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Abstract: The effectiveness of collaboration in distributed networks, such as sensor networks and
multi-agent systems, relies on nodes’ ability to exchange information. The availability of various
communication protocols with different technical properties opens the possibility to guarantee con-
nectivity during a system’s operation in any condition. A communication network can be represented
by a graph on which connectivity can be expressed by a well-known algebraic connectivity value or
Fiedler value. It is one of the most important tools used in many applications where connectivity
preservation is required. In this paper, a trust-based consensus algorithm for algebraic connectivity
estimation has been implemented. To guarantee the accomplishment of the global objective and the
system’s performance, our contributions include: (i) a novel decentralized framework for combining
multiple communication channels in a resulting channel and (ii) a decentralized algebraic connec-
tivity control law that dynamically changes the number of agents in the system during operation.
The proposed algebraic connectivity control strategy has been evaluated in simulations and in a real
multi-robot system using two channels with different properties and initial topologies.

Keywords: algebraic connectivity; distributed network; multiple communication channels;
multi-agent systems; ad hoc communication

1. Introduction

Distributed networks have found huge potential in many applications, from sensor
networks to multi-agent systems, where a group of simple and inexpensive nodes or agents
should achieve a common goal in a distributed and parallel way. The advantages of such
systems include scalability, robustness, and resistance to failures. Collaboration between
agents is based on distributed algorithms, which define the procedure for information
exchange in such systems, where their use is often based on the assumption of commu-
nication availability during the operation. However, in many applications, collaborating
agents should have the ability to operate without external communication infrastructure,
i.e., by using an ad hoc communication protocol, each agent is able to exchange information
only with agents that are in its vicinity. On the other hand, information exchange between
agents has a direct influence on the system’s performance including convergence speed,
effectiveness of cooperation, and accuracy of achieving a global goal [1]. The first goal of
our study was how to incorporate information about network availability into an agent’s
local control law.

Wireless communication, implemented in various protocols, is the most widespread
communication channel used in distributed networks, especially in multi-agent systems, in
which agents change their positions over time. Variations in communication performances,
caused by the dynamically changing topology and environment where the distributed
network is operating, are difficult to predict, therefore making it difficult to guarantee
the quality of communication. In the field of distributed multi-agent systems, substantial
contributions have been made to increase network reliability. Early approaches that in-
troduced an agent’s communication performance into its motion controller relied on the
distance between nodes in the network. In some cases, this disc-based model is insufficient
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for preserving network connectivity during system operation. Aside from the mentioned
distance-related signal quality relation, signal distortion is a common issue in wireless
networks and includes phenomena such as small-scale and large-scale fading [2] and path
loss [3]. The usage of distributed collaboration algorithms in networked systems with
unstable communication is limited in applications where loss of connectivity does not
have an influence on the system’s performance and goal achievement. However, when a
distributed algorithm for collaboration between agents is applied, such as a consensus al-
gorithm, the connectivity of the underlying communication network has a direct influence
on the speed of convergence to a global goal [4,5]. In order to overcome the drawbacks of
distributed wireless networks, the second goal introduced in this work was an algorithm
that combines several communication channels into a single communication graph. Using
multiple communication channels in order to improve the network performance of a multi-
agent system has been motivated by the availability of many different communication
protocols and their different properties. By combining the best available performance
by means of speed, bandwidth, and energy consumption of a certain communication
protocol, we tested the hypothesis that multiple communication channels contribute to the
robustness of the communication network.

An additional motivation for combining multiple communication channels was found
in the developed robotic system introduced in [6], where the authors, in the developed
network of static robots for interaction with honeybees, integrated two communication
channels, i.e., Ethernet local area network and infrared module, for communication with
the nearest neighbours. The described multi-robot system uses a decentralized network
control algorithm for coordinating each robot’s actions. The dynamical topology is not just
a result of a variable number of links but also depends on the number of agents operating
in the system. If an agent estimates the global algebraic connectivity with a fixed number
of agents, it becomes obvious that the algebraic connectivity is equal to zero if one or more
nodes fail. To cope with this graph’s property, the third goal of this paper was to provide
an algorithm that dynamically changes the number of collaborating agents involved in
the estimation of the algebraic connectivity. The trust-based consensus algorithm for the
estimation of the topology of a communication graph has been used. According to a given
criteria, the method calculates the resulting adjacency matrix based on two estimated
adjacency matrices and consequently provides a graph with a larger spectrum of possible
topology combinations that lead to an increased maximal value of algebraic connectivity.

To summarize, the problems investigated in this paper are related to:

• The incorporation of network availability information (Fiedler value) into the decision-
making process of each agent in a decentralized manner.

