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Abstract: Pipelines play an important role in the national/international transportation of natural
gas, petroleum products, and other energy resources. Pipelines are set up in different environments
and consequently suffer various damage challenges, such as environmental electrochemical reaction,
welding defects, and external force damage, etc. Defects like metal loss, pitting, and cracks destroy
the pipeline’s integrity and cause serious safety issues. This should be prevented before it occurs
to ensure the safe operation of the pipeline. In recent years, different non-destructive testing (NDT)
methods have been developed for in-line pipeline inspection. These are magnetic flux leakage
(MFL) testing, ultrasonic testing (UT), electromagnetic acoustic technology (EMAT), eddy current
testing (EC). Single modality or different kinds of integrated NDT system named Pipeline Inspection
Gauge (PIG) or un-piggable robotic inspection systems have been developed. Moreover, data
management in conjunction with historic data for condition-based pipeline maintenance becomes
important as well. In this study, various inspection methods in association with non-destructive
testing are investigated. The state of the art of PIGs, un-piggable robots, as well as instrumental
applications, are systematically compared. Furthermore, data models and management are utilized
for defect quantification, classification, failure prediction and maintenance. Finally, the challenges,
problems, and development trends of pipeline inspection as well as data management are derived
and discussed.

Keywords: pipeline inspection; robot; pipeline integrity management; data management; non-
destructive testing (NDT)

1. Introduction

As energy demand increases, the energy production infrastructure expands corre-
spondingly. Pipelines are predominantly used to transport oil, natural gas, water, and
other important resources over long distances or between countries. They are recognized
as one of the safest ways of energy transportation [1,2]. However, hazards such as metal
loss, pitting and cracks might occur in a pipeline. These could result in personal injury or
death, economic losses, and environmental damage [3]. Therefore, growing attention has
been given in the research field to pipeline inspection and monitoring for condition-based
maintenance and structural integrity management.

Pipelines employed in the natural gas industry are usually metallic, and the defects
formation process consists of three essential components [4,5]. The first one is the inherent
defects produced during prefabrication [6–8]. In this process, the steel pipelines are
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made of billet solidified by molten metal, and the billet will contain defects. Most of
these defects will be removed when the head and tail of the billet are cut off, whereas
there still exist a certain number of defects remaining in the billet. That is the inherent
defects, including shrinkage cavities, casting hot cracks, air holes, inclusions, etc. [9].
Afterwards, these inherent defects in the billet will produce special defects in the rolling
process of steel pipelines, including cracks, delamination, hairline, and so on. Then,
the heat treatment, machining, coating and finishing process of rolled steel pipelines
will produce discontinuities on the surface of the steel pipelines as well. This results
in heat treatment cracks and coating cracks [10]. Most of these defects are distributed
on the surface of steel pipelines as illustrated in Table 1. The second one is welding
defects which occur in the process of pipe welding [11,12]. During the pipeline service,
cracks and corrosion will occur at the junction of the pipeline matrix and weld, which
will lead to a serious leakage [13]. These defects are the focus of non-destructive testing
(NDT) and structural health monitoring (SHM). The third one is corrosion formed during
service. There are two kinds of crack defect, stress corrosion cracking (SCC) and hydrogen-
induced cracking (HIC) [14,15]. SCC is caused by the combined action of corrosive [16]
environment and continuous tensile stress and it has been considered as one of the main
failure modes in a humid environment. The microstructure, chemical composition, residual
stress, applied load, grain boundary characteristics, the pH value of soil and transportation
medium, and other parameters of different steel pipe materials affect the generation
and propagation of SCC cracks [17]. HIC is a kind of stepped cracks that occurs when
pipelines are exposed to hydrogen-containing medium and hydrogen precipitates into the
steel during electrochemical corrosion [18]. The growth and development of these cracks
eventually lead to the damage of pipeline steel. Corrosion defects can occur on both the
internal and external surfaces of the pipeline. When the corrosive liquid is transported
in pipelines, the fine sand structure and acid-base properties of transported materials
will cause internal corrosion. Depending on the quality of the slurry and the speed of
transport, corrosion may occur in different ways (uniform, corrosion) [4]. Moreover, due
to the inherent defects, coating, or cathodic protection in the manufacturing process of
steel pipes, corrosion can also be caused. Temperature, soil chemical composition, and
the activity of microorganisms (such as bacteria or fungi) can be considered as the causes
of external corrosion in buried pipelines. Among these, the percentage of corrosion is
considered to be affected by microorganisms of 20% to 30%. Another type of corrosion is
caused by high current, which is known as stray current corrosions [16,19]. These corrosion
defects can take place on both the inside and outside of the pipelines and include pitting
corrosion, exfoliation corrosion, intergranular corrosion, and crevice corrosion. Defects of
pipelines produced during this operation are as shown in Table 2. When these cracks and
corrosion defects extend and develop to a serious extent, then pipeline leakage will occur.
Thus, to minimize these threats, detection and monitoring of pipeline integrity before
failure including an understanding of defect progression, condition-based maintenance,
and lifecycle management is important.

Research on in-line pipeline inspection has been intensified over the years. The NDT
method is a common scheme for pipeline discontinuity detection and safety evaluation [20].
It refers to the testing without damaging or affecting the performance of the tested object.
Conventional non-destructive testing methods include radiographic testing, penetrant
testing, ultrasonic testing, visual testing, eddy current testing, and magnetic particle testing
are recognized effective strategies [21]. However, different non-destructive inspection
methods based on different principles have their characteristics [22] and usages for in-line
inspection of pipelines. Moreover, different causes of defects will lead to different types of
damage [4]. Therefore, the use of appropriate detection methods according to the specific
detection requirements needs to be studied [12]. Due to the limitation of the detection
principle and pipeline characteristics (such as size, medium property, etc.), the detection
equipment and functions need to be designed according to the actual detection object
as well [23]. In addition, current pipeline integrity evaluation and health management
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methods employ these historical data to identify and evaluate high-risk pipeline [24], while
condition-based maintenance can be carried out. In overall, data management methods
for defect quantification, identification, prediction and maintenance are crucial parts of
pipeline integrity management. Thus, this paper systematically reviews in-line inspection
of metal pipelines in association with robot-based instrumentation and data management,
which are lacking in current literature. Specifically, it includes not only the state-of-the-art
of research, but industrial applications. Work on detection and location of non-metallic
pipelines can be found in reference [25].

Table 1. Defects of steel pipelines produced during prefabrication and their causes [4,5,7–9,26,27].

Defects Location The Reason for the Formation

shrinkage cavity near-surface the last solidified of molten metal shrinks
casting hot crack internal and external surfaces stress due to different solidification rate

stoma surface or near-surface the gas is retained when the metal solidifies
inclusion surface or near-surface impurities were added into the casting process

cracks surface the surface depression is discontinuous and elongated during rolling
layered surface or near-surface inherent defects are elongated and flattened during the rolling

fold surface excess material covering and pressing into surfaces
heat treatment crack surface uneven heating or cooling

coating crack surface residual stress release

Table 2. Defects of pipelines produced during operation and their causes [4,5,15,16,19,28].

Defects Location The Reason for the Formation

fatigue crack surface periodic stress application below the ultimate tensile strength of the material
stress corrosion cracking surface or near-surface the combined action of tensile static load and corrosive medium

hydrogen-induced cracking surface tensile or residual stress interacts with the hydrogen-rich medium
corrosion surface interaction of corrosive medium and alternating stress

Section 2 discusses the different NDT technologies for inline inspection. Section 3
introduces the device named the Pipeline Inspection Gauge (PIG) and a robotic inspection
system. In Section 4, the data analysis methods and models are reviewed for defect
quantification and classification. The challenges, problems, and development trends of
pipeline inspection and data management are derived and discussed in Section 5. Finally,
conclusions are outlined in Section 6.

