MAC layer protocol.

4. LiFi Design in ns-3

ns-3 is a reliable and reputable simulation platform to develop networking protocols
that can be easily realized in production networks. It is open-source with added func-
tionalities and has a wider acceptance in the research community. The ns-3 has a rich set
of libraries and modules that can be exploited to develop and analyze new networking
protocols and build large-scale networks. The core components of ns-3 include nodes,
channels, net devices, and applications. Nodes in ns-3 are equivalent to the networking
terminals such as APs, mobile phones, laptops, and servers. It can host mobility mod-
els, IP protocol stacks, and interface cards. The channel model provides generic channel
functionalities but can be customized for other technologies such as WiFi and LiFi. We
have customized the channel model to provide bidirectional communication. The ns-3 net
devices represent the data link layer that provides access to the channel and interfaces with
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the network and transport layers. It can be customized to provide multiple users access
through medium access control (MAC) protocols such as TDMA, CSMA/CA, and OFDMA.
The application module represents a basic abstraction that generates some activities to
be simulated. In addition to these basic components, the ns-3 provides helper classes
to facilitate the installation of nodes, net devices, channels, and IP interfaces. The basic
ns-3 abstractions are composed (interconnected) to realize a network instantiation in ns-3.
The classes for every ns-3 module can be organized in these subfolders: helpers, models,
examples, and documentation. The classes related to nodes, net devices including the
MAC layer, and the physical layer are included in the model subfolder. The other subfolder
consists of the classes related to the functionalities as their names indicate. For example,
the helper subfolder stores files, and the example subdirectory contains use cases.

In this work, our ns-3 framework is based on the discussion in the previous sections.
The existing ns-3 functionalities are customized and new features are added to realize the
framework. Classes from the framework are placed in the appropriate directories. The core
functionalities of the critical classes are described below, and interaction between the core
components of the LiFi framework are shown in Figure 2. However, a detailed description
can be found in the documentation folder of the simulation framework.

Figure 2. LiFi ns-3 design.

4.1. Physical Layer

The physical layer class works in coordination with the channel model class, the
SNR models, the error models, and propagation loss models for packet reception. The
propagation loss class works closely with the mobility model to calculate the channel
gain from Tx power, user device’s FoV, optical concentrator gain, and filter gain. The
total received power is calculated from the channel gain and the noise from the thermal
and ambient light sources. The SNR and the corresponding bit error are computed based
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on [27]. Once the packet is received in the destination device, the error model is applied to
determine if it can be passed to the upper layer successfully or dropped otherwise. Lastly,
we also provide traces for a packet received and changes in SNR due to user mobility.

The LiFi channel class implements the actual transmission on the physical medium. It
maintains a list of pointers to the physical layer objects of the AP and the user devices. The
channel has a send method, which is activated by the sending device’s physical layer object.

4.2. LiFi Mobility

In LiFi networks, the user movement and device orientation changes can significantly
fluctuate the receiver gain. Therefore, to accurately accommodate for the optical fluctua-
tions, we have adopted three different mobility models: (1) Random waypoint mobility
model (RWP) with orientation changes; (2) constant velocity mobility modeling; and (3) con-
stant position mobility model. These three models cover most of the mobility either due to
user or device [20]. Nevertheless, users can implement their unique mobility patterns.

In this work, we particularly focus on the implementation of the random waypoint
mobility model, which allows a user to move around with random receiver orientations. For
each movement, we calculate the angle along the direction of movement and vertical angle
between the user device and AP based on the discussion in Section 2. The current position,
angle of the user’s direction of movement, and the vertical angle are stored as a single
measurement of mobility. During the propagation loss calculation, these measurements
are used to calculate the receiver gain. In the constant velocity mobility model, the user
movement along a straight line with constant speed is modeled. The current position,
as well as the polar angle, is returned as a single sample of data. Lastly, the constant
position mobility model can be trivially supported using the existing ns-3 constant position
mobility model.

