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Abstract: For robots to execute their navigation tasks both fast and safely in the presence of humans,
it is necessary to make predictions about the route those humans intend to follow. Within this work,
a model-based method is proposed that relates human motion behavior perceived from RGBD input
to the constraints imposed by the environment by considering typical human routing alternatives.
Multiple hypotheses about routing options of a human towards local semantic goal locations are
created and validated, including explicit collision avoidance routes. It is demonstrated, with real-
time, real-life experiments, that a coarse discretization based on the semantics of the environment
suffices to make a proper distinction between a person going, for example, to the left or the right
on an intersection. As such, a scalable and explainable solution is presented, which is suitable for
incorporation within navigation algorithms.

Keywords: human intention estimation; probabilistic reasoning; indoor navigation; semantic reasoning

1. Introduction

Current trends in robotics show a transition to environments where robots in general,
and Automated Guided Vehicles (AGVs) in particular, share the same space and collaborate
with humans. Examples of such robots are given by the SPENCER-project [1], the ROPOD-
project [2] and the ILIAD-project [3], which target, respectively, airports’ guiding assistance,
logistical tasks within hospitals and logistic services in warehouses. Safety is an important
concern for such systems. To address the safety of a robot’s navigation trajectories in the
presence of humans, it is needed to estimate where a person is moving to and take the
estimated movement’s direction into account in its own navigation behavior. For example,
to prevent collisions, a robot could move to the right when a person is going to pass on
its left side or slow down to give priority to a person when going to pass a crossing. By
taking a human’s intentions into account, collisions between robots and persons can be
prevented while the robots keep on moving efficiently. Most commonly, to guarantee
safety, systems are either backed up by a human operator or show conservative behavior
by either waiting or driving too slowly. A better understanding of the environment
dynamics is required in real-time to prevent dangerous situations [4]. When a robot can
predict the walking intention of a human, it could speed up its navigation progress by, for
example, continuing to move even if a person is close by but predicted not to intersect its
trajectory. A human walking pattern prediction model can help to reduce conservatism
in navigation [5]. Following this line of reasoning, the research reported in this paper
presents a model that can estimate the walking intention of a human from RGBD-data
within (indoor) spaces for which a map with structural semantic elements (e.g., walls and
doors) is known. The effectiveness of the model is experimentally validated by means
of real-life, real-time experiments. The model is developed by taking into account the
following requirements: (1) scalability and applicability to different configurations of the
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environment, (2) simultaneous evaluation of different and plausible routing alternatives
such that navigation algorithms can consider the difference in likelihood of the alternatives,
(3) real-time execution, (4) adjustability of the prediction horizon to relate the horizon to
the timescale of the navigational task at hand and (5) explainability in the sense that the
proposed approach expresses an explicit relationship between, on one hand, measurements
andestimations of human motion and postures, and, on the other hand, to elements of the
map. This explicit relationship provides predictions at both geometric and semantic levels.

The remainder of this paper is organized as follows: Section 2 presents an overview of
literature relevant to the approach presented in the paper. Section 3 presents a methodology
to define (a) semantic maps with associated hypotheses on a human’s movements direc-
tions and (b) algorithms to compute predictions about the expected human’s movements
directions based on the semantic map and the set of hypotheses. Section 4 validates the
method with real-time and real-life experiments. Finally, Section 5 concludes the paper and
provides suggestions for future work.

2. Related Work

This section discusses the work related to human intention prediction in contexts
involving robots. First, a discrimination is made based on the methods used by the ap-
proaches: data-based and model-based. Then, we report on how semantics have been used
to enhance human motion prediction by model-based algorithms. Different discretizations
of the space are discussed as well as methods to determine hypotheses on a human’s
movements directions. The final paragraph summarizes the contributions of this work.

When robots predict the motion intention of a human with the purpose to adapt
their (navigation) behavior, we should consider that the motion of the robot will have an
influence on the motion of the human. Considering this situation as a multi-agent problem
requires complex approaches, which are difficult to scale and implement in practice, as [5]
claims. To reduce this complexity, in the present work, we decided to focus only on the
estimation of the navigation intention of humans.

Two general approaches to prediction exist, namely prediction based on explain-
able models as defined in the requirements and prediction based on training end-to-end
algorithms from data acquired offline.

