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Abstract: Background and Objective: The reliability of low-cost mobile systems for recording Elec-
trocardiographic (ECG) data is mostly unknown, posing questions regarding the quality of the
recorded data and the validity of the extracted physiological parameters. The present study com-
pared the BITalino toolkit with an established medical-grade ECG system (BrainAmp-ExG). Methods:
Participants underwent simultaneous ECG recordings with the two instruments while watching
pleasant and unpleasant pictures of the “International Affective Picture System” (IAPS). Common
ECG parameters were extracted and compared between the two systems. The Intraclass Correlation
Coefficients (ICCs) and the Bland–Altman Limits of Agreement (LoA) method served as criteria for
measurement agreement. Results: All but one parameter showed an excellent agreement (>80%)
between both devices in the ICC analysis. No criteria for Bland–Altman LoA and bias were found
in the literature regarding ECG parameters. Conclusion: The results of the ICC and Bland–Altman
methods demonstrate that the BITalino system can be considered as an equivalent recording device
for stationary ECG recordings in psychophysiological experiments.

Keywords: BITalino; BrainAmp; ICC; intraclass correlation coefficient; Bland–Altman method

1. Introduction

In psychophysiological research, Electromyography (EMG), Electrocardiography
(ECG), Electrodermal Activity (EDA) and Electroencephalography (EEG) are common
electrophysiological methods to investigate the relationship between human behavior and
its physiological basis [1,2]. Current instruments are usually stationary, and hence the
transmission of the collected data is done by wire, restricting the movement of partici-
pants. This is especially detrimental when using such systems in conditions that usually
would require movement of participants (e.g., during naturalistic behavior or in virtual
reality). Nowadays, there are multiple wearable recording devices on the market. These
wearables are mobile and most of them can transmit ECG data wirelessly. However, not all
wearables provide access to the data while recording, and they are relatively expensive.
Often, proprietary software is necessary for data recording and export for subsequent anal-
yses, adding additional costs and restrictions for the measurement device. Recently, the
BITalino has been introduced as an inexpensive hardware and software toolkit specifically
designed to deal with the requirements of electrophysiological signal acquisition [3]. The
BITalino device transmits data wirelessly and provides the opportunity to access the data
while recording.

To ensure that the data recorded with new wearables devices is of sufficient quality
to be used in a research context or for non-scientific applications, new devices have to be
verified before using them in psychophysiological experiments. Regarding the BITalino,
only one study by Carreiras et al. [4] exists in which the BITalino was compared with an
established ECG system. However, the main focus of that study was to analyze the mor-
phological similarities between individual heartbeat waveforms and the general similarity
between the synchronized time series. Further, the authors used dry electrodes and the
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electrodes were applied to the hand palms or fingers and thus do not represent standard
ECG electrode placement. In addition, Carreiras et al. [4] did not use time or frequency
domain measures to compare the two devices. While time domain parameters such as heart
rate (HR) and heart rate variability (HRV) are established features that can be computed
effectively from the ECG, the use of frequency domain parameters provides additional
insights into the function of the cardiovascular system [5]. Specifically, the power spec-
trum of HRV allows for conclusions regarding the involvement of the parasympathetic
and sympathetic system in cardiovascular responses. The computation of these features,
however, critically depends on the data quality and data processing pipelines, as missing
or artifactual beats impact the frequency domain significantly [6–8]. The present study thus
used both time and frequency domain parameters to compare the two recording systems
and to provide a systematic analyses of ECG parameters.

While the test for concordance of ECG features recorded with two different recording
devices could be done based on non-specific ECG signals, the present study used an
established psychophysiological protocol to evoke specific ECG activity. We used the
“International Affective Picture System” (IAPS) [9] to provoke pronounced differences in
ECG features in different test blocks to increase variability in the recordings for a later,
more conservative, test for similarity. The IAPS allows for presenting different categories of
emotional stimuli (positive, negative and neutral) that are matched regarding their arousal
and dominance and that have been used in a large number of psychophysiological studies
to evoke different affective responses while controlling for the arousal and dominance
associated with a specific affective state [10].

Therefore, the aim of this study was to compare a medical-grade electrocardiography
(ECG) system with an ECG sensor of the low-cost DiY (Do-it-Yourself) hardware toolkit
BITalino. To evoke clear variation in ECG activity, an experimental protocol inducing
different affective states and associated cardiovascular changes was implemented. Several
established ECG parameters were extracted from both recordings and tested for similarity
between the parameters. Since a statistical test for differences of two or more measures only
provides information about differences between conditions, or, as in our case, between two
measurement devices, the absence of significance in such tests does not provide evidence
for similarity in performance. Correlational measures derived from two different system, in
contrast, explain the strength of the relation between two measures but do not indicate their
agreement [11]. Testing the agreement or similarity between two measures has to be done
using specific statistical approaches that test for the concordance between the measures.
There are several methods to test for the concordance of two or more measure with the
Intraclass Correlation Coefficients (ICCs) and the Bland–Altman Limits of Agreement (LoA)
method representing the most established and tested methods for continuous data with
two or more groups [12].

