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Abstract: In this study, based on multi-access edge computing (MEC), we provided the possibility
of cooperating manufacturing processes. We tried to solve the job shop scheduling problem by
applying DQN (deep Q-network), a reinforcement learning model, to this method. Here, to alleviate
the overload of computing resources, an efficient DQN was used for the experiments using transfer
learning data. Additionally, we conducted scheduling studies in the edge computing ecosystem of
our manufacturing processes without the help of cloud centers. Cloud computing, an environment
in which scheduling processing is performed, has issues sensitive to the manufacturing process in
general, such as security issues and communication delay time, and research is being conducted
in various fields, such as the introduction of an edge computing system that can replace them. We
proposed a method of independently performing scheduling at the edge of the network through
cooperative scheduling between edge devices within a multi-access edge computing structure. The
proposed framework was evaluated, analyzed, and compared with existing frameworks in terms of
providing solutions and services.

Keywords: manufacturing process; cooperative scheduling system; job shop scheduling problem;
deep Q-network; multi-access edge computing

1. Introduction

Owing to the smartly changing development of the manufacturing process, the prob-
lem of efficiently handling more complex scheduling problems within the network of
complex industrial sites with diversified manufacturing equipment has emerged. The job
shop scheduling problem (JSP) is an NP-hard problem that requires complex job processing,
which occurs in several applications [1]. Usually, to solve the scheduling problem, the
manufacturing process selects and uses one of the dispatching rules (e.g., FIFO, LPT, SPT,
etc.) [2]. To complement this complex process, it utilizes a local network and places a central
cloud center in the factory to schedule high-volume manufacturing logistics operations.
However, this may cause communication delay and latency, and if all data are centrally
concentrated and a problem occurs in the cloud center and network, there is a limit that
may pose a security risk. As the performance of mobile and Internet of Things (IoT) de-
vices improves, it is possible to share work processing with the cloud center, and edge
computing has attracted attention in various fields as an alternative to solve the problems
of the existing central cloud method [3].

As artificial intelligence technology is gaining attention [4], previous studies have
applied deep learning, machine learning, and reinforcement learning to the scheduling of
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congested tasks performed in industry. In particular, reinforcement learning has positive
results in efficiently finding high-quality solutions to scheduling problems [5]. With
the recent development of neural networks and reinforcement learning (RL) technology,
various complex problems have been successfully solved by the deep-Q network (DQN),
which combines deep learning (DL) and RL [6,7] and has been successfully used in the
manufacturing industry [8].

A typical smart factory manufacturing industry attempts to handle scheduling in a
cloud-based system. Owing to the excellent processing power of the cloud center and
greater transmission speed of the network, the cloud server is stable as it handles scheduling
using the latest high-performance artificial intelligence technology to handle scheduling.
However, as the size of the workplace grows and the amount of data transmitted and
processed grows exponentially, cloud computing environments are inefficient at processing
all the data rapidly [9]. That edge computing environment is used as an alternative to cloud
computing. A study for solving the JSP in a smart factory framework was conducted [10].
In this study, a method for solving the JSP using DQN in an edge computing framework
ecosystem was proposed. Scheduling in an edge-computing-based environment is said to
be better than processing all data at once in a traditional cloud center [11].

However, in the architecture proposed in this study, not all scheduling was performed
at the edge device. When a machine’s dispatching rule is set based on the result of the
neural network output layer of the cloud center, the edge device determines the scheduling
of each machine according to the proposed dispatching rule and production information.
In this way, the data processing area of the cloud center is allocated to the edge device;
hence, data transfer between the edge device at the edge of the network and the cloud
center is required. Finally, when the amount of data increases, there exists a natural delay
and network security issues. Therefore, this paper proposed an architecture that performs
all scheduling tasks at the edge of the network with DQN, playing the role of network
monitoring and security, as well as orchestration and computing resource management at
the cloud center [12].

This paper is an extension of our previous work [12], and the ultimate goal was to
solve the JSP as a cooperative system rather than a single central computer. To solve this
problem, we first adopted DQN and subdivided the processing area in the structure of the
algorithm. Furthermore, through transfer learning, we wanted to improve the performance
and help the cooperative work of the proposed architecture.

Recently, DQN, which combines deep learning and reinforcement learning, showed
strong computational ability suitable for solving complex problems compared to other
reinforcement learning methods. In addition, the execution of work on the edge device has
low latency and improved security, and it is located at the shortest distance from the process
machine at the edge of the network to speed up processing. Therefore, although an attempt
was made to solve the scheduling problem using DQN in an edge-computing-based smart
factory framework, there may be limitations in terms of performance to handle all tasks in
an edge device. Therefore, we proposed a method of applying MEC to the smart factory
architecture to perform high-performance DQN tasks at the edge of the network. Research
on the application of MEC in a smart factory environment has not been actively conducted.
MEC is a networking application and edge service based on intelligent interactions at
the edge of the network. MEC has the advantages of low latency, high bandwidth, and
a light network [13]. In MEC, we proposed an architecture that optimizes the learning
speed and resource consumption by applying transfer learning to the DQN. In conclusion,
after constructing the cooperative MEC ecosystem, we tried to find a new problem-solving
approach by using the JSP as a sample based on DQN.

In this paper, we made the following contributions:

• As we investigated, there was no work performed with JSPs in the smart factory
framework of the MEC ecosystem. This paper provided an ecosystem architecture of
a smart manufacturing plant based on a collaborative edge computing framework.
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In addition, we proposed a cooperative computing method applicable to various
manufacturing processes and smart factory operations;

• We adopted the DQN method to solve the JSP of a smart manufacturing plant. In order
to determine the dispatch rules for all edge devices in the MEC-based cooperative
edge computing framework, this white paper adapted the DQN to make multiple
decisions to suit the requirements of the problem in question;

• We conducted comparative studies on cloud computing, a cloud–edge hybrid, and
MEC. A comparison of the service operation and use such as the cost, latency, and
security was performed from the perspective of service providers and users.

