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Abstract: The Internet of Things (IoT) has emerged as a new technological world connecting bil-
lions of devices. Despite providing several benefits, the heterogeneous nature and the extensive
connectivity of the devices make it a target of different cyberattacks that result in data breach and
financial loss. There is a severe need to secure the IoT environment from such attacks. In this
paper, an SDN-enabled deep-learning-driven framework is proposed for threats detection in an IoT
environment. The state-of-the-art Cuda-deep neural network, gated recurrent unit (Cu- DNNGRU),
and Cuda-bidirectional long short-term memory (Cu-BLSTM) classifiers are adopted for effective
threat detection. We have performed 10 folds cross-validation to show the unbiasedness of results.
The up-to-date publicly available CICIDS2018 data set is introduced to train our hybrid model. The
achieved accuracy of the proposed scheme is 99.87%, with a recall of 99.96%. Furthermore, we
compare the proposed hybrid model with Cuda-Gated Recurrent Unit, Long short term memory
(Cu-GRULSTM) and Cuda-Deep Neural Network, Long short term memory (Cu- DNNLSTM), as
well as with existing benchmark classifiers. Our proposed mechanism achieves impressive results in
terms of accuracy, F1-score, precision, speed efficiency, and other evaluation metrics.

Keywords: Internet of Things (IoT); intrusion detection; deep learning (DL); software-defined
network (SDN)

1. Introduction

In recent years, there has been an enormous growth in the Internet of Things (IoT),
described as a global network of interconnected devices that are assigned unique addresses.
IoT devices use different communication protocols and sensing features. These devices
have computational abilities to analyze data and provide services. IoT is an archetype
connecting millions of digital intelligent devices, prompting the formation of an intelligent
atmosphere i.e., smart factories, smart ecosystems, intelligent health systems, smart cities,
and vehicular networks [1]. However, besides leveraging huge benefits, IoT also presents
various security concerns and evolving threats. Due to the rapid growth of data in IoTs,
a considerable number of attacks and threats are also focused on IoT networks [2,3]. IoT
contains heterogeneous and homogeneous networks with networking devices that use
different types of protocols. It means that vulnerabilities can produce an imperceptible
threat to IoT devices and the entire system. Cybersecurity exploits numerous concerns in
the dynamic features of these devices in the form of different attacks, i.e., DoS attacks, DDoS
attacks, and some other types of malware [4]. In a single day, about 80% of cybersecurity
experts try to handle at least one security issue, while 60% of experts deal with the network’s
operations and security for an hour or two per day [5]. Deception attacks and replay attacks
have also been described. Industrial level security controls and attack detection techniques
are reviewed in [6]. There are various kinds of protocol-following devices, and different
security mechanisms need to be implemented for each device. However, In the seamless
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nature of IoT devices, these security measures are insufficient. To secure the complete IoT
infrastructure, there hasn’t been invented an integrated approach yet. IoT security remains
a significant challenge and poses a severe need for security.

Nowadays, SDN-enabled framework not only enhances the abilities of dynamic
and heterogeneous environment of IoT but also deliver the opportunity to simplify the
network management. It provides efficient and effective detection without exhaustion and
provides a platform for underlying resource-constrained devices that do not overburden a
security solution. For SDN surveillance, one of the best approaches is integrating IDS in
SDN [7]. With the rapid evolution of AI along with the programmable features of SDN,
security levels can be improved by integrating SDN into AI-based security solutions. Many
techniques based on AI have been employed as network traffic algorithms that have shown
certain levels of accuracy and ideal results, i.e., genetic algorithms, k-nearest neighbor,
ANNs, decision trees, naive Bayesian, and fuzzy logic [8]. To sum up, the need to present a
robust and flexible architecture for threat detection in IoT devices encourage us to propose
an SDN-enabled, deep-learning-based intrusion detection solution.