For data-based prediction methods, typical trajectories within a given map are first
collected over time. Those then serve to train models that will predict the trajectory of
a human based on online observations. Typically, a dense discretization of the space is
applied, see, e.g., [6–9]. Within the works of [10,11], the discretization issue is addressed by
learning a topological map, which summarizes a set of observed (person) trajectories. As
indicated by the authors of the latter work, the topological map is missing the semantic
meaning as the nodes are defined in Cartesian space, rather than relative to semantic
elements of the map. This makes it difficult to transfer the learned models to other areas
with similar semantic configurations which, we argue, can hamper scalability.

Model-based prediction methods predict the navigation intentions of humans based
on explicitly modeling the relation between online measurements, such as velocity and
heading direction, and the expected outcome (e.g., see [12,13]). Sometimes, such models
take into account the interaction between people and robots, such as the work proposed
in [14–19]. Future states of the environment are typically modeled as a pose of the person
of interest or an occupancy grid of the map where certain cells are expected to be occupied
or not [5]. These approaches do not account for the fact that uncertainty about the human
intention can give rise to multiple hypotheses. For example, at crossings there are several
distinct paths a human could take. In the present work, we take a different approach than
what was discussed in [12–19], as we propose a coarse discretization of the environment
based on its semantics. As a result, our model does not predict a single path of a human
but, instead, it predicts to which semantic location a person is directed to by simultaneously
evaluating probable alternatives. In this sense, we argue that if a robot can determine with
high accuracy if a person is likely to pass on its left, right or if it is likely to collide, it has
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enough information to plan its navigation reaction accordingly, guaranteeing safety. This
idea of taking the semantics of the environment into account is in line with the suggestions
of [20,21]. The work of [21] considers automatic goal inference based on the semantics
of the environment as an important future research direction. The authors suggest that
intelligent systems should have an in-depth semantic scene understanding and claim that
context understanding with respect to features of the static environment and its semantics
for better trajectory prediction is still a relatively unexplored field. On this line, our work
proposes a methodology which uses the semantics of an indoor environment by match-
ing the human capabilities and the affordances of the semantic environmental map. The
notion of affordance refers to the action opportunities provided by the environment [22].
In the context of this work, we consider the possible actions of a person as induced by
the environment such as going left or right on a T-junction. Considering such a set of
alternatives is in line with concepts from the automotive domain where, for example, a
discrimination between walking, running and standing behaviors is predicted or where
cyclists’ intentions of going left, right or straight based on cues such as a reaching arm
pose [23,24] are predicted. In contrast to these works, in an indoor environment these
cues are typically not available and instead of learning the static context within our work
we explicitly model it. Looking at the robotics domain, the idea of considering the plau-
sible alternatives for human intentions is in line with [8,19,25]. Within the first of these
works, hypotheses about occupied areas in the map are created by considering various
trajectories. A dense discretization is applied, which does not scale well. In contrast, our
work considers a course discretization by applying areas as a mapping concept [26]. The
areas are not physical, but serve as abstract conventions to allow humans and robots to
indicate particular parts of the spatial domain [27]. In our work, the discretization of the
areas is based on the semantics of the environment. For the second work considering a
set of plausible alternatives for human intentions, i.e., [25], intentions are estimated for
assistive robotic teleoperation by hypothesizing about the objects present on a table as
potential targets. Contrary to our work, the final destinations are considered as the set of
plausible alternatives. In order to infer human walking destinations, Kostavelis et al. [19]
identified target human locations based on frequently visited spots. The validation of these
routing alternatives is based on the assumption that when a human walks towards a target
location, the shortest path is, subconsciously, selected. In contrast, our work considered
(intermediate) areas as regions of interest, and the robot is explicitly modeled as an object
of interest as well.

To recursively update the belief over the hypotheses set, a Bayesian approach is
typically adopted [28], which requires the observations to be independent. In the context
of this work, the progression of a person towards the area corresponding to a hypothesis is
chosen as a measure to compute the likelihood of that hypothesis. We do so by comparing
the direction component of the estimated human’s velocity vector to the expected direction
of movement corresponding to the hypothesis being evaluated. To properly apply a
Bayesian approach, this requires the velocity observations to be independent. This is, in
general, not the case for robots within the context considered in this paper, as typically the
velocity estimate of a person is based on filtered position observations. Furthermore, the
Bayesian approach requires a transition model, which, in our context, needs to represent
the probability of a person choosing an alternative direction. To take this property into
consideration, specific knowledge about human behavior in the targeted environment
is required, which is considered out of scope of this work. Therefore, we opted for a
maximum likelihood approach for estimating the likelihood of each hypothesis.

