
sensors

Article

Graph Representation Integrating Signals for Emotion
Recognition and Analysis

Teresa Zawadzka * , Tomasz Wierciński , Grzegorz Meller , Mateusz Rock , Robert Zwierzycki
and Michał R. Wróbel *

����������
�������

Citation: Zawadzka, T.; Wierciński,

T.; Meller, G.; Rock, M.; Zwierzycki,

R.; Wróbel, M.R. Graph

Representation Integrating Signals for

Emotion Recognition and Analysis.

Sensors 2021, 21, 4035. https://

doi.org/10.3390/s21124035

Academic Editor: Stefano Berretti

Received: 29 April 2021

Accepted: 8 June 2021

Published: 11 June 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Faculty of Electronics, Telecommunications and Informatics, Gdańsk University of Technology,
80-233 Gdańsk, Poland; tomaszwiercinski26@gmail.com (T.W.); grzegorz.meller@outlook.com (G.M.);
mateuszrockm@gmail.com (M.R.); robert.zwierzycki@gmail.com (R.Z.)
* Correspondence: tegra@eti.pg.edu.pl (T.Z.); michal.wrobel@pg.edu.pl (M.R.W.)

Abstract: Data reusability is an important feature of current research, just in every field of science.
Modern research in Affective Computing, often rely on datasets containing experiments-originated
data such as biosignals, video clips, or images. Moreover, conducting experiments with a vast
number of participants to build datasets for Affective Computing research is time-consuming and
expensive. Therefore, it is extremely important to provide solutions allowing one to (re)use data
from a variety of sources, which usually demands data integration. This paper presents the Graph
Representation Integrating Signals for Emotion Recognition and Analysis (GRISERA) framework,
which provides a persistent model for storing integrated signals and methods for its creation. To the
best of our knowledge, this is the first approach in Affective Computing field that addresses the
problem of integrating data from multiple experiments, storing it in a consistent way, and providing
query patterns for data retrieval. The proposed framework is based on the standardized graph model,
which is known to be highly suitable for signal processing purposes. The validation proved that data
from the well-known AMIGOS dataset can be stored in the GRISERA framework and later retrieved
for training deep learning models. Furthermore, the second case study proved that it is possible
to integrate signals from multiple sources (AMIGOS, ASCERTAIN, and DEAP) into GRISERA and
retrieve them for further statistical analysis.

Keywords: affective computing; biosignals; datasets; emotion recognition; graph databases;
signal integration

1. Introduction

With the increase of research in Affective Computing field [1], the number of published
datasets related to emotion processing from experiments is growing [2]. They include
biosignals like EEG, ECG, GSR or facial expressions, along with contextual information and
sometimes emotional states. Such data can be acquired in different ways e.g., from mul-
tiple devices with various sensors or labelling by different annotators, and in the case of
emotional states also from external recognition methods (all this data, if it is not misleading
are further called experiment originating data).

However, the data are dispersed, stored in plenty of formats, different datasets pro-
vide diverse biosignals and emotional states which are retrieved with various frequencies
or even irregularly spaced. Such circumstances, connected with a lack of unified stor-
age for experiment originating data and semi-automatic methods of integrating them,
make it difficult to use data from various sources to conduct new research in the field of
Affective Computing.

To address this problem, we propose a GRISERA (Graph Representation Integrating
Signals for Emotion Recognition and Analysis) framework for integrating experiment
originated data based on a standardized graph model, which is an original contribution
of this work. The paper presents and discusses the model and the methods of creating it.

Sensors 2021, 21, 4035. https://doi.org/10.3390/s21124035 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-0544-5573
https://orcid.org/0000-0002-5191-0261
https://orcid.org/0000-0003-3626-6962
https://orcid.org/0000-0002-2387-1234
https://orcid.org/0000-0001-6019-1601
https://doi.org/10.3390/s21124035
https://doi.org/10.3390/s21124035
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21124035
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s21124035?type=check_update&version=2

Sensors 2021, 21, 4035 2 of 31

As it has already been shown in [3] the graph representation very well suits the purposes
of signal processing and thus it is a natural candidate for the integration of data with the
presented characteristics [4].

The main objective of our research is to develop a comprehensive framework that
integrates data from various emotion recognition experiments, stores them in a graph
database, and makes them available for emotion analysis and recognition.

For this purpose we have defined 2 Research Questions:

• RQ1: Does the use of graph data representation make it possible to retrieve data from
different experiments in a unified way?

• RQ2: Does the graph representation of the relationship between biosignals, identified
emotional states, and contextual information allow for the extraction of useful data
for Affective Computing research?

Research question RQ1 addresses the problem of integrating biosignals, contextual
information and emotional estimates from different experiments, regardless of the de-
vices and sensors used. The ability to extract data in a unified manner from multiple
sources, independently of their characteristics, will facilitate analysis in the field of emotion
recognition. Moreover, the flexibility aspect is addressed i.e., in what way the proposed
representation can be expanded for new types of biosignals, not previously identified.

Regarding the RQ2, the question covers the problem of using the data collected in the
graph database for the analysis and recognition of emotions. In this context, the relation-
ships between biosignals recorded by sensors and also between biosignals and other data,
such as emotion states or contextual information, is particularly relevant.

The GRISERA framework is presented in this paper. In the beginning, the detailed
motivations of our work are presented (Section 2), followed by the description of the
methodology used in the rest of the paper (Section 3). Later, Section 4 discusses other
research concerning the problem of signal integration in the field of Affective Computing.
Then, in Section 5 the graph representation is described with relation to various biosignals
and emotional state models as well as contextual information, in Section 6 process of GRIS-
ERA creation is described and in Section 7 data retrival approach is presented. In Section 8
validation case studies are presented, followed by a discussion of GRISERA framework
validity in Section 9 and outline of challenges that might be addressed by future works in
Section 10.

2. Motivations

For the purpose of motivating the research problem for which we believe the GRISERA
framework is the answer, we use the Research Data Universe classification proposed by
Thanos [5], which was based on the work of the National Research Council and National
Science Board [6–8]. Comparing the proposed guidelines with the state of research on
Affective Computing, it can be deduced that the greatest immaturity lies in the area of
databases and datasets. The National Science Board has grouped the data collections into
three categories [8]:

• Research Data Collections—data from one or more research projects, typically con-
taining data that can only be processed to a limited extent,

• Resource of Community Data Collections—collections of a single scientific community,
often setting internal standards.

• Reference Data Collections—datasets used by numerous scientific community groups,
introducing well-established, comprehensive standards.

The datasets in Affective Computing field mainly belong to Resource of Community
Data Collections, but the state of this category is still immature. Even datasets serve the
community of AC researchers and there are some standards like emotional states models,
there are no reusable lexicons and ontologies [9] as well as unified data representations [10].

Therefore, a number of decisions need to be made before building data collections in
Affective Computing research to take it to the next level of maturity:

Sensors 2021, 21, 4035 3 of 31

• D1—the data are to be obtained through planned and performed experiments dedi-
cated to the conducted research?

• D2—the data obtained from experiments are planned to be published so they can be
used by other researchers?

• D3—the data are planned to be used only for the current study or it is planned to
reuse them in other ones?

• D4—the data are to be obtained from one or more experiments?
• D5—the data obtained from external resources come from one or more data sets?

The first decision (D1) is mainly connected with the type of research data. It results in
preparation of experimental data that can be raw data consisting of original observations,
derivative data generated by processing activities or verified data generated by curato-
rial activities [5]. In the field of Affective Computing experiment data are mainly raw
(e.g., raw ECG or GSR signal) and derivative (e.g., HRV for ECG or number of peaks for
GSR signal), often enriched with computational data produced by executing a computer
model or simulation (e.g., recognized emotional states). The experiment data in AC has
also some features of observational data, as often they base on participant observation,
what is difficult to recollect, and in some situations even impossible (the reaction of the
specified person can vary between the first and the second observation even in the same
recreated conditions).

The second decision (D2) is strongly connected with the functional category of data
collections to be prepared and their actors [8]. In this regard, it is necessary to develop
community-wide standards so that the data can be easily used by other Affective Comput-
ing researchers.

The next three decisions (D3, D4 and D5) correspond to data uses aspect of research-
data universe. They are defined in [5] as end use (the ability to access a dataset to verify
some fact or perform some other operations) and derivative use (the capability to produce
a new dataset from an existing one, which can be used for the same, similar or a completely
different purpose).

The GRISERA framework is intended to be the first step and for our best knowledge
first approach in the field Affective Computing to address the presented issues by:

• introducing a new representation for experiment-originated data in AC,
• introducing the solution that allows representing raw and derivative data as well as

computational data in a consistent way,
• providing the query patterns for data retrieving,
• addressing base aspects of data integration.

3. Methodology

The GRISERA framework bases on the graph representation of experiment-originated
data. To introduce the graph, the logical level of the graph database is presented. It is
characterized by three features [11]:

1. Data and the database schema are represented by a graph.
2. Manipulation of data is expressed by graph transformations.
3. Integrity constraints (IC) enforce data consistency.

To reflect the first feature, the mathematical definition of a graph is introduced, fol-
lowed by the presentation of the graph schema and the way of graph creation. Additionally,
the data retrieving operations are described, which addresses the second feature. Data re-
trieving queries are expressed in Cypher language [12], the declarative query language for
property graphs. The third feature is reflected by defining integrity constraints.

Sensors 2021, 21, 4035 4 of 31

Because GRISERA framework is designed to store and retrieve data, the aim of
validation is to check whether the data can be retrieved in a unified way. Therefore the
successful data extraction is treated as the validation success. To validate the presented
solution:

1. the generic queries in Cypher language are presented,
2. the GRISERA framework is implemented,
3. the two case studies are performed.

In Figure 1 four typical applications of the proposed framework are depicted:

1. experiment data creation with the GRISERA framework (1st scenario),
2. representing existing dataset in the GRISERA framework (2nd scenario),
3. integrating existing datasets into GRISERA framework (3rd scenario),
4. creating a new dataset in GRISERA framework from the existing datasets, also repre-

sented in GRISERA (4th scenario).

It is worth emphasizing that, according to the aim of the GRISERA and its applications
the validation within the case studies is done by presenting graph creation and data
retrieving. For data retrieving the list of competency questions is defined. Referring to
the Figure 1 the extracted data can be used e.g., as a source for data mining, artificial
intelligence, machine learning or statistical analysis, still, the results obtained from these
methods are out of the scope of the validation process.

...

Data
extraction

Data
extraction

Data
extraction

Data
extraction

1st scenario

2nd scenario

3rd scenario
4th scenario

Artificial
intelligence

Data
mining

Statistical
analysis

Machine
learning

AMIGOS dataset for
deep learning model

AMIGOS, DEAP and
ASCERTAIN datasets for

statistical analysis

Figure 1. Application of GRISERA framework.