1.1. Contribution

The main contributions of the paper are as follow:

• SDN-enabled deep-learning-driven solution is proposed that is highly cost-effective
and scalable for threats detection in IoT environment.

• Cu-DNNGRU + Cu-BLSTM classifiers are used for effective threat detection in IoTs.
• Cu-GRULSTM and Cuda- Cu-DNNLSTM are exploited on the same data set to com-

pare ur results.
• For verification purpose, the proposed mechanism is compared with the existing

literature works for a better performance evaluation under CICIDS data set.
• Finally, 10 folds cross-validation is conducted in this research to show the unbiasedness

of our results.
• The evaluation results show that the proposed mechanism is able to provide a multi-

class detection, and outperforms in terms of detection accuracy and computational
complexity.

1.2. Organization

The remaining paper is designed as follows. Section 2 comprises related work and
background. In Section 3, the proposed methodology, data set description, and other details
are elaborated. Section 4 presents the evaluation metrics and experimental setup. The
results is discussed in detail in Section 5. Finally, we conclude the paper in Section 6.

2. Related Work

SDN is emerging as a capable next-generation network framework. It comprises three
layers known as data, control, and application plane with their APIs (i.e., northbound and
southbound). The SDN’s control plane has the capability of extending many networks
in the SDN’s data plane, e.g., internet of things, fog, edge [9,10]. The control plane can
adapt to different functionalities, and it is completely programmable. It deals with the
heterogeneity of IoT nodes among SDN controllers and linked devices of IoT through
Open-Flow switches. In SDN’s design, the control and data plane are separated, allowing
flexibility and simplification. Furthermore, it provides the central control functions and
network’s global view, simplifying the collection of network statistics [11]. Thus SDN
provides dynamism, scalability, and centralized management. It plays an essential role in
improving control decisions. It is recognized as a chief and flexible enabler for network
solutions [12]. Integration of SDN and IoT provides an accurate approach for inspecting
networks to identify threats, malware, suspicious activities, and attacks. Therefore, SDN
pledges a promising future for the (IoT).

Researchers have proposed different techniques and threat detection schemes in
the existing literature. In [13], the authors presented an IDS for a network that uses a
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convolutional neural network (CNN). The authors in [14] proposed a group of recurrent
families for attacks and threat detection in IoT by analyzing network traffic using long short-
term memory (LSTM) on Modbus-TCP network traffic data. For attack identification and
classification, a recurrent neural network (RNN) is used in [15]. Furthermore, a comparison
is made by the authors by comparing non RNN techniques with RNN. The authors in [16]
used Random Forests (RF) classifiers trained on a self-generated data set using Wireshark
for the DDoS attacks detection in IoT. Support vector machine (SVM) classifier is trained
on a data set provided by Defense Advanced Research Projects Agency (DARPA) for IDS
in SDN’s [17]. In [18], the authors aim to identify the compromised intelligent devices in
an IoT ecosystem by presenting a self-learning system. They used a Gated recurrent unit
(GRU) classifier for the detection of compromised devices. The authors in [19] used LSTM
for botnet detection using Czech Technical University’s real-time traffic (CVUT). In [20],
the authors used Bayesian, J48, and Naïve Bayes to detect Internet Relay Chat (IRC) botnet.
However, the authors didn’t mention anything about their detection accuracy in their work.
The authors in [21] used LSTM for categorizing attacks from regular traffic. Multilayer
ANN anomalies detection in a network is presented in [22]. The authors claim that their
proposed work is capable of detecting DoS attacks with an accuracy of 99.4%. In [23], the
authors used a deep model for the detection of distributed attacks in the IoT network. They
achieved an accuracy of 98.27% by training the algorithm on the NSL-KDD data set. A
deep-learning-driven SDN-based framework is used in [24] for securing IoT infrastructure.
The authors used the KDD99 data set to train Restricted Boltzmann Machine (RBM) with a
detection accuracy of 95%. In [25], the authors proposed a flow-based detection mechanism
in the gateway of SDN for the mitigation and detection of DoS attacks. However, this work
lacks efficiency analysis and proven performance.