The present study demonstrates that it is possible to reliably record research-grade
ECG data with a wearable low-cost device. Reliable data acquisition with a system that
does not require proprietary software and can access the recorded data in real time while
providing wireless data transmission provides new opportunities for future mobile ECG in-
vestigations that do not require expensive laboratory equipment and that allow movement
of participants.

The remainder of the work is organized as follows. Section 2 describes the material
and methods. Section 3 provides an overview of the ICC and LoA statistical methods.
Section 4 summarizes the reliability assessment results. Section 5 presents a discussion and
main limitation of the work. Finally, Section 6 outlines the main conclusions and future
work perspectives.

2. Methods
2.1. Participants

Twenty-four participants were recruited through advertisement at the Technical Uni-
versity of Berlin. Only healthy participants without any history of heart disease or pharma-
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cological treatment of heart conditions were accepted. After the recordings, one participant
reported to take medication that influenced cardiovascular parameters, leading to the
exclusion of this participant. Thus, the final sample consisted of 23 participants (12 women,
11 men) with an age range from 22 to 57 (M = 28.3 years, SD = 8.8 years). Participation
was voluntary and participants received course credit. They were told not to consume
any form of caffeine for 2 h before the experiment and not to drink alcohol on the day of
the experiment. They also got a picture with all electrode positions indicated, so that they
could choose appropriate clothing. All subjects gave their consent before being enrolled
in the study. The study was approved by the Ethical Commission of IT—Instituto de
Telecomunicações with the matriculation number TUB-1234567. Participants provided
written informed consent, and the study was conducted in accordance with the Declaration
of Helsinki.

2.1.1. Hardware

The medical-grade ECG module ExG from BrainProducts was used as the standard
ECG system, hereinafter referred to as the BrainAmp-ExG. The BrainAmp-ExG amplifier
is an extension available for simultaneous measurement of EEG and other psychophys-
iological signals such as ECG, EMG and EDA, but it can also be used separately. The
BrainAmp-ExG amplifier has a bandwidth from 0 to 1000 Hz. The BrainAmp system is sep-
arated from the power grid by the use of a power pack. Electrodes from the BrainAmp-ExG
are connected via cables to the amplifier, which is connected to a PC.

As a DiY system, the BITalino version “Plugged BT Kit” was used in the experiment.
It contains a control block and sensors for ECG, EMG and EDA, as well as a photo resistor
(LUX) and an accelerometer (ACC). The BITalino ECG sensor has a bandwidth between
0.5 and 40 Hz. The electrodes of the BITalino are connected to the BITalino ECG module,
which is connected by cable to the BITalino control block. The data can be sent via stan-
dard Bluetooth to a recording device. The recording device can be an Android tablet or
smartphone, as well as a PC.

2.1.2. Software

To allow for a direct comparison of both ECG recordings, the data of the two different
amplifier systems were synchronized using the Lab Streaming Layer (LSL) (Christian Kothe,
https://github.com/sccn/labstreaminglayer). In Figure 1, the general data acquisition
approach is presented. LSL catches data streams in the network, which can be recorded time
synchronously by the Lab Recorder software (a part of the LSL package). For providing
the data streams to the network, applets were used. The ECG signal from the BrainAmp
system is usually recorded with the BrainAmp-Recorder software. An applet for redirecting
the data stream from the BrainAmp-Recorder to the network already exists and is part of
the LSL package. The applet for the BITalino had to be programmed for this study. The
BITalino team provided the BITalino Matlab API, which was added as an official Matlab
toolbox [13]. Using that API, the BITalino stream was forwarded to LSL based on the applet
for Matlab (9.2.0.538062 (R2017a)).

When different streams are available in the local network, the Lab Recorder detects
them and records all selected streams. The Lab Recorder saves the data streams to one file
in the open source “extensible data format” (.xdf). XDF is “a general purpose container
format for multi-channel time series data with extensive associated meta information. XDF
is tailored towards biosignal data such as EEG, EMG, EOG, ECG, GSR, MEG . . . ” [14].

https://github.com/sccn/labstreaminglayer
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Figure 1. The left side of the image shows the adopted placement of electrodes. The BITalino leads are depicted in red and
the BrainAmp leads in blue: −, below right clavicular; +, left side of chest midclavicular line beneath last rib; G, below left
clavicular. The right side of the image shows the data acquisition workflow used for recording.

2.1.3. ECG Electrode Placement and Recording

A variation of Einthoven lead II was selected for the experiment, referred to as “al-
ternative leads”. To allow recordings of the ECG signal concurrently with two devices,
electrodes were placed according to the schema presented in Figure 1.