Sensors 2021, 21, 4035 5 of 31

As stated earlier for validation purposes executed the following case studies
were executed:

1. Usage of the GRISERA for unifying data from AMIGOS dataset [13] in order to build
classification deep learning model distinguished in Figure 1 with green.

2. Integrating signals from various experiments originated from three datasets AMIGOS,
ASCERTAIN [14] and DEAP [15] for statistical analysis depicted in Figure 1 with red.

The first case study covers the first and second scenarios. Although it refers to the
integration of external datasets, it also includes the retrieval of data directly from the
GRISERA framework. The second case study, on the other hand, covers the third and
fourth scenarios. Proving the possibility of integrating data from external datasets, implies
the possibility of integrating datasets already represented in the proposed framework.

Although the deep learning model and calculated statistics are mentioned for the
completeness of case study presentation, they do not affect validity. Any aspects con-
nected with applied deep learning models or performed statistics have no influence on the
validation process.

4. Related Work

In the research conducted so far, a few databases with physiological data dedicated
to emotion recognition experiments have been published, including DEAP, MAHNOB-
HCI [16], DREAMER [17], HR-EEG4EMO [18], MPED [19] or Seal et al.’s EEG database [20].
However, they are all intended only to store data from experiments conducted by the
authors. They do not offer the ability to add or integrate new signals originating from other
studies. Moreover, the number of subjects included in each individual biosignal dataset
dedicated to emotion recognition is insufficient to train high-quality machine learning
models [21].

Siddharth et al. [22] proved that it is possible to use different biosignal datasets in
order to train deep learning models for emotion classification purpose. In their research,
they extracted features from four (DEAP, MAHNOB-HCI, AMIGOS and DREAMER)
datasets. The proposed approach was the primary inspiration for ECG and GSR-based
features for GRISERA framework, as it has led to better emotion classification results than
reported by other studies [22]. Therefore, the integration of signals from different datasets
seems to be a promising approach to solve the problem of insufficient data to train models.

Several studies have focused on the storage and integration of biosignals, although
these are not related to emotion recognition [23–26]. For example, approach proposed
by Kokkinaki et al. [27] is built on the definition of a global ontology that manipulates
the source similarities and differences and thus creates mappings or enhances its struc-
ture. They also introduced the ROISES framework, for defining content-based queries
against various biosignal datasets. However, their proposal is limited only to electrocardio-
gram biosignals.

Some proposals were based on using NoSQL databases to store signals. Carreiras et al.
described a solution based on Hierarchical Data Format (HDF5) and MongoDB to store
biosignal data in structured form. This proposal was based on an analysis of various
database systems and file formats and their requirements and implementation capabilities
in terms of the nature of biosignals [28].

From the analysis of available concepts of storing and integrating biosignals, a graph-
based approach seems to be the most promising from our point of view. Graph representa-
tion allows you to capture relationships between biosignal sensors. A node can represent a
single sensor and an edge between nodes can present information such as the correlation
between nodes, e.g., how signals captured by one sensor activate other regions. In the
initial stages of the research, we were looking for scientific papers related purely to the
graph representation of biosignals.

Abdulla Shahab et al. [29] proposed the construction of the graph representation of
EEG signals. Each of the channels of the EEG signals was partitioned into epochs of a
specified length. Then signal nodes were connected based on a predefined correlation

Sensors 2021, 21, 4035 6 of 31

coefficient threshold. However, during our analysis, this approach failed to capture correla-
tions between individual brain areas. What is more, using this approach we were not able
to save signal values, thus valuable data was lost. This approach was mainly presenting
how to construct an adjacency matrix with a predefined threshold, for sleep stages analysis,
and presented a graph-based data structure that did not fulfil the function of storing and
processing data.

On the other hand, Huang et al. [30] present a graph representation focused on
capturing connectomes—the neural connections of the brain. While the model was based
on Magnetic Resonance Imaging (MRI) data, it demonstrated the importance of capturing
the particular correlations between brain areas. Such networks have been demonstrated to
be correlated with behavioural measures and used in predictive modelling [31]. However,
this approach did not present on the graph the changes in the signal over time, but only
presented an image of the brain from one moment.

Later, we started to follow the example of works from graph signal processing, not nec-
essarily limited to the topic of biosignals only. The paper of Sandryhaila et al. [4] describes
graph representations of signals that served as a basis of all further work within the field of
Graph Signal Processing (GSP). An example that we followed in this work was the graph
representation of sensors measuring the weather conditions located across the United States.
In this example, each graph node represents a sensor, storing the measured temperature
and edges connecting nodes that are closely located to each other. For each timestamp,
such a graph is created and then they are combined with each other through the Kronecker
product, which allows for the analysis of changes in signal values over time. We found that
representation universal and applicable to biosensors, where each node is a sensor storing
measured signal values and edges represent correlation levels between nodes. As our goal
is not only to store raw data but also process it and extract features for further analysis or
machine learning purposes, we used node attributes to also store pre-computed values
from the raw signal.

The research of Lotte, Fabien, et al. [32] proved to be pivotal when it came to the
selection and extraction of EEG features that would be later used in the testing of the
model’s efficacy. What is more, extracting features from the raw signal data and applying
this expert knowledge can improve the accuracy of machine learning models. As graph
databases are schema-less it is always possible to add new attributes such as pre-computed
features to nodes and edges which additionally shows the legitimacy of choosing a graph
database for biosignal modelling.

An analysis of available solutions and proposals revealed the need to integrate ex-
periment originated data for various experiments and coherently store them for training
machine learning models for emotion recognition [21]. In addition, the graph representa-
tion was selected for further work as allowing the best representation of the relationships
between the signals.

5. Graph Representation

The unified graph representation for biosignals, emotional states and contextual
information is the heart of the GRISERA framework. This representation is based on the
two main assumptions:

• everything is represented as a graph and
• contextual information contains up-to-date information.

The idea is depicted in Figure 2. Each piece of information stored in the graph is as-
signed to one of the three groups: contextual information (red nodes), timeline (green nodes)
and actual biosignal data or emotional states (blue nodes). This colouring rule is applied in
all figures representing graphs.

The red nodes represent contextual information, including details about conducted
experiment and participants taking part in it. Moreover, they contain information about
channels that are the source of biosignals, as well as about recorded measures, including
emotional states. Meanwhile, edges carry information about the relationships between

Sensors 2021, 21, 4035 7 of 31

these notions. An example of contextual information could be: watching movies as an
activity performed during the experiment, EEG or GSR as channels used to observe
participants, a 16-channels EEG system as a standard EEG recording system or peak count
as a measured value for a GSR channel.

t1 t2 tn

...

contextual
information

timeline

data point data point data point

...

epoch

data point

Figure 2. The idea of graph representation.

The timeline is presented in green and is understood as a set of time moments or
epochs, which are periods of time with a beginning and ending at specified time moments.

A single data point, depicted as a set of blue nodes outlined with a dotted line,
carries information about values of all measures, acquired from all integrated signals,
obtained from all available channels or values representing emotional states. The data
point can refer to a single moment of time (in Figure 2, data points above the timeline) or
to the specified epoch (in Figure 2, a single data point below timeline). Signals with data
points referring to a single moment of time are further called timestamp signals, while
signals with data points referring to an epoch are further called epoch signals. Edges
connecting nodes within data points imply that there exists a dependency of some nature
between the values stored in those nodes.

Such construction allows one to:

• represent diverse biosignals, both of timestamp signals or epoch signals type,
• cope with missing values—some nodes of data points or node properties may not

contain information about the value or new values can be calculated according to the
widely known approaches for missing values; the strategy depends on the require-
ments provided by applicational use of integrated experiment originating data,

• solve the problem of various frequencies—presented model can store timestamp sig-
nals with different frequencies and analogically for epoch signals it is possible to
represent them with various epoch length; it is also possible to build epoch signals
based on original values being timestamp signals, what is important in some appli-

Sensors 2021, 21, 4035 8 of 31

cations e.g., deep learning or statistical analysis where the epoch length should be
constant for all signals.

5.1. Graph Definition

Graph definition is based on the definitions of the property graph model introduced
by Angles et al. [33,34]. It is assumed that having set X, SET+(X) is the set of all finite
subsets of X, excluding the empty set.

Definition 1 (Labeled property graph). A labeled property graph G is a tuple (V, E, ρ, λ1, λ2,
σ), where:

(1) V is a finite set of vertices (or nodes).
(2) E is a finite set of edges such that V and E have no elements in common.
(3) ρ: E→ (V × V) is total function.
(4) λ1 : V→ SET+(VerLabs) is a total function with VerLabs a set of labels possible to assign

to vertices.
(5) λ2 : E → EdgeLabs is a total function with EdgeLabs a set of labels possible to assign

to edges.
(6) σ : (V ∪ E)× Prop→ Val is a partial function with Prop a set of properties and Val a set

of values.

In Definiton 1 each edge is directed from one node to the other. Each node is associated
with one or more labels and each edge is associated with a single label. Each node and edge
is also associated with at most one value of each property (albeit the value can be a simple
value or a list). The Prop set is not finite. The current version of the graph defines the subset
of Prop and allows for new user-defined elements. The elements of the VerLabs, EdgeLabs
and the subset of Prop, with the semantics of each element, are presented in Appendix A
(respectively in Tables A1–A3).

The Figure 3 presents the notation for the node and edge. The circle represents a node
inside of which the specified label is defined (Signal Value in the example). The node
label (an element of VerLabs set) is represented as a noun or a noun expression in uppercase
monospace font. Below the label the list of properties represented as nouns or nouns
expressions in lowercase monospace font (delta, theta, alpha, beta and gamma in the
example) are depicted. The values (elements of Val set) are written using serif italic font
(in the example float values). The line represents an edge and the arrow indicates the
direction of the edge. The labels of edges (an element of EdgeLabs) are represented as
capitalized verbs or verb expressions. Below the edge label, the list of properties and their
values is depicted in the same manner as for nodes. As it was mentioned previously the
colour of the node defines the group, to which the node belongs.

Signal
Value

delta = 50.1
theta = 32.2
alpha = 4.1
beta = 2.9
gamma = 9.3

INFLUENCE_ON
mi = 9.2

Signal
Value

delta = 34.7
theta = 35.2
alpha = 10.2
beta = 2.4
gamma = 1.9

Figure 3. Node notation.

5.2. Graph Schema Proposal

The central point of the proposed graph, shown in Figure 4, is an Experiment node
(coloured in red) that stores information about the conducted experiment, e.g., activity
performed by the participants, the place where the experiment took place like room and
layout. The red colour of the Experiment carries information that this node represents
contextual information in an analogy to Figure 2 (blue colour corresponds to the data
points and green to the timeline).

Sensors 2021, 21, 4035 9 of 31

Figure 4. Proposed graph database schema.

The Recording node, connected to the Experiment node via PART_OF edge, represents
the participation of the specified person, denoted as Participant, within the specified
Experiment. There can be more than one Recording nodes pointing to the same experi-
ment. It allows modelling the participation of a single participant within more than one
Experiment as well as experiments in which more than one person participates.