• Signal disturbances in wireless communication protocols that limit the use of dis-
tributed algorithms in networked systems.

• A multi-agent system that is able to dynamically change the number of collaboration
agents in a decentralized manner.

In the remainder of this paper, we first provide a literature overview in Section 2.
In Section 3, we give basic notations on graph theory and preliminaries on the decen-
tralized trust-based algorithm for algebraic connectivity estimation in multi-agent sys-
tems. Section 4.1 introduces a method for combining multiple communication channels.
In Section 4.2, we propose algorithms for the connectivity maintenance of a communication
network during operation in a dynamic environment. Section 5 presents simulation and
experimental results that demonstrate the increased robustness and efficiency of the multi-
agent system when a communication network with multiple channels is used. Finally, a
discussion and conclusive remarks are given in Section 6.

2. Literature Overview

Increasing the performance of a decentralized multi-agent system has been intensively
studied in the last decade, where significant progress has been made in the field of dis-
tributed control algorithms including algorithms for swarming [7–9], consensus [10–12],
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and rendezvous [13]. The ability of multi-agent systems to execute a certain task in par-
allel has been widely exploited in many applications, including logistics in autonomous
warehouses [14], the exploration of unknown environments [15], manipulation [16,17],
surveillance [18,19], search-and-rescue [20], interaction with animal species [21,22], and sen-
sor networks [23–25]. The mentioned coordination algorithms have been applied in many
different applications where different types of robots have been used, including unmanned
ground, aerial, and underwater vehicles [26–29]. Additionally, similar communication
and collaboration principles can be found in sensor networks used in various fields such
as energy management in buildings [30], monitoring of large areas [31], industrial au-
tomation [32], and biomedical observation [33]. Collaborative wireless networks share
many similarities with multi-agent systems, including limited processing capabilities,
communication range, and modest energy storage of spatially distributed autonomous
devices. Many scientifically interesting topics in the field of collaborative networks have
been published in recent years, such as beamforming collaboration [34], the impacts of
nodes’ special distribution to the effectiveness of collaboration [35,36], and synchronization
protocols [37,38].

Preserving connectivity during the operation of multi-agent systems can be imple-
mented using two approaches: an approach to maintain local connectivity and an ap-
proach to maintain global connectivity [39–41]. The local connectivity approach consists of
maintaining communication links with agents that are available from the beginning of a
system’s operation while the agent’s actions are performed to preserve initial links. The
global approach is based on mathematical formalism where the communication network
of a multi-agent system is described using graph theory. If a multi-agent system can be
described with an undirected graph, then the second smallest eigenvalue of the correspond-
ing Laplacian matrix, also called the algebraic connectivity or Fiedler value, represents the
measure of communication network connectivity. Maximizing the algebraic connectivity
in weighted undirected graphs represents an optimization problem. On the other hand,
maximizing the value of the algebraic connectivity increases the computational complexity
of the control algorithm and gives rise to information flooding in the information exchange
process. Furthermore, a network topology dynamically changes due to the varying number
of operating agents, errors, and failures in communication, as well as the changing distance
between agents in the case of mobile agents.

The effects of communication channels fading in wireless networks on reaching
consensus are presented in [42], while the sufficient conditions for channels’ performances
that guarantee the convergence of the consensus algorithm are given in [43]. The authors
in [44] provide a comprehensive overview of the multi-scale dynamics of wireless links
for networked robotic systems. A more accurate probabilistic model that predicts signal
quality during agent’s motion is provided in [45]. An intermittent connectivity framework
for a multi-robot system is proposed in [46]. The authors consider a team of networked
robots with limited communication capabilities, where connectivity between robots can
be lost under some strict conditions. The presented methods to increase the stability of
communication in ad hoc networks are computationally too complex for the single agents
often used in multi-agent systems or wireless sensors networks.

3. Basic Notations
3.1. Graph Theory Notations

At the beginning of this section, we introduce the graph theory notations and basic con-
cepts used in this paper. A graph G = (V, E) consists of a set of vertices V = {1, 2, . . . , n},
where n is the total number of vertices in the graph, and a set of edges E ⊂ V × V rep-
resenting connections between vertices. The neighbours that are adjacent to vertex i are
called the neighbours of i, and this set is denoted as Ni = {vj ∈ V : eij ∈ E}.

There are various matrices that can be associated with a graph and reflect its properties.
The adjacency matrix A ∈ Rn×n defines the connection of the vertices in the graph. The
degree matrix D = diag(d1, . . . , dn) is a diagonal matrix where each element di denotes a
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vertex i degree and is calculated as di = ∑n
j=1 aij, where non-diagonal elements are equal

to zero. The Laplacian matrix is defined as L = D− A.
For an undirected graph, L is a symmetric matrix with real eigenvalues that can be

ordered in a non-decreasing order:

λ1 ≤ λ2 ≤ . . . ≤ λn.