2. Non-Destructive Testing (NDT) for In-Line Inspection

The scientific and engineering communities have presented various techniques to
detect defects in an operational pipeline. These techniques can be grouped into three main
categories for the maintenance of pipeline systems as shown in Figure 1 [29]. Technologies
and defect detection and prevention include locating pipelines and underground facilities,
determining excavation damage and encroachments to the right-of-way, leak detection,
and damage mitigation. The pipeline and hazardous materials safety administration
(PHMSA) of the U.S. Department of Transportation has recorded, excavation damage
poses a leading threat to failure incidents of gas pipelines. However, leakage detection is
usually an indicator of excavation damage and other threats. Thus, in order to reduce this
damage and protect pipeline Right-of-Way (ROW), it is necessary to develop a locating
equipment especially electromagnetic locators to identify the position of metallic pipelines.
For instance, acoustic or ground-penetrating radar technologies are recent advancements.
Among them, the damage mitigation and prevention technologies focus on minimizing the
time and workload of taking measures to avoid the expansion of accidents. However, these
technologies are hard to locate and protect inside the pipeline. Technologies for threats
and integrity management contains inspecting existing defects (such as cracks, metal loss,
rust and dents), making use of several devices in external corrosion direct assessment,
internal inspection, pipeline detecting and monitoring, as well as stress analysis [30].
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These technologies are the key points of threat identification and integrity management.
Accordingly, plenty of in-line inspection (ILI) methods based on NDT have been developed
to detect and quantify these defects or stress, and ILI is internationally considered as
the most effective approach to detect and locate pipeline defects. As for risk assessment
and information management, it covers various technologies for data visualization, asset
tracking and traceability, geographical information system, risk assessment, awareness of
response, as well as network and physical security. These technologies contain wide aspects
of identifying high-risk pipelines for repair or replacement. Moreover, risk analysis using
historical data depends heavily on the quantity and quality of the available data. Therefore,
different NDT methods for ILI tools and data management-related defects quantification
and health management are systematically reviewed and discussed in the paper.

Sensors 2021, 21, x FOR PEER REVIEW 4 of 30 
 

 

2. Non-Destructive Testing (NDT) for In-Line Inspection 
The scientific and engineering communities have presented various techniques to 

detect defects in an operational pipeline. These techniques can be grouped into three main 
categories for the maintenance of pipeline systems as shown in Figure 1 [29]. Technologies 
and defect detection and prevention include locating pipelines and underground 
facilities, determining excavation damage and encroachments to the right-of-way, leak 
detection, and damage mitigation. The pipeline and hazardous materials safety 
administration (PHMSA) of the U.S. Department of Transportation has recorded, 
excavation damage poses a leading threat to failure incidents of gas pipelines. However, 
leakage detection is usually an indicator of excavation damage and other threats. Thus, in 
order to reduce this damage and protect pipeline Right-of-Way (ROW), it is necessary to 
develop a locating equipment especially electromagnetic locators to identify the position 
of metallic pipelines. For instance, acoustic or ground-penetrating radar technologies are 
recent advancements. Among them, the damage mitigation and prevention technologies 
focus on minimizing the time and workload of taking measures to avoid the expansion of 
accidents. However, these technologies are hard to locate and protect inside the pipeline. 
Technologies for threats and integrity management contains inspecting existing defects 
(such as cracks, metal loss, rust and dents), making use of several devices in external 
corrosion direct assessment, internal inspection, pipeline detecting and monitoring, as 
well as stress analysis [30]. These technologies are the key points of threat identification 
and integrity management. Accordingly, plenty of in-line inspection (ILI) methods based 
on NDT have been developed to detect and quantify these defects or stress, and ILI is 
internationally considered as the most effective approach to detect and locate pipeline 
defects. As for risk assessment and information management, it covers various 
technologies for data visualization, asset tracking and traceability, geographical 
information system, risk assessment, awareness of response, as well as network and 
physical security. These technologies contain wide aspects of identifying high-risk 
pipelines for repair or replacement. Moreover, risk analysis using historical data depends 
heavily on the quantity and quality of the available data. Therefore, different NDT 
methods for ILI tools and data management-related defects quantification and health 
management are systematically reviewed and discussed in the paper. 

The inspection strategies are as follows: 

 
Figure 1. Technologies categories and research areas. Adapted with permission from ref. [29]. 2021 
Copyright Khalid Farrag. 

• Magnetic Flux Leakage Inspection (MFL) 
While the strong magnetic field acts on a ferromagnetic object, the geometrical 

discontinuity in this test specimen will result in the flux leakage from the tested piece into 
the air [31]. The magnetic flux leakage (MFL) is monitored by magnetic sensors around 
the circumference to estimate the dimensions and types of the defects. Although the 
phenomenon of magnetic flux leakage is easy to understand, the design and analysis of 

Figure 1. Technologies categories and research areas. Adapted with permission from ref. [29]. 2021
Copyright Khalid Farrag.

The inspection strategies are as follows:

• Magnetic Flux Leakage Inspection (MFL)

While the strong magnetic field acts on a ferromagnetic object, the geometrical discon-
tinuity in this test specimen will result in the flux leakage from the tested piece into the
air [31]. The magnetic flux leakage (MFL) is monitored by magnetic sensors around the cir-
cumference to estimate the dimensions and types of the defects. Although the phenomenon
of magnetic flux leakage is easy to understand, the design and analysis of the MFL system
involve the complex interaction of excitation, flux leakage, and material with defects. As a
classical NDT method, much work has been done already. Wilson et al. [32,33] studied the
visualization imaging and description of defect damage using 3D MFL imaging technology.
Pham et al. [34] proposed a planar Hall magnetoresistance sensor and applied it to oil and
gas pipeline inspection based on MFL. The prototype sensor has potential applications
to detect shallow defects in the near-surface, subsurface, or external surface, corrosion in
particular. Due to traditional MFL ILI being employed an axial excitation strategy that
cannot identify the narrow cracks along this direction, an axial crack detection model was
established in [35] through a linear magnetic dipole model with the circumferential excita-
tion method. Moreover, Yang et al. [36] summarized the principle and influencing factors of
internal detection of MFL technology for oil and natural gas pipelines. They elaborated the
research status of key technologies such as axial excitation and circumferential excitation
in MFL internal detection of pipelines and compared the detection ability of magnetic flux
leakage internal detectors. Azad et al. [37] designed and optimized an MFL coil sensor for
cross-sectional metal loss detection. The optimal parameters are obtained from numerical
study. Azizzadeh et al. [38] used 3D finite element analysis to acquire three axial MFL
components for quantitative analysis pitting sizes. Except for defects recovery based on
MFL signal, Mukherjee et al. [39] provided an adaptive channel equalization algorithm to
remove the noise caused by sensor movements and manufacturing imperfections.
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• Ultrasonic Inspection (UT)

Ultrasonic inspection (UT) is one of the principal directions of conventional NDT
methods to identify the defects of high-frequency sound waves on materials or their surface.
When ultrasonic waves move through an object, they consume energy and reflect off the
surfaces. Analysis of the reflected sound can determine the presence and locations of the
discontinuity or defects. UT can easily determine cracks, crevices, metal losses, and other
discontinuities at different depths inside sample since ultrasonic sound has characteristics
of reflection, diffraction, and transmission [40]. However, conventional ultrasound requires
a couplant to fill the gap between the probe and the surface of the workpiece to be tested. It
is difficult to detect the workpiece with complex shapes and irregular shape, and it cannot
effectively detect the pipe surface and surface fatigue cracks. Therefore, ultrasonic phased
arrays, guided wave detection technology, electromagnetic ultrasonic testing technology,
and laser ultrasonic testing technology are proposed to improve the inspection capability.
A phased ultrasonic array (PAUT) [41,42] can overcome the limitations of traditional UT. In
PUAT, the transducer is composed of several independent piezoelectric chips. According
to certain rules and time sequences, the electronic system is used to control and excite
each chip unit to adjust the position and direction of the control focus. PAUT [43,44]
total focus imaging technology [45] based on full matrix data for virtual focusing has the
characteristics of high accuracy and flexible algorithm. It is effective for the detection of
complex shape defects. At present, the multi-probe ultrasonic testing system is gradually
replaced by the ultrasonic phased array system. The new automatic ultrasonic testing
system can complete a large number of tasks undertaken by conventional probes by a
pair of phased array probes. However, PAUT needs a lot of data analysis for pipeline
inspection, and this method also has limitations for high-speed pipeline inspection. With
the rapid development of information technology, UT is gradually moving from traditional
detection to automatic non-destructive quantitative evaluation and structural health life
prediction [46]. Guided wave UT (GWUT) [47] is one of the latest methods for bridging
NDT and SHM, and can be used for pipeline monitoring to achieve an extensive structure
area inspection from a test point [48]. Cawley et al. [49] researched the guided wave
propagation on the pipe wall and looks for the reflection of the defect [50,51].