4.3. LiFi MAC Layer

Based on the discussion in Section 3.3, we have implemented the TDMA MAC layer
functionalities. Overall implementation of the MAC layer is divided into three layers
along with the analogy of the WiFi ns-3 module: A higher layer, a middle layer, and a
lower layer. These classes are further customized to provide the AP and the user device-
specific behaviors. The primary function of the higher layer classes is to provide resource
distribution and user association. In the LiFi AP, the higher layer class is customized
in the access point in the form of AP_Mac that provides a resource sharing algorithm.
The resource-sharing algorithm schedule users on the downlink and uplink slots and
send control frames. Here we provide a heuristic resource sharing algorithm that shares
a common pool of data slots between the uplink and the downlink users according to
their QoS requirements. As previously said, the resource sharing algorithm reserves slots
for control purposes including beacon generation for user registration. To register users,
the AP_Mac sends beacon (control) frames at the end of each super-frame consisting of
AP’s IP address, Tx power, and its MAC address. The higher layer MAC class, named
as Mac_Rx, in the LiFi user device is provided with a receive method that parses beacon
frames, and if the SNR is above a certain threshold, it sends a response containing its MAC
address and the QoS requirements. Upon reception of the user response, the AP_Mac
adds them to the connected users. A scheduling algorithm then uses this information to
allocate slots. A complete description of the resource sharing algorithm is provided in
Algorithm 1. The middle layer queues and dequeues packets before forwarding them up
or down the protocol stack. In the LiFi AP, the customized middle layer class is referred
to as Mac_AP_Middle, and in the user device, it is named Mac_Rx_Middle. Both these
classes are added as pointers to the net devices in the ns-3 AP and user device’s nodes.
The net devices transmit method queue data received from the upper protocol stacks. The
Mac_AP_Middle and Mac_Rx_Middle transmit method dequeue on the allocated slot and
forward it down to the MAC low layer. For both LiFi AP and user devices, we provide a
generic MAC layer called Mac_Low, responsible for managing access to the LiFi channel.
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It hosts a pointer to the middle layer mac and the physical layer objects of the AP. The
Mac_Low class has a method for packet transmission and reception. In the transmission
method, a header is put on the outgoing frame and sent down the channel. The header is
removed from the frame in the receive method and checked for a control or a data frame
and passed to the upper layer accordingly.

Algorithm 1: TDMA resource sharing

Initialize slots array, slot time t, guard time G, and inter-frame spacing I
Label: Start A Super Frame

Set number of control slots, Tc
Calculate the total number of data slots, T, based on Equation (12)
Calculate frame_time Tf based on Equation (13) & super_frame_time Ts based on Equation (14)

Label: Distribute Slots Based on QoS
for i in Size (Users)

Allocate Slots based on Traffic Class (TC) according to Equation (11)
if Users [i] TC is AC_VO_

User.time_slots = nvo ∗ t
else if Users [i] TC is AC_VI_

User.time_slots = nvi ∗ t
else

User.time_slots = t
end
end

End
Broadcast control Frame for Duration Tc, containing Sync Information
Label: Start Transmitting Data Frame
for t in slots_array,

Select user, u, for transmission
Transmit user u Data
Wait for a Guard Time

end
End
Wait for a time equal to inter-frame gap G
Label: Start A Management Frame

• Send Beacon Packet in First Management Frame Slot with transmit power, MAC address, and IP address of the AP
• Wait for the Beacons Response in the Uplink Time Slot
• Add users with a response to Users array
• Remove from Users already associated users with no ACK

End
If current_time >= Ts

Goto Start A Super Frame
else

Goto Transmit Data Frame
end
End

4.4. Other Classes

We have provided helpers and other utility classes to facilitate the simulation of the
LiFi networks. The helper classes facilitate building large-scale networks consisting of LiFi
transmitters/APs configurations, including the user devices’ static association and integra-
tion with the WiFi. It also contains classes for easy configuration of the channels, physical
layer, LiFi devices, and TDMA configurations. Apart from the helpers, we developed
utility classes for MAC configuration and classes for performance analysis.
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5. Integration between LiFi and WiFi

The rapid fluctuations in the optical gain can result in frequent service outages. There-
fore, the literature on LiFi strongly encourages its integration with other networking
technologies such as WiFi, long-term evaluation (LTE), and/or 5G networks. This work
considers the integration between LiFi and WiFi networks and leaves other networking
technologies as future work. In Section 5.1, we provide a brief overview of the ns-3 WiFi
module, and in the later subsections, we discuss the different ways in which we can
integrate LiFi and WiFi and address the associated challenges.