Artificial-intelligence-based techniques are beneficial in recent years by integrating
them with SDN for threat detection [26]. The authors in [27] proposed an intrusion
detection system with training and testing accuracy of 96.22% and 92.73%. The model first
ranks the security aspects by defining their relevancy and then establishes IDS based on
the maximum related ones. In [28], the authors used SVM, DNN, NaiveBayes, and j48
classifiers for intrusion detection. These classifiers are trained on the NSL-KDD data set.
They proposed that DNN is better in comparison to other classifiers. The authors in [29]
proposed a framework for botnet investigation at packet level detection in IoT. The authors
used CNN and RNN classifier, trained on CTU-13 and ISOT data sets, and achieved an
accuracy of 99.3%. In [30], the authors proposed SDN-based, bio-inspired IDS for crossfire
attacks with a detection accuracy of 80%. The authors in [31] used a DL-driven method
called DeepDefence to detect DDoS traffic. A Number of DL models are used to classify
benign traffic and attacks traffic. In addition, the authors used the Blocked-Recurrent-
Unit-Neural-Network (GRU), the LSTM, CNN, and RNN and accomplished a decent cut
in the rate of conventional approaches. In [32], the authors used DL and SDN to tackle
DDoS attacks, and the results showed 99% and 98% accuracy with the ISCX data set. The
authors in [33] presented a source-based defense mechanism on DDoS on the hogzilla
data set and achieved up to 98.88% accuracy. In [34], the authors introduces a DDoS
attack detection system based on multilevel deep learning technology. The whole system,
the intelligent network, aims for more accurate and efficient detection of DDoS attacks.
In [35], authors adopted a progressive transfer learning approach for DDoS problems and
achieved improved performance than the current methods. The authors in [36] presented
the DADMCNN framework through in-depth learning to detect DDoS attacks. In addition,
the authors proposed an MC-CNN model to maximize feature information for better
recognition. The authors in [37] proposed an automatic learning approach based on SDN
capabilities. Advanced learning methods using ANN, LSTM, and CNN to build the
learning model. In addition, the performance of the proposed model will be assessed using
the Mininet Wi-Fi emulation platform. Authors in [38] used LSTM to construct a deep
neural network model and add an Attention Mechanism for enhancement of performance
and achieved 96.2% of accuracy. The authors in [39] presented a combined framework by
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using real network data and CNNs for early detection of DDoS by performing experiments
on open CDR data set released by Italia Telecom consisting of over 319 million CDRs.
Results indicate that the projected framework achieved more than 91% detection of under-
attack cells and normal accuracy. A novel CNN architecture based on categorical cross-
entropy is presented by emerging a multilayer convolution feature-fusion mechanism
along with a loss on the NSLKDD data set in [40]. Experimental results demonstrate that
the proposed model offer improved accuracy with low-false-alarm. However, network
structure requires optimization to attain better detection results. In [41], the authors
proposed a CNN-based anomaly detection technique for DDoS attacks using the CAIDA
data set. Authors presented anomaly detection technique achieved 87.35% accuracy in
detection of DDoS attack. DL-based codetection model along with Snort IDS is presented
in [42] for detection of IoT-based DDoS attacks. Authors performed experiments on a data
set collected from network-based traffic by different tools and achieved 95% of detection
accuracy of TPR along with less than 4% of FPR. In [43], the authors presented a new
realistic BoT–IoT data set. The data set was developed on a realistic testbed, and it contains
simulated and legitimate IoT network traffic with different types of attacks. The authors
in [44] presented a data set named as MQTTset, which is related to the MQTT protocol.
The authors implemented different machine learning algorithms to validate the data set.
Furthermore, they compared the results of the balanced and unbalanced data set. Upon
comparison, the unbalanced data set reported a high accuracy due to a high number of
records for benign. Finally, a labeled behavioral data set of IoT is generated in [45], which
incorporates benign and malicious traffic. The data set is generated from real-time traffic in
a medium-sized network, i.e., a network of 83 devices. The existing literature is presented
in detail in Table 1.
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Table 1. Comparison of existing literature.