Because ECG is a fast changing signal, a high sampling rate was used. While for the
BrainAmp system it is possible to variably set different filters, the filters on the BITalino
system are fixed. The BITalino allows data acquisition at sampling rates of 10, 100 and
1000 Hz, and, consequently, a sampling rate of 1000 Hz was selected for both ECG systems,
resulting in one sample per millisecond. In addition, to reduce artifacts in the recordings,
high- and low-pass filters were used according to the options available in the two amplifier
systems. All settings are listed in Table 1.

Table 1. Hardware filtering specifications and settings used in the experiment. * Note that
0.016 Hz = time constant of 10 s ( f = 1

2πc , with f the frequency and c a time constant).

BrainAmp BITalino

high-pass filter 0.016 Hz * 0.5 Hz
low-pass filter 250 Hz 40 Hz
sampling rate 1000 Hz 1000 Hz

2.2. Materials
Stimuli (IAPS)

The result of this study aimed at establishing whether ECG data recorded with the
BITalino system are comparable to an established medical-grade ECG system used in
psychophysiological research. To this end, an established psychophysiological paradigm
to evoke affective responses that are associated with changes in heart rate was used.
Brouwer et al. [15] (p. 3) noted in their study that “most perception studies show va-
lence rather than arousal effects, where pleasant stimuli correlate with higher heart rate
acceleration than unpleasant stimuli [16–22]”.

We used IAPS pictures to induce two emotional states, pleasant and unpleasant. For
the pleasant conditions, pictures with medium arousal ratings were selected, while, for
the unpleasant condition, pictures with medium to high arousal ratings were chosen. If
the data quality of both the BrainAmp-ExG and the BITalino ECG is comparable, changes
in HR dependent on the emotional picture condition should reveal similar values for
both systems.
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2.3. Procedure

Participants were seated in front of a monitor with a distance of approximately 50 cm
to the screen. They were instructed to sit still for the time of the experimental task, which
took 35 min on average. Stimuli were presented in four blocks (two blocks with pictures
of the unpleasant and 2 blocks with pictures of the pleasant condition), consisting of
60 pictures each (Figure 2A). The order of blocks was counterbalanced across participants.

Each picture was presented for 4 s and stimulus presentations was separated by a
fixation cross with 1 s duration (Figure 2B). After a block of 60 pictures, participants were
asked to rate valence and arousal of the entire block on a 10-point scale from 0 to 9, with
9 indicating the highest arousal or valence, respectively. Before and after two blocks, a
5 min baseline block consisting of a gray fixation cross on black background was added.
To control the potential impact of the picture order, pictures were randomly selected from
the pool of pictures for each condition and blocks with pleasant and unpleasant pictures
were counterbalanced across participants.

After participants were prepared and electrodes were attached, a first baseline block
was used for acclimatization. The second baseline block was introduced in the middle
of the experiment to recover to the resting heart rate before the last two experimental
blocks were presented. After all blocks with picture presentations, a third and final baseline
block followed.

Figure 2. Block diagram of the experimental protocol and analyses pipeline, depicting the stimuli
blocks (A), the fixation cross and picture presentation (B), and the overall processing pipeline (C).

2.4. Data Analysis
2.4.1. Data Processing

Data processing was done in Matlab version 9.2.0.538062 (R2017a) with the use of
ECG tool, Matlab-based software developed in-house. The ECG tool offers the option to
load .xdf-files. As a result of LSL, both signals were combined with markers in an .xdf-file.
Streaming the BITalino data to LSL, after receiving them via Bluetooth from the BITalino
devices, had never been tested before. Therefore, visual inspection was done by plotting
both signals of one participant in one graph. The overall processing pipeline is depicted in
Figure 2C. Due to temporal incongruity of both graphs, alignment was done before data
processing. To this end, R-peaks were identified and exported with the corresponding
timestamp for each participant. A window of 201 ms (100 before the R-peak and 100 after
the R-peak) was searched to find the timestamp of the corresponding R-peak of the other
system. This comparison resulted in differences with a mean difference per participant
varying from 19 to 28 ms. The signals were re-synchronized using the mean difference for
each participant.

After alignment, the signals from both devices were filtered with a third-order high-
pass Butterworth filter at 1 Hz and a third-order low-pass filter at 40 Hz. Then, artifacts
were manually identified and subsequently interpolated. For automated R-peak detection
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and to avoid false positives as far as possible, the allowed number of beats per minute
(bpm) was set to range between 40 and 125 bpm. After automated R-peak detection,
false R-peaks were marked and rejected and, in the case of missing peaks, the data were
interpolated based on the mean peak interval 5 periods before the missing R-peak.