The generation mechanism is similar to that of a Lamb wave on a thin plate. It is
caused by repeated reflection in the medium with limited space as well as further complex
superposition interference and geometric dispersion [52]. It has the characteristics of long-
distance detection and no need to scan point by point on the detection surface [53]. When
transferring this technology from laboratory to application field, challenges [48] such as
pipeline filling, coating other structures with complex geometry were solved step by step.
Moreover, the physical characteristics of bending mode and symmetrical mode have been
understood and the corresponding guided wave detection system was built [54,55]. The
defect detection and positioning of various waveguide structures were successfully carried
out [56]. The mechanical properties of new materials were quantitatively characterized
as well [57]. Furthermore, detection devices with the guided wave excitation method of
pipeline were designed in [58]. Apart from this, many studies were carried out in [59–61]
concerned with the mode conversion characteristics of guided waves passing through
the bending parts of pipes. An electromagnetic acoustic transducer (EMAT) is based on
electromagnetic coupling [62]. Under alternating magnetic fields, the eddy current is
produced in a metal conductor. At the same time, the metal medium generates a stress
wave due to the Lorentz force acting on the current of the non-parallel magnetic field. The
stress wave whose frequency is within the range of ultrasonic wave is the ultrasonic wave.
In addition, due to the reversibility of this effect, the return sound pressure makes the
particle vibrate and changes the voltage at both ends of the eddy current coil under the
action of the magnetic field. The detection signal is received and amplified by the receiving
device to analyze the defect information [63]. Thus, this technique does not require any
couplant medium and can produce a wide range of patterns [64–68]. It shows the potential
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in austenitic weld inspection [69–71]. It can be applied for non-contact inline pipeline
inspection with low efficiency.

• Eddy Current (EC) Technique

Since there exists a blind area of surface inspection in conventional ultrasonic technol-
ogy, the EC method based on electromagnetic principle is proposed for pipeline surface
and near surface defects detection [72]. It is widely used for crack detection since it is
sensitive to conductivity, permeability and thickness variation of materials [31]. When an
alternating magnetic field interacts with a conductive test workpiece, then the distribution
and size of eddy current are changed. It is affected by the characteristics of materials, such
as conductivity, permeability, defects size and shape. Through measuring the magnetic
field changes caused by an eddy current received from detector coils, the conductivity and
defect characteristics are obtained [73]. EC is a non-contact measurement method, which
can be used for high-speed inspection [74]. However, it can only inspect the surface or near
surface structure of conductive materials due to the skin effect. In addition, eddy current
testing is greatly affected by lift-off distance, that is, the distance between the probe and the
surface of the pipeline to be tested [75]. Besides, remote field eddy current (RFEC), eddy
current array (ECA) and pulsed eddy current (PEC) are other research hotspots developed
on the basis of conventional eddy currents. RFEC is a kind of low-frequency eddy cur-
rent that can penetrate the tube wall twice [76]. The detector coil is usually placed about
twice the diameter of the pipeline from the excitor coil. With a low-frequency alternating
current, the magnetic field signal passes through the pipeline twice and then returns to
the detector coil for receiving [77]. Thus, it can effectively detect the internal and external
wall defects or the thickness reduction of the metal tube [78]. In addition, traditional EC
usually applies a single probe with mechanical scanning over a surface, which results in a
complex scanning path and decreases the detection sensitivity as well as reliability [79].
ECA arranges multiple elements on the surface of the tested pipe through certain settings
for inspection, which provides time-saving and a good solution for complex scanning
paths [80]. The conventional eddy current is affected by skin effect, and the detection depth
is limited by the excitation frequency. PEC uses the pulse excitation signal to induce the
transient current in the tested object and it has rich spectrum content [81]. By analyzing the
frequency variation of the transient flow, the defect detection, attribute characterization
and condition evaluation of the specimens with different depths are realized [82]. In appli-
cation, Denis et al. designed and optimized the PEC probe [83]. In their study, the probe’s
sensitivity is improved at a higher lift-off with a certain coil gap. For higher sensitivity
and imaging accuracy, Li et al. [84] proposed a pulse-modulation eddy current technique
(PMEC). It can enhance the evaluation sensitivity to external corrosion and the accuracy
of corrosion imaging compared with a traditional PEC. To provide solutions on probe
scanning for long-distance inspection, Chen et al. [85] proposed and designed a magnetic
force transmission ECA probe. Moreover, a lot of research has been done on the corrosion
detection of pipelines with cladding and the distinction between internal and external wall
defects. Sun et al. [86] proposed the application by RFEC in pipeline testing and made a
relatively complete theoretical analysis. Kim et al. [87] presented a prototype pig based
on RFEC. They employ a multi-phase rotating magnetic field in the remote region for
SCC detection. Fukutomi et al. [78] used an electric scalar potential and a magnetic vector
potential to analyze the electromagnetic field of RFEC. Afterwards, they optimized the
RFEC probe and achieved micro defects on non-magnetic steam generator tubes detection.

• Eddy Current Pulsed Thermography (ECPT)

Eddy current pulsed thermography (ECPT) is based on the phenomenon of eddy
current and Joule heat in electromagnetism. It uses an infrared thermal imager to obtain
the temperature field distribution and conduction of conductive specimen under the
excitation of pulsed eddy current due to Joule heat. Defects detection can be achieved
through analyzing and processing the multi thermal images [88,89]. Compared with
other infrared thermal imaging methods [90], ECPT uses pulsed electromagnetic excitation
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for volume heating. It has the characteristics of electricity, magnetism, and heat, rich
transient information, high spatial resolution, and high detection sensitivity for near-
surface depth defects. The induction heating is concentrated on the defect, which increases
the temperature contrast between the defect and the non-defect area. It can improve the
signal-to-noise ratio and the detection sensitivity of small defects as well, multiple defects in
complex geometric geometry in particular. Vrana et al. [91] developed a fixed and portable
induction thermal imaging detection system, which can effectively detect cracks with a
depth of 100 µm. Oswald et al. [92] carried out induction thermal imaging simulation and
experimental analysis on metal surface defects. Moreover, they studied the temperature
distribution of surface defects of materials with different electromagnetic parameters.
Furthermore, they discussed the open defects of induction eddy current imaging on a steel
plate and researched the influence of defects sizes and defects orientation. In addition,
Tian et al. [93] developed the internationally leading eddy current pulse thermal imaging
nondestructive testing and evaluation technology experimental platform. It is based
on the fusion excitation of electromagnetic and thermal multi-physical field effects. It
can be applied for weld inspection during installation and external pipeline inspection
of maintenance.

• Magnetic Barkhausen Noise (MBN)

Magnetic Barkhausen noise (MBN) detection technology has been widely used in the
evaluation of (residual) stress and fatigue aging of ferromagnetic materials. The principle
of this method is to study the signal characteristics of magnetic or acoustic emission. They
are caused by domain reversal in the magnetization process and reflect the microstructure
and stress distribution of ferromagnetic materials. Jiles et al. [94] studied the influence of
residual stress, elastic and plastic deformation on the Babbitt effect in steel and the influence
of microstructure of steel sample on MBN. According to the mechanism of MBN, it can not
only detect the stress but also detect the microstructure of ferromagnetic materials such
as fatigue life and small cracks. Jancarik et al. [95] analyzed the lift-off effect of building
steel samples with different carbon content. It revealed that the slope of MBN amplitude
distribution was not affected by the lift-off effect whereas the sensitivity became smaller.
However, the repeatability, under different magnetization and influence of environmental
condition and material variation, is not well understood [96]. It can be applied for stress
measurement and inspection of material health states.

• Radiography Testing (RT)

As one of the five conventional NDT methods, radiography testing (RT) is widely
used in the industry. It provides an internal view of the inspected specimen and records
permanent images. The significant advantage is that it does not require surface treatment
or insulation removal [97]. Moreover, it is not sensitive to naturally growing external
deposits on the pipeline surface [98]. Researchers around the world have been applying
this method for welding inspection and developing techniques for supporting automatic
radiographic [99,100]. Thus, automatic inspection from RT images with computer-aided
design to overcome limitations of human interpretation is a hotpot in this field [101]. For
example, Yazdani et al. [102] aims at the problems of unclear edge and low contrast of
X-ray images and proposes an automatic image-processing technology for noise removal
and image quality enhancement. Although RT can intuitively display images of defects,
it still contains major disadvantages of the health risk associated with the radiation. In
addition, it is difficult to recover the developing and fixing solution, and direct discharge
will cause environmental pollution [3]. It can be applied for inspection during installation
and maintenance of pipelines.