In conclusion, the contribution of this work is a methodology that estimates humans
walking intention by

1. posing an abstract semantic model for human intentions that encloses all probable
walking paths to predefined semantic goals,

2. evaluating the model as human walking hypotheses.
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The result is a robust intention estimator as proven by the real-time and, real-life
experiments.

3. Methodology

To predict which possible directions a person is moving to, the model of the human’s
capabilities (Section 3.1) is matched with the affordances of a semantic environmental
map (Section 3.2). The derived human’s movements hypotheses are evaluated using a
maximum likelihood approach (Section 3.3). A graphical visualization of the proposed
method is reported in Figure 1.

Position estimate and
routing plan robot

Mapping: identify
semantic locations

Abstract topological
representation

Update topological map
to dynamic sitation

Abstract hypotheses of
possible (intermediate)
targets of a person

Position of other persons

Position estimate of
person

Evaluation of hypotheses

Velocity estimate of
person

Section 3.1

Section 3.2

Section 3.3

Figure 1. Overview of the steps taken in this work to obtain the most probable hypothesis of the intention of a person in
an indoor environment. The green blocks indicate (filtered) observations or information required from other components,
which are assumed to be available in the system such as a human detection algorithm.

3.1. Definition of the Hypotheses on a Human’s Navigation Goals

We assume that when navigating, humans have an intention towards a specific and
semantic goal location that can be extracted from a semantic map. When considering all
possible goal locations in a huge building such as a hospital or a warehouse, the amount of
hypotheses would be very large and almost intractable. Moreover, not all possible goal
locations are relevant for a robot with a navigational task. For example, the structure of
a hallway imposes that all goal locations within a specific room lead via the doorway to
that specific room. Therefore, in this work, we consider only alternative goal locations that
are in the direct neighborhood of the human and robot. The goal locations outside this
area of interest are summarized by hypothesizing about the intermediate route towards the
destination. In the example of the room in the hospital, the direction to the next hallway is
most relevant for a robot that encounters the person moving to that room at a cross-shaped
intersection. The other relevant alternatives for a robot passing this intersection are left,
right and straight.

For the alternative, where the robot and the person encounter each other, a collision
between the human and the system is possible. We have then three alternatives, either the
person will avoid the robot passing on the left or on the right or the person will collide with
the robot. The discrimination between these alternatives is important for robotic navigation
because a robot can act, for example, by moving to the left if the person is passing to the
right and the other way around. When people walk, it is common that they stop in a
standstill position to, for example, check their phone and do not make any progression
towards their desired destination goal. This hypothesis is also taken into account in our
framework. Lastly, we acknowledge that people might have another goal compared to
those modeled. We represent this explicitly by an Undefined Goal (UG) hypothesis. In
summary, as listed in Table 1, given a semantic map of the environment, we consider the
following hypotheses to describe every encounter between the robot and a human as:

1. All (semantic) directions that lead to an alternative route such as left, straight and
right on a crossing or an object of interest such a person or a locker (one hypothesis
for each direction based on the position of the person inducing different directions
of movement);

2. The alternatives in the direct neighborhood of the robot, namely;



Sensors 2021, 21, 4141 5 of 17

(a) Passing of the robot either on the left side or on the right side (two hypotheses
leading to different directions of movement);

(b) The collision with the area required for navigation of the system (single hy-
pothesis with a movement directed towards the robot);

3. A standstill of the person (single hypothesis with zero velocity);
4. Undefined Goal, i.e., not 1–3 (single hypothesis when there is no evidence for the

alternative movement directions).

Table 1. Hypotheses set considered.

Hypotheses Notation Alternatives Considered

1 Hk All turns k on a crossing
2a Hk{l,r} Passing the robot on the left or right side
2b H f Robot is a goal
3 Hss Standstill
4 HUG Other goal