The Experiment node is connected with the TAKES edge to one Timestamp node.
By Timestamp it is meant the distance from the beginning of the recording expressed

Sensors 2021, 21, 4035 10 of 31

in milliseconds (it is assumed that there is no need for the smaller unit). Each experiment
can only have a single timeline. In practice, this means that all of the signals recorded as
a part of the same experiment have a common timeline. The graph representation of the
timeline is constructed as a linked list of Timestamp nodes. Pairs of consecutive Timestamp
nodes are connected by a NEXT edge.

Each Recording node in our graph can generate many signals, which are understood
as channels with recorded measures and the series of signals values. Recording is con-
nected to one or more Channel nodes with a HAS_RECORDING_TYPE edge. Channel node
indicates that the Participant is observed via a specified channel from which signals
of defined types are recorded. This node can also define the channel used to recognize
participant emotions. It is worth noticing that the Channel represents the recorded channel
for the specified Recording and not the channel in general.

Depending on the channel type, each node can be connected to one or more nodes
representing measures (Measure nodes), due to the fact that from a single channel several
signals, each referring to the particular measures, can be obtained. Two types of measures
are identified: Timestamp Measure for timestamp signals (left of the timeline in Figure 4)
and Epoch Measure for epoch signals (right of the timeline). Timestamp Measure is used
when measures determine values at a specific point in time, e.g., body temperature. On
the other hand, the Epoch Measure is used for the values that are settled or calculated in
some way for the whole epoch. A good example is the number of GSR peaks, which can
be calculated only over a specified period of time. There is also the special case of epoch
measure i.e., Electrode Measure node, which allow distinguishing signals of the same
type but different placement. These nodes define from which place of the body connected
signal were recorded. For example, ECG may have two types of electrodes including
left and right sensors, whereas the EEG may have 14 types that were described by the
international 10–20 system. What is even more important Electrode Measure is used
when there is a need to represent influence between the two values of the two different
electrode measures, as long as the electrode measures concern the same channel.

Finally, Signal Value nodes store information about values of measurements.
Each Signal Value relates to timeline’s Timestamp node with IN_SEC or with START_IN_SEC
and END_IN_SEC edges—depending on the type of signal. For timestamp signal IN_SEC
edge is used and points at the measurement time. For epoch measure START_IN_SEC edge
marks the start of the epoch. The end of the epoch is determined by the END_IN_SEC edge.

In addition, each Signal Value node is connected to its successor with the NEXT edge.
The Measure node is connected with the HAS_SIGNAL edge with the first node within the
series of signal values (the one which is not the object of the NEXT role). This construction is
ready for storing the information about missing values represented as nodes with no values
set. The same feature can be used to fill the missing value with appropriate calculations.

When Signal Value nodes represent Electrode Measure values, they can be related
via the INFLUENCE_ON edge, representing the influence of one value on the other one.

Each of these nodes can additionally have properties. For the nodes describing
contextual information the properties are used to describe metadata information of the
node. For instance, the Participant node has properties describing the given person
such as user_id, gender or age. For Measure node the signal_id property is introduced
to identify signals. In case of Timestamp measure and Epoch measure additionally the
properties name, datatype and range are set. The Electrode measure has the property
name identifying the electrode, while the Channel defines properties describing the channel
like type or recording standard.

For the nodes describing data points i.e., Signal value nodes the properties contain
measured values. In case the Signal value is represented by the Timestamp Measure,
the property value is defined. An analogous construction is applied for Epoch Measure
when the value is settled—not calculated. Otherwise, both the calculated values as well
as the original ones are represented. The original values are stored within data property

Sensors 2021, 21, 4035 11 of 31

that is an array of values, while the calculated values are dependent on the channel
(e.g., the different values are calculated for EEG and ECG channels).

Likewise, for the Timestamp node, only the value representing the distance from the
beginning of the recording is stored.

5.2.1. Signal Representation for Timestamp and Epoch Measures

In graph databases, there are a few ways in which time-series data can be modelled [35].
The most common approach is to model each measurement as a separate node and connect
it with measurement nodes immediately before and after it through the NEXT edge [36].
The first measurement node in the series is connected with a parent node, that describes
what measurements they represent. According to this assumption, the signals representing
timestamp measures and epoch measures are designed.

According to the definition, timestamp signals are the signals, which values always
correspond to the specific time moment. These signals can have constant frequency, e.g., par-
ticipant temperature measured every second. In such a case the Timestamp Measure has
the name, type and range properties.

This type of signal can also be used to represent emotional states obtained from
emotion recognition methods. The example can be emotional states generated from Face
Reader software [37] when the constant frequency is settled. There are no premises allow-
ing us to assume that the recognized emotional state concerns the whole epoch. If the
temperature would be measured irregularly we would be dealing with irregularly spaced
timestamp signal.

On the other hand, epoch signals are the ones, which values relate to the whole epoch.
This kind of signals is very useful to represent emotions. Let’s take as an example data
collected in the process of labelling facial expression videos, during which annotators label
emotional intensity using the two-dimensional Russell’s Circumplex Model of Affect [38].
Each recording is divided into segments and each segment is annotated with specific
measures (reflecting emotional states of participants). We can notice that the length of the
segments can be constant (then we deal with constant epoch length signal) or not (then we
deal with variable epoch length signal).

The other type of signal is calculated value epoch signal. It means that we have
the original data stored in data property and new values are calculated. For each newly
calculated value, the appropriate property is created. This type of signal is especially
needed when we have a timestamp signal and want to transform it to an epoch signal
or we have an epoch signal and want to create a new epoch signal with a bigger epoch
length. This is often needed in the process of signal integration when all signals must
have a unified epoch length. The example can be the average temperature for the whole
epoch, calculated from the timestamp signal. For such signals, the framework provides the
solution named calculators. The aim of the calculators is to calculate new values from
original ones e.g., minimum, maximum or average. The calculators are further discussed
in Section 6.

5.2.2. Signal Representation for Electrode Measures

Throughout the analysis of biosignals it became clear that some of them—especially
bioelectrical ones—may be perceived informally as complex signals, being a set of, correlated
in some way, signals originated from separate electrodes. These complex signals are
further called signal network. Each signal obtained from a single electrode can be seen
as a calculated value epoch signal with constant epoch length. The characteristic of
signals obtained from electrode may demand some prepossessing of original values before
calculating the new ones (like filtering or resampling). Additionally, the values from one
electrode in some way can have an influence on values from other electrodes, which is
especially the case for the EEG channel [39]. All these features caused that the new type
of measure Electrode Measure was introduced. It is important to notice that all signals
within the signal network have exactly the same epoch length.

Sensors 2021, 21, 4035 12 of 31

Signal network is understood as a sensor network measurements graph [4] imple-
mented as a combination of a sensor network graph with a time-series graph via a Cartesian
product as depicted in Figure 5, consistently with the colour scheme in Figure 4. Blue edges
represent the correlation between Signal Value nodes. A time-series graph is understood
as a calculated value epoch signal with constant epoch length. The original model used a
strong product as opposed to a Cartesian product. This resulted in edges connecting pairs
of nodes representing signals from different electrodes and moments in time. While we
decided to simplify the model we understand that there may be merit to calculating cor-
relations between these nodes and it may be introduced in the next version of GRISERA
framework.

Figure 5. Sensor network measurements as a Cartesian product of sensor network and time se-
ries graphs.

The preprocessing of bioelectrical signals often consists of reducing noise by applying
a band-pass filter (BPF) and then resampling the signal. The specific cutoff frequencies
used for the BPF and resampling configuration are dependent on the channel and are based
on previous research within the field of machine learning [22].

The signal network, for each type of channel, has its own set of calculated values
selected. These values are identified for each channel separately. Within this paper, the rep-
resentation of the signal network is analyzed for three channels (GSR, ECG and EEG),
although this set can be extended at any moment just by providing new calculators (for the
new channels or new calculated values). This also applies to property calculations for
graph edges.

5.2.3. Galvanic Skin Response—GSR

Galvanic Skin Response is understood as a change in the electrical resistance of the
skin that is a physiochemical response to emotional arousal which increases sympathetic
nervous system activity [40].

GSR calculated values are based on the change of the skin conductance [41]. A sud-
den increase in signal value is often called a GSR peak. Its extraction is based on the
approach presented by H. Gamboa [42]. All calculated values corresponding to detected
peaks are represented as maximum (property GSR_max), minimum (property GSR_min) and
average (property GSR_avg) values. In addition, the number of occurrences of peaks is
calculated (property no_of_peaks). The signal network for GSR consists of exactly one
Electrode Measure named GSR.

5.2.4. Electrocardiography—ECG

Electrocardiography allows the recording of changes in the electrical potential that
occur during heart contraction, used especially in the diagnosis of cardiac disorders [40].

The main calculated value extracted from the ECG signal is the heart rate variability—
HRV (property HRV). It represents the variability in time taken between consecutive
heartbeats—the interbeat intervals or R-R intervals. The name of these intervals comes
from R-peaks—the distinct spikes are seen on an ECG line. The specific indices of these
peaks are extracted following the approach by Engelse and Zeelenberg with changes
made by Lourenco et al. [43]. The signal network for ECG typically consists of two

Sensors 2021, 21, 4035 13 of 31

Electrode Measures named left and right. The calculated properties contain the set of
aggregated values for HRV and interbeat intervals.

5.2.5. Electroencephalography—EEG

Electroencephalography is a brainwave detection and recording device [40]. There are
more than one international systems defining electrodes and their placement (e.g., 10–20,
10–10 or 10–5). The difference in representation is connected with the number and names
of Electrode Measure nodes. For the EEG signal, the band power features—also known
as the Power Spectral Density (PSD)—are calculated. They represent the power of the
signal within functionally distinct frequency ranges. These ranges are the delta (0.5–4 Hz),
theta (4–8 Hz), alpha (8–12 Hz), beta (12–30 Hz), and gamma (30–100 Hz) channels. Decom-
posing the signal into individual frequency ranges is done using the Multi-Taper Method
(MTM) developed by Thomson [44]. This method is used as opposed to the classic Fourier
Transform because it returns more accurate results a non-stationary signal. The spectral
content of the EEG tends to change over time, so this aspect of the algorithm improves
the accuracy of the results. Following the proposed methodology, the Slepian sequence is
used as tapers [45]. A weighted average is also used to compensate for the energy loss of
higher-order tapers [46].

PSD is chosen as one of the extracted features because it strongly correlates with
emotional responses. Increased Gamma waves can be a sign of excitement, Beta waves
signify attentiveness and focus, while Alpha waves mean joy and relaxation. Both Theta
and Delta waves correlate with sadness and shock, but Theta frequencies can additionally
signify anger.