The remainder of this paper is organized as follows. Section 2 briefly describes MEC,
DQN, and edge computing. Section 3 describes how to use MEC in the manufacturing
process, introduces the modified DQN algorithm considering the MEC environment, and
introduces the transfer learning method using the algorithm. In addition, we propose
an architecture to which this method is applied. In Section 4, the framework evaluation
analysis and experiments on the method proposed in this paper are presented. Finally,
Section 6 concludes the paper.

2. Related Work
2.1. Edge Computing

As information-related technology advances, the IoT has played a key role in several
fields. Interconnected devices and sensors can collect and exchange data with each other
through the latest facilities in a communication network connected by tens of millions
of IoT nodes [14,15]. Various IoT applications can utilize these technologies to support
segmented and accurate network services to users. These IoT devices generate vast amounts
of information and implement intelligent services for both service providers and users
through additional preprocessing.

In a traditional cloud environment, all data must be sent to a cloud server, and the
calculation results must be processed directly in the cloud, then sent back to the sensors
and devices. These processes impose a great strain on the cost of data transmission on the
network, especially on resources and the bandwidth. Moreover, depending on the data
size, the network performance may degrade. This is a more prominent setback in smart
cities [16], power grids [17], and manufacturing processes where various environments
and work schedules are crucial. If data are computed in a node with a short distance from
the user, the transmission time and cost are reduced. In cloud computing services, the
data transmission speed is greatly affected by network traffic in addition to distance [18].
Furthermore, transmission time and power consumption costs increase according to the
traffic [19]. Therefore, scheduling and data processing allocation are important issues
to consider.

Edge computing is the data storage and computing used at the end of the network
around the user [20–22]. Because the location of the edge computing nodes is located
near the user, in general, the bandwidth requirements of centralized networks are greatly
relaxed and traffic is reduced [23]. Moreover, it is possible to reduce the waiting time
for transmission during data computing and storage operations. Numerous studies have
compared the performance, strengths, and weaknesses of edge and cloud computing [3].
With the rapid increase in the number of end devices, IoT devices, and sensors, centralized
cloud computing strives to meet the quality-of-service of various applications. As 5G
network technology is commercialized, the edge computing method will become a key
solution for solving the problems of the industry. One of the major challenges related to 5G
technology is the radio access network (RAN) [24].

In the RAN, edge computing provides fast real-time information, and the RAN pro-
vides a context-aware function. Thus, by using real-time RAN information, network
providers can increase the quality-of-experience (QoE) for various users [25]. Edge comput-
ing servers exist closer to users than cloud servers. Therefore, when compared to a cloud
server, they provide improved quality-of-service (QoS) and relatively low latency to service
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users even though the computing performance is slightly inferior [26]. The requirements
of an edge computing server in a typical IoT device are classified into three categories:
transmission, storage, and calculation.

• Transmission:
The total response time can be derived from the sum of the processing and trans-
mission times. IoT devices continuously create a large amount of data, but on the
contrary, the calculation request is limited [27]. In fact, large network latency cannot
be accommodated, and QoS requirements cannot be satisfied. As a more specific
example, when using vehicle-to-vehicle communication and vehicle-to-infrastructure
communication, a faster response to the initial request is required for safety reasons.
Unlike existing cloud computing, the edge computing method can service numer-
ous distributed computing nodes that allow users to provide real-time analysis and
information-collection services [28];

• Storage:
The IoT is the source of vast amounts of data and is the most important area in
the formation of big data. Therefore, the IoT needs to upload vast amounts of data
to cloud- or edge-based storage. Uploading using edge-based storage shortens the
transfer time. However, because the storage space of the edge node is relatively
low [29] and unlike cloud computing data centers, there is no large-scale long-term
storage in the case of edge storage, and because edge nodes are used in different
spaces, research to update security information is required [30]

• Calculation:
Typical IoT devices have limited power and computational resources and cannot
perform complex computational tasks directly in the field. IoT devices collect data,
transmit them to a more efficient computing node, and further analyze and process
the data. The computing power of the edge node is superior to that of the IoT device;
however, because the computing power of the edge node is limited, the scalability of
edge node computing power is an issue.

An important challenge for edge computing is determining a good tradeoff between
transmission latency and computing latency. A good job offloading system is required
to determine whether data preprocessing is performed locally or offloaded to a cloud
server. Recently, a mathematical method for achieving efficient resource allocation has
been designed to determine the optimal tradeoffs [31]. Through this scheme, it is feasible
to perform computational tasks locally on the final device or offload them to an edge
server for execution in cloud computing. The offloading scheduling method considers
a number of factors (such as the execution state of the local processing unit and the task
buffer queuing state). This approach can reduce the average power consumption of the
final device and the average latency of individual tasks.

2.2. Multi-Access Edge Computing

In edge computing, when data are transmitted to a cloud computer, the transmission
speed based on the traffic of the edge computing is unstable compared to cloud computing.
In addition, it is difficult to solve data processing and scheduling allocation in an edge
device. Therefore, we proposed a method to solve the two problems mentioned above by
using MEC, which has recently attracted attention. The goal of MEC is to extend cloud
computing capabilities to the edge of the network, which minimizes unstable network
congestion and optimizes resources, improves the overall performance of the network, and
provides enhanced user experience. Figure 1 briefly describes the structure of MEC.

Edge computing is generally adjacent to the user as in this figure, so it has low latency
and allows for persistent connections. Furthermore, using the edge of the network increases
computing power. Moreover, during high traffic on the edge network, data can be offloaded
to the cloud to maintain a fast and reliable connection, as shown in Figure 1.

MEC is a major technology recognized as the driving force behind 5G networks.
Compatible with the current 4G network environment, MEC plays a very prominent role
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as a helper in 5G systems developed with the spread of IoT. MEC technology provides
cloud computing services within the RAN and provides a mobile information technology
service infrastructure at the edge of the network adjacent to mobile users, which provides
high bandwidth, low latency, and wireless capabilities that can be used by QoS-optimized
platforms and applications. It features real-time access to the network information. The
edge may refer to both the data center and the base station itself (e.g., a radio network
controller (RNC) and an Evolved Node B (eNB)) adjacent to the wireless network.

Latency

Real-time analytics

Data Center
Cloud 

Edge computing

Edge computing

Edge computing

Edge computing

Edge computing

Lower

Medium

Higher

y

Figure 1. MEC framework.