5.1. ns-3 WiFi

The WiFi has been standardized at the physical and MAC layer with regular standards
updates to accommodate new features and technologies. The ns-3 WiFi module provides
an implementation of nearly all standards of IEE802.11, starting from 802.11a to 802.11ac.
In ns-3, the physical layer models packet reception using two distinct techniques: Yet
another simulator (Yans) model and a spectrum-based physical layer [35]. The MAC layer
models the 802.11 distributed coordination function (DCF) for infrastructure (access point
mode) and an Ad-hoc mode for direct communication between the user or infrastructure
devices. The QoS support is provided through a distributed channel access (DCA) and
an enhanced distributed coordination channel access (EDCA). In EDCA, four different
queues are maintained for different QoS classes and each class has a mechanism for channel
access based on QoS requirements. In our simulation, we have integrated the IEEE802.11ac
version of WiFi. However, other standards could be trivially added to the framework. We
use these existing capabilities of WiFi ns-3 and our implementation of LiFi to provide a
hybrid LiFi/WiFi system. The hybrid systems fall into two categories, namely asymmetric
and symmetric. Both these arrangements are shown in Figure 1 where AP1 provides
asymmetric communication while AP2 provides symmetric communication. Below we
provide a detailed description of these integration mechanisms.

5.2. Asymmetric Integration between LiFi and WiFi

In the asymmetric arrangement, the LiFi downlink is provided through the VLC and
the uplink via the WiFi. In addition to serving as an uplink to the LiFi users, the WiFi
hosts’ other users and can be a potential landing network for the LiFi users when they
experience connections drop. This asymmetric integration provides reliability because of
the consistency of the WiFi signal. However, it can induce extra delay due to increased
contention on the uplink, which can outweigh the LiFi benefits. Aside from this, several
technical challenges need to be addressed before a fully functional system can be realized.
Some of these challenges and their solutions are discussed below.

5.2.1. Traffic Shaping at the Router

In traditional networks, the user devices use the same route for downlink and uplink
communication. However, in the asymmetric hybrid system, the traffic destined to the
LiFi network must be separated at the router and relayed to the LiFi AP before downlink
transmission. For the results shown in Section 8, we have implemented a static routing table
to separate traffic at the router, though these static routes can be replaced with dynamic
routing. Each route in the static routing table consists of the destination IP, next hope
interface IP, and the exit interface, and an example of this is shown in Table 1.

Table 1. Traffic shaping.

Destination IP Next Hope IP Exit Interface

192.168.0.2 192.168.1.1 1
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5.2.2. Providing TCP and UDP Traffic over LiFi/WiFi Hybrid Systems

In the asymmetric hybrid systems, the WiFi is used as an uplink for the LiFi users
including the establishment of TCP and UDP connections as well as for ACK transmis-
sions/retransmissions. This arrangement poses a challenge for LiFi users, especially during
the connection establishment. As we know, the TCP and UDP sockets listen to a remote
server through the port and the IP interfaces used for connection establishment. Therefore,
when the connection is requested through the WiFi uplink, and its response is relayed
through the LiFi downlink to the user device, the listening socket will discard it because
the response is received through a different IP interface and port address than the one used
for connection establishment.

To address the above-mentioned challenge, we have used an address resolution
protocol (ARP) spoofing mechanism; a similar approach has been adopted in the existing
literature [36]. This method involves reconfiguring the user devices’ caches to have the
LiFi’s AP as a default gateway and, therefore, store its IP address and MAC addresses
as gateway information. Thus, when the user device initiates a TCP/UDP, it listens on
the interface connected to the LiFi network. The outgoing packets from the LiFi user
device are captured and forwarded via the WiFi net device. When the server responds,
and the message is relayed by the router through the LiFi downlink and passed to the user
device, it is successfully received on the sender socket. These steps are listed in the form of
Algorithm 2 below.