Mutual information (MI), is used to represent correspondence between nodes of EEG
electrode signals. Mutual information I(X;Y) of two discrete random variables X and Y is
the embodiment of their mutual dependence. The relationship between MI and conditional
entropy H(Y|X) was used to calculate its value, like so

I(X; Y) = H(Y)− H(Y|X) (1)

where H(Y) represents the entropy of discrete random variable Y. The entropy, as a proba-
bility of observing a certain outcome x of a discrete random variable X, was estimated using
maximum likelihood estimation. This feature is stored as a property mi for INFLUENCE_ON
edge between pairs of EEG Signal Value nodes.

5.3. Integrity Constraints

Integrity constraints are introduced for node property uniqueness and mandatory
properties in the Cypher language.

A node property uniqueness IC states that for the set of nodes with the specified
label the specified property must be unique. In the Listing 1 it is stated that for the nodes
with Experiment label (expressed in ON phrase) the value of the name property is unique
(expressed after ASSERT phrase).

Listing 1. Experiment name node property uniqueness ICs.

CREATE CONSTRAINT ON (n:Experiment) ASSERT (n.name) IS UNIQUE;

For the GRISERA graph also three other node property uniqueness constraints are
defined. The first one states that the value of user_id property must be unique within
nodes with Participant label. The second one states that value of the Timestamp nodes is
unique within this set. The last one is analogical but for signal_id of the Measure nodes.

Mandatory properties ICs can be defined both for nodes and edges. This type of
IC states that for nodes or properties with the specified label, the value of the specified
property must exist—cannot be null. In the Listing 2 it is stated that for nodes with
Channel label the not null value of the property type must be defined (expressed in the

Sensors 2021, 21, 4035 14 of 31

EXISTS phrase). The full list of mandatory properties ICs together with possible values of
properties is defined in Appendix B.

Listing 2. Mandatory properties ICs.

CREATE CONSTRAINT ON (n:Channel) ASSERT EXISTS (n.type)

6. Graph Database Creation

The GRISERA graph is created with the use of Cypher query language. The first
two Algorithms 1 and 2 present the elementary graph creation operations i.e., node and
edge creation respectively. Algorithm 1 is straightforward—it takes the subset of labels,
which the node should have been assigned, the set of property-value pairs to be attached
to the node, creates it and returns the node identity.

Algorithm 1: Node creation
Input : S← subset of VerLabs; P← {p1 : v1, p2 : v2, . . . , pn : vn};

1 labels← S
2 properties← P
3 query← “CREATE (n:labels properties) RETURN id(n);”
4 run query

Algorithm 2 creates a labelled edge between the two nodes given as an input.

Algorithm 2: Edge creation
Input : s1 ← node; s2 ← node; l← element of EdgeLabs;

1 query←
“MATCH(s1), (s2) WHERE id(s1) = s1.id AND id(s2) = s2.id CREATE (s1)-[:l]
→ (s2);”

2 run query

The graph creation is presented by describing the steps of creating the Recording
node (Algorithm 3), signals’ values (Algorithm 4) and timestamps corresponding to them
(Algorithm 5 for timestamp signals and Algorithm 6 for epoch signals).

Algorithm 3: Recording creation
Input : e; p; C← {c1, c2, . . . , cn}

1 create Recording node rrecording
2 for ck in C do
3 create edge HAS_RECORDING_TYPE (rrecording, ck)

4 end
5 create edge PART_OF (rrecording, e)
6 create edge TAKES_PART_IN (p, rrecording)

The input of Algorithm 3, creating the Recording, is: e—the node representing the
experiment, p—the node representing the participant being recorded and C—the set of
nodes representing channels, the participant is observed by. The algorithm first creates the
Recording node and then connects it with all input Channel nodes, Experiment node and
Participant node.

The result of Algorithm 3 for the experiment exp1, in which one participant identified
with 123 number and observed with three channels (GSR, EEG and ECG), is depicted in
Figure 6.

Sensors 2021, 21, 4035 15 of 31

Figure 6. Contextual information for the exemplary Recording node.

Algorithm 4: Signals’ values creation
Input : S←

{{s11, s12, . . . , s1x}, {s21, s22, . . . , s2y}, . . . , {sm1, sm2, . . . , smz}}; uchannel ;
1 for Sk in S do
2 create Measure node uk
3 create edge HAS_MEASURE (uchannel , uk)
4 for ski in Sk do
5 create node uki representing value ski
6 if i == 1 then
7 create edge HAS_SIGNAL (uk, uki)
8 else
9 create edge NEXT (uki−1, uki)

10 end
11 end
12 end

The process of creating signals in the graph database may vary a bit, depending on various
parameters like frequency or epoch length, but the general form of the algorithm remains the
same. Firstly, the signals’ values are imported and after that connected with the timeline.

The Algorithm 4 takes as an input the list of lists of values for various signals
generated by the observation of the specific channel and creates for each list the cor-
responding Measure node with appropriate label (Timestamp Measure, Epoch Measure or
Electrode Measure) and properties. This Measure node is also connected with the signal
values of the same list.

Connection with timeline nodes varies depending on the signal type. For timestamp
signal (Algorithm 5) only one edge (IN_SEC) for each value is created—the one reflecting
measure time. In the case of epoch signal (Algorithm 6) with each value, a pair of edges
is created— representing the start and end of the epoch. Referring to the Algorithm 5 in
Algorithm 6 the if structure used to get an existing Timestamp node or insert a new node
into the Timestamp linked-list structure using NEXT edges has been shortened to “create or
get node” for readability.

In Figure 7 the exemplary constant epoch length signal for ECG channel, generated by
Algorithms 4 and 6, is depicted. Algorithm 4 takes as an input three lists of signal values
(for right and left Electrode Measure and for Epoch Measure representing recognized
from ECG valence estimates). The exemplary signal is presented for Epoch Measure.
The epoch length is set to 20 s. Epoch Measure has values set for three properties name,
type and range. The values are represented as float values in the range from 1 to 9 inclusive.
Signal Value nodes carry information about valence values, settled for the whole epoch

Sensors 2021, 21, 4035 16 of 31

(the specific 20 s) in the value property. The value property of the first Timestamp node is
equal to 0ms, which denotes that it is the starting point for the recording. The next signal
values are measured every 20 s (that is 20,000 milliseconds). Some Timestamp nodes are
omitted because other timestamps can exist for the need of other signal representation. The
example presents the signal, which values are settled and not calculated—source value
epoch signal.

Algorithm 5: Assigning signal values to timestamps
Input : U← {u1, u2, . . . , un}; T← {t1, t2, . . . , tn};

1 k← 1
2 repeat
3 if node utk representing moment in time tk does not exist then
4 create node utk
5 create NEXT edge from previous Timestamp
6 create NEXT edge to next Timestamp
7 end
8 create edge IN_SEC (utk , uk)
9 k← k + 1

10 until k > n;

Algorithm 6: Assigning signal values to epochs
Input : U← {u1, u2, . . . , un}; T← {{t11, t12}, {t21, t22}, . . . , {tn1, tn2}};

1 k← 1
2 repeat
3 create or get node utk1 representing moment in time tk1
4 create or get node utk2 representing moment in time tk2
5 create edge START_IN_SEC (utk1 , uk)
6 create edge END_IN_SEC (utk2 , uk)
7 k← k + 1
8 until k > n;

In the case of epoch signal, once it has been imported into the database, descriptive
values can be extracted from it. These can either be calculated based on single epochs
or represent a relationship between two epochs. In the case of the former, the matter of
extracting said values is as simple as applying a chosen function to the arrays of numerical
values stored in the signal value nodes and then assigning the results as node parameters.
The latter is shown in Algorithm 7. It takes m signals of length n for every Measure from a
single Channel—denoted as U–and an optional threshold value µ.

Algorithm 7: Signal attribute calculation
Input : U←{{u11, u12, . . . , u1n}, {u21, u22, . . . , u2n}, . . . , {um1, um2, . . . , umn}}; µ

1 i← 1; j← 1
2 for i ∈ {1, 2, . . . , m}, j ∈ {1, 2, . . . , m} and i 6= j do
3 for (uik in Ui and ujl in Uj) do
4 e← extractattributes f rompair (uik, ujl)

5 if e ≤ µ then
6 create edge INFLUENCE_ON (uik, ujl)
7 assign value e as parameter to INFLUENCE_ON edge
8 end
9 end

10 end

Sensors 2021, 21, 4035 17 of 31

Figure 7. Constant epoch-length signal representing measured valence values.

Memory Efficiency

Memory efficiency will be described in terms of nodes and edges created during the
importing and feature extraction process. We assume a signal with a constant frequency
of f (Hz) and a length of t (seconds) consisting of m time series. Creating an epoched
representation of this signal using GRISERA will result in the following number of nodes:

s = b f t
te
c nodes per signal measure

S = ms = mb f t
te
c total nodes

(2)

where te is the length of the epoch in seconds. The framework also allows for the use of the
sliding window method, which generates a different number of nodes. Given a length of
the window w and of overlap o we arrive at:

s = b f t− w
w− o

c nodes per signal measure

S = ms = mb f t− w
w− o

c total nodes
(3)

During feature extraction, edges are created between pairs of signal nodes belonging
to the same epoch. While the creation of these edges may depend on a threshold being
met by the calculated value, it can be assumed that all edges possible edges are created.
Under this assumption, a complete graph is created from signal nodes within every epoch
of a signal.

Sensors 2021, 21, 4035 18 of 31

r =
m(m− 1)

2
edges per epoch

R = sr = s
m(m− 1)

2
total edges

Re = b
f t
te
cm(m− 1)

2
total edges for given epoched signal

Rs = b
f t− w
w− o

cm(m− 1)
2

total edges for given the sliding window method

(4)

7. Data Retrieval

The presentation of data retrieval is done for the set of defined competency questions,
which are further expressed generically in the Cypher language. Competency questions are
divided into two subsets. The first subset of the competency questions does not demand
the unification of signals to the same timestamp frequency or epoch length. This subset
contains questions regarding experiments and signals search as well as data extraction for
one signal. The second subset contains questions for data retrieval for signals unified to
the same timestamp frequency or epoch length. This subset contains questions allowing to
retrieve multivariate time series built from data stored in various signals or retrieve the
specified set of signal values.

Competency questions for experiments or signals search and data retrieval for one
signal:

1. CQ1—What experiments contain signals for the specified measures, which values are
obtained through observation of the specified channels?

2. CQ2—What signals relate to the specified measure, which values are obtained through
observation of the specified channels?

3. CQ3—What is the times series for the specified signal?

Competency questions retrieving multivariate time series:

1. CQ4—What is the multivariate time series for the specified signals?
2. CQ5—What is the multivariate time series for the specified signals containing only

these signal values which fulfil the specified conditions (values of some measures
must conform to the specified requirements)?

The first two competency questions, expressed in Cypher language in Listings 3 and 4
refer to contextual data searching and consist of the basic Cypher structure i.e., the pattern
to be searched, expressed in MATCH clause. In the CQ1 this is a pattern defining nodes
with label Experiment being connected with Recording node (not explicitly stated as the
subject of PART_OF edge can be Recording node only), which is further connected with the
Channel node with the specified type, depicted as a parameter <type>. Next, the channel
is connected with the node being a measure of any type (each has the name property
obligatory and each can be an object of HAS_MEASURE edge). The second parameter <name>
is the name of the measure.