When a new user enters the MEC environment, an additional connection is performed
by opening the RAN edge. This allows for rapid and flexible services and deployment of
applications.The MEC method benefits not only operators who can run applications close
to mobile users at the edge of mobile networks, but also other operators.

The architectures of the ETSI, MEC, ISG, and MEC frameworks were released in
December 2014, and work was performed to improve the performance to be able to host
third-party applications in a multivendor environment [32]. It is a great advantage of edge
computing to send and receive data in real time with reduced latency in proximity to the
user’s device. MEC is a networking edge service and application that is based on intelligent
action at the equipment terminal. As device-to-device (D2D) communication technology
has expanded to various industrial fields, convenient resource allocation is possible by
utilizing the base station of a smart factory [33].

Convergence between various types of data is required for intelligent control and
data collection in complex industrial processes. MEC can reverse the data-fusion function
at the edge of the network. In peripheral network devices, edge computing makes the
best use of the device’s sensor resources, and the information obtained from them is com-
bined according to algorithms and defined optimization criteria. This process can utilize
knowledge-based self-learning mechanisms to generate responses, perform dynamic infer-
ence, and improve the consistency of the analysis and interpretation of detected situations.
MEC nodes can apply techniques such as frequency analysis, wavelet analysis, and time
series analysis to extract functions from sensor signals. Machine learning models or artifi-
cial intelligence can be used in edge nodes to make predictions using updated knowledge
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bases and feature data. Thus, intelligent decisions can be made at the edges of the network.
The collection and implementation of finely separated data can be easily performed on
peripheral IoT devices, and multiple streams of original data can be directly combined.

In addition, the manufacturing process can be visualized thoroughly using advanced
data visualization technology. This technology allows the system to predict errors and
perform more rapid active maintenance. Because the system is aimed at handling short-
term or real-time data analysis, MEC can support the business’s processing of real-time
information more quickly. This approach can improve data security and privacy and
reduce the burden on the network. However, cloud computing does not focus on short- or
real-time data processing from the outset. Table 3 shows the comparison index among the
characteristics of the cloud, cloud–edge hybrid, and MEC-based edge computing methods.
In ETSI, MEC changed its name to ess edge computing instead of mobile edge computing
to apply it to various areas beyond WiFi and mobile fixed-access technology [34].

2.3. Job Shop Scheduling Problem

The workplace scheduling problem can be understood as shown in Figure 2. Assuming
that there are n jobs in J = {J1, J2, · · · , JI, · · · , Jn}, each job consists of job
Ji = {Oi1, Oi2, · · · , Oil , · · · , Oim}, and m machines in M =

{
M1, M2, · · · , Mj, · · · , Mm

}
each have to process m operations. Each operation has a designated processing machine
and a corresponding processing time, and there is a limit on the processing order for the
same job. In the JSP problem, a machine-specified matrix OM and a processing time matrix
OT are provided. The machine designation matrix is OM = {mil | mil = M1, M2, · · · , Mm}
(i = 1, 2, . . . , n, l = 1, 2, . . . , m), and the processing time matrix is expressed as
OT = {til | til > 0}(i = 1, 2, . . . , n, l = 1, 2, . . . , m). Operation Oil is processed by ma-
chine mil, and til is the processing time of Oil.

Figure 2. Job shop scheduling problem.

If three different jobs with multiple jobs need to be processed on three machines, each
job has a specified order, and the job must be processed after the previous job is completed.
For example, Job 0 must first pass through Machine 0, then Machine 1, and, finally, Machine
2 to obtain the result, and the order of each operation is not exactly the same. The final goal
is to efficiently allocate three jobs to be processed in the machine to minimize the maximum
time for all jobs to be allocated and completed [35].

Then, the JSP is set as a conditional optimization task. The time to complete the last
execution of all jobs, that is the makespan, should be allotted an efficient operation that
can make it the minimum. It should be considered that each machine can process only one
job at a time, and there is a restriction on the order of processing of integrated jobs. As
previously mentioned, the next job cannot be executed until the previous job is completed,
and when the schedule allocation of each job to each machine is determined, the completion
time of each operation Oil can be known. The completion time of all tasks is the maximum
time in the same system, plus the processing time of the previous task. The makespan
value is calculated based on this rule.

Our proposal aimed to solve the JSP in a smart factory framework. That is, if orders
from multiple customers each containing J or more jobs are given, each job has a set of
jobs that must be processed in the system in a specific order, and to simplify this problem,
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each job must be processed once on each machine. After executing a series of J jobs in the
JSP related to this study, the MEC of the factory must find a method (DQN) to determine
the start time of each job. It is processed by the system so that the makespan (maximum
time to complete) is minimized. Then, each edge device receives the calculated scheduling
result and executes the calculation result on the controlled machine.

2.4. Applying AI Technology to Scheduling

Time-consuming and complex processes such as semiconductor manufacturing have
various challenges in achieving ideal productivity owing to the complexity of the man-
ufacturing process [36,37]. The metaheuristic algorithm-based (e.g., genetic algorithm)
method [38], which has been frequently adopted in recent years, has several disadvantages.
It is difficult to adapt it to a dynamic environment, and it requires a complex design process.
Accordingly, numerous studies have attempted to combine scheduling and reinforcement
learning (for example, particle swarm optimization (PSO) [39] and ant colony optimization
(ACO) [40]) and simulation annealing [41]. Deep reinforcement learning (DRL), which com-
bines the advantages of deep learning and reinforcement learning, solves the scheduling
problem of cloud manufacturing using an efficient and intelligent approach.

The DQN, which has recently gained attention, has presented the use of DRL to solve
complex problems and has shown improved experimental results [6,7]. AlphaGo’s success
in particular attracted great attention to the DQN [42]. The DQN was mainly adopted
in applications that play Atari games in previous studies [43], and in recent studies, it
has been used as a way to solve the JSP [8]. The JSP is NP-hard and is a very difficult
computational problem. The actual sequence of work performed in the factory is complex;
therefore, in the field, factory personnel apply a number of dispatching rules to determine
the work schedule for each system. Dispatching rules are used to determine the order of
work because they are simple and easy to implement, easy to understand, and provide
good management insights [44]. In fact, many manufacturing plants use dispatching rules
to solve work schedule problems [45]. Therefore, a method for efficiently solving complex
JSPs using a DQN in an edge computing environment was studied.