• Acoustic Emission (AE) Inspection

Acoustic emissions (AE) is a kind of physical phenomenon that the transient stress
wave produces by the rapid release of elastic energy when the object is subjected to de-
formation or external action [103]. In particular, it is a dynamic NDT during the internal
structure of components or materials, defects, or potential defects in the process of motion
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change. Through receiving and analyzing acoustic emission signals of crack propagation,
plastic deformation, or phase transformation, the material performance or structural in-
tegrity can be evaluated. Therefore, AE is a promising method in pipeline monitoring and
researchers have done a lot of work. Quy et al. [104] collected AE signals and used the time
difference of arrival to achieve emission source location in a pipeline conveying a liquid
under high pressure. Then through calculating the returned sound source, irregular struc-
tural changes in the material such as cracks can be detected and located. Paton et al. [105]
studied the acoustic characteristics of steam pipe materials of hot industrial steam by AE
and analyzed the possibility of continuous monitoring and fracture load prediction of the
pipeline. However, the AE signal is easily affected by the material, geometry, and sensor of
the measured object, and it is difficult to directly build a connection between AE signals,
fracture and material conditions. Therefore, a suitable signal processing method is required
for clustering AE activity and identifying the features related to the fracture event [106,107].

NDT strategies like penetrating testing (PT), magnetic particle testing (MT), visual
testing (VT) and are commonly used in the industry. These different methods have their
own merits and limitations as described in Table 3. However, pipeline transportation
lines are usually installed underground, and it is quite difficult and expensive to access
from the outside. Therefore, the ILI devices are widely used for the inspection of the
buried pipelines [108]. The instrumentation systems can be operated in oil and natural gas
pipelines, water pipes, submarine systems, or any other pipeline systems for which specific
inspection is required [109]. In this sense, the physical data about the pipeline integrity are
collected and recorded using smart devices moving in the pipe [110]. However, due to the
limitation of pipeline volume and length, not all methods are suitable for in-line pipeline
inspection [111]. Up to now, only based on ultrasonic and electromagnetic ultrasonic,
magnetic flux leakage, eddy current testing methods have successfully developed internal
testing tools for in-line inspection of pipeline.

Table 3. Comparison of various technologies [3,4,112,113].

Inspection Strategy Merits Limitations

MFL
without the need for pre-processing, easy online

detection, highly automated for detecting various
types of defects

relative movement between MFL probes can
distort the profile of MFL signals, not good in

poorly magnetized materials like stainless steel

EC

sensitive to multiple parameters; wider operating
temperature range, suitable for small diameter

pipelines inspection due to smaller sizes for
probes, lightweight and convenient to be located

on micro-robots, and more economical

the depth of penetration is dependent on the
frequency of the AC current applied to the coil,

suffers from the lift-off effect

UT
high penetration depth and suitable for testing all
kinds of materials and their properties, thickness

and external corrosion can be estimated

easily affected by dense highly attenuating muds
and casing scales, not sensitive enough to small

features

ECPT high spatial resolution, fast detection response,
and wide range detection, intuitive and reliable

affected by the surface emissivity, the infrared
camera blocks the view, the internal crack

detection is limited

MBN
high sensitivity to microstructure and stress state
of materials, fast detection, and harmless to the

operator

difficult to find a consistent behavior of the MBN
signal, can only be pick up near the surface of the

materials

RT
permanent images record, require no surface

treatment or insulation removal, and less sensitive
to external deposits

potential harm to the human body and cause
environmental pollution

AE applicable to dynamic detection and large region
can be tested

cannot provide the condition of the static defect
and it is a contact measurement method
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Table 3. Cont.

Inspection Strategy Merits Limitations

PT sensitive to opening surface cracks and not affected
by workpiece geometry and defect direction

penetrant process is complex and requires cleaning
operation. It can cause environmental pollution as

well

MT
high detection sensitivity and it can intuitively

display the position, shape, size, and severity of
the defect

the procedure is complicated and only for surface
and near-surface defects of ferromagnetic materials

VT economical and easy to operate The test results are easily affected by human
factors and only for surface discontinuities

3. Pipeline Inspection Gauge (PIG) and Other Un-Piggable Robotic Inspection
Systems
3.1. Pipeline Inspection Gauge (PIG)

In this section, we provide a detail review of the application on state-of-the-art ILI
techniques and instrumental systems for pipeline inspection. According to the type of
pipeline, these can be divided into piggable pipelines and un-piggable pipelines. There-
fore, the detection tools involved are inevitably different. For example, various widely
used Geometry Pig (GP), MFL Pig, UT Pig, EMAT PIG, EC Pig, Integrated Function Pig
and Specific Function Pig are contained for piggable pipelines. The general ILI system
fundamental structure and intelligent PIG types are illustrated in Figure 2 [110]. The
other one is represented by a closed-circuit television camera (CCTV) and smart ball for
un-piggable pipelines. Thus, these two kinds of detection technologies will describe with
two subsections, respectively.
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In recent years, significant progresses in the research and development of instruments
and equipment have been made by many companies. For instance, T.D. Williamson com-
pany introduced a SpirALL Magnetic Flux Leakage (SMFL), which describes the advantages
of pipeline detection based on the SMFL structure, and complements the shortcomings of
the uniaxial magnetic field [114]. The Rosen company [115] provided an MFL and EC tool,
which combined the MFL and EC methods to improve the measurement performance of
thick-walled pipelines. These two technologies are well-established in the industry and
present a robust inspection performance with high sensitivity and high precision. The
approach not only ensures high sensitivity and high accuracy of EC in scanning abnormal
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metal loss of the inner tube, but also provides an amount of comprehensive geometric
inspection information [116]. In addition, simultaneously employing MFL provides reliable
additional information for mid-wall and exterior features [117].

Table 4 investigates the emerging commercial PIG technologies for anomaly detection
and characterization. ROGEO Untouched geometry PIG (GP) is a tool that determines
possible deformations developed by ROSEN company, such as dents caused by external
force damage [110]. The main purpose of the geometry devices is to collect data relating to
the physical shape or geometry of pipelines. The MagneScan SHR MFL detector developed
by GE PII company is suitable for the pipe diameter range of 76–1422 mm [4]. The high
field “Speed-stable” magnetizer enables the detection speed, which can reach 5 m/s, and
216 Hall effect sensors have been integrated for super high resolution to identify and size
significant corrosion. LineExplorer UCM (a product configured for metal loss and crack
inspection) [118] was developed by NDT-GLOBAL company, it has a special configuration
that unites metal loss and cracks detection and available for pipeline size 20” and above.
In addition, Rosen, a leading industry organization, produced an EMAT PIG which is
characterized by high reliability detection and accurate continuous measurement of all
critical crack discontinuity, coating disbandment as a precursor of cracks can be detected
reliably [119]. This PIG can apply for pipe diameter covered 12”–48”. As for EC tools, Rosen
is dedicated to corrosion detection and heavy-walled pipeline inspection with eddy current
testing. It has developed a pipeline eddy current internal detector for metal loss, which is
a combination of a deflection sensor that allows simultaneous measurement of the inner
pipeline profile. Therefore, not only corrosion defects but also deformations are captured in
a single run. I2I Pipelines company [120] introduced a mandrel-style smart pig that can be
run in the same way as a conventional cleaning pig. This pig has electromagnetic sensors
embedded into the polyurethane. The array of electromagnetic sensors detects shallow
internal corrosion and fatigue cracking (SICC) in dry gas or multiphase pipelines. For
high-resolution imaging of internal corrosion and providing internal initiated and relative
stresses. Meandering Winding Magnetometer Array (MWM-Array) technology is used
by JENTEK in an ILI tool [121]. This tool has extremely high data rates capable of high-
resolution imaging at a speed of up to 10 m/s and the tolerances for variable travel speeds
variable sensor to pipe wall gaps. Considering the advantages and limitations of different
single NDT and E techniques, better results can be obtained if they are properly combined.
One example of the advanced combined NDT device is explored by the T.D.W company.
It integrated the pipeline deformation (DEF), SMFL, MFL, lower magnetic field (LFM),
and EMAT. The paper [122] introduced the advantages of this multiple NDT technology in
detecting the pipeline defects in particular.