3.2. Linking Semantic Maps to the Hypotheses

As stated earlier, we determine the applicable set of hypotheses from a semantic map,
which is assumed to be known a priori. Within this semantic map, the concept of areas is
adopted as proposed by [26,27]. In general, areas serve as abstract conventions to allow
humans and robots to indicate particular parts of the spatial domain [27]. For the purpose of
considering the semantics of the environment to predict the direction of the movements of
humans, the division of the map in areas should represent the various routing alternatives.
Indicators for the distinction are, for example, corridors, crossings, T-junctions and passages
such as doors. In the example of Figure 2a, this leads to the discrimination of junction
C, which has the routing alternatives to corridors A, B and D. For the alternative to
corridor E, a doorway marks this transition. As indicated by the second step of Figure 1,
the interconnection between these areas is represented by a topological map where the
nodes mark the areas and the edges the interconnections between these areas. As such,
the edges of the topological map represent the navigation affordances, as they indicate the
routing alternatives induced by the environment. Mapping these affordances to a set of
hypotheses is based on the human detection only by considering the alternatives within
the area the human is present in. As a result, these form the first set of hypotheses as listed
in Section 3.1. The topological map forms the course discretization of the environment.
To make a proper distinction between the various alternatives, areas are not allowed to
overlap. In the example scenario presented here, semantic goals refer to neighboring areas
of the crossing. In general, when the task of the robot requires it, the topological map can be
extended to consider a larger spatial horizon by taking the consecutive areas into account.

For the second set of hypotheses as listed Table 1, the alternatives in the direct neigh-
borhood of the robot are considered. This is indicated by the third step of Figure 1. These
alternatives are addressed, adding subareas left and right to the area required for executing
the plan of the robot. An example is shown in Figure 2b. Supposing a robot’s navigational
task of moving towards area C, the area which the robot requires is drawn in the corre-
sponding direction. The desired area is configurable and depends on the movement that
is desired by the robot, the velocity of the robot and the expected velocity of the persons
within the environment. As the robot might be an objective for a person, a node B f is
placed within the area in front of the robot and forms the (possible) collision hypothesis.
Now, the alternative routing options consider the passing actions of a person at the left
and right side of the robot. As such, areas and their corresponding nodes Bl and Br are
created at each side of the robot. The remaining areas consider B′f and Bb at the front and
back, respectively. The edges of the graph represent the routing alternatives. Like the
static situation, the edges indicate possible hypotheses and show that a route to the back
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of the robot always directs via the sides of the robot. This is indicated by the fourth step
of Figure 1.

B

Wall
Door

Edge and Node of
Topological Representation

Edges of Area

A

C D

E

(a) Static situation

Bb

A

C D

E

Robot

Reserved Robot Area

Bl

B′
f

Br

Bf

(b) Update to dynamic situation by adding the routing alternatives
left and right of the robot and the route towards the robot.

Figure 2. Example of the creation of areas and the topological representation of a map consisting of an intersection C
including a doorway and the corridors A, B, D and E connected to this intersection.

3.3. Evaluation of the Hypotheses

The final step as indicated in Figure 1 is to quantify how likely the various hypotheses
are. Whereas the position estimate of the person of interest is applied to determine the
hypotheses set, the progression of a person towards the area corresponding to a hypothesis
is chosen as a measure to validate the hypotheses. To determine the progression, the
direction component of the estimated human’s velocity vector ~vp is compared to the ex-
pected direction of movement corresponding to each hypothesis. We opted for a maximum
likelihood approach for estimating the likelihood of each hypothesis. We consider prior
knowledge about direction preferences equal in all directions. By applying the law of total
probability, the ratios between the likelihood of the hypotheses are normalized and as such
represented as probabilities. The likelihood pk(~vH |Hk) of a velocity vector of a human
~vH given the hypothesis Hk corresponding to walking pattern k measures the progression
towards the goal area by comparing the alignment of the human velocity vector ~vH and
the progression vector ~vFk indicating the expected movement direction by

pk(~vH |Hk) = max
(

0,
~vH ·~vFk

|~vH ||~vFk |

)
fc. (1)

In this equation, the constraint function fc considers if the person remains in the given
field for a certain horizon t f by projecting the person velocity in the direction perpendicular
to the expected movement. In the situation of Figure 2a, it is, for example, unlikely that
a person who moves from area B towards area D has a significant velocity component
towards area A close to the transition between area A and C. The projection of the person
velocity in the direction perpendicular to the expected movement is indicated with ~vH⊥
and applied to obtain fc according to

fc =


1 if vpi⊥ < def

t f
− α

0 if vpi⊥ > def
t f

−1(vpi⊥−
def
t f

)

α else.