3. Scheduling System Using the MEC Structure

In this study, the DQN approach was used to solve the JSP through the MEC structure
in the manufacturing process. When scheduling is performed, a framework that can be
handled in collaboration with the surrounding MEC infrastructure was proposed. Figure 3
is a real-world system framework for solution services targeting manufacturing companies
whose service providers are part of the infrastructure [12].

The role of the cloud center is to use the resources provided by MEC to monitor the
network or perform overall system management tasks to be centrally handled, such as
job orchestration, traffic offloading, and system security. The battery issue that attracts
attention in the mobile environment was not applied because power is not a limitation in
the manufacturing industry. Therefore, many of these problems disappear when applied
to industrial sites. MEC can reduce latency by offloading complex computational tasks to
nearby computing resources contained in the RAN environment. In addition, the DQN
method can achieve maximum performance by focusing on computing power. The MEC
is a base station (BS) that examines packets that have accessed the network. If a potential
security problem is identified based on the normal and abnormal patterns classified in
advance, the abnormal packet is transmitted to the backbone (cloud computer). Then, it is
checked in the cloud so that subsequent processing can be performed.

In edge devices, sufficient computing resources must be secured to perform all schedul-
ing tasks. To this end, we proposed a process for performing cooperative scheduling
between edge devices in an MEC ecosystem. First, the data are collected through a work-
ing machine. It then transmits the data to the edge of the MEC via an IoT device. The
components of the MEC are as follows: First, there is a BS area in charge of communication
between the inside and outside. Second, there is a computation area that derives the
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dispatching rule through an NN that applies transfer learning. Third, there is a scheduling
area that determines the scheduling of all machines based on the derived dispatching rule.
Finally, it is divided into a data area for storing prelearned data used for transfer learning
or various data necessary for scheduling and different applications included in the MEC
environment.

RAN

Provider cloud center

Work place

MEC

Computation Area

Scheduling Area
Base Station

Data Area

MEC

Computation Area

Scheduling Area

Base Station

Data Area

Data Area

Computation Area

Work place

Work place

1 2 ... 9 10

4 1 ... 2 3

1 3 ... 6 9

3 4 ... 1 2

9 10... 1 8

1 2 ... 9 8

2 3 ... 8 9

1 4 ... 7 10

3 5 ... 9 7
MEC

Scheduling Area

Base Station

Core
Network

Host
Host

Partner-provider cloud center

Internet

Cloud Center Secure Server

Cooperative Edge Computing

Figure 3. Smart factory manufacturing process service provider’s cooperative scheduling solution framework.

The BS blocks all packets detected when accessing the MEC and sends information
about the packet to the cloud center. The computation area is responsible for all the NN
operations such as NN propagation and backpropagation applied to the training data. In
the scheduling area, it is in charge of a task that directly affects scheduling based on the
dispatching rule. A description of the scheduling method is presented in Section 4.

We proposed a method for a solution developer that provides an integrated service
environment in the smart factory manufacturing process to provide optimized JSP services
to customers. First, the customer’s MEC network is formed based on the service provider’s
RAN network. A huge infrastructure can be built through a core network between the
MEC network and the cloud center (service provider). It also prepares transfer learning
based on pre-optimized training algorithms and system functions. These pretrained data
are fed into each customer’s MEC data area. These data may be updated in the future or
lead to better learning outcomes according to changes in the environment of the MEC.

Each MEC edge is connected to the customer’s manufacturing process workplace.
Based on this, it collects data and supports self-scheduling. In this case, confidentiality
is ensured because the cloud center does not take crucial and sensitive key information
during the manufacturing process. The MEC assigns a schedule to all systems. This will
continue to drive the upgraded function through the system, so it can be shared on the core
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network and used by the service provider or another MEC. It is also possible to receive
excellent learning results from other customers and update them in their own system. This
method is effective at mitigating the computing resource shortage of edge devices. This
is because better scheduling results can be obtained faster based on the excellent training
data in advance. However, the service provider providing the solution should build the
MEC environment and scheduling structure of customers as similarly as possible. Through
similar research activities and simple simulations, we found that the learning process for
each MEC was complex, and the scheduling results were worse if they were not consistent
with each other. We proposed DQN transfer learning through a detailed explanation.

In the overall framework, it does not end with a single service network; it can be
extended to networks of other service providers. We shared excellent learning methods
with the company by opening the core network to other cloud centers with which we
signed prior agreements. This can also enhance security by exchanging information about
anomalous packets and forming a wider network. Other service providers provide more
opportunities and more information to small businesses that have difficulty in forming
their own manufacturing process systems. This gives them excellent results found by their
own company. In this case, the service provider should aim to build a service network
throughout the manufacturing process.

4. Scheduling Methodology
4.1. Scheduling Method Based on DQN

We proposed a new method in which scheduling is performed using only edge
computing in the existing cloud–edge hybrid method. This method uses an approach
based on the DQN algorithm. The notations used in this paper are summarized as follows.

• M: number of machines;
• J: number of jobs;
• Pjm: processing time of job j at machine m;
• Fm: completion time of machine m;
• Cj: completion time of job j;
• µM: utilization ratio of machine m;
• ∑j ∑m Pjm: sum of all processing times;
• Cmax = Maxj Cj: makespan.

The DQN, which performs all scheduling areas only in the MEC structure, is the same
as Algorithm 1 and is divided into an input layer, hidden layer, and output layer.

The order of development of the proposed method is as follows. First, transfer learning
is performed by importing a pretrained model from the computation area of the MEC
for fast learning using fewer computing resources. Then, the customer order and system
features provided in the work place are entered into the NN, and the NN propagation
is performed.

Then, according to the result of the NN output layer, the dispatching rule of all ma-
chines is determined using the ε-greedy policy. The ε-greedy policy allows the probability
of selecting an arbitrary action in the initial epoch when starting learning, but gradually
decreases this probability as the number of epochs increases [8].