The integrative approach combined MFL and EC is recent research progression of
authors [123,124]. The Shenyang Academy of Instrumentation Science, China, developed
the magnetic eddy current (MEC) ILI tool. This tool equipped with special designed
MEC probes as shown in Figure 3 and Table 4. It realizes the inspection of compound
pipelines with stainless steel and carbon steel in two layers. Another emerging commercial
PIG technology is the specific function device. Apart from this, a cathode protection
current measurement ILI system was developed by Baker Hughes, which can capture data
that verifies the effectiveness of cathode protection [125]. However, different application
scenarios and inspection objects were considered when adopts different NDT technologies
with these emerging commercial PIGs. In practice, more factors and types of defect to be
inspected need to be taken into consideration. Therefore, Table 5 details the three type
defects and provide brief advice on ILI PIG selection.
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Table 4. Emerging commercial Pipeline Inspection Gauge (PIG) technologies.

PIG Type Technical Function Image

GP To collect information relating to the physical
shape or geometry of pipelines
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Table 4. Cont.

PIG Type Technical Function Image

EC

Integrated with deflection sensors that enable for
simultaneous measurement of internal pipe profile

and metal loss
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has not been designed with launchers and receivers, there will be limited access to PIG. 
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Table 5. Advice for the choice of commercial PIG. (Reprinted from ref. [110]).

Consideration Parameters Metal Loss Features Crack Features Deformation and Geometry

Gas/Liquid medium
Operation pressure,

High-flow velocity, Wall
thickness, Pipe grade, Internal

coat, Multi/Dual-diameter
Cathode Protection (CP)

system, Ambient

General corrosion, Pitting,
Pinholes, Axial groove,

Lamination, Wall thinning,
Narrow axial external

corrosion

Hook/seam weld crack,
Hydrogen induced crack,

Circumferential crack, Fatigue
crack, Shrinkage crack, Lack

of fusion, Crack in dents,
Stress corrosion
cracking (SCC)

Plain dent, Dents with metal
loss, Small dents, ID

expansions, Buckle/wrinkle,
Bend, Bending strain
Centerline mapping

Advice of choice MFL UT/EMAT GP/EC

3.2. Other In-Line-Inspection Systems Suitable for Un-Piggable Pipelines

ILI tools have been used for around 50 years and have proven reliable and accurate.
Unfortunately, not all types of pipelines can be designed to be piggable. If such a pipeline
has not been designed with launchers and receivers, there will be limited access to PIG.
Also, some pipelines are un-piggable due to wear or damage affecting their pigging capacity.
More so, bends, external damage to the pipe, the build-up of solids on the pipe bore, and
changes in pipeline cross-section can make pipes un-piggable [128,129]. In fact, nearly half
of the world’s petroleum or natural gas pipelines have until recently been recognized as
“un-piggable”. Below we review some in-line inspection systems suitable for inspection of
Un-piggable pipelines.

The Smart-Ball tool from Pure Technologies, Ltd., is one of the most recently developed
ILI technologies [130,131]. Figure 4 is a Smart-Ball produced by Pure Technologies [130].
The device is composed of instrumented an aluminum core in a polyurethane shell and
a series of instruments containing an acoustic data acquisition system. An acoustic data
acquisition system can monitor the leakage when the ball passes through the pipeline.
Since it is not a full diameter instrument and the diameter of the ball is smaller than that
of the tube, this smart ball is different from the traditional inspection pig that uses the
cup to seal the pipeline. It rolls silently in the pipe, without mechanical noise, and has
unparalleled acoustic sensitivity. Pinhole size leaks can be detected as low as gallons per
minute (0.1 L/min) and the leakage positioning accuracy is within 3M. The sensitivity is
exponentially higher than (Computational Pipeline Monitoring) CPM-based leak detection
systems. What’s more, the advantage increases along with pipeline diameter. In addition,
this device can be deployed and recovered using existing pigging facilities. In non-pigging
pipelines, ready-made accessories can be used to start the equipment. Therefore, Smart-Ball
technology could be complemented for ILI systems in un-piggable pipelines, oil and water
pipelines in particular.
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In-pipe robots have a long history of development [132] and, according to movement
patterns, can be classified into wheel type [133–136], track type, walking type [137], screw-
type [138,139], and inchworm type [140,141]. In-pipe robots compared with ground robots,
the most significant difference is that its task space is the pipe, which needs a closed space
force. Oil and gas pipelines distribute at least hundreds of kilometers in a three-dimensional
space, there are vertical and level, elbow, tee. Because of energy limitations, existing in-pipe
robots are all linked with an electrical cable, which is not suitable for a long-distance and
in-service pipe. In fact, In-pipe robots only operated in a several kilometers pipeline, which
often is used to inspect some un-piggable short pipeline. In-pipe PIG systems are mostly
made up of the mechanical system and inspection system, where the mechanical system
supply force to move forward and inspection system scan the pipe flaw. The inspection
system can be equipped with different techniques like visual, laser, sonar, and other NDT
techniques. In [142,143], authors report an un-piggable case where a special robotic unit
based on a multi-trotter crawler (MTC) was combined with a bidirectional MFL inspection
module in a 2 km 10” pipe.

However, CCTV is still the most common in-pipe robotic method, which is made up
of the following hardware: illumination and lighting system, imaging sensors and cameras,
digital camera interfaces, and computation units. Figure 5 is a typical CCTV [144]. The
light produced by a light source is reflected from the detected object. The selection of
the light source relies on the types of detection tasks, the scale of the inspection region
and requirements of wavelength and brightness [20,145]. A camera or imaging sensor
then captures the reflected light for further analysis. There are two main types of image
sensors, i.e., charge-coupled apparatus and complementary metal-oxide-semiconductor.
The camera interface is one of the most critical choices when building up a vision system.
Common interfaces contain capture boards (frame grabber), USB, FireWire, GigE, Camera
Link, and CoaXPress. A computerized optical microscope is used to obtain the images of
the surface and the same images are fed into MATLAB software for further investigation.
In emerging research, M.S. Safizadeh [20] proposed an intensity-based optical system for
internal pipe inspection. Near-infrared reflectography and infrared thermography were
also used for NDT and E of artworks in [146,147]. In [148,149], a laser profiler was used
to improve the quality of the pipe images obtained by CCTV technology. In order to
measure surface quality accurately, a computer vision system was used in [150–153] to
characterize the nature of a surface texture. Nevertheless, an appropriate illumination
system, robust image processing algorithm are still the challenges of optical and vision
inspection system [154]. Its main limitation lies in the inability to detect and evaluate
subsurface defects.
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4. Data Management

After collecting the relevant data through detection and identification devices, data
processing needs to be implemented to minimize data errors and extract helpful infor-
mation. However, there is position displacement between the instrumental system and
the pipeline in the actual detection process. Collected signals are inevitably influenced
by various factors, such as electrical conductivity, magnetic permeability, lift-off distance,
thickness and inhomogeneity of the pipeline, or other noise. How to obtain useful infor-
mation and identification from the signals in the noise and the low-level signals under
certain conditions is the basis of pipeline integrity analysis. The incorrect identification
and classification of defects information will lead to serious inaccuracy in predicting defect
growth. Consequently, the correct signal processing, signal analysis, feature extraction, and
classification models are necessary to obtain the desired parameters. In addition, corrosion
and crack shape from signals can better support defect growth prediction and integrity
management. This section reviews the methods of defect feature extraction, quantitative
classification. Then the means of pipeline defect growth prediction, artificial intelligence
(AI) for decision making, and condition-based maintenance through multiple data are con-
sidered as well. Finally, the construction requirements of an integrated data management
system or cloud network are analyzed.

4.1. Defect Quantification and Classification

Defect qualification and classification is a form of inverse process in electromagnetic
nondestructive testing and it is a crucial element to determine the maintenance opera-
tions [155]. Electromagnetic inverse problems can be divided into two categories. Firstly,
they belong to parameter identification and second to optimization design. The problem of
parameter identification is to inverse or reconstruct the source parameters or the electro-
magnetic properties of the medium under the given experimental results and parameters.
The position identification, shape identification, and medium parameters (conductivity,
permeability, dielectric constant, etc.) are included. The optimal design is to provide
the expected performance index of an electromagnetic system and then to achieve this
goal by optimizing the parameters. Thus, the state or variation of defects and pipeline
attributes (geometric attributes, physical attributes) can be determined through signal
processing methods or by optimizing the performance of the detection sensor according to
the received data.