2.4.2. Dependent Variables

According to the Task Force of the European Society of Cardiology and others [23],
we computed selected heart rate variability measurements that can be used for short-
term analysis. The aim of the study was to determine whether the BITalino can be used
in psychophysiological experiments and, as such, measures were selected which were
used in previous experiments. According to Gramann and Schandry [24], the number of
heartbeats per minute (designated as heart rate (HR)) is still the most common indicator
in psychophysiology to measure cardiovascular events. Heart rate changes accompany
almost every change of physical and mental load.

In addition to heart rate measures, measures of heart rate variability were used. For
short-term HRV time domain measures, the ref. [23] recommends using RMSSD as an
estimate of the short-term components of HRV, which is often used in psychophysiological
research. Brouwer et al. [15] also used RMSSD as an estimate for HRV in their study.

In the frequency domain, the ref. [23] recommends three main spectral components
for short-term analyses: the very low-frequency (VLF), the low-frequency (LF) and the
high-frequency (HF) components. According to the [23] “the distribution of the power and
the central frequency of LF and HF are not fixed but may vary in relation to changes in
automatic modulations of the heart period . . . ”. The LF component reflects parasympathetic
innervation, whereas HF reflects sympathetic and parasympathetic innervation. In addition
to this, the ratio between LF and HF (LF/HF) is an indicator of ANS balance. We did not
analyze the VLF component as it is not as well defined as the other parameters according
to the [23]. In this study, LF, HF and LF/HF ratio were used to investigate whether both
systems recorded comparable signals in the experiment.

We expected to see increased HR in blocks with pleasant stimuli as compared to
unpleasant stimuli while no directed hypothesis were put forward regarding HRV due to
inconsistent results in the literature [16–22,25–28]. While these results would confirm the
general validity of our experimental manipulation, the main research question concerned
the comparability of the features as measured with the two different ECG systems.

A summary of all measures used in this study can be seen in Table 2.

Table 2. Dependent variables.

HR Measures HR Heart Rate [bpm]

root mean
time domain RMSSD square of [ms]

successive differences
HRV measures LF low frequency

frequency domain HF high frequency [ms2]
LF/HF ratio between LF and HF

3. Statistical Methods

To investigate whether the BITalino system allows for recordings of comparable
quality as the established ECG recordings with the BrainAmp system, two methods were
used: the Intraclass Correlation Coefficient (ICC) and Bland–Altman Limits of Agreement
(LoA) method.

3.1. Intraclass Correlation Coefficient (ICC)

According to Müller and Büttner [29] (p. 2465), ICCs are used in medicine to “assess
agreement of quantitative measurements in the sense of consistency and conformity”. The
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ICC ranges, similar to other correlation coefficients, from 0.00 to 1.00 and is presented in
this work as a percentage.

ICCs above 80% are usually regarded as indicating good to excellent reliability,
whereas an ICC between 0.6 and 0.8 (60% and 80%) may be taken to represent substantial
reliability [30]. Portney and Watkins [31] indicated that clinical measurements should show
reliability of at least 90%. In addition to the ICC, the lower 95% confidence interval (lower
CI) of the ICC can be calculated. Lee et al. [32] reported that an agreement sufficient for
the interchangeable use of two methods is suggested only when a lower CI value of >75%
is observed.

In this study, the ICC form for two-way mixed-effects using single measurements
was used to investigate the absolute agreement defined by McGraw and Wong [33]. This
approach is mathematically identical to ICC (2,1), as defined by Shrout and Fleiss [34].

3.2. Bland–Altman Limits of Agreement (Loa) Method

“The limits of agreement (LoA) method (Altman and Bland [35]; Bland and Altman [11])
for assessing the agreement between two methods of medical measurement is widely
used (Bland and Altman [36], Ryan and Woodall [37])” [38] (p. 571).The Bland–Altman
method obtains “the differences between measurements by the two methods for each
individual” [38] (p. 571) and calculates “the mean and standard deviation” [38] (p. 571).
In [38], the authors proposed methods for analyzing repeated data. The LoA were calcu-
lated according to the formulas presented in [38].

4. Results
4.1. Descriptive Results

The HR and HRV parameters in the time and frequency domain revealed only min-
imal differences in all selected parameters between the two recording devices (Table 3).
Moreover, the extracted parameters from both systems during the baseline and the IPAS
conditions showed only small differences overall. During blocks with unpleasant stimuli,
the heart was lowest for unpleasant followed by pleasant and lastly the baseline blocks.
For the RMSSD measures, the lowest HRV was observed during pleasant blocks, followed
by unpleasant and baseline blocks. A similar pattern was observed for the ratio LF/HF.

Table 3. Descriptive results.