Ref Algorithm Approach Data Set D.Accuracy Time Complexity

[14] LSTM Cyber threats detection in a smart device using a deep learning
model Modbus-TCP High High

[15] RNN, LSTM, and GRU Presented ML and DL techniques for intrusion detection KDDCUP99 Low N/A

[16] RF Presented a technique using ML classifier for DDoS attack
detection in IoT

Self-generated data set by
using Wireshark High N/A

[17] SVM Proposed an ML technique for IDS in SDN DARPA Medium N/A

[18] GRU Proposed a self-learning distribution for identifying infected smart
devices

Real Shelf Consumer IoT
devices Low Medium

[19] LSTM Proposed a deep-learning-driven technique for botnet detection CVUT real-time traffic High N/A
[20] Bayesian, J48, naïve Bayes Presented a machine learning approach for IRC botnet detection Dartmouth wireless network Low N/A

[21] LSTM-RNN Propose an ML-driven approach to detected known and unknown
threats NSL-KDD Low N/A

[22] ANN Presented ANN learning procedures for intrusion detection by
using feed-forward and back learning algorithms Internet packet traces High N/A

[23] Deep model Presented a DL-driven scheme in IoT for the detection of DoS
attacks. NSL-KDD Medium Medium

[24] RBM SDN-based DL technique for DoS attacks detection in intelligent
devices KDD99 Low N/A

[27] RTS-DELM-CSIDS Presented ML-based approach to develop an intrusion detection
system NSLKDD Low High

[28] DNN, SVM, J48 and
Naivebayes

Presented different algorithms to improve the learning rate of the
algorithm, which can predict attacks in IDS NSL-KDD Low N/A

[29] CNN and RNN The proposed methodology can detect botnets at the packet level ISOT and CTU-13 Low High



Sensors 2021, 21, 4884 6 of 18

3. Methodology

This research work aims to propose a hybrid DL-driven framework for intrusion
detection in IoT devices. This part of the paper describes the proposed work methodology,
i.e., proposed DL-driven hybrid framework, proposed network model, data set description,
and preprocessing.

3.1. Proposed Network Model

In recent years, SDN came up as integrated network design technology. In SDN’s de-
sign, the control plane and data plane are separated, allowing flexibility and simplification.
Furthermore, it provides the central control functions and network’s global view, which
simplifies the collection of network statistics. We propose hybrid DL-driven, SDN-enabled
architecture for intrusion and threat detection in the environment of IoT. The proposed
hybrid model (Cu-DNNGRU + Cu-BLSTM) is placed in the control plane, as shown in
Figure 1. There are multiple reasons for placing the hybrid threat detection model in the
control plane: Firstly, this plane of SDN is entirely programmable as well as SDN has
the capability of extending IoT devices on its data plane. Secondly, it uses open-flow
switches, which provide solutions for heterogeneity between SDN controllers and IoT
devices. Thirdly, the control plane can leverage the primary devices of IoT without the
exhaustion that makes it a proper revolution for IoT. The integration of SDN and IoT pro-
poses a suitable way to inspect network traffic to identify attacks, threats, and unauthorized
events. The proposed framework is centralized and highly cost-effective. Furthermore, the
data plane of SDN consists of numerous IoT devices, i.e., smart devices, sensors, and other
wireless technologies.

Figure 1. Proposed Network Model.