Listing 3. Generic Cypher CQ1.

MATCH (e:Experiment)<-[:PART_OF]-()-[:HAS_RECORDING_TYPE]->(c:Channel {type:<type>})-[:HAS_MEASURE]->(m {name:<name>})
RETURN e

Listing 4. Generic Cypher CQ2.

MATCH (c:Channel {type:<type>})-[:HAS_MEASURE]->(m {name:<name>}) RETURN m

In the CQ2 MATCH clause defines just Channel nodes connected with measure nodes.
The parameters of the second competency question are analogical as for the first one.

Sensors 2021, 21, 4035 19 of 31

The aim of the CQ3 depicted in Listing 5 is to provide a unified way of extracting time
series for the specified signal (identified with the <signal_id>). The pattern in MATCH
phrase allows to find all Signal Value nodes for the specified signal and timestamps
connected with them (measure timestamp for timestamp signal and timestamp starting
the epoch for the epoch signal—also for the one obtained from the electrode). OPTIONAL
MATCH phrase allows retrieving the timestamp ending the epoch. This phrase can
be omitted when the values of the timestamp signal are retrieved, otherwise ending
timestamps are null values.

Listing 5. Generic Cypher CQ3.

MATCH (m {signal_id:<signal_id>})-[:HAS_SIGNAL]->(s1_root:SignalValue)-[:NEXT*0..]->(s1:SignalValue)<-[:IN_SEC]-(startTimestamp:Timestamp)
OPTIONAL MATCH (s1:SignalValue)<-[:END_IN_SEC]-(endTimestamp:Timestamp)
RETURN startTimestamp.value, endTimestamp.value, s1.value

The CQ4, depicted in Listing 6, when retrieving the multivariate time series, adds in
relation to CQ3, the list of OPTIONAL MATCH phrases. These additional phrases allow
retrieving signal values for the set of various additional measures (m2, ..., mn). Each measure
reflects one column in the resulted data.

Listing 6. Generic Cypher CQ4.

MATCH (m1 {signal_id:<signal_id#1>})-[:HAS_SIGNAL]->(s1_root:SignalValue)-[:NEXT*0..]->(s1:SignalValue)<-[:IN_SEC]-(startTimestamp:Timestamp)
OPTIONAL MATCH (s1:SignalValue)<-[:END_IN_SEC]-(endTimestamp:Timestamp)
OPTIONAL MATCH (m2 {signal_id:<signal_id#2>})-[:HAS_SIGNAL]->(s2_root:SignalValue)-[:NEXT]->(s2:SignalValue)<-[:IN_SEC]-(startTimestamp)
...
OPTIONAL MATCH (mn {signal_id:<signal_id#n>})-[:HAS_SIGNAL]->(sn_root:SignalValue)-[:NEXT]->(sn:SignalValue)<-[:IN_SEC]-(startTimestamp)
RETURN startTimestamp.value, endTimestamp.value, s1.value, s2.value, ...,
sn.value

The last competency question—CQ5, presented in Listing 7, allows defining restric-
tions for the specified measures (r1, ..., ri). The retrieved data are multivariate time series,
but only these signal values are returned which meet the specified restrictions. The spec-
ified restrictions are defined in the MATCH phrase (after the first comma) and WHERE
clause.

Listing 7. Generic Cypher CQ5.

MATCH (m1 {signal_id:<signal_id#1>})-[:HAS_SIGNAL]->(s1_root:SignalValue)-[:NEXT*0..]->(s1:SignalValue)<-[:IN_SEC]-(startTimestamp:Timestamp),
(r1 {signal_id:<restricted_signal_id#1>})-[:HAS_SIGNAL]->(rs1_root:SignalValue)-[:NEXT*0..]->(rs1:SignalValue)<-[:IN_SEC]-(startTimestamp),
...
(ri {signal_id:<restricted_signal_id#i>})-[:HAS_SIGNAL]->(rsi_root:SignalValue)-[:NEXT*0..]->(rsi:SignalValue)<-[:IN_SEC]-(startTimestamp),
WHERE <restriction_1> AND ... <restriction_i>
OPTIONAL MATCH (s1:SignalValue)<-[:END_IN_SEC]-(endTimestamp:Timestamp)
OPTIONAL MATCH OPTIONAL MATCH (m2 {signal_id:<signal_id#2>})-[:HAS_SIGNAL]->(s2_root:SignalValue)-[:NEXT]->(s2:SignalValue)<-[:IN_SEC]-(startTimestamp)
...
OPTIONAL MATCH (mn {signal_id:<signal_id#n>})-[:HAS_SIGNAL]->(sn_root:SignalValue)-[:NEXT]->(sn:SignalValue)<-[:IN_SEC]-(startTimestamp)
RETURN startTimestamp.value, endTimestamp.value, s1.value, s2.value,
s3.value, ..., sn.value

8. Validation

For validation purposes, the GRISERA framework was implemented (Section 8.1) and
then applied to two scenarios. In the first one, data from AMIGOS dataset were integrated
in GRISERA and then used to train a classification deep learning model (Section 8.3).
In the second scenario data for multiple datasets AMIGOS, ASCERTAIN and DEAP were
integrated within GRISERA framework (Section 8.4).

8.1. Implementation

The task of creating the graph representation of experiment originating data was
implemented as scripts that performed the Extract-Transform-Load (ETL) process. They
were implemented in Python language using data manipulation libraries like Pandas and
Numpy. First, we extracted the data from the sources, and after transformations, moved
them to internal structures that represent parts of the graph, as presented in Figure 8 in
blue. Then the calculators, depicted in yellow, were used to enrich the signal network with

Sensors 2021, 21, 4035 20 of 31

newly calculated properties to prepare them for storage. Finally, all parts of the graph were
stored in Neo4J graph database.

A Connection class (purple) was responsible for establishing a connection with Neo4J
and checking the imported recordings list. It was used by each of the class representing
parts of the graph. GraphNode was a representation of any node in the graph and it was
identified by a unique ID that was granted by Neo4J. A Recording class inherited from
GraphNode and represented a node of a recording for a participant in an experiment. It
was connected with GraphTime that represented a timeline of an experiment and also was a
GraphNode. The next important class was a GraphSignal that was directly connected with
a Recording class. It represented a series of signal values. These signal values were repre-
sented by GraphMeasureSignal or GraphSignalNetwork classes. The first one represented
a constant frequency timestamp signal or source value epoch signal with constant epoch
length. The second one represented a signal network. For signal networks, there were two
types of calculators implemented. The one RelPropertyCalculator was used to calculate
relationships between signal values and the other one NodePropertyCalculator to calculate
new values from original data. This model was expandable allowing to implement classes
for other types of signals and to implement new calculators of both types.

Figure 8. UML class diagram.

According to Jim Webber (Chief Scientist at Neo4J), the disk size ratio required to store
similar data in different no relational databases is 20x = 50y = 0.33z [47]. Where x = MongoDB,
y = Cassandra and z = Neo4J. It means that storing graph data in Neo4J is much more
efficient than storing it in Cassandra or MongoDB.

Neo4J uses fixed record lengths to persist data. In Table 1 we can see how much disk
size is taken up by elements of the graph stored in Neo4J.

Based on the number of each element in the graph and the memory taken up by each
of them, we could calculate the total disk size needed to store the whole graph.

Table 1. Memory efficiency for Neo4J.

Contents Record Size
Nodes 15 B
Relationships 34 B
Properties for nodes and relationships 41 B
Values of string properties 128 B
Values of array properties 128 B

Sensors 2021, 21, 4035 21 of 31

8.2. Datasets Description

Three datasets that are available for research purposes were used for validation.
The AMIGOS dataset consists of data gathered from 40 participants, it consists of 16 short
videos (up to 2 min), four long videos (14–23 min) and it stores data from EEG, ECG and
GSR signals [13]. The DEAP dataset has data taken from 32 participants, 40 1-minute length
clips of music videos were used as a stimulus for the participants [15]. Finally, ASCERTAIN
dataset contains experiment originated data for 58 users viewing affective videos along
with EEG, ECG, GSR and facial activity data [14].

8.3. AMIGOS Dataset for Deep Learning Model

The first scenario shows that it was feasible to use the GRISERA framework to store
experiment originating data and then retrieve it for the purpose of deep learning modelling.
Data from the AMIGOS dataset were saved in a graph database. Then, a neural network
used data retrieved from GRISERA for emotion classification based on values pre-computed
from bioelectrical signals.

As an a priori task for the automatic emotion recognition is a selection of features [48]
the following properties for each type of signal were calculated:

• for EEG signal: band power features and mutual information for all 14 electrodes, as it
is described in Section 5.2.5.

• for ECG signal: heart rate variability and interbeat intervals values like the mini-
mal value, maximal value, variance and mean for each epoch, as it is described in
Section 5.2.4.

• for the GSR signal: GSR peaks as the minimal value, maximal value, and the average.

The AMIGOS data, with these pre-computed features, was saved to the graph database
with the schema described in Section 5 and algorithms described in Section 6. The uniform
and well-described schema allowed extracting the most important properties into the
training set. For each 20-s epoch (that was the frequency of annotations) extraction of a
feature vector with 181 values was made and attached to annotations representing emotions.
Out of those values 90 was calculated on individual signal nodes—single epochs—and
included five bandpower values from every of the 14 EEG electrodes, eight values relating
to heart rate and heart rate variability from the two ECG electrodes and four GSR values.
The remaining 91 values came from edges between EEG nodes and denoted the mutual
information between pairs of electrodes.

Listing 8 presents how to extract bioelectrical signals from electrode F4 for the par-
ticipant with identity 1, observed by the EEG channel. The query was an instance of the
generic CQ3. Referring to that query, the signal was not identified by signal_id, but it
was searched by the specific pattern (the first two elements of the MATCH clause). Corre-
spondingly, on the same principle, signal data from ECG and GSR channels were retrieved
and merged to the one training data frame.

Listing 8. Extraction of F4 electrode signal for the dataset creation.

MATCH (p:Participant {user_id:1})-[:TAKES_PART_IN]-(r:Recording)-[:PART_OF]-(e:Experiment {name:’CS1’}),
(r)-[:HAS_RECORDING_TYPE]-(c:Channel {type:’EEG’})-[:HAS_MEASURE]-(m:ElectrodeMeasure {name:’F4’}),
(m)-[:HAS_SIGNAL]->(s1_root:SignalValue)-[:NEXT*0..]->(s1:SignalValue)<-[:IN_SEC]-(startTimestamp:Timestamp)
OPTIONAL MATCH (s1:SignalValue)<-[:END_IN_SEC]-(endTimestamp:Timestamp)
RETURN startTimestamp.value, endTimestamp.value, s1.value

In this short study, a classification task was conducted, thus every value of valence
and arousal were converted to the appropriate classes. For example, if both valence and
arousal were greater than zero, these values were converted to the High Valence—High
Arousal (HVHA) class. This way, we had also Low Valence—Low Arousal (LVLA), High
Valence—Low Arousal (HVLA), and Low Valence—High Arousal (LVHA) classes. Target
values were based on the external annotations data, originating from the Amigos dataset.