BITalino BrainAmp BITalino BrainAmp
Mean Mean SD SD

HR
Fixation Cross 73.065 73.025 10.190 10.205

Pleasant 72.624 72.625 10.274 10.276
Unpleasant 71.515 71.504 9.379 9.381

RMSSD
Fixation Cross 0.045 0.045 0.025 0.025

Pleasant 0.043 0.043 0.025 0.025
Unpleasant 0.044 0.044 0.023 0.022

ratio LF/HF
Fixation Cross 3.109 2.973 3.970 3.797

Pleasant 2.993 2.988 4.220 4.204
Unpleasant 3.081 3.078 4.889 4.875

4.2. ANOVA

A 2 × 3 analysis of variance with two levels of the factor “device” (BrainAmp, BITal-
ino) and three levels of the factor “condition” (Baseline (Fixation Cross), pleasant IAPS,
unpleasant IAPS) was calculated for all dependent variables. For this analysis, the first
fixation block was excluded as it was for acclimatization. Thus, the mean for the factor
condition was built of two blocks each. There was a significant main effect of the factor
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“condition” for HR (F (1.486, 32.685) = 4.694, p = 0.025), as shown in Table 4. For RMSSD,
LF, HF and LF/HF ratio, the main effect of condition was not significant and there was no
interaction effect for “condition × device” for any dependent variable.

Table 4. Results of 2 × 3 ANOVA for the factor “condition” all dependent variables.

Dependent Variable Main Factor “Condition”

HR F(1.486, 32.685) = 4.694 * p = 0.025 *
RMSSD F(2, 44) = 0.567 p = 0.571
HRV LF F(1.200, 26.408) = 6.204 * p = 0.15 *
HRV HF F(1, 44) = 0.127 p = 0.881

HRV LF/HF F(1.454, 31.997) = 0.910 * p = 0.384 *
* Greenhouse–Geisser corrected.

A post hoc pairwise comparison with Bonferroni correction was done for heart rate
with an alpha value of 0.05. None of the pairwise comparisons was significant.

4.3. Intraclass Correlation Coefficient

The ICCs and the lower CIs were calculated for all dependent variables over all blocks
and, in addition, for each block separately. To gain good to excellent agreement of both
devices, the ICC should be higher than 90% for clinical measurements [31] and the lower
CI should be higher than 75% for the interchangeable use of two methods [32]. The ICC
estimates over all blocks for all dependent variables were over 90% and the lower CIs were
over 75% (Tables 5 and 6). Therefore, all dependent variables met the criterion for good
to excellent agreement. For each block separately, the ICC estimates were over 90% and
the lower CIs were over 75% for all blocks and dependent variables, except for the LF/HF
ratio in the second fixation cross (Block 4) (Tables 5 and 6).

Table 5. ICC in percent for each block and dependent variable.

Overall B1 B2 B3 B4 B5 B6 B7
Fix 1 P 1 UP 1 Fix 2 P 2 UP 2 Fix 3

HR 100.0% 100.0% 100.0% 100.0% 99.9% 100.0% 100.0% 100.0%
RMSSD 99.6% 99.9% 100.0% 100.0% 97.4% 99.8% 100.0% 100.0%
HRV LF 100.0% 100.0% 100.0% 100.0% 99.9% 100.0% 100.0% 100.0%
HRV HF 99.6% 99.9% 99.8% 100.0% 97.3% 99.9% 100.0% 99.9%

HRV LF/HF 98.8% 100.0% 100.0% 100.0% 83.6% 100.0% 100.0% 99.8%
B1–B7, block number; Fix, fixation cross; P, pleasant IAPS; UP, unpleasant IAPS.

Table 6. Lower CI in percent for each block and dependent variable.

Overall B1 B2 B3 B4 B5 B6 B7
Fix 1 P 1 UP 1 Fix 2 P 2 UP 2 Fix 3

HR 100.0% 100.0% 100.0% 100.0% 99.8% 100.0% 100.0% 100.0%
RMSSD 99.4% 99.8% 100.0% 100.0% 94.0% 99.6% 100.0% 99.8%
HRV LF 99.9% 99.9% 100.0% 100.0% 99.8% 100.0% 100.0% 100.0%
HRV HF 99.4% 99.8% 100.0% 100.0% 93.8% 99.7% 100.0% 99.9%

HRV LF/HF 98.4% 99.9% 100.0% 100.0% 65.6% 100.0% 100.0% 99.6%
B1–B7, block number; Fix, fixation cross; P, pleasant IAPS; UP, unpleasant IAPS.

4.4. Bland–Altman Method

An assumption for calculating Bland–Altman bias and limits of agreement is that
the difference between both devices are normally distributed. A Shapiro–Wilk test [39]
revealed that the data were not normally distributed. Bland and Altman [40] recommended
a logarithmic transformation of differences in that case, which also revealed non-normal
distribution of the transformed data. Quantile-Quantile plots (Q-Q plots) of the difference
between data of the two devices were made to detect the problem on normality tests. The
Q-Q plot for the difference of low-frequency measures is shown in Figure 3.
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Figure 3. Q-Q plot of differences between the BrainAmp and the BITalino for LF.