3.2. Hybrid DL-Driven Detection Scheme

The authors offer a DL-driven hybrid framework for intrusion detection in IoT. The
DL-driven Cu-DNNGRU + Cu-BLSTM is used for threat detection in IoT networks. A
cost-effective, versatile, and powerful threat detection module is developed to detect
multiclass threats. Figure 2 depicts a complete overview of the proposed model. The
proposed scheme consists of CU-DNNGRU and Cu-BLSTM models for intrusion detection
and detects sophisticated threats and malware in IoT environments. The proposed model is
tested and trained on hybrid algorithms with low false positives (FP) and greater detection
accuracy. The model consists of different layers, i.e., Cu-DNNGRU comprises one layer
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with 200 neurons. However, Cu-BLSTM has one layer with 100 neurons. We have used
softmax as an activation function in the output layer, and in other layers, the Relu function
is used. For achieving efficient results, we have performed the experimentation till five
epochs with batch sizes of 32. For experimentation, we have used Cuda-enabled versions
with the processing of GPU for improved performance.

Figure 2. Proposed hybrid detection framework.

Furthermore, the proposed work utilized Keras framework with the backend of Tensor
Flow for Python. The comparison is made by using two classifiers, i.e., gated recurrent unit
long short-term memory (GRU-LSTM) classifier with one layer of GRU having 200 neurons
and one layer of LSTM having 100 neurons and deep neural network, long short-term
memory (DNNLSTM) classifier with one layer of DNN having 200 neurons and one layer
of LSTM having 100 neurons. Furthermore, we have compared our hybrid model with
existing literature, as shown in Table 6. The system’s overall performance improves by the
quick multiplication of matrixes and is also carried out by Cu-DNNGRU + Cu-BLSTM.
Table 2 depicts a thorough description of the proposed DL classifiers.
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Table 2. Hybrid algorithms description.

Algorithm Layers AF Neurons LF Optimizer Batch-Size Epochs

Cu-DNNGRU + Cu-BLSTM

Cu-DNNGRU (1) Relu (200) CC-E
Cu-BLSTM (1) Relu (100) CC-E
Dropout – (0.3) – Adamax 32 05
Output Layer (1) Softmax 07
Dense (3) – (200,100,50) –

Cu-GRULSTM

GRU Layer (1) Relu (200) CC-E
LSTM Layer (1) Relu (100) CC-E
Dropout – (0.3) – Adamax 32 05
Dense (3) – (200,100,50) –
Output Layer (1) Softmax 07

Cu-DNNLSTM

DNN Layer (1) Relu (200) CC-E
LSTM Layer (1) Relu (100) CC-E
Dropout – (0.3) – Adamax 32 05
Dense (3) – (200,100,50) –
Output Layer (1) Softmax 07
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3.3. Data Set

The selection of an appropriate data set significantly contributes in evaluating the
performance of a threat detection scheme. In the existing literature, the authors used
various data sets, i.e., NSLKDD, KDD99, and few others, for threat detection in the IoT
environment. However, most of these data sets lack the supportive features of IoT. Some
attackers scan for local devices of IoT by creating web pages for taking control of these
devices. Furthermore, they use malevolent scripts as well as DNS rebinding for discovering
and attacking local IoT devices [46]. Therefore, the proposed work used state of art publicly
available data set, CICIDS 2018 [47]. This data set consists of IoT supportive features, i.e.,
network flow features. Furthermore, it consists of benign as well as threat samples and is
multiclass. It has seven categories and 14 up-to-date attacks (i.e., brute force, DDoS, botnet,
bot, etc.) and more than 80 traffic features. However, in the proposed work, the total
distribution is across six different classes, which include benign and attacks. Furthermore,
we have selected all the features of this data set. The data set comprises 84,702 instances:
69,654 are benign, and the remaining 15,138 are instances of attacks. Detailed information
on these classes of attacks and benign is given in Table 3.

Table 3. Data Set Description, CICIDS2018.