Algorithm 2: Asymmetric TCP/UDP Traffic

Initialize: TCP/UDP Application connected to LiFi Interface
Interface LiFi and WiFi Net Devices
while 1 do

If frame_size > MTU then
continue

end
end
Change dest MAC (LiFi AP) addr to WiFi AP MAC addr
Change source MAC addr to LiFi User Device MAC addr
Compute IP checksum
Compute UDP/TCP checksum
Send Packet to WiFi AP
End

5.3. Symmetric LiFi and WiFi Integration

In the symmetric hybrid system, we use LiFi to provide bidirectional communication.
The downlink is provided through VLC while the uplink is supported using infrared
technology. The symmetric systems can be trivially supported on the existing framework
discussed in Section 4. The physical layer including the channel class remains the same;
however, at the MAC layer, we allow for a resource scheduling scheme to reserve slots for
the uplink communication and downlink communication. This arrangement allows users
to be associated with one network or another, thus allowing both networks to be used to
their full capability. It reduces the WiFi uplink’s contention, thus easing several challenges
such as delayed feedback to the centralized controller that can result in outdated decisions
in the network.

6. Handover between LiFi and WiFi

The LiFi users are vulnerable to frequent service outages, especially when they are
mobile; thus without a backup network, the standalone LiFi network can only support
static users. To provide seamless connectivity to mobile users, an adequate handover
mechanism is necessary that can land users on an appropriate AP/network. During the
handover process, the current access point releases the share of resources allocated to the
user, and the new network has to allocate resources to the users according to its service
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requirements. There are two broad categories of handovers in the LiF/WiFi hybrid systems:
Horizontal handover (HHO) and vertical handover (VHO). In horizontal handover, the
user is switched to AP of the same networking technology (e.g., LiFi to LiFi, WiFi to WiFi).
On the other hand, in the vertical handover, users are associated with APs of different
networking technology (e.g., LiFi to WiFi). In this work, we consider the vertical handover
in which users are initially hosted by LiFi APs, and during connection, drop or are handed
over to the WiFi. The horizontal handover can also be trivially supported on this framework
and has been left for future work.

6.1. Handover Parameters

The decision to perform a handover is dictated by the performance metrics of the user
device. Performance can be measured at the physical layer in terms of the packet error
rate (PER), received signal strength (RSS), signal-to-noise ratio (SNR), and instantaneous
throughput. The traditional approach is to monitor the threshold of the received signal
strength, or any of the other metrics, from the current AP for a certain duration D. If during
this duration the signal strength drops below a certain handover threshold, the handover
process starts with disconnection from the serving AP, and connects to a new AP. This
switching process takes a certain time that accounts for the network procedures to connect
the user device to the target AP, and in the process, it can incur some packet loss.

6.2. Metric Monitoring Algorithm

A metric monitoring algorithm decides whether to perform a handover to a WiFi
network or stay connected to the current network based on a periodic check of the user
device’s performance metrics. Upon establishing a connection to the AP, the proposed
algorithm starts recording metrics locally at a regular interval. For a user i associated
with the LiFi Al, performance metrics are monitored over a duration D. During this D,
the number of data packets received is represented as Ps, where corrupted packets are
represented by Pc. The instantaneous throughput during D is represented by Ti, which is
the ratio of successfully delivered packets to the successfully received packets. Similarly,
the instantaneous SNR is measured by the mean over duration D.

Ti =
Ps

D
(15)

Perr =
Ps

Pc
(16)

SNRi =
∑i=0 snr

N
(17)

where in the above equations Pc is the number of packets corrupted, Perr is the error rate,
SNRi is the mean signal strength during D, and N is the number of SNR measurements.

At the physical layer of each device, the metric algorithm agent monitors all the critical
metrics mentioned above. To decide whether to trigger handover, first the SNR and then
the instantaneous throughput are checked for their predefined thresholds.

SNRi < SNRth (18)

Ti < Tth (19)

If the SNR and the instantaneous throughput during the specified duration is below a
certain threshold, the user device should trigger a handover by requesting an association
with another AP. If the signal strength is sufficient and the throughput is above a certain
threshold, then the algorithm looks for packet loss ratio as it is possible that due to random
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orientation changes some packets can be dropped. A predetermined error threshold Perr_th ,
based on the application requirement, is used to determine the activation of handover.