Sensors 2021, 21, 4035 22 of 31

In the next step, the dataset was split into train and test sets with the stratified shuffle
split mechanism. This ensured the same distribution of classes both in training and testing
sets. The training set size was set to 80% of the entire dataset. All categorical classes were
one-hot encoded for the purposes of the softmax classifier. What is more, bioelectrical
signals were normalized with the Min-Max scaler, to ensure that signals of one type did
not have much of an effect on the neural network, just because they had numerically
greater values.

The network input takes a vector with 181 values representing the calculated proper-
ties from bioelectrical signals. Its architecture would be considered rather simple, but in this
case, fewer layers provided better generalization. The network consisted of two 64 dense
layers with ReLu activation function, a dropout layer of 20%, two 128 dense layers again
with ReLu as the activation function, and one more dropout. Finally, the network had the
last layer with softmax activation function, which was dense 4, since we classified signals
into four classes. The selected optimizer was Adam, and the loss function is the categorical
cross-entropy. Selected metrics were accuracy and F1-score. Training took 50 epochs.

The results on the test set with a precision of 0.61 and an F1-score of 0.59 prove that
the GRISERA framework allowed for storing data from external experiments and then
retrieving it to train machine learning models. However, it is important to emphasize
the metrics should not be compared to the results of other studies, as the purpose of this
validation was only to demonstrate the feasibility of using the proposed framework for
data storage and retrieval.

8.4. AMIGOS, DEAP and ASCERTAIN Datasets for Statistical Analysis

The aim of the second validation scenario was to verify whether it was possible to
integrate data originating from different experiments, i.e., AMIGOS, ASCERTAIN and
DEAP. The goal of the integration was to prepare data for statistical analysis allowing to
compare various measures with respect to emotional states. Thus, it was assumed that the
epoch length for all represented biosignals and emotional states was the same and in this
scenario equal to exactly 10 s (choosing the best epoch length for statistical analysis was
out of the scope of this scenario). For the datasets the following data were integrated:

• emotional states in Ekman model—for AMIGOS database emotional states were
recognized by Face Reader, with a constant sampling rate of 1 reading per second.
The signal was then divided into epochs and averaged. The same technique was used
for ASCERTAIN. Here, the emotional state data was provided at different frequencies
for different participants—most of the recordings had a frequency of 20 Hz, while a
select few had a frequency of 25 Hz—corresponding to the different framerates of the
video recordings. According to GRISERA principles, the values were preprocessed
and again averaged over same-length epochs in order to solve the problem of the
difference in frequencies. The values for emotional states are represented in range 0 to
1 inclusive. For DEAP database the emotional states in the Ekman model were not
provided.

• GSR signals and ECG signals—no issues were found while storing them.
• EEG signals—the AMIGOS and DEAP datasets used a different number of EEG

electrodes for measurements. However, both used the same naming and positioning
system which allowed for easy comparison based on overlapping nomenclature.
ASCERTAIN used a commercial-grade single-electrode EEG biosensor.

The data from the various experiments were extracted for analysis from the graph
database using Cypher queries. The analysis was performed using Tableau with the
use of an existing web data connector. The Cypher queries used to extract the data in a
tabular form—fit for further analysis—are shown in Listing 9. This is a generic query for a
signal of a given channel type (<channelType> parameter) and n different signal values
of interest. Said values are denoted as parameters “signal_value_1”, “signal_value_2”, ...,
“signal_value_n”. The resulting tabular data would contain not only the signal values but
also related metadata and timestamps, resulting in n + 7 columns. The query, with analogy

Sensors 2021, 21, 4035 23 of 31

to generic query CQ3, retrieved signal values, however not for one signal only (identified
with signal_id), but for the whole set of signals matching the specified pattern.

Listing 9. Generic data extracion Cypher query for Tableau.

MATCH
(r:Recording)-->(c:Channel {type:<channelType>})-->(e:Electrode Measure)
-->(s_root:SignalValue)-[:NEXT*0..]->(s:SignalValue)
<-[:START_IN_SEC]-(t_start:Timestamp),
(s)<-[:END_IN_SEC]-(t_end:Timestamp),
(x:Experiment)--(r)--(p:Participant)

RETURN
x.id AS experiment,
r.source AS source_database,
p.id AS participant,
c.type AS channel_type,
e.name AS measure_name,
s.signal_value_1 AS signal_value_1,
s.signal_value_2 AS signal_value_2,
s.signal_value_3 AS signal_value_3,
...,
s.signal_value_n AS signal_value_n,
t_start.value AS epoch_start,
t_end.value AS epoch_end

The scenario proved that it was possible to represent data from various datasets in
GRISERA. It also proved that some of the data were well integrated and easy to retrieve
for statistical analysis, which was done with Tableau tool. An example of such analysis is
the average number of GSR peaks per second versus emotional states for AMIGOS and
ASCERTAIN.

The analogical analysis can be performed for ECG signal or EEG signal. However,
the latter one can be easily done only for the same electrode positioning system (in our case
for AMIGOS and DEAP), as the values relate to the specified electrodes.

9. Discussion

In this paper, it has been proved that the use of graph data representation makes it
possible to retrieve data from different experiments in a unified way (RQ1). It was achieved
by:

• providing GRISERA—the unified graph representation for experiment originated data,
• providing the generic queries allowing to retrieve data from various signals,
• applying the GRISERA framework in the two case studies, where the specific instances

of generic competency questions were used.

At this point it is important to emphasize the fact, that the GRISERA framework is
an integration framework—it means that using GRISERA, experiment originated data
can be uploaded, unified and retrieved (analogically, as in other integration solutions like
data warehouses). The presented research proves the validity of such integration and
opens possibilities to expand GRISERA and use it for various applications. The flexibility
and expandability of GRISERA allows to store signals in the source form, as well as
in the processed one, depending on the applicational needs. The explicit distinction
between timestamp signal and epoch signal sets the semantics of the measure. The diverse
contextual information can be modelled in the form of properties assigned to the specified
nodes. This feature can be used for various application of GRISERA like storing the location
of video or sound recordings or experiment versions. The set of information stored in
GRISERA mostly depends on its application.

Sensors 2021, 21, 4035 24 of 31

It has been also proved that the graph representation of the relationship between
biosignals, identified emotional states, and contextual information allow for the extraction
of useful data for Affective Computing research (RQ2). This aim was achieved by:

• designing the competency questions allowing to search for the signals described with
the specified contextual information and retrieving their values,

• application of the GRISERA framework in the real AC applications.

Although the ability of data extraction from the graph is obvious, the range of ex-
traction depends mainly on the built relationships. Thus, the contextual information,
biosignals and emotional states are related on several levels. Firstly, signal values are
related to each other by the common timeline. It allows to extract values depending on
other ones (originated from other biosignals or estimated emotional states). Biosignals
and emotional states are related to each other by channels, recordings and experiments
introduced within contextual information.

Both research questions regard the problem of data extraction. It was shown that
using Cypher queries it is possible to retrieve useful data in a unified way. Still, it is
worth mentioning, that the Cypher language is well integrated with various programming
languages as well as libraries that allow for advanced data storage and processing. There are
additional drivers for many popular programming languages (including Java, Python, R,
.NET, Haskell etc.), that mimic existing database driver semantics and approaches. What is
more, it is possible to connect with the Neo4j/Cypher interface using HTTP-API. In this
way, it is feasible to retrieve data from a graph database and save them to the data frame,
e.g., using the Python language and the Pandas or Spark libraries.

The GRISERA framework is a novel approach in Affective Computing by:

• introducing the unified representation for contextual information, signal values
and emotional states (it combines in one representation experimental and computa-
tional data),

• deployment of graph representation for all these types of data (not only specific types
of signals),

• providing the unified way of retrieving various types of data for AC research.

The framework, as every solution, is intended to address the specific need. As a
consequence, some features of the GRISERA can be seen as limitations. The basis of the
design of the framework is data integration and reusability. These assumptions led us
to define the framework for representing various experiment originated data. Therefore,
it must be emphasized, that the solution is not intended for the specific applicational use,
but for providing the ability to retrieve the data in a unified way for various applications
as well as for producing new datasets. The framework is intentionally not optimized
neither for statistical queries nor any other applicational use (in contrast to e.g., data ware-
houses, which integrate data for the specific analytical application). Using this framework
demands retrieving data and consequently processing them in dedicated solutions for
specific applications. The consequence of data reusability is the usage of the specified
representation, which, as such, demands data description according to some rules and
often introduces additional workload. Thus, the GRISERA usage may be inconvenient
when data are prepared just for the single specific research and are not intended to be
further (re)used or shared.

The other limitations arise directly from the placing GRISERA in the context of Re-
search Data Universe [5]. GRISERA is just a single building block in the whole structure that
must exist to increase the maturity of resources in community data collections. Within this
idea, not only the GRISERA must evolve to include new features but also the other elements
of the universe must be developed. These aspects, presented as future work, are contained
in Section 10.

Sensors 2021, 21, 4035 25 of 31

10. Conclusions

The framework proposed in this paper addresses the nagging problem of data in-
tegration and reusability in Affective Computing. To discuss the future development
of the GRISERA framework it is important to perceive this framework as an element of
wider initiative leading to build the mature solutions for data reusability in AC commu-
nity. Thanos [5] identified various aspects of data reusability, which influence the further
development of GRISERA.

1. Derivative use, allowing building new datasets on preexisting ones, sets the path of
GRISERA development related to building automatic, configurable methods of signal
transformations e.g., changing signal type from timestamp to epoch or changing
epoch length,

2. Reusable lexicons providing the set of linguistic terms, points at the development of
reusable lexicons in AC, which should be further incorporated in contextual data of
GRISERA framework to support the data integration and new dataset creation,

3. Reusable ontologies, defining the relationships among the object, should be the base
of semantics validation for the GRSIERA graph. Moreover, the contextual data should
be compilant with standard ontologies for contextual data allowing to easily search
for needed experiments, signals and other data.

We are conscious that the GRISERA framework should be also encapsulated with the
technological stack, allowing to use them by the researchers, without deep knowledge
about the internal and technical aspects of the presented solution.