Subsequently, in the scheduling area, the scheduling of each machine is decided based
on the dispatching rule determined in the computation area and the actual production flow
of the system. When determining and monitoring all job schedules, waiting for a certain
period of time is necessary to prevent the start time of the job processed in the machine
from being earlier than the end time of the job processed in the previous task. The MEC
recovers the start and end times of the jobs in which these issues occur.
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Algorithm 1 The DQN performed only in the MEC (N customer orders).

1: for i = 1,2, . . . , N do
2: Consider J jobs in customer order i. Assign random or certain dispatching rule

to each machine.
3: Compute system features F̄, Cmax, Q̄, {µm}, and

{
Ōm
}

.
4: Create a state based on (J, Cmax, µ1, µ2, . . . , µM) in the Q-table.
5: The NN consisting of customer orders, system features, input neurons, and output

neurons.
6: for epoch number t = 1, 2, . . . , T do
7: Propagation of the NN in the computation area.
8: The computation area uses an ε-greedy strategy to determine the dispatching

rules
of all machines and transmit the information to the scheduling area.

9: The scheduling area determines the scheduling of jobs in the controlled ma-
chines.

10: The computation area oversees the scheduling results of all machines and
then repairs the scheduling results.

11: The computation area creates a state based on (J, Cmax, µ1, µ2, . . . , µM) in the
Q-table and updates the Q-table in the output layer using
q′m = [qm + (µ′m − µm)/µm] + γ ·MaxaQ[s′, a].

12: The computation area updates the system features:
F̄, Cmax, Q̄, {µm}, and

{
Ōm
}

13: The computation area updates the hidden layer by the loss E
[
(Q′m −Qm)

2
]
.

14: The computation area decreases a probability value ε by ε-diff.
15: end for
16: end for

The proposed DQN characterizes the system state of the NN through certain features
and updates the Q-table to record the best output quality of all state transitions discovered
up to this point. The definition of the characterization state is (J, Cmax, µ1, µ2, . . . , µM), and
job J is one of the input parameters of the NN and affects the performance. Therefore,
it can be concluded that J is included in this state. Cmax is the total time required, the
makespan. In addition, because the machine feature were captured by the machine’s uti-
lization µ1, µ2, . . . , µM, M was not included in the state. Because there are too many values
applicable to each of these features, the total number of states may be excessively large, so
Cmax is set in five classes [0, 0.5W], [0.5W, 0.7W], [0.7W, 0.9W], and [0.9W, 1.0W]. W is the
sum of all processing times. This can be defined as ∑j ∑m Pjm. Pjm is the job processing time
of job j on machine m. After the scheduling results are obtained, (J, Cmax, µ1, µ2, . . . , µM)
can be obtained, and thus, the state can be characterized. If this state is a new state, the
Q-table is extended to the new state. That is, new rows and columns are added for this
state, and all new entries are initialized to zero vectors. If the original state is s and the new
state is s′, it can be defined as Q[s, s′] =

(
q′1, q′2, . . . , q′M

)
, where each m ∈ {1, 2, . . . , M}.

The element q′M is calculated using Equation (1).

q′m =
[
qm +

(
µ′m − µm

)
/µm

]
+ γ ·Maxa Q

[
s′, a

]
(1)

Gamma (γ) is the learning rate. When the output layer is updated, the new system
features F, Cmax, Q, {µm}, Om are calculated and sent to the neurons of the NN input layer
according to the scheduling results, which will be used for the next run of propagation.
Finally, at the end of the epochs, the loss of the predicted result based on the Q-value in the
computation area is calculated as Equation (2). q′m is the Q-value calculated by applying
Equation (2) to the loss calculation.

Loss = E
[(

q′m − qm
)2
]

(2)
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When an action is taken in the current state s, the next state to reach the corresponding
network is s′. The Q-function value of the action that can be taken in this process is set to
q′m. qm is the result of the NN output layer. Then, backpropagation is performed to update
the weight of the hidden layer using the corresponding loss value in the NN computing
area of the MEC. Figure 4 shows the flowchart for the DQN’s execution [12].

NN Propagation

ε-greedy policy
implementation 

using output layer results

Dispatching
Rule

Determine Dispatching
Rule

Repair scheduling
results among

machines

Update The Q-table and the
output layer

Update the system
features 

in the input layer

Loss calculation of 
predicted results
based on Q-value

Update the hidden layer

Yes

No

Machine's 
start time faster than
the previous job's 

end time?
After 

scheduling
decision

Determine scheduling

Customer
order

Pre-trained
DQN

Production
information

Figure 4. Job shop scheduling problem.

4.2. Transfer Learning to the DQN

The ability to learn efficiently by transferring previous knowledge to new situations
can be useful for intelligent agents. In particular, transfer learning of excellent methods
is essential for cooperatively solving JSPs within MEC. For this, we adopted the “actor–
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mimic” method. This method generalizes knowledge to new domains, and the agent learns
to perform multiple tasks. It uses deep reinforcement learning and model compression
techniques. A single policy network is trained, using the guidance of multiple expert
teachers, and learns the flow and method of acting in a set of individual tasks. It is possible
to generalize new tasks from expressions learned in deep policy networks without prior
expert guidance, thus speeding up learning in new environments as well [46]. While this
is generally applicable to a wide range of problems, we applied it when using the DQN
approach for solving scheduling problems.

Using a set of preprepared source data (S1, . . . , SN), the first goal was to obtain a
single multitasking policy network that can mimic expert scheduling optimized to the
maximum. To train this multitasking policy network, we used the guidance of the expert
DQN network (E1, . . . , EN). Here, Ei is the optimized expert state of the source task Si.
Then, the Q-value and the matching squared loss between the target MEC becoming a
student and the MEC becoming an expert are defined. The range of the expert value feature
can vary greatly from task to task, and we first converted the Q-value using softmax and
match the policy. When softmax is used, the two outputs are limited in unit intervals, so
the external influence of various scales according to each expert Q feature is reduced, and
stability during learning is improved. The student MEC can use softmax to focus more
on imitating the behavior chosen by the guiding expert MEC, as observed in each state
where the exact value of the state is less important. It is called “actor–mimic” because
it is an actor that imitates the policy that is the decision of the expert. First, each expert
DQN is transformed into a policy network using the Boltzmann distribution defined for
the Q-value output.