(2)

Here, α represents a velocity safety margin between instant transition from fc = 0 to
fc = 1 at vpi⊥ = def

t f
. The distance towards the edge of the field is represented by def. For
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the progression vector as applied in (1), various choices can be made. Given a position, the
direct vector to the target could be considered. Within this work, however, it is assumed
that the most probable trajectory in which a person moves is a smooth one. As such,
streamlines are created which mark the expected trajectory. The direction of these lines
indicate the expected movement direction. Normalizing the direction vector gives |~vF| = 1
and reduces (1) to

pk(~vH |Hk) = max(0, cos(θ)) fc (3)

In here, θ indicates the angle between ~vH and ~vFk . The max-function states that
there has to be a positive progression towards the goal area to obtain a likelihood greater
than zero.

For the validation of the standstill hypothesis Hss as described in Section 3.1, the
magnitude of the human velocity vector |~vH | representing the speed is considered. A
threshold velocity vmin makes a distinction between standing still and walking according to

pss(~vH |Hss) =

{
0 if |~vH | > vmin

1− |~vp |
vmin

else.
(4)

The undefined goal hypothesis HUG represents the completeness of the model. This
hypothesis should have a high probability if the other hypotheses are low in likelihood
and thus there is no modeled situation that is likely. Therefore, the proof p(~vH |HUG) is
chosen independent of ~vH and is thus a constant value. If there are more likely hypotheses,
the UG-hypothesis lowers in probability due to normalization.

4. Experiments and Discussion

To validate the proposed method, multiple experiments were performed at a hallway.
The robot utilized in the experiments is a prototype of the ROPOD-platform [2], of which
an image is shown in Figure 3. The intention estimation algorithms are executed on an
iBase AMI220AF-4L-7700 PC running Ubuntu 16.04. During these experiments, human
detections were obtained by providing the OpenPose human detection algorithm [29] with
RGB-images of a Kinect v2 RGBD-camera. The detection algorithm ran on a Jetson TX2
board, with a detection rate of 3–4 [Hz]. By utilizing the depth-channel of the camera, the
observed position of the person was determined as the average distance with respect to the
camera of the human body joints as obtained by the OpenPose detector. To compensate
for measuring the front of the human joints instead of their center, the typical human
body radius is added to the average distance. This radius is assumed to be 0.15 [m].
To obtain the position and velocity estimation of the human, the detections were fed
to a constant velocity Kalman filter containing a white noise acceleration model. For
details on the configuration of the Kalman filters used in the experiments, the reader
is referred to, e.g., [28,30]. ROS [31] was chosen as middleware, and the ROS-AMCL
package [32] provided the robot’s localization. The implementation and videos of the
experiments are available in the public code repository accompanying this paper (https:
//github.com/tue-robotics/human_intention_prediction (accessed on 8 June 2021)). The
configuration of the model variables adopted during the experiments is reported in Table 2.
In this table, the reserved area around the robot yields a safety margin around the setup
and can be adapted based on the preferred motion direction by the motion planner. The
search and consideration area, the side margins of the field and the time constraint of
remaining inside a field consider a prediction horizon of a couple of seconds and a typical
human walking speed of 1.4 [m/s] [33]. The UG-likelihood is chosen low in comparison
with the likelihood of the other hypotheses because it is assumed that human navigation
goals relate most of the times to the semantic areas identified in the map.

https://github.com/tue-robotics/human_intention_prediction
https://github.com/tue-robotics/human_intention_prediction
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RGBD-camera

2D-Lidar

GPU

Batteries
Main PC

Figure 3. Overview of the prototype Ropod-platform as applied in this work in its target environment.
Some of its relevant components are indicated.

Table 2. Settings applied within the algorithm.

Setting Value

(length, width) of reserved area robot (1.2, 0.75) [m]
search area around (robot, human) (3.0, 4.0) [m]

likelihood HUG 0.3 [-]
vmin 0.1 [ms−1]

α 0.4 [m/s]
t f 1.0 [s]

In total, three sets of experiments are performed in real-time. In the first set of
experiments, the performance of the model is analyzed on a single crossing. A detailed
explanation is given for a few experiments, while the robustness is demonstrated by
repeating the experiment with various persons moving on a crossing. In the second set of
experiments, the scalability is demonstrated by adding an extra point of interest, which is
detected during runtime. Whereas in these experiments, for demonstration reasons the
robot was not moving, in the last set of experiments, the functionality is demonstrated with
a moving robot.