Author Contributions: conceptualization, T.Z. and T.W.; methodology, M.R.W.; software, T.W., M.R.,
R.Z. and G.M.; validation, T.W., M.R. and R.Z.; formal analysis, T.W., R.Z. and G.M; investigation,
M.R.W., T.W., M.R. and G.M.; resources, T.W. and G.M.; data curation, M.R.; writing—original draft
preparation, T.Z. and M.R.W.; writing—review and editing, T.Z., M.R.W. and R.Z; visualization, T.Z.,
M.R.W., M.R., and R.Z.; supervision, T.Z.; project administration, G.M. All authors have read and
agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors wish to thank Michał Zawadzki for his neverending willingness
to discuss scientific ideas, Agnieszka Landowska for sharing her knowledge in the field of Affec-
tive Computing and Patryk Dunajewski for his cooperation in the process of loading data from
ASCERTAIN and DEAP datasets.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

AC Affective Computing
ECG Electrocardiography
EEG Electroencephalography
ERD Entity Relationship Diagram
ETL Extract-Transform-Load
IC Integrity constraints
GSP Graph Signal Processing
GSR Galvanic Skin Response
PSD Power Spectral Density

Sensors 2021, 21, 4035 26 of 31

Appendix A. Graph Elements Semantic

Table A1. VerLabs elements.

Element Element Description
Channel observation of the participation of the specified participant

by the specified channel
Electrode Measure recorded measure obtained from the specified channel,

which can influence on the other measure
Epoch measure recorded measure obtained from the specified channel,

which values are settled for the whole epoch
Experiment conducted experiment
Measure Electrode Measure or Epoch Measure or

Timestamp Measure
Participant participant of the experiment
Recording participation of the specified participant within the specifed

experiment
Signal Value value of the specified measure
Timestamp distance from the begining of the recording
Timestamp Measure recorded measure obtained from the specified channel,

which values are detected in the specified moment of time

Table A2. EdgeLabs elements.

Element Element Description
END_IN_SEC indication on the timestamp ending the epoch
HAS_MEASURE assignment of the measure to the channel
HAS_RECORDING_TYPE assignment of the channel to the recording
HAS_SIGNAL indication on the first value in the series for each type

of measure and timeline
INFLUENCE_ON influence of one value on the other one
IN_SEC indication on the timestamp, in which the value is de-

tected for timestamp series
NEXT succession of timestamps or signal values
PART_OF assignments recording as a part of the experiment
START_IN_SEC indication on the timestamp starting the epoch
TAKES indication on the timeline for the experiment
TAKES_PART_IN taking part in the recoring by the participant

Sensors 2021, 21, 4035 27 of 31

Table A3. The settled subset of Prop elements.

hltextbfProperty Property Description Possible Values
age age of the participant Integer
alpha the power of EEG signal

within 8-12 Hz
Float: <100

beta the power of the EEG sig-
nal within 12-30 Hz

Float: <100

datatype data type for timestamp
and epoch measure

String

delta the power of EEG signal
within 0,5-4 Hz

Float: <100

gamma the power of EEG signal
within 30-100 Hz

Float: <100

gender gender of the participant String: male, female or unknown
GSR_avg average value of GSR for

the specified epoch
Float

GSR_max maximum value of GSR
for the specified epoch

Float

GSR_min minimum value of GSR
for the specified epoch
measure

Float

HRV average heart rate variabil-
ity for the specified epoch
expressed in ms

Integer

ibi average interbeat interval
for the specified epoch ex-
pressed in ms

Integer

mi mutual information Float
name name of the experiment

and each type of measure
String

no_of_peaks no of GSR peaks within
the specified epoch

Integer

range range of values for times-
tamp and epoch measure

String

recording_standard recording standard for the
specified channel

String

signal_id signal identifier Integer
theta the power of EEG signal

within 4-8 Hz
Float: <100

type type of channel String, e.g., audio, BVP, chest
size, depth video, ECG, EEG,
EDS, EMG, GSR, RGB video,
temperature

user_id identifier of the partici-
pant

Integer

value value of the timestamp
and signal value

simple value for epoch measure
and timestamp measure, list of
original values for electrode mea-
sure

Sensors 2021, 21, 4035 28 of 31

Appendix B. Integrity Constraints

The full list of mandatory properties ICs is defined in Table A4. The label specifies the
set of nodes or properties, for which the constraint is valid and the property specifies for
which property, the value must be specified with a non-null value.

Table A4. Mandatory properties ICs.

Label Property
Channel type
Epoch Measure datatype
Epoch Measure range
Experiment name
INFLUENCE_ON mi
Measure name
Measure signal_id
Participant user_id
Signal Value value
Timestamp value
Timestamp Measure datatype
Timestamp Measure range

Additionally to the constraints possible to define in the Cypher query, the property
value limitations ICs must be kept when creating the GRISERA graph. The possible values
of properties are defined in Table A3.

Two more types of ICs (i.e., cardinality and endpoint constraints) are defined in Table
A5. The used notation is similar to the one used in ERD diagrams (1 denotes that there
is exactly one edge, 0..1 that there is at most one edge and * zero or more edges). Each
row of the Table A5 represents the required cardinality between subject and object (both
understood as the particular nodes with the specified labels) as connected by the edges
with the specified edge label. Object cardinality refers to the possible number of objects
the subject can be connected to, while subject cardinality refers to the possible number of
subjects being connected to the specified object. For example, the first row of the Table A5
states that one node with the Participant label can be connected to numerous nodes with
the Recording label with edges with the TAKES_PART_IN label while in the same time each
Recording node can be connected to the single Participant node only.

Table A5. Cardinality and endpoint ICs.

Subject
Subject
Cardinality

Egde Label
Object
Cardinality

Object

Channel 1 HAS_MEASURE * Timestamp
Measure

Channel 1 HAS_MEASURE * Epoch
Measure

Channel 1 HAS_MEASURE * Electrode
Measure

Electrode
Measure

0..1 HAS_SIGNAL 1 Signal
Value

Sensors 2021, 21, 4035 29 of 31

Table A5. Cont.

Subject
Subject
Cardinality

Egde Label
Object
Cardinality

Object

Epoch
Measure

0..1 HAS_SIGNAL 1 Signal
Value

Experiment * TAKES 1 Timestamp
Participant 1 TAKES_PART_IN * Recording
Recording * PART_OF 1 Experiment
Recording 1 HAS_RECORDING_TYPE * Channel
Signal
Value

0..1 NEXT 0..1 Signal
Value

Signal
Value

* INFLUENCE_ON * Signal
Value

Timestamp
Measure

0..1 HAS_SIGNAL 1 Signal
Value

Timestamp 0..1 NEXT 0..1 Timestamp
Timestamp 1 IN_SEC * Signal Value
Timestamp 1 START_IN_SEC * Signal

Value
Timestamp 1 END_IN_SEC * Signal

Value

References
1. Picard, R.W. Affective Computing; The MIT Press: Cambridge, MA, USA, 2000. [CrossRef]
2. Poria, S.; Cambria, E.; Bajpai, R.; Hussain, A. A review of affective computing: From unimodal analysis to multimodal fusion.

Inf. Fusion 2017, 37, 98–125. [CrossRef]
3. Shuman, D.I.; Narang, S.K.; Frossard, P.; Ortega, A.; Vandergheynst, P. The emerging field of signal processing on graphs:

Extending high-dimensional data analysis to networks and other irregular domains. IEEE Signal Process. Mag. 2013, 30, 83–98.
[CrossRef]

4. Sandryhaila, A.; Moura, J.M. Big Data Analysis with Signal Processing on Graphs: Representation and processing of massive
data sets with irregular structure. IEEE Signal Process. Mag. 2014, 31, 80–90. [CrossRef]

5. Thanos, C. Research Data Reusability: Conceptual Foundations, Barriers and Enabling Technologies. Publications 2017, 5, 2.
[CrossRef]

6. National Research Council. Bits of Power: Issues in Global Access to Scientific Data; National Academies Press: Washington, DC,
USA, 1997.

7. National Research Council. A Question of Balance: Private Rights and the Public Interest in Scientific and Technical Databases; National
Academies Press: Washington, DC, USA, 2000.

8. Simberloff, D.; Barish, B.; Droegemeier, K.; Etter, D.; Fedoroff, N.; Ford, K.; Lanzerotti, L.; Leshner, A.; Lubchenco, J.; Rossmann, M.;
et al. Long-Lived Digital Data Collections: Enabling Research and Education in the 21st Century; Technical Report; National Academies
Press: Washington, DC, USA, 2005.

9. Lim, K.T.; Maier, S.D.; Ratzesberger, O.; Zdonik, S. Requirements for science data bases and SciDB. In Proceedings of the
Conference on Innovative Data Systems Research, Asilomar, CA, USA, 13–16 January 2009.

10. Wickett, K.M.; Sacchi, S.; Dubin, D.; Renear, A.H. Identifying content and levels of representation in scientific data. Proc. Am. Soc.
Inf. Sci. Technol. 2012, 49, 1–10. [CrossRef]

11. Pokorny, J. Conceptual and Database Modelling of Graph Databases; In Proceedings of the 20th International Database Engineering
Applications Symposium: Montreal, QC, Canada, 2016; pp. 370–377. [CrossRef]

12. Francis, N.; Taylor, A.; Green, A.; Guagliardo, P.; Libkin, L.; Lindaaker, T.; Marsault, V.; Plantikow, S.; Rydberg, M.; Selmer, P.
Cypher: An Evolving Query Language for Property Graphs; In Proceedings of the 2018 International Conference on Management of
Data: Houston, TX, USA, 2018; pp. 1433–1445. [CrossRef]

13. Correa, J.A.M.; Abadi, M.K.; Sebe, N.; Patras, I. AMIGOS: A Dataset for Affect, Personality and Mood Research on Individuals
and Groups. IEEE Trans. Affect. Comput. 2018. [CrossRef]

14. Subramanian, R.; Wache, J.; Abadi, M.K.; Vieriu, R.L.; Winkler, S.; Sebe, N. ASCERTAIN: Emotion and Personality Recognition
Using Commercial Sensors. IEEE Trans. Affect. Comput. 2018, 9, 147–160. [CrossRef]

http://doi.org/10.7551/mitpress/1140.001.0001
http://dx.doi.org/10.1016/j.inffus.2017.02.003
http://dx.doi.org/10.1109/MSP.2012.2235192
http://dx.doi.org/10.1109/MSP.2014.2329213
http://dx.doi.org/10.3390/publications5010002
http://dx.doi.org/10.1002/meet.14504901199
http://dx.doi.org/10.1145/2938503.2938547
http://dx.doi.org/10.1145/3183713.3190657
http://dx.doi.org/10.1109/taffc.2018.2884461
http://dx.doi.org/10.1109/TAFFC.2016.2625250

Sensors 2021, 21, 4035 30 of 31

15. Koelstra, S.; Muhl, C.; Soleymani, M.; Lee, J.S.; Yazdani, A.; Ebrahimi, T.; Pun, T.; Nijholt, A.; Patras, I. Deap: A database for
emotion analysis; using physiological signals. IEEE Trans. Affect. Comput. 2011, 3, 18–31. [CrossRef]

16. Soleymani, M.; Lichtenauer, J.; Pun, T.; Pantic, M. A multimodal database for affect recognition and implicit tagging. IEEE Trans.
Affect. Comput. 2011, 3, 42–55. [CrossRef]