P =

{
1; Perror > Perr_th

o; otherwise
(20)

These handover operations are encapsulated into a metric monitoring Algorithm 3
given below. The metric monitoring algorithm has an agent in the user device that monitors
the above-mentioned critical parameters. Once these parameters start to miss their thresh-
old, the user device sends a request to the centralized controller to trigger a handover. The
centralized controller in turn looks for the closest WiFi/LiFi APs and transfer the handover
session to one of them.

Algorithm 3: Handover

Initialize: Thresholds for performance metrics SNRth, Tth, Perr,
instantaneous throughput, packet loss, mean_snr
Label: Record Metrics at User Device
while 1 repeat

Based on Equation (15) calculate the instantaneous throughput
Base on Equation (16) calculates packet success probability
Based on Equation (17) calculate the mean SNR from the current AP

Goto CheckMetrics
do after time D

End
Label: Check Metrics
if SNR < SNRth or Perr > Pth or Ti < Tth

return 1
else

return 0
end
End

7. Evaluation Metrics

The metrics-monitoring algorithm discussed above monitors instantaneous perfor-
mance metrics at the physical layer for performing handover and ensuring continuous
connectivity. However, to analyze the application-level performance gains from the hy-
brid LiFi/WiFi system, we evaluate it in terms of the packet delivery ratio (PDR), delay,
throughput, and fairness between users.

7.1. Throughput

The throughput of WiFi and a LiFi station depends on packet size, SNR, and the
physical layer rates. The per-station throughput in megabits per second (Mbps), TLiFi/WiFi,
for WiFi/LiFi can be calculated as below:

TLiFi/WiFi =
(PRx ∗ 8)
e6 ∗ Tsim

(21)

where TLiFi/WiFi is the throughput and PRx is the total received packets.

7.2. Delay

Delay is a sum of transmission queueing delay, propagation delay, and contention for
time slots at WiFi/LiFi MAC layers, given in (18).

Delay =
Total Delay

PRx
(22)
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7.3. Fairness between Users

We use Jain’s fairness index (JFI) to study the effects of increasing the number of users
on individual users’ data rate performance [37].

JFI =
(∑ xi/Oi)

2

n
(
∑ x2

i /Oi
) (23)

where Oi stands for optimal throughput of a single station.

7.4. Packet Delivery Ratio (PDR)

The packet delivery ratio is the number of packets transmitted and the number of
packets received.

PDR =

(
Txpackets

Rxpackets

)
∗ 100 (24)

8. Simulations

The LiFi framework has been evaluated for user’s mobility and the resulting han-
dovers from it. Besides, the integrated LiFi/WiFi system is evaluated for a large number of
users and its performance gains are measured in terms of throughput, delay, fair sharing,
and PDR.

Three simulation scenarios are designed to demonstrate the potential usage of the LiFi
ns-3 framework. The first two scenarios are related to mobility and the handover capability,
and the third one is related to the scalability aspect of the framework. In the first scenario,
we consider a mobile user connected only to the LiFi network with no other network
available for the handover. In the second scenario, we consider the static user and mobile
users. The second-scenario users are first connected to the LiFi but can be dynamically
associated with the WiFi based on the handover algorithm, presented in Algorithm 4. In
the third simulation scenario, we demonstrate the improvements achieved for a LiFi/WiFi
hybrid system in terms of system-wide performance metrics such as delay, fairness, and
throughput. The parameters in Table 2 are used to setup LiFi and WiFi hybrid systems.

Table 2. WiFi Simulation parameters.