A classifier will provide reliable information on the location and type or dimension of
a tested defect. This machine learning process would be advantageous to reduce depen-
dency on human interpretation skills. Up to now, two major groups of classifier include
supervised and non-supervised methods [156]. Training data is labeled based on the
class, such as defect types or locations in supervised classification. On the other hand,
the training data do not need to be labeled in unsupervised classification. Support vector
machine (SVM) [157], linear discriminant analysis (LDA) [158], K-nearest neighbor (KNN),
K-means [159] and Bayes [160] are widely used methods for classification. For instance,
SVM techniques in conjunction with Fisher linear discriminant analysis (FLDA) for local-
ization and classification of defects were employed in [161]. Zajam et al. [162] studied a
supervised machine learning method and wavelet analysis for various types of defects
detection in natural gas pipelines. Khoa Le et al. [163] provided an online learning mech-
anism called SVM-CBR (case-based reasoning system). In this mechanism, the learning
SVM model needs to be invoked at each stage. This integrated method has been success-
fully applied for pipeline defects inspection. Layouni et al. [164] used machine learning
and pattern-adapted wavelets to inspect and size the metal loss in pipelines. Rostam-
abad et al. [165] developed a machine learning program with feature extraction, selection,
recognition and regression for major pipeline defects based on MFL signal. A Bayesian
framework is proposed in [166] to find the break point of signal intersection automatically
in an acoustic emission signal source. Moreover, K-means, as an unsupervised method,
has been applied for estimating the size of cracks in aircraft structures through Giant
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Magneto Resistance (GMR) sensing imaging data [159]. In addition, deep learning can
solve highly complicated problems and it is one of the fastest developing fields in computer
science [167]. Therefore, this method is effective in achieving automatic defect inspection
and identification. Two deep learning approaches for thermographic image reconstruction
were studied by Kovács et al. [168]. By comparing these with other methods, the hybrid
deep learning approach has an outstanding performance. Ruan et al. [169] proposed a
Defect-Detection Network (DefectNet) with a joint loss Generative Adversarial Networks
(GAN) framework for infrared thermal images. Through modifying the GAN loss and
penalty loss, the training process detection rate is significantly improved. Hu et al. [170]
embedded a sequence-PCA (Principal Component Analysis) layer and designed a new
attention block to a deep learning network for automated thermography defects detection.
The tested results verify that the proposed model can capture semantic information better
and improve the detection rate in an end-to-end procedure.

4.2. Pipeline Defect Growth Prediction and Condition-Based Maintenance

It is vital to have pipeline inspection data, which include strong defect information,
for example, type, size, and relative position of defects. Information of the pipeline
(manufacturing information, installation information, use information) where the defect
lies is also included. Furthermore, the information of the pipeline network (climate,
soil), etc., can be acquired, also. The above information would be accumulated with
the pipeline in service. Therefore, the study of the relationship between these data and
the establishment of a model to assess the health of the pipeline through data mining
can predict the development of defects and pipeline leakage. To forecast the remaining
useful life of pipelines, approaches are required to develop relating to the following
three aspects [112]. First is the number of defects. [112] gives the understanding of the
performance of ILI tools and the number of defects determined to the probability of
detection (POD) of detection. By fitting the POD with different feature dimensions, the
POD curve of the inspection tool can be obtained. Although different detection devices
have different POD curves, the probability of detection cannot reach 100%. A few methods
can be taken advantage of to update the actual number of defects, such as Bayesian and
non-homogeneous processes. On the other hand, the types, sizes and locations of defects
are important to be identified and quantified correctly. Finally, the correlation of defects
cannot be neglected. For instance, investigation of crack interaction should be presented
for better prediction. The failure models of different types of defect should be thoroughly
studied. The remaining service life of the pipeline is determined based on degradation
models and defect sizes, which is detected by inspection tools.

Thus, the gathered data should be organized, analyzed, and stored in an established
database to successfully develop prediction tools. Correct analysis of available data and
information of the tested system from both structural and operational perspectives is
vital to determine the performance of the system and highlight any possible defects.
Through feature extraction, feature selection, feature fusion and information fusion, these
features are analyzed and fused for condition-based maintenance (CBM) [171]. That is to
say, defect growth prediction and condition are obtained; predictive maintenance can be
arranged accordingly.

The condition of the assets and decisions concerning the prioritization of inspection,
repair, or renewal of pipelines can be determined through condition assessment models.
Different models and techniques can be used to estimate pipeline failures caused by a
various source of damage. Three types of available model, namely: physical, statistical, and
artificial intelligence, are conventional assessment methods [172]. Physical models account
for a distinct quantitative relationship between degradation factors and the condition of
pipelines in service, whereas the uncertainty of the deterioration process is not considered.
In contrast, the uncertainties through employing probability-based equations are consid-
ered in statistical models. Appropriate probability distributions rather than deterministic
quantities represent the model variables in these models. Moreover, artificial intelligence
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models are recognized to be data-driven and not model-driven, where the mathematical
relationships between the failure factor and condition data are evaluated by “learning” the
failure behavior from collected data.

Physical models concern the physical mechanisms of the failure process of pipelines,
whereas inherent uncertainty in the failure process is not accounted for. These models
are based on the physical properties and mechanics of a certain phenomenon, which are
known as deterministic models as well. Meanwhile, linear, non-linear fitting equations and
single value degradation models related to the failure of the pipelines are available [173].
By assuming the linear process in defects growth, the linear growth rate models are
applied to forecast the depth of defects in linear modelling. Wang et al. [174] proposed
a general linear model framework and it can approximately describe a wide range of
pipeline condition assessment and defect detection problems. The system response is
determined by a linear function with pipeline properties at discrete locations along the
pipe. Afterward, the pipeline characteristics are reconstructed by fitting the measured
response with the least square method. As for estimating the external corrosion of buried
and aged oil and gas pipeline, non-linear functions are introduced to describe the nonlinear
relationship between soil factors and pit depth as the influence of the factors on the pit
depth growth is complexity [175]. The final model is the weighted sum of these individual
non-linear response functions representing its partial effect on the observed pit depth. On
the other hand, the single value models are another deterministic approach extensively
used, which assume a steady degradation growth rate over the analysis [176]. However,
the independence of the age and depth of defects are limitations of this modelling.

Statistical models are composed of a set of a probability distribution, which are used
to represent patterns of variability that random variables may display. In these cases,
historic data are used e.g., the probability of uncertainties of pipeline occur is taken into
consideration. Pesinis et al. [177] presented a statistical model which adopts a parametric
hybrid empirical hazard model complemented with the non-linear quantile regression for
reliability analysis and prediction. The model is segment-based and non-uniform Poisson
processes/Poisson square wave processes are used to model the defect to estimate rupture
probabilities due to external metal loss corrosion. A discrete Ferry–Borges stochastic
process is used to model the internal pressure load. Then the reliability of gas pipelines is
estimated based on historical failure data and the theory of structural reliability. Unlike the
statistical method based on historical data, a time-dependent physics-based probabilistic
approach was employed to determine the failure probability of pipelines [178]. The impact
of corrosion, external loads, burst failure, etc., is considered as well. To derive different
corrosion rate (CR) distributions, various corrosion growth models are involved and are not
limited to probabilistic models in [179], such as a single-value distribution, linear growth
corrosion model, time-dependent, time-independent model and Markov chain. Then a
Monte Carlo reliability framework that combining these CR distributions was developed
and applied to synthetic and field-collected corrosion data. The use of comprehensive data
helped to evaluate the performance of each CR model and to consider corrosion defects
of different sizes and ages. In addition, a gamma process-based corrosion growth model
is explained in [180]. Due to the monotonic increasing nature of the gamma process, it
is suitable for degradation mechanisms such as wear, fatigue, corrosion and creep. In
addition, the interaction process between complex environmental conditions and pipelines
can be studied by finite element simulation. Moreover, the uncertain deterioration factors
such as the physical properties of soil, corrosion patterns, etc., can be considered. Defects
and stress evaluation and predictive maintenance with both deterministic and probabilistic
approaches linked with finite element simulation are investigated in [181].