In the Q-Q plot, it can be seen that there were several outliers, which may have
negatively affected the results of the normality test. Therefore, outliers were excluded
and tested again for normality. In some measurements, more than half of the data points
had to be excluded to reach normal distribution. However, this heavy reduction of data
points may distort the results. According to Bland and Altman [40] (p. 139), a non-normal
distribution of the differences values may not be a comparably serious issue for the Bland–
Altman method as compared to other statistical tests. Non-normal distributed differences
will lead to more conservative results than normally distributed differences. For this
reason, the non-normal distributed data were used for Bland–Altman analysis even though
the normality assumption was violated. The results of the Bland–Altman analysis for
non-normal distributed differences are presented in Table 7.

Table 7. Results of Bland–Altman absolute bias and absolute limits of agreement (LoA) for all
dependent variables.

LoA
Measure Bias Lower LoA - Upper LoA Outlier (in %)

HR −0.01990803 −0.33662671 - 0.29681066 4.83%
RMSSD 0.00003761 −0.00439510 - 0.00447032 3.22%
HRV LF −0.00000880 −0.00011612 - 0.00009852 4.83%
HRV HF 0.00000290 −0.00019657 - 0.00020236 4.83%
HRV LF/HF −0.06054003 −1.32977327 - 1.20869321 3.22%

The bias was close to 0 and limits of agreements were quite narrow for all dependent
variables. Different results for low and high frequency were found, which may influence
the result of the LF/HF ratio negatively. Next, percentages of differences lying outside
the LoA were calculated for all dependent variables, as Weippert et al. [41] did in their
analysis. The results are presented in Table 7. The percentage of outliers was lower than 5%
for all measures. Therefore, more than 95% of differences between the two devices were
observed within the limits of agreement. Although the results of Bland–Altmam bias and
limits of agreement were quite different, they revealed the same percentage of differences
lying outside the limits of agreement.

Visual Inspection of Bland–Altman Plots

Bland and Altman [40] suggested “to plot the difference between the measurements
by the two methods for each subject against their mean” (p.140). This kind of plot allows
for investigating possible relationships between the discrepancies and the true value. In
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contrast to R-peak analysis, the extracted parameters in the current study were mean
values built over a period of time (here over one block). Thus, only seven measures by
the two methods were available for each subject. Due to this small amount of measures
per subject, Bland–Altman plots of all subjects were created [41]. Percentage of differences
lying outside the LoA was under 5% for each measure, therefore the y-axes of the plots
were restricted to the LoA.

The results for Heart Rate (HR) show a bias of −0.01991 bpm and LoA were at
±0.31672 bpm. Therefore, the BITalino yields on average 0.01991 bpm higher values than
the BrainAmp-ExG, and the BITalino may yield between ±0.31672 bpm compared to the
BrainAmp-ExG. The Bland–Altman plot for HR can be seen in Figure 4.

Due to some extreme data points below 0, the bias was probably shifted away from 0
to negative. The distribution of data points with the bias of −0.01991 bpm showed that the
BrainAmp was consistently higher than the BITalino for most of the data points.
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Figure 4. Bland–Altman plot of heart rate. (Some data points outside the LoA are cutoff to offer a
more detailed view of the distribution inside the LoA.)

RMSSD. The bias for RMSSD of the complete dataset was at 0.00004 ms and limits of
agreement were at ±0.00443 ms. Thus, the BITalino yielded on average 0.00004 ms lower
values than the the BrainAmp-ExG, and the BITalino may yield ±0.00443 ms compared to
the BrainAmp system. The Bland–Altman plot for RMSSD can be seen in Figure 5.

The distribution of the data showed that most of the data points were near the bias,
but that there was a tendency for values of the BrainAmp-ExG to be slightly smaller than
the values of the BITalino. Again, limits of agreement were quite narrow despite some
extreme values (data points below −0.00075 ms and data points above 0.003 ms).

Low and high frequency. The bias for LF was at −0.0088 ms2 and limits of agreement
were at ±0.10732 ms2. Thus, the BITalino yields on average 0.0088 ms2 higher values than
the BrainAmp, and the BITalino may yield ±0.10732 ms2 compared to the BrainAmp.

The bias for HF was at 0.0029 ms2 and limits of agreement were at ±0.19946 ms2 .
Thus, the BITalino yields on average 0.0029 ms2 higher values than the BrainAmp, and the
BITalino may yield ±0.199 ms2 compared to the BrainAmp.
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Figure 5. Bland–Altman plot of RMSSD. (Some data points outside the LoA are cutoff to offer a more
detailed view of the distribution inside the LoA).

The Bland–Altman plot of high- and low-frequency components of HRV are shown in
Figures 6 and 7. In the Bland–Altman plot of the low-frequency component (Figure 6), it
can be seen that there were several data points above the bias and a few below the bias.
The data points below may have influenced the results of bias and LoA negatively. They
may result from interpolated artifacts, which occurred only in one of the systems.