Parameters Value

Tx Power 20 dBm
Bandwidth Per WiFi Channel 80 MHz

PSD of Noise −174 dBm/Hz
DIFS 32 µs

WiFi Slot time 9 µs
SIFS 16 µs

LiFi slot time 16 µs
Guard band 20 µs

Interframe spacing 10 µs
WiFi Modulation and Coding Scheme (MCS) 7

LiFi Modulation scheme OOK
WiFi Rate Control Algorithm VHT

Figure 3 shows LiFi mobile user’s movement in a room area of 10 m × 10 m. In
addition to the user movement, we have modeled the user device’s orientation according
to the discussion in Section 3.3. Figure 4 shows the SNR and throughput for the first
scenario. The mobile user experiences drastic variations in short bursts in SNR due to the
user’s random mobility. The user mobility accommodates for the twin effects i.e., the user
device directionality vis-à-vis the LiFi AP, and the distance from it. The changes in SNR
performance are reflected in the throughput of the user, as shown in Figure 5. Since the
user is not provided with a backup network (e.g., WiFi), the handover is not triggered, and
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thus the performance metrics are significantly affected. For the second scenario, we have
considered a mobile and static user. The mobile user is initially connected to the LiFi AP
but once it starts moving around, the SNR and the corresponding data rates/throughput
drop significantly as shown in Figures 6 and 7, respectively. On the other hand, the static
user has a consistent gain. At around 5 s into the simulation, the SNR and data rate are
not enough to meet the user requirement, therefore the user device starts the handover
process by sending a request to the centralized controller (CC). The CC completed the
handover process by re-adjusting the routes in the LiFi and WiFi APs and takes some time
before the user SNR and data rates improve. Since the user is not connected to either of the
networks during the handover process, it can incur some packet loss. However, although
there is some packet loss, the instantaneous parameters-based handover ensures that the
user device has connectivity, even if it is mobile and experiencing sudden fluctuations in
SNR. This shows that when we provide LiFi with a backup system in the form of WiFi, its
performance metrics improve significantly.

Figure 3. User mobility.

Figure 4. Instantaneous signal-to-noise ratio (SNR) for LiFi-only mobile user.
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Figure 5. Instantaneous throughput for LiFi-only mobile user.

Figure 6. Instantaneous SNR for hybrid LiFi/WiFi system.

Figure 7. Instantaneous throughput for hybrid LiFi/WiFi.
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In the third scenario, we evaluate the overall performance gain of the hybrid LiFi and
WiFi network. We consider an indoor network consisting of multiple users with Flows
ranging from 1 to 35. Flows are unique TCP/UDP connections and are widely used in the
literature to represent users; therefore, users and flows are exchangeable. We have limited
one flow to one physical user. However, multiple flows can originat from a single user and
it will have the same effect. The throughput of the hybrid system is shown in Figure 8,
which shows significant performance gain over the WiFi-only system as the contention over
WiFi channels decreased due to traffic offloads to LiFi. In Figure 9, similar performance
gains can be observed for per-user delay vis-à-vis increase in the number of flows. Figure 10
shows that the fairness index remains stable with an increase in the number of flows in
the hybrid network. Lastly, PDR results show that the hybrid system can avoid congestion
due to multiple contending stations for the network resources, as shown in Figure 11.
As the number of users increases, the WiFi-only system starts dropping packets, while
in comparison, the hybrid system delivers much more of the packets successfully to the
network end users. The difference in PDR becomes more pronounced as the number of
users increases beyond 15.

Figure 8. Per-user throughput vs. number of flows.

Figure 9. Average delay vs. number of flows.
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Figure 10. Jain’s fairness index (JFI) vs. number of flows.

Figure 11. Packet drop ratio (PDR) vs. number of flows.

We have only evaluated certain aspects of the framework, but researchers can add
several research applications such as handover optimization, comparison between sym-
metric and asymmetric systems, advanced optimization algorithms for the MAC layer, and
admission control schemes. The source code of the simulation framework can be found
in [14].

9. Conclusions

We have developed an open-source LiFi framework in ns-3 to simulate an indoor
LiFi/WiFi network in this work. Our simulation modules provide an implementation of
the physical and MAC layers. It also allows for multiuser access with QoS-based resource
sharing and provides mobility support and dynamic user association. More importantly,
it monitors critical performance metrics to trigger handover between LiFi and WiFi. We
have simulated the handover capability, the homogeneous WiFi, and the hybrid LiFi/WiFi
system for critical network parameters such as throughput, delay, fairness, and PDR. The
source code is made available to the research community, which can be modified and
extended as per their requirement. The availability of source code would facilitate new
researchers to analyze the hybrid LiFI system holistically.
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