The analysis of a large number of pipes is often intensive and time-consuming because
the pipeline work is often large and complex. Data-driven methods are a research hotspot in
the era of big data, which is based on data to load the appropriate algorithm and obtain the
optimal model. Thus, these data can play the greatest value for acquiring a satisfactory need.
AI models, including artificial neural network (ANN) and different machine learning (ML)
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methods, including deep learning (DL) [182], are data-driven intelligence, which has been
applied for AI-based condition-based maintenance. M. S. El-Abbasy developed five models
based on the ANN technique for the prediction of the oil and gas pipelines condition by in-
line inspection dataset from major oil and gas companies in Qatar [183]. It was found that
the ANN technique provides better results compared with regression models previously
developed. Moreover, they concluded that the corrosion growth rate increased with the
increase of metal loss and decreased with the careful maintenance of pipeline cathodic
protection. A hybrid intelligent model named PCA-CPSO-SVR, which combines PCA, SVR
and chaos particle swarm optimization (CPSO), is proposed for corrosion rate improvement
of pipelines [184]. PCA plays a role in reducing data dimension and screening out the
main variables of corrosion influencing factors, such as temperature, liquid holdup, etc.
The CPSO algorithm was used to enhance the accuracy of the algorithm in support vector
regression. From the investigation, higher prediction accuracy was obtained by this hybrid
method, whereas it takes the consumption of running time. In addition, an advanced
intelligence framework has recently been developed by Seghier et al. [185] for predicting
maximum pitting corrosion depth in oil and gas pipelines. Six models containing ANN,
multivariate adaptive regression splines, M5 tree, kriging, locally weighted polynomials,
and extreme learning machines were completely applied in this framework. The maximum
pitting corrosion depth of pipelines located in different environments was sent to the
AI models in terms of training and testing. The relationship between the maximum
pitting depths and other probable factors inducing the pitting growth process such as the
pipeline age, as well as the characteristics of the surrounding environment were carried out.
Moreover, ML is a recent emerging-computation intensive analysis method to determine
the failure risk of oil and gas pipelines. Pipelines were divided into different failure risk
levels according to the failure probability. Eight machine learning algorithms like the
random forest, LightBoost (LGBoost) and eXtreme Gradient Boosting (XGBoost), etc., were
used and their performance is evaluated by confusion matrix in [186]. It is revealed that
machine learning algorithm performs a greater computational efficiency than the physics-
based approach, whether deterministic and probabilistic. Moreover, a time-dependent
corrosion defect depth growth model of the corroded pipeline based on machine learning
was established by using historical operation parameters [187]. A feedforward subspace
clustering neural network (SSCN) and particle swarm optimization (PSO) were linked
with the model. Furthermore, (CNN) is a kind of feedforward neural network with
convolution computation and depth structure. It is one of the representative algorithms
of deep learning. It imitates the visual perception mechanism of humans and suitable
to work with large volumes of input data. CNN has high efficiency in practice and is
guaranteed when working with big data. A work conducted by [188] identifies defects and
further condition assessment in the pipeline with CNN. A small database to determine
whether there are defects in the pipeline has also been proven to be effective. Another
kind of deep learning is reinforcement learning (RL). A model-free RL algorithm based
on Q learning was proposed in [189] for condition-based maintenance management of
a dry gas pipeline. In this process, a physical-based corrosion degradation model was
established as the environment to interact with a decision-maker agent, which obtains
information periodically from the pipeline through inspection and determines maintenance
action and executes that action, subsequently. After training and testing, the results of
the proposed algorithm indicate an improvement in the reliability and showed a 58%
reduction in maintenance costs compared to the periodic maintenance regime. However,
the limitations of a current agent, such as finite and discreet state and action spaces or
the trustable deep RL solution, are further content to investigate. Apart from this, due to
the large amount of data and complex environments, combing model-driven and data-
driven methods for CBM is necessary. To study the threat of stray current corrosion defect
on pipelines, the investigation was conducted by Liu et al. [190]. They used parametric
analysis results as database calculated by finite element software to develop a three-layer
feedforward artificial neural network for failure pressure prediction. Through experimental
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burst test results and results of previous failure pressure estimation models verfied by each
other, the failure pressure of high-strength pipes with stray current corrosion defect was
predicted. It remains challenging to have an adaptive self-evaluated AI model/platform for
condition assessment and condition-based maintenance based on pipeline historic, in-situ
and environmental data.

4.3. Integrated Data Management System and Cloud-Based Management

Despite the emergence of various advanced technologies focusing on the design
of intelligent PIG tools, there is no other data analysis or mining method to assess the
occurrence of cracks and particle deposition. This is except for the pigging technologies
occurring in pipelines [191]. Pigging is usually carried out in time to obtain pipeline
infrastructure information, whereas it would result in time loss and maintenance costs.
Hence, it is vital to decide when and where to implement the inspection process since
this pigging operation is performed periodically. Moreover, it is impossible to identify
the leakage or particle deposition as well as the material property data at the initial stage
because the existing pigging process cannot predict it. In addition, it will lead to greater
risks during oil transportation if cracks, leakages or blockages begin to form inside the oil
pipeline after performing the pigging process [192]. This would not be noticed until the
next planning for that particular pipeline section arriving.

Although inspection techniques are usually better at locating leaks, they cannot be
used continuously. On-line monitoring technology is a better supplementary method.
Sensors inserted or connected to the pipe are connected to the software system so that pipe
parameters can be continuously monitored and analyzed. Thus, a more reliable, precise,
robust, and effective system for inspecting leaks, cracks, or bursts over the pipeline system
is required. This system must be supported by all types of data acquired and stored from
various field workstations to form a complete database management system. Prediction
models and integrity management programs depend on these high-quality analytical data
to assist threat identification, such as risk ranking and selection of mitigation techniques.
An example is presented in [29]. The procedure has the applicability of material traceability
data, including mechanical and chemical properties. Its appearance reflects the merits of
an integrated management data system. We can establish a cross-correlation relationship
between the early material properties and the test data. Thus, a better analysis for the causes
of failure and to predict the probability of defects can be undertaken. The conventional
monitoring system incorporates sensors settled on the pipes and communicated through
copper or fiber optical cables to central control with limited advantages [193]. Later, RFID
(radio of requests) [194,195] and portable robot methods were implemented together with
existing wireless applications [196]. The continuous advancement of Internet of Things
(IoT) innovations can likewise help achieve completely effective management, where
new IoT gadgets will collaborate to more readily handle the status of the appropriation
organization [197]. In this case, a critical test is to build a cloud-based network to supervise
these IoT devices and cultivate new management institutions to deal with these problems.
The data collected by the intelligent terminal is sent to the cloud for data management,
analysis, processing, storage, evaluation, prediction and interaction. Based on the big data
and cloud network detection and monitoring system in the data management system, it
will realize the real-time monitoring of the operation status of the pipe network and carry
out the dynamic monitoring and analysis of the big data. Then the treatment of the pipe
network emergencies, the analysis of the relevant information and the reasonable planning
and design of the pipe network can be undertaken.

As illustrated in Figure 6 from the project report [29], a growing number of web-based
technologies such as simulation, defect quantification, case studies and database, and cloud
data management are being developed and used for intelligent pipeline inspection and
data management.



Sensors 2021, 21, 3862 20 of 29Sensors 2021, 21, x FOR PEER REVIEW 21 of 30 
 

 

 
Figure 6. Material traceability record. (Adapted with permission from ref. [29]. 2021 Copyright 
Khalid Farrag). 

5. Challenges, Problems and Development Trend 
Failure models and mechanisms depend on multiple factors. They can be improved 

through historic and inspection and monitoring data and other information. From the 
investigation above, various non-destructive evaluation technologies have advantages 
and limitations for pipeline inspection. More comprehensive modality inspection tools 
should be developed. For instance, geometric information regarding the length, width, 
depth, and location of flaw anomalies, which is a critical input for integrity assessment 
and subsequent effective planning of repair and rehabilitation measures. Nowadays, a 
variety of special tool configurations are available, and each configuration has been 
optimized to meet the inspection requirements of the pipeline industry. Multimodality in-
line inspection tools can provide important data regarding the flaws and anomalies 
detected in a pipeline wall. Then the data analysis methods and models are utilized for 
defect quantification and classification, anticipating the defect growth rate and prediction 
model for condition-based maintenance. Based on the overview above, the challenges and 
trends of development are as follows: 
• Multi-physical integration and fusion inspection are expected. 