17. Katsigiannis, S.; Ramzan, N. DREAMER: A database for emotion recognition through EEG and ECG signals from wireless
low-cost off-the-shelf devices. IEEE J. Biomed. Health Inform. 2017, 22, 98–107. [CrossRef]

18. Becker, H.; Fleureau, J.; Guillotel, P.; Wendling, F.; Merlet, I.; Albera, L. Emotion recognition based on high-resolution EEG
recordings and reconstructed brain sources. IEEE Trans. Affect. Comput. 2017, 11, 244–257. [CrossRef]

19. Song, T.; Zheng, W.; Lu, C.; Zong, Y.; Zhang, X.; Cui, Z. MPED: A multi-modal physiological emotion database for discrete
emotion recognition. IEEE Access 2019, 7, 12177–12191. [CrossRef]

20. Seal, A.; Reddy, P.P.N.; Chaithanya, P.; Meghana, A.; Jahnavi, K.; Krejcar, O.; Hudak, R. An EEG Database and Its Initial
Benchmark Emotion Classification Performance. Comput. Math. Methods Med. 2020, 2020, 8303465. [CrossRef] [PubMed]

21. Shu, L.; Xie, J.; Yang, M.; Li, Z.; Li, Z.; Liao, D.; Xu, X.; Yang, X. A review of emotion recognition using physiological signals.
Sensors 2018, 18, 2074. [CrossRef] [PubMed]

22. Siddharth, S.; Jung, T.P.; Sejnowski, T.J. Utilizing deep learning towards multi-modal bio-sensing and vision-based affective
computing. IEEE Trans. Affect. Comput. 2019. [CrossRef]

23. Goodwin, A.J.; Eytan, D.; Greer, R.W.; Mazwi, M.; Thommandram, A.; Goodfellow, S.D.; Assadi, A.; Jegatheeswaran, A.; Laussen,
P.C. A practical approach to storage and retrieval of high-frequency physiological signals. Physiol. Meas. 2020, 41, 035008.
[CrossRef]

24. Song, C.; Qin, X.H.; Zhou, Q.; Wang, Z.Y.; Liu, W.H.; Li, J.; Huang, L.; Chen, Y.; Tang, G.; Zhao, D.J.; et al. PlantES: A plant
electrophysiological multi-source data online analysis and sharing platform. Appl. Sci. 2018, 8, 2269. [CrossRef]

25. Chen, Y.; Wang, Z.y.; Yuan, G.; Huang, L. An overview of online based platforms for sharing and analyzing electrophysiology
data from big data perspective. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 2017, 7, e1206. [CrossRef]

26. Thürk, F.; Kampusch, S.; Kaniusas, E. Management framework for biosignals in biomedical studies: From study design to data
statistics. IEEE Trans. Instrum. Meas. 2015, 65, 776–782. [CrossRef]

27. Kokkinaki, A.; Chouvarda, I.; Maglaveras, N. Searching biosignal databases by content and context: Research Oriented Integration
System for ECG Signals (ROISES). Comput. Methods Programs Biomed. 2012, 108, 453–466. [CrossRef]

28. Carreiras, C.; Silva, H.; Lourenço, A.; Fred, A. Storagebit-a metadata-aware, extensible, semantic and hierarchical database for
biosignals. In Proceedings of the International Conference on Health Informatics, Vilamoura, Portugal, 7–9 November 2013.

29. Abdulla, S.; Diykh, M.; Laft, R.L.; Saleh, K.; Deo, R.C. Sleep EEG signal analysis based on correlation graph similarity coupled
with an ensemble extreme machine learning algorithm. Expert Syst. Appl. 2019, 138, 112790. [CrossRef]

30. Huang, W.; Bolton, T.A.; Medaglia, J.D.; Bassett, D.S.; Ribeiro, A.; Van De Ville, D. A graph signal processing perspective on
functional brain imaging. Proc. IEEE 2018, 106, 868–885. [CrossRef]

31. Richiardi, J.; Achard, S.; Bunke, H.; Van De Ville, D. Machine learning with brain graphs: Predictive modeling approaches for
functional imaging in systems neuroscience. IEEE Signal Process. Mag. 2013, 30, 58–70. [CrossRef]

32. Lotte, F.; Bougrain, L.; Cichocki, A.; Clerc, M.; Congedo, M.; Rakotomamonjy, A.; Yger, F. A review of classification algorithms for
EEG-based brain–computer interfaces: A 10 year update. J. Neural Eng. 2018, 15, 031005. [CrossRef] [PubMed]

33. Angles, R.; Arenas, M.; Barceló, P.; Hogan, A.; Reutter, J.L.; Vrgoc, D. Foundations of Modern Graph Query Languages. arXiv
2016, arXiv:1610.06264.

34. Angles, R. The Property Graph Database Model. In Proceedings of the 12th Alberto Mendelzon International Workshop on
Foundations of Data Management, Cali, Colombia, 21–25 May 2018.

35. Ramesh, D.; Sinha, A.; Singh, S. Data modelling for discrete time series data using Cassandra and MongoDB. In Proceedings of
the 2016 3rd International Conference on Recent Advances in Information Technology (RAIT), Dhanbad, India, 2016.

36. Damyanov, D. Building a Model for Event Data as a Graph. 2018. Available online: https://snowplowanalytics.com/blog/2018
/03/26/building-a-model-for-atomic-event-data-as-a-graph/ (accessed on 25 May 2021).

37. Brodny, G.; Kolakowska, A.; Landowska, A.; Szwoch, M.; Szwoch, W.; Wrobel, M.R. Comparison of selected off-the-shelf
solutions for emotion recognition based on facial expressions. In Proceedings of the 2016 9th IEEE International Conference on
Human System Interactions (HSI), Portsmouth, UK, 6–8 July 2016. [CrossRef]

38. Russell, J.A. A circumplex model of affect. J. Personal. Soc. Psychol. 1980, 39, 1161. [CrossRef]
39. Fornito, A.; Zalesky, A.; Breakspear, M. Graph analysis of the human connectome: Promise, progress, and pitfalls. Neuroimage

2013, 80, 426–444. [CrossRef]
40. Dictionary, M.W. Merriam-Webster. 2021. Available online: www.merriam-webster.com (accessed on 25 May 2021).
41. Sharma, M.; Kacker, S.; Sharma, M. A brief introduction and review on galvanic skin response. Int. J. Med. Res. Prof. 2016,

2, 13–17. [CrossRef]
42. Gamboa, H. Multi-Modal Behavioral Biometrics Based on HCI and Electrophysiology. Ph.D. Thesis, Universidade Teecnica de

Lisboa, Lisboa, Portugal, 2008.
43. Lourenço, A.; Silva, H.; Leite, P.; Lourenço, R.; Fred, A. Real Time Electrocardiogram Segmentation for Finger based ECG

Biometrics. In Proceedings of the International Conference on Bio-inspired Systems and Signal Processing—BIOSIGNALS:
Vilamoura, Portugal, 1–4 February 2012; pp. 49–54. [CrossRef]

http://dx.doi.org/10.1109/T-AFFC.2011.15
http://dx.doi.org/10.1109/T-AFFC.2011.25
http://dx.doi.org/10.1109/JBHI.2017.2688239
http://dx.doi.org/10.1109/TAFFC.2017.2768030
http://dx.doi.org/10.1109/ACCESS.2019.2891579
http://dx.doi.org/10.1155/2020/8303465
http://www.ncbi.nlm.nih.gov/pubmed/32831902
http://dx.doi.org/10.3390/s18072074
http://www.ncbi.nlm.nih.gov/pubmed/29958457
http://dx.doi.org/10.1109/TAFFC.2019.2916015
http://dx.doi.org/10.1088/1361-6579/ab7cb5
http://dx.doi.org/10.3390/app8112269
http://dx.doi.org/10.1002/widm.1206
http://dx.doi.org/10.1109/TIM.2015.2490858
http://dx.doi.org/10.1016/j.cmpb.2011.02.008
http://dx.doi.org/10.1016/j.eswa.2019.07.007
http://dx.doi.org/10.1109/JPROC.2018.2798928
http://dx.doi.org/10.1109/MSP.2012.2233865
http://dx.doi.org/10.1088/1741-2552/aab2f2
http://www.ncbi.nlm.nih.gov/pubmed/29488902
https://snowplowanalytics.com/blog/2018/03/26/building-a-model-for-atomic-event-data-as-a-graph/
https://snowplowanalytics.com/blog/2018/03/26/building-a-model-for-atomic-event-data-as-a-graph/
http://dx.doi.org/10.1109/hsi.2016.7529664
http://dx.doi.org/10.1037/h0077714
http://dx.doi.org/10.1016/j.neuroimage.2013.04.087
www.merriam-webster.com
http://dx.doi.org/10.21276/ijmrp.2016.2.6.003
http://dx.doi.org/10.5220/0003777300490054

Sensors 2021, 21, 4035 31 of 31

44. Thomson, D. Spectrum estimation and harmonic analysis. Proc. IEEE 1982, 70, 1055–1096. [CrossRef]
45. Slepian, D. Prolate Spheroidal Wave Functions, Fourier Analysis, and Uncertainty-V: The Discrete Case. Bell Syst. Tech. J. 1978,

57, 1371–1430. [CrossRef]
46. Cox, D.D. Spectral Analysis for Physical Applications: Multitaper and Conventional Univariate Techniques. Technometrics 1996,

38, 294–294. [CrossRef]
47. Webber, J. Neo4j for Very Large Scale Systems. 2019. Available online: https://www.youtube.com/watch?v=BfPDZf2wmqg

(accessed on 25 May 2021).
48. Santamaria-Granados, L.; Munoz-Organero, M.; Ramirez-Gonzalez, G.; Abdulhay, E.; Arunkumar, N. Using deep convolutional

neural network for emotion detection on a physiological signals dataset (AMIGOS). IEEE Access 2018, 7, 57–67. [CrossRef]

http://dx.doi.org/10.1109/PROC.1982.12433
http://dx.doi.org/10.1002/j.1538-7305.1978.tb02104.x
http://dx.doi.org/10.1080/00401706.1996.10484520
 https://www.youtube.com/watch?v=BfPDZf2wmqg
http://dx.doi.org/10.1109/ACCESS.2018.2883213

	Introduction
	Motivations
	Methodology
	Related Work
	Graph Representation
	Graph Definition
	Graph Schema Proposal
	Signal Representation for Timestamp and Epoch Measures
	Signal Representation for Electrode Measures
	Galvanic Skin Response—GSR
	Electrocardiography—ECG
	Electroencephalography—EEG

	Integrity Constraints

	Graph Database Creation
	Data Retrieval
	Validation
	Implementation
	Datasets Description
	AMIGOS Dataset for Deep Learning Model
	AMIGOS, DEAP and ASCERTAIN Datasets for Statistical Analysis

	Discussion
	Conclusions
	Graph Elements Semantic
	Integrity Constraints
	References