The second smallest eigenvalue of the Laplacian matrix, denoted by λ2, is called the
Fiedler value or algebraic connectivity and is a measure of connectivity of the associated
graph. The graph is connected if and only if λ2 > 0. The value of the algebraic connectivity
is defined by the topology of a graph and the graph’s parameters, such as the number of
vertices n, number of edges m, minimal degree dmin, etc. It is worth pointing out that for
several popular graph topologies, such as complete, cycle, or cube graphs, the algebraic
connectivity is known and can be determined by the number of vertices n in the graph.
For instance, the algebraic connectivity of a complete graph is equal to λ2 = n, while for
a cycle graph, it is equal to λ2 = 2(1− cos 2π

n ). However, the topology of a graph can be
changed by allowing operations over the graph that may include the removal or addition of
edges and vertices. Therefore, for an incomplete graph, the maximal value of the algebraic
connectivity is upper bounded by the parameters of a graph. For example, the upper-bound
of algebraic connectivity for an incomplete graph with n vertices is defined by

λ2 ≤ n− 2,

while the bound related to the minimal degree is given by the following inequality:

2dmin − n + 2 ≤ λ2 ≤
n

n− 1
dmin.

A comprehensive overview of the graph’s spectral properties can be found in [47].

3.2. Decentralized Algorithm for Algebraic Connectivity Estimation

Consider a multi-agent system with n agents in which the network topology can be
described with the time-varying weighted undirected graph G, where the weight of the
edges determines the quality of the communication link between two agents. Assume that
each agent can exchange information only with agents that belong to the agent’s set of
neighbours. In order to estimate an adjacency matrix in a distributed way, each agent l
should compute its local estimate of the graph’s adjacency matrix Al . We used a trust-based
consensus algorithm, introduced in [48], given with the following discrete update law for
the adjacency matrix element al

ij of the agent’s l:

al
ij(k + 1) = al

ij(k) + ε× ∆al
ij(k) (1)

where al
ij ∈ [0, 1] is the agent’s l adjacency matrix element which defines the weight of the

link that connects the agent i and j, k ∈ {0, 1, 2, ...} is a discrete time step, and ε > 0 is a
period of discretization. The change of the state ∆al

ij(k) at each time step k is defined by
Equation (2a,b).

∆al
ij(k) =


∑

p∈Nl

al
ip(k)(ap

ij(k)− al
ij(k)) + (τl

ij(k)− al
ij(k)), j ∈ Nl , (2a)

∑
p∈Nl

al
ip(k)(ap

ij(k)− al
ij(k)), j /∈ Nl (2b)

where Nl is a set of neighbours of robot l, al
ip(k) is the (i, p) element of the agent’s l adja-

cency matrix, ap
ij(k) is the (i, j) element of the agent’s p adjacency matrix, and τl

ij(k) ∈ [0, 1]
is an observation function representing the ability of a communication channel between
nodes i and j. The conditions under which the presented algorithm converges are given in
the theorem presented in [49].
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Assume that the performance of a communication link is defined by the number
of exchanged packages between two nodes in a certain time period as defined by the
following exponential observation function:

τl
ij(k) = e−Ke∗δ2

ij(k), (3)

where Ke is a constant that defines the rate of change of the exponential function, and δij(k)
refers to the ability of a communication link between agents i and j in a certain discrete
time step k.

4. Theoretical Formulation
4.1. Multiple Communication Channels

The aim of any connectivity control law is to maintain a certain value of the algebraic
connectivity during operation of a multi-agent system. Since the communication network
in observed systems is usually based on the agents’ local capabilities, we proposed a
method that combines multiple physical communication channels with different properties
in order to improve the connectivity of the networked system.

Assume that in the considered multi-agent system, there exists two different types
of communication interfaces. Let A and B be adjacency matrices of the graphs for each
communication channel, where the matrices’ elements are estimated using a trust-based
consensus algorithm described in Section 3. In the rest of this section, we propose a method
for combining different types of communication channels. For the sake of clarity, we
have introduced our method using a system of nine agents with two physical channels,
but it is not limited to that number of agents. Assume that communication protocols,
denoted as A and B, are represented with a graph’s topologies shown in Figures 1 and 2,
respectively. Since each communication channel has a different topology, the question is
how to construct a communication network by combining links from different channels.
The resulting network, whose adjacency matrix is denoted by T, should include links with
better quality among the available channels.