Given the variety of possible defects, it is hard to employ only one NDT technique to 
achieve high-quality inspection and decision making. Multi-physical field fusion could 
provide complementary or redundant information from different methods [198]. In other 
words, multiple information sources in the same or different aspects of the object are fused 
to reduce uncertainty in order to achieve enhanced detection robustness and accuracy. 
Compared with using each NDT modality alone, small material faults or defects caused 
by different failure causes can be detected with higher reliability. For example, conductive 
materials inspection through ET is useful for near-surface defect detection whereas UT 
yields volumetric information. Employing both methods and integrating them in the same 
sensor, the multiple characteristic signals will directly generate from the system to better 
cover the surface and deep defects [199]. 
• Robotic and instrumental challenge of speed effect and robustness and adaptivity for 

varied environments 
For instance, the inspection speed of MFL is limited to 5 m/s since motion-induced 

eddy currents in the high-speed inspection [33]. Moreover, the inspection speed of UT and 
EMAT methods is also limited to 2.5 m/s because the propagation velocity of ultrasonic 
waves (5.9 km/s in steel pipe) is lower than that of electromagnetic waves. For ECT, a 
lower excitation frequency requires a longer detection time, which reduces the detection 

Figure 6. Material traceability record. (Adapted with permission from ref. [29]. 2021 Copyright
Khalid Farrag).

5. Challenges, Problems and Development Trend

Failure models and mechanisms depend on multiple factors. They can be improved
through historic and inspection and monitoring data and other information. From the
investigation above, various non-destructive evaluation technologies have advantages
and limitations for pipeline inspection. More comprehensive modality inspection tools
should be developed. For instance, geometric information regarding the length, width,
depth, and location of flaw anomalies, which is a critical input for integrity assessment and
subsequent effective planning of repair and rehabilitation measures. Nowadays, a variety
of special tool configurations are available, and each configuration has been optimized to
meet the inspection requirements of the pipeline industry. Multimodality in-line inspection
tools can provide important data regarding the flaws and anomalies detected in a pipeline
wall. Then the data analysis methods and models are utilized for defect quantification and
classification, anticipating the defect growth rate and prediction model for condition-based
maintenance. Based on the overview above, the challenges and trends of development are
as follows:

• Multi-physical integration and fusion inspection are expected.

Given the variety of possible defects, it is hard to employ only one NDT technique to
achieve high-quality inspection and decision making. Multi-physical field fusion could
provide complementary or redundant information from different methods [198]. In other
words, multiple information sources in the same or different aspects of the object are fused
to reduce uncertainty in order to achieve enhanced detection robustness and accuracy.
Compared with using each NDT modality alone, small material faults or defects caused by
different failure causes can be detected with higher reliability. For example, conductive
materials inspection through ET is useful for near-surface defect detection whereas UT
yields volumetric information. Employing both methods and integrating them in the same
sensor, the multiple characteristic signals will directly generate from the system to better
cover the surface and deep defects [199].

• Robotic and instrumental challenge of speed effect and robustness and adaptivity for
varied environments

For instance, the inspection speed of MFL is limited to 5 m/s since motion-induced
eddy currents in the high-speed inspection [33]. Moreover, the inspection speed of UT and
EMAT methods is also limited to 2.5 m/s because the propagation velocity of ultrasonic
waves (5.9 km/s in steel pipe) is lower than that of electromagnetic waves. For ECT, a
lower excitation frequency requires a longer detection time, which reduces the detection
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speed. Therefore, this method can only detect ID defects due to the frequency-dependent
skin depth effect in high-speed detection. However, the passive detector moves by the
fluid in the pipe, the velocity is not uniform, and there will be a mutation. Moreover, other
variables such as attachment and lift off will affect the characteristics of electromagnetic
signals as well. Under these circumstances, how to improve the inspection robustness and
adaptivity for varied environments is a big challenge for active pipeline robot and soft
robot for ILI.

• Accuracy of location and sizing of defect detection, classification, and quantification

The instrumental systems are regularly found to be stuck during the operation because
of the complex shape of the pipeline, bends or magnetization force in MFL PIG systems.
Thus, it causes data discontinuity and data analysis will lead to inaccurate positioning [200].
In recent years, an emerging technology is to add an auxiliary positioner to smart devices for
accurate locating. These consist of odometer wheel, inertial measurement unit (IMU), etc.
However, these auxiliary apparatuses are time-dependent, and the cumulative error will
increase with time-consuming. In addition, as described in Section 5, no tools can achieve
100% signal diversity detection probability in different environments. Therefore, the
accuracy of location and sizing of defect detection [201], classification, and quantification
would be a research spot in the future instrumental system.

• Multiple parameter measurement and characterization, e.g., integration of inspection
and structural health monitoring, e.g., defect detection and stress characterization

For some accident-prone areas [30] or suspicious areas detected by the inspection
tools, multi-parameter measurement and real-time monitoring are very necessary [202].
Moreover, due to the promotion of the internet of things and physical network systems,
RFID tag antennas and sensors have been widely used in the field of antennas and sensors.
These type of sensors have potential applications in SHM [203] because of their passivity,
wireless, simplicity, compactness and multimodality, especially in the life cycle of large
infrastructure [204]. Thus, it is very suitable for pipeline monitoring. Meanwhile, the
applications of characterizing materials in terms of microstructure, condition, and proper-
ties are important tasks. The birth of the micromagnetic multiparametric microstructure
and stress analyzer (3MA) and its broad range of applications indicate that it is a possible
method to quantitatively determine the mechanical properties of materials [205]. However,
applications are primarily available in the laboratory and some specialized systems can be
used for semi-finished products, e.g., strip steel, heavy plates, or ferromagnetic steels [206].
Moreover, the physical mechanism of different operation configurations, the relationship
between the excitation mode and the measured multi-feature quantity are still needed to
be further studied. It is the inevitable trend of future development to integrate inspection
and structural health monitoring for defect detection and microstructure characterization.
Meanwhile, the related physical principles for better understanding characterization rela-
tionship and sensor/system design also have broad research prospects and markets. For
example, flexible sensors [113] can be applied for inspection and monitoring [207].

• Lifetime prediction, AI-assisted condition-based maintenance through intelligent data
management and security

Defects growth calculation and lifetime prediction can be applied in future inspection
planning, excavation costing planning and a pipeline operator’s decisions on maintenance
or replacement. This information can be obtained by appropriate mathematical physics
models or artificial intelligence technologies with intelligent data management. According
to the datasets, pipeline safety planning and management should take place without delay
if the defect growth rates are high or the predicted lifetime is coming to an end [173].

Despite the convenience of information sharing, security [208] and accessibility of
data management should not be ignored. If necessary data are missed or changed at will,
this will cause data failure and bring serious consequences. The stability and response
speed of massive data transmission [203] will also face great challenges. Unstable data
transmission will lead to partial data loss, thus affecting the integrity of the data. At the
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same time, the slow transmission speed would waste time and reduce efficiency as well.
More research on remaining life prediction methods, models, and theories in associated
with AI and big data will be required.

6. Conclusions

In this paper, four main procedures of a pipeline integrity management technology
have been discussed. The significance of pipeline inspection is firstly highlighted under the
discussion of different defect information and types of failure. In addition, the basics of non-
destructive evaluation technologies and the use of PIGs or other robots as the application
are reviewed in detail. Furthermore, data analysis methods and models are utilized for
defect quantification and classification, and the prediction of failure and maintenance are
reviewed. Then the challenges, problems, and development trends of the instrumental
system have been discussed and analyzed. In conclusion, the main objectives of pipeline
integrity management should first obtain accurate information through detection. Then all
reasonable anticipated defects and safety threats during pipeline design, construction and
operation should be identified and evaluated. Afterwards, appropriate measurements need
to be taken to prevent failures that could cause damage to pipelines. Effective techniques
require to predict and estimate the future condition or lifetime of pipelines. Thus, condition-
based maintenance and intelligent decision making can be determined. According to this,
further research on pipeline inspection must continue to evolve. The research directions
should not only focus on innovation of detection theory but also improve integration of
multi-function detection systems and data management. This paper has undertaken a
systematic review from inspection, robot-based data acquisition, data management and
decision making.

In the future, multi-physical field fusion inspection is likely to be a hot spot for sensor
research and development in detection tools. Based on this, new materials, new sensor
structure design, and higher requirements are needed. At the same time, the challenge
of speed effect and robustness and adaptivity for varied environments need to be solved
urgently. In addition, more reliable and efficient signal processing and data analysis ap-
proaches need to be developed to remove noise and accurately evaluate defects. Accuracy
of location and sizing of defect detection, classification, and quantification will require
higher demand with the equipment updating. In addition, when the inspection and struc-
tural health monitoring are integrated, multi parameters are required to characterize the
defects and stress. Then, the macro signal and micro mechanism are organically combined,
which makes the non-destructive evaluation more scientific. After that, intelligent life
prediction and auxiliary maintenance are indispensable. Last but not least, based on big
data and cloud network management systems, privacy security and accessibility cannot be
ignored as well.
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