Classes Attack Instances

Benign – 69,654
Bot – 2977

Brute Force FTP 3066
DDoS Loic-UDP 3015

Hoic 3037
Infiltration – 3043

Total 84,702

3.4. Data Set Preprocessing

The data in the data set is presented in diverse forms, so it is not reliable to directly
feed this data for classification to an algorithm. Firstly, we have deleted all the rows that
had blank and nan values as it can influence the data quality and the evaluation model.
DL algorithms mainly process the numeric data; thus, we have transformed all the non-
numeric values to numeric values through label encoder, i.e., sklearn. Furthermore, one-hot
encoding has been performed on the output label as the category ordering can also reduce
the model performance, leading to unexpected results. To increase the model effectiveness,
data normalization is also conducted. We have used the MinMax scalar function on the
data set.

4. Experimental Setup

We used an Intel processor, Core i7-7700, and graphics processing unit (GPU) for
the purpose of experimentation. Furthermore, the proposed module is trained using
Keras with the 3.8 version of Python. Table 4 depicts a complete specification of software
and hardware.

Table 4. Experimental setup.

CPU 7700, i7, 7th Generation with 2.80 GHz processor

OS Windows 10, 64 Bit

GPU Nvidia GeForce 1060 6 GB

RAM 16 GB

Libraries Pandas, TensorFlow, Numpy, Scikitlearn, and Keras

Language Python with version 3.8
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4.1. Standard Evaluation Metrics

The performance of the proposed architecture is evaluated using the standard metrics
of evaluation, such as accuracy, F1-score, recall, precision, etc. However, for the calculation
of specific parameters, first, we need to compute the false positive (FP), true positive (TP),
false omission (FOR), Matthews correlation coefficient (MCC), false negative (FN), and true
negative (TN).

Accuracy =
Tpos + Tneg

Tpos + Tneg + Fpos + Fneg
(1)

Recall =
Tpos

Tpos + Fneg
(2)

Precision =
Tpos

Tpos + Fpos
(3)

F1 − score =
2 ∗ Tpos

2 ∗ Tpos + Fpos + Fneg
(4)

5. Results and Discussion

A complete outcome of the proposed hybrid model (Cu-DNNGRU + Cu-BLSTM) is
presented in this section. For a thorough performance evaluation of our proposed hybrid
model, we made the comparison of our model with our constructed two DL-driven hybrid
models, i.e., Cu-GRULSTM and DNNLSTM, and with existing literature. The following
standard evaluation metrics evaluate the proposed model.

5.1. Confusion Matrix Analysis

It is used for showing the classification model output. A complete analysis of the
confusion matrix shows that Cu-DNNGRU + Cu-BLSTM identifies classes properly. The
figure shows the confusion metrics of all of the three models. Figure 3 demonstrates
that the proposed model Cu-DNNGRU + Cu-BLSTM recognizes the classes correctly and
outperforms the other two architectures, i.e., Cu-GRULSTM and Cu-DNNLSTM.

Figure 3. Confusion metrics of Cu-DNNGRU + Cu-BLSTM, Cu-GRULSTM, and Cu-DNNLSTM.

5.2. Cross-Validation

To prove the unbiasedness of our outcomes, we have used the 10-fold cross-validation.
Table 5 depicts a thorough description of each fold. However, for evaluation metrics, the
average results of 10 folds are presented in several parts of this research work.

5.3. Roc Curve Analysis

In any intrusion detection system (IDS), the Roc is considered an important parameter.
The Roc plots the results for comparing the true negative rates (TNR) and true positive
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rates (TPR). The Roc curves of our proposed models is shown in Figure 4, which clearly
show the relation of true positives and true negative.

Figure 4. ROC Curves of Cu-DNNGRU + Cu-BLSTM, Cu-GRULSTM, Cu-DNNLSTM.

5.4. Accuracy, Recall, F1-Score, and Precision

Accuracy demonstrates the performance and efficiency of a classifier. It shows the
amount of samples which is appropriately recognized by the model. The accuracy of our
proposed model, i.e., Cu-DNNGRU + Cu-BLSTM, is shown in Figure 5. The hybrid model
achieved an accuracy of 99.87% with a recall of 99.96%. The precision indicates the number
of records that are identified correctly. The precision of our proposed model is 99.87%, with
an F1-score of 99.96%. The detailed results for each fold are shown in Table 5 for accuracy,
precision, F1-score, and recall.