A similar distribution of differences was found for the high-frequency component of
HRV (Figure 7). For HF, the bias was positive and most of the data points were below the
bias. For both frequency components, there was an increased variability of small values.
This may indicate that there is less reliability at small values.
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Figure 6. Bland–Altman plot of LF. (Some data points outside the LoA are cutoff to offer a more
detailed view of the distribution inside the LoA.)
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Figure 7. Bland–Altman plot of HF. (Some data points outside the LoA are cutoff to offer a more
detailed view of the distribution inside the LoA.)

LF/HF ratio. The bias for LF/HF was at −0.06054 and limits of agreement were
±1.26923, which was the largest bias and widest LoA of all measures. Therefore, the
Bland–Altman plot was inspected for LF/HF ratio too (Figure 8).
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Figure 8. Bland–Altman plot of LF/HF ratio. (Some data points out- side the LoA are cutoff to offer
a more detailed view of the distribution inside the LoA.)

Although all the parameters have different measurement scales, differences between
measurement devices should always be close to 0. Therefore, a comparison of limits
of agreement between measurements can be done. For the LF/HF ratio, the limits of
agreement were 6 times larger than for the HF and 11 times larger than for the LF. Due to
the fact that the ratio is built by both components, artifacts may influence the LF/HF ratio
even more than both frequency components separately. One extreme difference of −8 (this
point is not shown in the graph) may be the result of artifact interpolation in one of the
measurements. Both frequency components showed agreement between the measurement
devices. However, these different results may indicate that there is probably no or little
agreement for the ratio of LF and HF.
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5. Discussion
5.1. Overall ICC and Bland–Altman Method

All blocks were used in the overall ICC and Bland–Altman analysis. The results reveal
that all measures show good to excellent agreement with the ICC method when using the
criterion for clinical measurements (ICC > 90%). This result is consistent with the result of
the study by Sandercock et al. [42], who found good to excellent agreement for all measures
(LF, LF(nu), HF, HF(nu), LF:HF, RMSSD, SDNN and Mean R- R) when comparing different
devices. They also used the Bland–Altman method in addition to the ICC.

In contrast to the ICC, Sandercock et al. [42] found no acceptable agreement be-
tween three instruments in the Bland–Altman analysis. They found one acceptable Bland–
Altman result for the high frequency band of the HRV in one condition for two of the
three instruments. They found a bias of −1 ms and a LoA of ±264.6 ms. In contrast to
Sandercock et al. [42], the present study analyzed high and low frequency measures of
HRV in ms2 and not in ms.

The results of the analyses demonstrate a bias for the high-frequency components of
the HRV with 0.0029 ms2 and LoA at ±0.19946 ms2 . Similar results were found for the
low-frequency component of HRV with a bias of −0.0088 ms2 and a LoA of ±0.10732 ms2.
Based on the results and comparison with previous studies, it can be concluded that
the low- and high-frequency components of HRV measured with the BITalino and the
BrainAmpp-ExG showed a high level of agreement between the two systems.

In addition, the limits of agreement were more conservative for these non-normally
distributed differences than for normally distributed differences.

5.2. ICC for Each Block

All measures showed a good to excellent agreement in all blocks except the ratio of
LF/HF in the second baseline block (Block 4). The second unpleasant IAPS block (Block 3)
and the second baseline block (Block 4) each contained more than 40 a of artifacts only
in the BrainAmp recordings. However, the LF/HF showed 100% agreement in Block 3
but only 83.6% in Block 4. This might indicate that there was no evidence of artifact
interpolation to influence the result of the ICC. The poor agreement of the LF/HF ratio in
the second baseline block (Block 4) may be the result of movement, as participants had
to sit still already for 15 min when beginning with the fourth block. Due to the fact that
Bland–Altman uses all blocks as repeated measurements, the poor agreement for Block 4
may explain the wider limits of the LF/HF ratio in Bland–Altman analysis.

5.3. Conclusion of Method Comparison

As mentioned above, ICC and Bland–Altman analysis as clinical measurements are
discussed controversially in the literature. Most of the researched studies investigating ECG
comparisons [42,43] used both methods. In the case of Bland–Altman analyses, calculations
depended on the design of the study. In the present study, measures of different blocks
were used as repeated measurements. None of the referenced comparison studies described
which Bland–Altman calculation was used. In addition, criteria for accepting both devices
as interchangeable were not mentioned in these studies. For the ICC method, criteria were
defined and therefore the interpretation of the results shows higher validity as compared
to the Bland–Altman analysis.