4.1. Experiment 1: Single Crossing

In the first experiment, the intention estimation algorithm is demonstrated and ana-
lyzed on a single crossing, which the robot is supposed to cross. A few cases are demon-
strated in detail, followed by a set of tests with various persons. The hallway considered
in this experiment is visualized in Figure 4. A coarse discretization of the hallway is per-
formed to distinguish different navigational goals for a human as displayed in Figure 4a,b.
Five possible navigational goals are identified: the robot itself, door B, corridors A and C,
and corridor D, which is reachable via the left side Dl or right side Dr of the robot area D f .
The dashed lines indicate the boundaries of the areas.

4.1.1. Experiment 1.1: Human Passing a Robot

The experiment consists of validating the hypothesis that a human walks from corridor
C, taking a left on the crossing, passing the robot on the left side Dl towards corridor D.
The visualization of this hypothesis is shown in Figure 5 at two different moments. In the
figure, the walls, the robot reserved area and both the position and velocity estimate of
the person are indicated. Green lines indicate the different hypotheses. A brighter green
line indicates a higher certainty associated to that hypothesis. Streamlines, indicating the
expected movement-directions according to the hypothesis, are visualized with blue lines
and constrained by their area boundaries by means of the walls, the robot and the transition
between areas. For visualization purposes, the streamlines are determined for the entire
area, but in practice, given a position estimate of a person, the expected movement is
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determined at the specific position only. The direction of the streamlines is compared to
the observed direction to quantify the progression according to (3). The figure shows that
the model predicts, with a significant probability, that the person will pass the robot on its
right side as the green line corresponding to area Dr is significantly more bright. As there
is still a reasonable probability of the person moving towards the robot when considering a
navigational task of the robot, this risk can be reduced by the robot by moving towards the
wall opposite to the person.

A

C

B
D

Corridor

Crossing

Reserved Area Robot Walls Areas Boundaries

D′
f

Dr

Dl

Df

(a) Discretization of the experiment-environment into areas.

C

A

BD

(b) Top view of the map of the experiment environment.

(c) Point of view of the robot including an OpenPose detection. The
person face is blurred for publication purposes.

Figure 4. Visualization of the experiment-environment. The detection originates from [29].

B

A

C

Dr

Dl

Df

(a) At the crossing.

B

A

C

Dl

Dr

Df

(b) Just after passing the crossing.

Streamlines
Field

Human with
Velocity Vector

Reserved area
Robot

Area of Interest

Walls

Alternative Area
of Interest (p = 0)

Figure 5. Visualization of the hypothesis where a person coming from corridor C takes a left turn at the crossing to move
via the right side of the robot Dr towards corridor D. The brightness of the area of interest, indicated in green, correlates to
the probability of moving towards this area. A brighter color indicates a higher probability.
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4.1.2. Experiment 1.2: Collision Course

Figure 6 reports on the case in which a person moves towards the robot. The left
side of the figure indicates the division of the environment into areas, the reserved space
of the robot and the estimated trajectory of the person. The hypotheses set consist of the
movements to areas A, B, C and D, a standstill and Undefined Goal. When the person
moves towards the robot, refined hypotheses as to whether the person is passing the robot
on the left, right or a collision are also reported. In this situation, the probability of a person
moving towards area D is formed by the routes which pass the robot on the left or right side,
hence the probability of D equals the sum of the probability of passing the robot on the left
and the right side. On the right side of the figure, the progression of the probability p of the
hypotheses over time t is shown. Note that the route to D consists out of two alternatives,
namely passing the robot via either the left or the right side. Hence, the probability of
a person going into direction D consists out of the sum of the probabilities of these two
alternatives. It is observed that after 0.5 [s] the collision hypothesis is among the most
dominant ones and after about 1.5 [s] it is the dominant one. Given a robot which moves at
average human walking speed of 1.38 [m/s] [33] and considering a robot deceleration of
1.5 [m/s2], this is well in time to bring the robot to a standstill. As the collision hypothesis
is among the dominant ones within the first second, the robot is expected to take this risk
into consideration during its navigation task even before the first second. To gain more
time, the robot shall lower its velocity when facing this situation.

(a) Visualization of the sequence observed. (b) Probabilities of the hypotheses. The probability of D equals the
sum of the probability of passing the robot on the left or right side.

Figure 6. Visualization of the experiment where a person is walking towards the robot.