Figure 5. Accuracy, Recall, F1-score, and Precision.

5.5. FPR, FOR, FNR, and FDR Analysis

For an enhanced assessment of our proposed hybrid model, we have estimated the
false positive rate (FPR), false omission rate (FOR), false discovery rate (FDR), and false
negative rate (FNR). Figure 6 depicts the results of these metrics, which shows that our
proposed model Cu-DNNGRU + Cu-BLSTM has FPR and FOR of 0.0554% and 0.0129%
with 0.0025% and 0.0117% of FNR and FDR. Thus, the proposed model shows better results
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than the other two models, as shown in Figure 6. Furthermore, the results of DNNLSTM
are better than GRULSTM.

Figure 6. Achieved values of FPR, FNR, FDR, and FOR.

5.6. TNR, TPR, and MCC Analysis

For a thorough analysis and evaluation of the proposed model, a confusion matrix
is used for getting the values of TNR, TPR, and MCC, respectively. Figure 7 depicts the
scores of Tpr, Tnr, and MCC, which are 99.96%, 99.43%, and 99.60%. The proposed model
has better outcomes, as shown in Figure 7.

Figure 7. TNR, TPR, and MCC.

5.7. Speed Efficiency

The testing time of the proposed model is shown in Figure 8. As the training phase
is mainly done offline, so it is not considered. On the other hand, the testing phase is
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considered important as it demonstrates efficiency and the model’s performance. The
proposed hybrid model has a good testing time of 18.90 ms, proving that our proposed
model, i.e., Cu-DNNGRU and Cu-BLSTM is computationally efficient. Furthermore, the
testing time of DNNLSTM is less than GRULSTM.

Figure 8. Testing time of CU-DNNGRU + Cu-BLSTM, Cu–DNNGRU, and Cu-DNNLSTM.

5.8. Proposed Model Comparison with Existing DL Algorithms

To show the efficiency of our proposed model, i.e., Cu-DNNGRU + Cu-BLSTM, we
used two other hybrid DL models (i.e., Cu-GRULSTM and Cu-DNNLSTM) in this work
for the purpose of comparison. Both of these models are trained on the CICIDS 2018 data
set with the same metrics of evaluation. Table 2 shows the complete architecture of these
models. Furthermore, we have also made the comparison of our proposed model with
existing benchmark algorithms. The comparison with current benchmarks is presented in
Table 6. The proposed model, i.e., Cu-DNNGRU + Cu-BLSTM, delivers better results in
evaluation metrics, i.e., accuracy, F1-score, precision, etc., and speed efficiency. In addition,
Cu-DNNGRU + Cu-BLSTM shows a testing time of only 18.9 (ms), which is comparatively
less than the existing benchmarks.



Sensors 2021, 21, 4884 14 of 18

Table 5. 10-folds cross validation results.

Parameter DL Models 1 2 3 4 5 6 7 8 9 10

Accuracy (%)
Cu-DNNGRU + Cu-BLSTM 99.81 99.77 99.85 99.91 99.88 99.90 99.90 99.90 99.92 99.87

Cu-GRULSTM 98.85 99.83 99.81 98.86 98.59 99.72 99.15 99.56 99.84 99.85
Cu-DNNLSTM 99.81 99.85 99.81 99.74 99.72 99.71 99.72 99.74 99.62 99.71

F1-score (%)
Cu-DNNGRU + Cu-BLSTM 99.97 99.91 99.98 99.98 99.91 100 100 100 100 99.94

Cu-GRULSTM 99.89 99.92 99.95 99.95 99.96 99.98 99.65 99.95 99.91 99.95
Cu-DNNLSTM 99.92 99.89 99.95 99.89 99.97 99.91 99.94 99.88 99.81 99.82