Evaluating both methods and comparing their results, as well as inspecting Bland–
Altman plots, allowed for an objective conclusion about the agreement of measures based
on the two systems. Unfortunately, there are no guidelines for a Bland–Altman plot
inspection. As demonstrated for the heart rate measure, scaling of the y-axis may mislead
the interpretation of the distribution of differences. Furthermore, in the current study,
the differences of all measures were not normally distributed, nor were the logarithmic
transformed differences normally distributed. Nevertheless, Bland–Altman analysis was
computed for the non logarithmic transformed and non-normal distributed data, violating
the assumptions of distribution values bias and LoA.
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ICC showed good to excellent agreement, Bland–Altman bias was small and LoA
were narrow for almost all variables. The bigger bias and LoA for LF/HF may be explained
by the influence of artifacts on one of the devices. If there is a big difference in LF and a
small difference in HF, the ratio will be large and vice versa. However, taking all results,
the data provide good evidence that both instruments showed very good agreement and
can be used in further experiments interchangeably.

5.4. Limitation of Comparison Methods in the Current Study

The study was carried out with a sample composed of healthy participants, spanning
an age range between 22 and 57 years old. To further encompass the variance that studies
in psychophysiology require, future work should be developed focusing on replicating the
current study for other sample profiles. Nevertheless, the critical comparison of the two
systems was a within-subject design that should not be influenced by a restricted sample
profile. The current study is in line with the state-of-the-art, in terms of sample size, and
demonstrates the validity of the low-cost system under analysis for the sample enrolled in
the study.

Integrating the BITalino stream via LSL required the use of an applet. In the current
study, signals of both systems were not aligned. The validity of synchronously acquired
data was already demonstrated by da Silva et al. [44]. This non-constant difference between
R-peaks of both devices may arise from the working memory load of the Matlab-applet
receiving data from the BITalino and forwarding it as a data stream over the network to
LSL. The applet for receiving and forwarding the signal from the BITalino to LSL may
be implemented in another programming language for future experiments to avoid this
non-constant shift.

Furthermore, the BrainAmp ECG was used in comparison as the standard method.
However, 93.52% of artifacts were found in the signals of the BrainAmp ECG. Different
leads were used for the BrainAmp and the BITalino, because of the different connection
of the leads to the specific system. The BrainAmp leads had been used very often before
this experiment which might may have caused some material degradation and, as a
consequence, worse signal quality as compared to the new BITalino sensors. Therefore,
the BrainAmp-ExG leads had a higher sensitivity to movements and resulting movement
artifacts. In the pretests before the experiments, both devices showed no artifacts and
therefore the same leads were used in the experiment.

6. Conclusions and Future Work

Due to the comparison results of ICC and the Bland–Altman method, the BITalino
can be considered as an equivalent recording device for stationary ECG recordings in
psychophysiological experiments. The applet to stream the data will be implemented in
another programming language and will be tested for future experiments. A new version
of the BITalino called “(r)evolution” was introduced in the middle of 2017. Cable plugs
were improved (from Molex Sherlock connectors to USB-like UC-E6 connectors); WiFi
and BLE (Bluetooth Low Energy or Bluetooth 4.0) were added as technologies for data
transmission; and new sensors were introduced. The first BITalino used Molex Sherlock
connectors for the electrode leads, which was highly sensitive to cable movement. This
may be fixed with the new UC-E6 plugs. The connectivity for data transmission was
limited to Bluetooth 2.0. With the new version of BITalino, data can also be sent via BLE or
WiFi, which can be advantageous in several use cases. This may fix some of the problems
associated with receiving data from the BITalino in the current study. The improvements
of the new BITalino (r)evolution and the sensors will be tested in further experiments,
following the procedure of the current study. Overall, the results of the present study
demonstrate good agreement between an inexpensive DiY system and an established
medical grade ECG system. This provides a basis for the BITalino to be used for research in
the lab and due to its portability, potentially mobile ECG system outside the lab.
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Abbreviations
The following abbreviations are used in this manuscript:

ACC accelerometer
ANS autonomic nervous system
API application programming interface
BLE Bluetooth Low Energy/Bluetooth 4.0
Bpm/bpm beats per minute
CI confidence interval
DiY do-it-yourself
ECG electrocardiography
EDA electrodermal activity
EEG electroencephalography
EMG electromyography
EOG electrooculography
GSR galvanic skin response
HF High Frequency
HF(nu) High Frequency normalized unit
HR Heart Rate
HRV heart rate variability
Hz Hertz
IAPS International Affective Picture System
ICC Intraclass Correlation Coefficient
LF Low Frequency
LF(nu) Low Frequency normalized unit
LF/HF ratio between low frequency and high frequency
LoA Limits of Agreement
LSL Lab Streaming Layer
LUX photo transistor
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MEG magnetoencephalography
Q-Q plot quantile-quantile plot
RMSSD Root Mean Square of Successive Differences
SDNN Standard deviation of the NN (R-R) intervals
USB Universal Serial Bus
VLF very low frequency
XDF extensible data format
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