πEi (a | s) =
eτ−1QEi

(s,a)

∑a′∈AEi
eτ−1QEi (s,a′)

(3)

Here, τ is the temperature parameter and AEi is the task space used by expert Ei,
Aεi ⊆ A. Given the state of the source task Si, the policy target for the multitasking network
is defined as the multitasking network, which is the cross-entropy between the expert
network policy and the current multitasking policy.

Li
policy (θ) = ∑

a∈AEi

πEi (a | s) log πAMN (a | s; θ) (4)

Here, πAMN(a | s; θ) is a multitasking actor-mimic network (AMN) policy parame-
terized by θ. Unlike the Q-learning goal, which recursively depends on the target value,
we now have a stable supervisory training signal (expert network output) that guides the
multitasking network. To obtain training data, the output of an expert network or AMN
task can be sampled to generate the trajectory used for the loss. During training, the AMN
sampling results in the best results, and later, when the AMN is learning from an expert or
the AMN, when the AMN is at least approximate to a linear function, it is verified that it
converges to the expert policy using policy regression loss.

θ and θfi are the parameters of the AMN and i-th feature regression network, respec-
tively. When learning this goal, the error is completely backpropagated at the output of
the feature regression network through the AMN layer. In this way, the feature regression
goal puts pressure on the AMN to compute a feature that can predict the expert features.
Justifying this goal is that in the case of a complete regression from multitasking to an
expert feature, all the information of the expert feature is included in the multitasking
feature. If a separate feature prediction network fi is used for each task, the multitasking
network can prevent the identification problem while having a feature dimension different
from that of the expert. Empirically, the main advantage of the feature regression goal is
that it can improve the performance of transfer learning in certain goal tasks. Combining
the two regression goals, the actor–mimic goal is defined as Equation (5).
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Li
ActorMimic

(
θ, θ fi

)
= Li

policy (θ) + β ∗ Li
FeatureRegression

(
θ, θ fi

)
(5)

where β is a scaling parameter that controls the relative weights of the two targets. One
can think of the policy regression goal as a teacher (expert network) who directs students
(AMN) how to behave, and the feature regression goal is similar to a teacher who instructs
students why they should behave.

Now that we have a network training method that is an expert in all source tasks, we
can proceed to transfer the source work knowledge to a new, but relevant target task. To
transfer to the new task, the final softmax layer of the AMN is first removed. Then, the
AMN weight is used as an instantiation of the DQN to learn about the new target task.
The pretrained DQN is then trained using the same training procedure as the standard
DQN. Multitasking pretraining can be viewed as initializing the DQN as a set of functions
that are effective at defining policies in related tasks. If the source and target tasks share
similarities, some of these pretrained functions may be effective in the target task. We
proposed an architecture for efficient scheduling tasks that perform transfer learning by
targeting a predefined series of the DQN in the MEC within the same network. The DQN
parameterizes the state–action value function using a deep convolutional neural network
for the pixel input.

The DQN was trained in combination with certain tricks that stabilized the training of
the network based on a learning model that was pretrained on other edge devices. It also
maintained the same network architecture and hyperparameters for all scheduling tasks.
Each network had similarities in the scheduling tasks, but was limited to learning only
one task at a time. A network trained to perform multiple scheduling tasks can generalize
knowledge between scheduling tasks, and the network can achieve one compact state
representation by using the similarity between tasks. The network can speed up learning
by showing a transition to a new target task after being trained on sufficient source tasks.
Based on such transfer learning, we proposed to perform scheduling work content sharing
through the DQN in a huge manufacturing solution environment.

5. Performance Analysis

In this section, we evaluated the performance of the proposed DQN for all jobs by
considering the relevant JSP in terms of the manufacturing period. In previous studies,
experiments that attempted to solve the JSP in an MEC-based manufacturing environment
were not actively conducted. Our experiment was conducted in two tracks, each focusing
on quantitative and qualitative evaluations. First, we analyzed the performance of the
proposed method using different parameter settings. Then, a quantitative evaluation was
performed to compare the performance of the dispatching rule (SPT, LPT), the traditional
DQN, and the DQN using the proposed transfer learning. Finally, we compared and
evaluated the proposed cooperative MEC framework with cloud and existing cloud–edge
hybrid methods.

5.1. Experimental Environment

The experiments and training performed in this study were conducted in an environ-
ment with an Intel Xeon 2.2GHz CPU, 1, 25GB RAM, and an NVIDIA V100 GPU with a
learning rate of 10−6. Furthermore, we used PyTorch Version 1.7.0 to build the model. Mod-
els were defined with the torch.nn module and torch.optim module, and GPU-accelerated
features were used during training and testing using the torch.cuda module.

The experimental section was performed on the JSP benchmark datasets in [47]. These
dataset contain instances of the titles “Lawrence (la)”, “Demirkol, Mehta and Uzsoy (dmu)”,
“Fisher and Thompson (ft)”, and “Applegate and Cook (orb)”, and several others used in
this experiment were included. Instances had different numbers of machines (M) and jobs
(J). The parameters used in this study were divided into two types. (1) Parameters of the
ε-greedy policy: In the ε-greedy policy, the values for the parameter ε were ε = 0.9 and
ε-diff = 0.02, and they were reduced by ε-diff for each epoch of the algorithm. (2) Learning
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rate for Q-table update: The ratio of training data and test data for the existing DQN was
set to 2:1. Furthermore, the number of neurons in the hidden layer of the NN was 64, the
learning rate 0.001, and the discount rate (γ) 0.7. The parameters used in this study were
as described above, and they are summarized in Table 1.

Table 1. Description of the parameters.

Parameter Description

Parameter for NN 64
Learning rate 0.001

Discount rate (γ) 0.7
Epsilon (ε) 0.9

Epsilon-difference (ε-diff) 0.02
Number of machines According to the dataset setting

Number of jobs According to the dataset setting

The proposed transfer-learning-based DQN learns based on pretrained data. We
trained a predictive model using the training data and evaluated the model performance
using the test data. The number of machines in the factory does not change often, so it
was considered fixed, and the experiment was conducted. Accordingly, a fixed number of
machines M and J were used for the evaluation of the experiment. In addition, to obtain
high prediction efficiency, experiments and comparisons were performed using customer
orders with a fixed number of tasks. The proposed model can be applied to a different
number of machines and tasks than those in our experiments. It was assumed that the
model to perform transfer learning and the structure of the learning model were the same
in order for learning to proceed quickly and to obtain high performance.