Recall (%)
Cu-DNNGRU + Cu-BLSTM 99.97 99.91 99.98 99.98 99.91 100 100 100 100 99.94

Cu-GRULSTM 99.89 99.92 99.95 99.95 99.45 99.86 99.95 99.89 99.91 99.95
Cu-DNNLSTM 99.92 99.89 99.95 99.89 99.83 99.87 99.86 99.89 99.90 99.91

Precision (%)
Cu-DNNGRU + Cu-BLSTM 99.79 99.81 99.84 99.91 99.94 99.88 99.88 99.88 99.91 99.89

Cu-GRULSTM 99.85 99.87 99.81 99.18 99.66 99.84 99.85 99.78 99.76 99.51
Cu-DNNLSTM 99.84 99.85 99.85 99.88 99.69 99.76 99.69 99.88 99.82 99.87

Table 6. Comparison of proposed model with existing literature.

Ref Data Set Accuracy T.Time Algorithm 10 Fold Cu-E Precision F1-Score Recall

Proposed model CICIDS2018 99.87% 18.9 ms Cu-DNNGRU + Cu-BLSTM X X 99.87% 99.96% 99.96%
[48] CICIDS2018 91.50% – CNN – – – – –
[49] CICIDS2017 89.00% – GRU-RNN – – 99.00% 99.00% 99.00%
[50] CICIDS2017 98.60% 296 ms LSTM-CNN X X 99.37% 99.35% 99.50%
[51] CICIDS2018 96.11% – 2L-ZED-IDS – – 93.20% – 96.90%
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6. Conclusions

IoT demands a flexible, reliable, and secure infrastructure. Recently, deep learning
gained the attention of the world through its advancement. In this paper, an SDN-enabled,
hybrid DL-driven architecture is proposed to protect the IoT environment against malware
and cyberattacks, i.e., DDoS, bruteforce, bot, and infiltration. We have used state-of-the-art
Cuda-DNNGRU and Cuda-BLSTM classifiers for effective threat detection. The proposed
architecture is cost-effective as well as highly scalable. Furthermore, the results of our
proposed model are compared with two other hybrid algorithms that are trained and
evaluated on the same data set, i.e., Cuda-GRULSTM and Cuda-DNNLSTM. The results
are evident, that the proposed model beats the results of these two hybrid models and
current benchmarks.The performance advantages of the model are verified by comparing
the evaluation metrics of accuracy, recall, precision, F1 Score and speed efficiency. The
proposed model achieved 99.87% accuracy with FPR of 0.0554%, and testing time of only
18.9 ms which is relatively better than the existing literature, proving the efficiency of our
proposed model in terms of speed efficiency and detection accuracy. In the future, the
authors aim to utilize hybrid deep learning algorithms along with SDN and blockchain
for intrusions and threats detection in IoTs. Finally, we conclude that the hybrid models of
deep learning play an essential role in the security of the IoT environment.
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Abbreviations
The following abbreviations are used in this manuscript:

IoT Internet of things
SVM Support vector machine
DNN Deep neural network
GRU Gated recurrent unit
ANN Artificial neural network
LSTM Long short term memory
SDN Software-defined Networking
API Application programming interface
DoS Denial of service
DDoS Distributed denial of service
BLSTM Bidirectional long short term memory
IDS Intrusion detection system
RF Random forest
RNN Recurrent neural network
TCP Transfer control protocol
IRC Internet relay chat
RBM Restricted boltzmann machine
DL Deep learning
DAE Deep autoencoder
CNN Convolutional neural network
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LOIC Low orbit ion cannon
DNS Domain name system
UDP User datagram protocol
HOIC High orbit ion cannon
DFFNN Deep feed forward neural network
ROC Receiver operating characteristic
AF Activation function
LF Loss function
Relu Rectified linear unit
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