4.1.3. Experiment 1.3: Standstill

The third set of hypotheses, as shown in Table 1, indicates that a person might be
standing still. This is the case, for example, when the person is doubting about the route to
take. Therefore, this experiment validates the standstill hypothesis. In this experiment, a
person moves towards the crossing, stands still for a bit and then continues their route. The
results are shown in Figure 7. The average computation time to determine the hypothesis
equals 6.8× 10−2 [s]. As can be observed in Figure 7a by the higher density of the human
position indication, the person was standing still more or less at the middle of the crossing.
In the corresponding period, as indicated in Figure 7b, the standstill hypothesis is dominant.
At the transition from walking to a standstill and vice versa, the UG-hypothesis is dominant
for a moment. As a result, some conservatism is required by the robot in these transition
periods as no clear indicators for a specific movement are found. Afterwards the correct
hypothesis of a movement towards the robot becomes dominant.
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(a) Visualization of the sequence observed. (b) Probabilities of the hypotheses. The probability of D equals the
sum of the probability of passing the robot on the left or right side.

Figure 7. Visualization of the experiment where a person enters the crossing, waits for a moment and continues its route in
forward direction.

4.1.4. Experiment 1.4: Indecisive Person

The fourth experiment shows an indecisive person as this person is not instantly
choosing one area over another. This behavior is confirmed in Figure 8 as the UG-hypothesis
is dominant. With such a prediction, caution in the robot navigation is required. In the
intermediate phases, the probabilities of going to either corridor A, C or B increase as the
person initiates a movement in those directions. Due to this movement, the UG hypothesis
decreases. In the transitions, in correspondence with the previous experiment, a settling
time of approximately 1 [s] is observed. For a robot with a navigational task, this is very
useful, as this requests caution when necessary and permits proper progression in the task
where possible.

(a) Visualization of the sequence observed. (b) Probabilities of the hypotheses. The probability of D equals the
sum of the probability of passing the robot on the left or right side.

Figure 8. Visualization of the experiment where a person is searching for its route.

4.1.5. Experiment 1.5: Various Persons

To demonstrate the robustness and confirm the settling time of the proposed method,
the experiment is repeated with 9 separate persons which were asked to move over the
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crossing and randomly choosing a direction. The results are provided in Table 3. In this
table, the routes are indicated by their origin and their destination, the frequency of the
execution of the movement, the average settling time ts of the correct hypothesis between
the first detection and the moment the correct hypothesis is considered as the most likely
one. Further, the percentage of correct estimations is provided.

In total, 35 movements over the crossing were registered with an average settling
time of 0.9 [s]. This is in correspondence with the findings in the previous experiments
and given the reasoning of Section 4.1.2 considered well in time for the robot to make
proper decisions about which route to take. Two out of three times, difficulties were seen
for persons moving from area B to C. Therefore, an experiment in which an incorrect
estimation of the human’s intention was made is visualized in Figure 9. The figure includes
the velocity estimation of the person. Here, it is seen that a significant component of the
velocity estimate is directed towards area D along the trajectory of the person, and as such
the hypotheses towards area D are more likely. Improvements to correctly validate the
corresponding hypothesis are sought in finding out the actual walking patterns of persons,
as apparently persons tend to move more to the right side of the corridor of area C. These
improvements are left for future work.

Table 3. Experimental results when testing on a single crossing as visualized in Figures 6 and 8.

Origin Destination Frequency % Correct ts

A B 1 100 0.3
A C 3 100 0.70667
A Dr 6 100 0.87667
A D f 1 100 2.4
B A 1 100 1.48
B C 3 33.3 0.6
B Dr 4 100 0.75
C A 7 100 0.64714
C B 2 100 0.61
D A 1 100 0.59
D B 3 100 1.3033
D C 3 100 1.6067

4.2. Experiment 2: Online Adaptation

Though a semantic map is assumed to be known a priori, other objects such as a
person or an unmodeled coffee machine could be present and considered as potential
objects of interest. As a result, these objects need to be considered as alternative hypotheses.
To demonstrate the scalability of our approach, compared to the first set of experiments,
an extra person is added to the situation. Whereas the first person P1 in the situation is
standing still, the second person passes the first person and the robot. The situation is
visualized in Figure 10b,c. The corresponding hypotheses for the second person are given
in Figure 10a,d. For the second person, these figures indicate that the first person could be
an object of interest. The corresponding hypothesis is indicated by a straight line towards
the other person. Halfway through the sequence, indicated by the velocity vector, the
probability correctly drops as the first person is (about to be) passed. At the same moment,
the movement to the right of the robot side is correctly validated.
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Figure 9. Situation of Table 3 where a person moves from area B to area C and the hypothesis is not
correctly validated.