5.2. Convergence and Comparative Analysis

In this section, a convergence analysis was performed for model training by using
the proposed method by setting the parameter ε-diff factor, considering the number of
machines, the number of tasks, and the ε-greedy policy. When the DQN algorithm was
applied to the datasets used in the experimental process of this paper, the actual execution
time per epoch was very short. Makespan means the total processing time, and the unit of
time was ms. According to the calculation, the scheduling problem took about 20 min to
perform 1000 epochs. Of course, in the industrial field, there are many things to consider,
and more real-time work needs to be performed faster and faster. However, our point
was to change the scheduling approach from standalone to collaborative, independent of
computing power, and we wanted to apply it to our manufacturing process.

Figure 5 shows the convergence analysis for different combinations of numbers M
and J. The parameters were the “la” instances with M = 5 and J = 10 and the “dmu”
instances with M = 15 and J = 15 or 20. In Figure 5, the higher the number of machines or
jobs, the slower the convergence rate is. Through this experiment, we were able to confirm
the makespan derived from each dataset. In addition, we confirmed that the convergence
speed of the makespan slowed down when the number of machines and jobs increased, so
it was possible to clarify the variables to consider when to schedule.

Additionally, we compared and analyzed the performance of the DQN and the DQN
that performed the transfer learning proposed in this study. Figure 6 shows a conver-
gence analysis for parameter ε-diff. In Figure 6, we can notice that the method using
ε-diff = 0.00001 converged slowly. The smaller the value of ε-diff was, the more randomly
it performed, and it converged slowly. ε used a value between 0.0 and 1.0, usually de-
creasing gradually as the search progressed. In the text, this was called ε-diff, and it is
called epsilon decay. We used epsilon to determine how random we wanted it to be when
performing the initial work.
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Figure 5. Convergence analysis according to the number of M and J.

Figure 6. Convergence analysis according to the difference in parameter ε-diff.

Figure 7 shows the result of comparing the convergence speed of the traditional DQN
with the method of applying transfer learning to the proposed DQN. The values at M = 10
and J = 10 were compared. The proposed method is shown in Figure 7. It showed good
performance. Solving JSPs is a major topic of research, but the way to solve JSPs is not
just to improve performance through algorithms. The difference between the traditional
DQN and the proposed DQN is that transfer learning was applied. In addition, there was
a difference in processing divided by each area within the MEC structure.

In Figure 8, the value of the reward generated in the learning process of the traditional
DQN and the proposed DQN showed an upward trend in both DQNs. The pattern in
which the compensation converged indicated that the DQN model had an effect.

A reward occurs in performing reinforcement learning. When facing the problem,
the student gives an answer, then the teacher checks student’s work and gives the reward
for the student to fix the answer according to the reward. The purpose of reinforcement
learning is to maximize future rewards. In the same way as the learning process of our
experiment, we made it possible to improve performance by acquiring rewards.
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Figure 7. Comparison of the proposed method (DQN with transfer learning) with the existing DQN.

In the case of the traditional DQN, the rewards generated in the learning process began
to converge after 800 epochs and gradually appeared relatively stable after 900 iterations.
In the case of the proposed DQN, it showed a shape in which the reward converged after
650 epochs and showed a more stable appearance than the traditional DQN after 700
iterations. In the case of the proposed DQN, it can be seen that the proposed DQN model
was effective because it converged more rapidly than the traditional DQN.

Traditional DQN Proposed DQN

Experiment Result

Figure 8. Comparison of the proposed method and the acquisition reward value of the traditional DQN.

Figure 9 shows the regression line for the graph of the compensation acquisition of
the traditional and proposed DQNs. In the regression line, the estimated coefficients were
0.0530 and 0.0627, respectively. The dependent variable reward changed as the explanatory
variable number of epochs increased by one. Accordingly, it can be seen that the traditional
DQN increased by 0.0530 and the proposed DQN by 0.0627. Even by comparing the
regression lines of the two graphs, it can be verified that the proposed DQN compensation
acquisition proceeded faster. In addition, the p-value of the traditional DQN and proposed
DQN was less than 0.001; hence, the regression model (regression equation) was significant.
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Figure 9. Comparison of the proposed method and the regression line of the conventional DQN.

Table 2 calculates the average value of the makespan matrix results of the DQN
method, traditional DQN, SPT, and LPT of the proposed approach for dataset instances.
The proposed DQN exhibited better performance for the target instance. This was a
comparison of the experimental results for the proposed DQN method, the traditional
DQN method, and the method using the dispatching rule.

Table 2. Comparison table for the experimental results.

Instance Proposed DQN Traditional DQN SPT LPT

ft06 56 58 88 77
ft10 1016 1097 1074 1295
la13 1152 1239 1275 1230
la14 1215 1292 1427 1434
la15 1337 1339 1332 1612
orb1 1101 1211 1478 1410
orb2 993 1002 1175 1293

Average 981 1034 1121 1193

5.3. Comparison of the Computing Methods

This section qualitatively compared the service based on the previously used comput-
ing methods with the service based on the proposed MEC-based scheduling framework. In
general manufacturing companies, it is difficult for them to build and maintain their own
manufacturing process systems in terms of cost, technology, and infrastructure. Therefore,



Sensors 2021, 21, 4553 18 of 22

we considered the viewpoints of customers receiving services from service providers, the
viewpoints of solution distribution and operation of the service providers, and the scala-
bility of the overall industry collaboration network. As an item for comparison, consider
the service provider’s service scope, construction and maintenance cost, confidentiality,
integrity, scalability, and support for collaboration with other service providers.

Table 3 compares the cloud, the existing cloud–edge hybrid, and the proposed MEC
framework in terms of the services and frameworks. This indicated the utilization of the
proposed method in the solution service. First, the service range was compared. The
cloud was the narrowest because it was dependent on the company. In addition, in the
existing hybrid method, the service range was wider than the cloud method, but eventually,
the expansion of the computing service range becomes limited because it was dependent
on the network cloud. The proposed method shared the core network in the process of
cooperative scheduling with other companies, and therefore, the service range was the
widest compared to the other two methods. If the service range were wide, there would be
an added advantage that a wider variety of services could be provided to a larger number
of users.

Table 3. Qualitative comparison in terms of the service provision of the existing and proposed structures.

Evaluation Index Cloud Cloud–Edge Hybrid Proposed MEC

Service scope Own company One service provider Many service providers
Service provider cost Lowest Highest High

Customer cost High Low Lowest
Security policy Centralized security Distributed security Distributed security
Confidentiality Not applicable Confidential sharing risk No confidential sharing

Performance Strongest Weakest Filling the power
Latency Highest Low Lowest

Cooperation Not applicable Difficulty High usability

Although the overall cost of building a cloud framework is lower than that of edge
computing, it is difficult for a small enterprise to bear the entire system construction and
maintenance costs [48,49]. In addition, in the existing hybrid method, the cost for construc-
tion and maintenance is charged more than that of the cloud, but from the perspective
of the customer, the cost is more active and the burden less. In the proposed method,
scheduling was performed based on the provision of a solution previously produced by
the service provider in the center. The service provider consumed a very high construction
cost, but the MEC solution-based framework provided a low maintenance cost compared
to the existing hybrid method. In addition, the cost consumption for service expansion
through the core network was the lowest. From the customer’s point of view, the burden
was less in terms of cost because it was incorporated into a framework that had already
been established.

When comparing confidentiality, the cloud framework performed security tasks for all
data centrally. Therefore, it had excellent security capability based on its strong computing
power in the center. When a customer directly operates a cloud service, there is no risk
regarding transferring corporate confidentiality to the service provider through its own
network structure. However, if there is an issue with the security of the central cloud
center, all infrastructure networks can be paralyzed. In the hybrid method, because the
network is distributed to edge devices at the edge of the network, when the central cloud
is attacked, the service can be maintained through the edge device. However, there is a
direct security problem in edge devices owing to the weak computing power of the edge
device [50]. Moreover, it is important to be aware of the sensitive problem that corporate
secrets in the edge area are transferred to the cloud center [48]. The proposed method was
located at the edge of a network composed of an MEC. The service provider handles only
the overall solution flow, monitoring, and orchestration, excluding the customer’s sensitive
information from the core network. Furthermore, even if the cloud center is attacked
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and the system is paralyzed, the damage to the service is minimized with a structure in
which customers cooperate. Even if an attack enters the MEC, it can be resolved through
collaborative offloading with the MEC itself and other neighboring MECs.

In terms of performance, cloud computing is the most powerful one. Because all
computing resources are concentrated on the center, they can exhibit powerful performance.
However, in terms of latency generation, communication latency with the machine may
occur during the actual manufacturing process [51]. In the conventional hybrid method,
the computing performance is lower than that performed in a single cloud, but it is
compensated by the distribution of work between the cloud and edge devices. It has
a significantly lower latency than cloud computing [52]. We could not reach a single
cloud method to evaluate the performance of the proposed method. However, through a
cooperative MEC framework that complements the relatively low computing performance
of edge computing, collaborative devices in the network fill low computing resources. The
latency is also very low at the edge of the network [53].

Finally, we examined whether it was possible to support collaboration with other
customers. In a single cloud structure, service collaboration between partners is almost
impossible. The central cloud server manages the system through a single-service network.
Therefore, it is difficult to cooperate with other companies in terms of procedures, security,
and distance. Compared to the cloud server, the hybrid computing method has the potential
to collaborate with other customers, but similarly, there is a difficult part owing to the
security problem of edge devices [54], especially the exposure of confidentiality between
customers. In the scheduling domain of the smart factory manufacturing environment,
research on working in collaboration with other service providers and other customers has
not been conducted. The collaboration system we proposed was basically composed of a
framework based on collaboration between MECs, so one can freely add other companies
and new subscribers by opening the core network. In addition, service providers can easily
form cooperative businesses through agreements between solution and service providers.

6. Conclusions

This paper proposed a smart manufacturing plant based on the MEC framework and
conducted an experiment to solve the JSP from the perspective of the framework. Several
edges (customers) cooperated under the supervision of a cloud center (service provider).
This determined the work schedule for each complex system. In our study, we solved this
problem by applying transfer learning to a DQN that combined DL and RL. As a result of
the experiment, the proposed method showed a relatively better convergence effect than
the conventional method in setting various parameters. Accordingly, it was proven that
the method of applying efficient transfer learning to the DQN was superior to the existing
DQN. When scheduling in the future manufacturing process, it would be much more
complex and contain more of the company’s sensitive information. When the proposed
DQN model is serviced from a service provider’s point of view, efficient scheduling would
be feasible, and the company’s privacy would be guaranteed. Further, by connecting to
the core network, customers can receive effective services not only in cooperation between
customers in the service network, but also in the service range of other service providers.

The future challenge is to design different Q-table systems and compensation systems
in RL and to improve the performance of the DQN model by adopting different NN types,
as well as to improve the performance by applying a more advanced transfer learning
method to the DQN. Comparing the performance of the reinforcement learning model
designed by applying MEC and transfer learning in various ways with other previous
studies is an important research task to be carried out in the future. In this study, the DQN
was employed for the ease of implementation. Although advantageous for experimenta-
tion and model implementation, a better DRL model that has been studied recently can
realize more detailed and higher performance scheduling results. Therefore, the future
research scope is to find detailed scheduling results more effectively by developing the
DQN method.
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In addition, by applying network function virtualization (NFV), more MEC users
can be attracted and safer cooperation between them can be guaranteed. This allows
service providers to optimize maintenance costs and convenience. It is also interesting
to design and implement an intelligent network management algorithm. The method
can also be tested on a larger number of problem instances and experiments with perfor-
mance by increasing the amount of learning. Finally, another future work is a quantitative
comparison between our proposed MEC method and hybrid and cloud computing. This
is an operation that compares various indicators such as communication time, latency,
and computing speed. In particular, it is an important research topic to establish a reli-
able ecosystem between service providers and customers through intensive comparative
analysis on security.
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