4.3. Experiment 3: Dynamic Situation

The final experiment shows a situation where the robot is navigating through the
environment while hypothesizing about the intentions of the person observed. During
the experiments, AMCL [32] was applied to determine the localization and the “tube
navigation algorithm” of [34] provided the navigation. Both could be replaced with other
localization or navigation algorithms. An overview is shown in Figure 11. The environment
and the trajectory applied by both the robot and person are shown in Figure 11c. The
crossings behind A and C as well as the door behind B and stairs behind C determine the
discretization of the map. As the robot needs to be passed by the human towards area A,
three alternatives are foreseen: the robot itself could be a target, or alternatively the robot
could be passed on the left or right. As a result, the latter two passing alternatives lead to
area A. The robot was moving towards area D, while the person was moving towards area
A via the right side. A moment where the hypothesized routing alternatives are visualized
can be observed in Figure 11a.

The evolution of the probabilities in Figure 11d indicate that the probabilities of the
hypothesis where the robot is passed on the right as well as the probability of the hypothesis
where the robot is the target of the person have high probabilities. This is expected because
significant parts of both routing alternatives are similar. Future research could take these
alternatives into account in the navigation of the robot: for the case where the person is
passing the robot, by moving the robot to the side opposite to the side where the person is
passing the risk of occlusions will be reduced. Further, more space is given to the person
passing by, probably making the robot movement more intuitive to the person. Now, as
could be observed in Figure 11b, the space for the person to pass is relatively tight. For the
alternative case where the robot is considered as a goal of the person, the system should
slow down and eventually come to a standstill to prevent collisions.
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(a) Visualization of the hypotheses of the upper per-
son. The other person observed is explicitly taken into
account as a potential object of interest.

Outer Streamlines
Field

Walls

Human with
Velocity Vector

Reserved area
Robot

Area of Interest

(b) Point of view of the robot including the OpenPose detec-
tions. The person face is blurred for publication purposes.

(c) Visualization of the sequence observed. (d) Probabilities of the hypotheses for Person 2. The proba-
bility of D equals the sum of the probability of passing the
robot on the left or right side.

Figure 10. Visualization of the experiment with an a priori unknown object. The detections originate from [29].

(a) Visualization of the routing options considered in the
hypotheses.

Outer Streamlines
Field

Walls

Human with
Velocity Vector

Reserved area
Robot

Area of Interest

Robot Velocity

(b) Point of view of the robot including an OpenPose detec-
tion.

Figure 11. Cont.
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(c) Visualization of the sequence observed. (d) Probabilities of the hypotheses.
Figure 11. Visualization of the experiment with a moving robot and a moving person. The probability of A equals the sum
of the probability of passing the robot on the left or right side. The detection originates from [29].

5. Conclusions & Recommendations

In order to make predictions about human walking intentions in the context of robot
navigation, this work has proposed a model that explicitly addresses expected human
movements as imposed by an indoor environment. Rather than considering the geo-
metric accuracy, it is shown that the model expresses an explicit relationship between
measurements and map elements to provide predictions on a semantic level. As a result,
an explainable model is obtained. By showing how the proposed approach performs in
different scenarios and in real-time (including a moving robot and the online hypotheses
generation based on unmodeled objects observed at runtime), the scalability and applica-
bility to various configurations of the environment is demonstrated. The robustness was
shown with a set of static experiments: 33 out of 35 experiments demonstrated that the
plausible routing alternatives are correctly taken into consideration, and in case of a likely
collision, the right conclusion was drawn well in time to bring the robot to a standstill.

Since the various possible routing directions of a human are related to the environ-
mental map, we argue that the results of our model can be easily integrated in navigation
algorithms. The actual integration of these methods into navigational contexts is considered
as a relevant topic for future work. By having an higher update rate of the person detection
and tracking, faster person movements can be taken into account and a more accurate
estimate of the (orientation of the) person’s motion could be used as an indicator of their
intentions. Attention should be paid to changes of behavior caused by robot–person and
person–person interactions, as it is expected that the motion patterns of persons change
due to these interactions. Furthermore, the cases in the experimental validation where
incorrect conclusions were drawn indicated some situations where people tend to walk
towards the right-hand side of the consecutive corridor. This type of behavior should be
included during future work as well.
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