1
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3

6

7

8

9

Figure 1. Graph topology of channel A of the system with 9 agents, where numbers represent
identification numbers of agents.
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8

9

Figure 2. Graph topology of channel B of the system with 9 agents.
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The weight of the adjacency matrix element estimated using a trust-based consensus
algorithm represents the ability of a communication link between two nodes in the network.
In addition, there exist many other physical parameters and phenomena that can influence
the performance of information flow between connected agents. Furthermore, real multi-
agent systems are unimaginable without ubiquitous wireless networks available in multiple
communication protocols. Implemented on different physical layers in accordance with
the OSI representation, the properties of the selected protocol may differ in bandwidth,
distance between nodes, package delays, and power consumption. Additionally, in wireless
networks, many phenomena of signal distortion may appear, including small-scale and
large-scale fading and path loss, which may cause variability in the performance of the
communication link. Therefore, we introduced a quality coefficient that represents the
ability of each communication protocol, defined with the following equation:

δ
(A,B)
ij (k) =

1

K(A,B)
c

δij(k) (4)

where δij(k) is a difference between transmitted and received packages between agents

i and j at a discrete time step k, and K(A,B)
c is a quality constant of the communication

channel A or B.
Each agent l computes a resulting local adjacency matrix Tl by combining links with

better quality from both available channels. Therefore, each element in the resulting matrix
is equal to the adjacency matrix element with a higher value and can be written as

tl
ij = max(al

ij, bl
ij). (5)

4.2. Dynamic Network

In this section, we will study the robustness of the used algebraic connectivity esti-
mation algorithm under perturbations in the number of agents in the system. In a real
multi-agent system, a loss of communication with one or more agents is typically caused
due to the failure of an agent. When a decentralized trust-based consensus algorithm for
the estimation of the algebraic connectivity of the communication network, described in
Section 3, has been used, a failure or connectivity loss with a single agent causes an inability
to control the connectivity of the remaining network. If the agents that are still operating
calculate the algebraic connectivity using a fixed number of agents in the network, usually
determined with an initial condition, then they are unable to increase its value. Specifically,
in the case of agent failure, the graph’s adjacency matrix elements that represent its links
are equal to zero. Thus, the corresponding Laplacian matrix has a zero row, and its second
smallest eigenvalue is equal to zero as well. In order to overcome this problem, we present
an algorithm that dynamically resizes a group of collaboration agents and ensures that the
connectivity of agents with acceptable performance remains at a certain level. Basically, we
have two possible cases here. The first case is when the performance of agents becomes
too poor (Figure 3). In this case, the agent is affecting the system’s performance. Therefore,
the algorithm should detect the critical agent and remove it from the group. The second
case includes the moment when a new agent is added to the group (Figure 4). Without the
loss of generality, the presented scenarios for removing and adding an agent are described
using a system with nine agents. The size of the system is chosen because the effects of
variation in group size can be easily formally written. Furthermore, the algorithms are
written in a general form that allow for their implementation on any agent in the group of
n agents.

Since we are dealing with decentralized agents, the proposed approach of dynamically
changing the group size of collaborating agents cannot be directly implemented because of
the decentralized properties of the algebraic connectivity estimation algorithm. Specifically,
in the adjacency matrix, elements represent a weight of the link between two agents in
the network. Therefore, removing an agent from the system means deleting a row and
column from each local matrix at the same time step. Since this can not be guaranteed in
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decentralized systems, we proposed an algorithm that runs on each agent and detects the
collaboration inability of an agent and removes it from future calculation. Additionally, we
have proposed certain criteria for adding an agent in the existing multi-agent system.

In the algebraic connectivity estimation algorithm used in this paper, the adjacency
matrix row and column number represents an identification number of a specific agent.
The algorithm exchanges the elements of the algebraic matrices with neighbouring agents.
Therefore, the algorithm expects that each element corresponds to the same link in the
network. When a manipulation in the number of nodes in the graph is allowed, the adja-
cency matrix elements of neighbouring agents with some indexes can represent different
links. To ensure that the adjacency matrix’s elements of two agents represent the same link,
we introduced a mapping strategy by using an address vector on each agent. The vector
M ∈ R, the size of which is equal to the number n of collaboration agents in the system, is
defined as

ID1

...
IDn




1

...

n

Ml =

where the ith row in the agent’s l adjacency matrix represents the identification number of
the corresponding agent.

First, let us consider a case when an agent should be removed from a collective
decision. Suppose that at a certain time step, a communication with an agent m fails.
Because of the failure, on the remaining agents, the algebraic connectivity value will
approach zero. The proposed strategy should detect an agent with low performance and
remove its measurements from the estimation algorithm. To do this, each remaining agent
l should check if its local estimate of the algebraic connectivity λl

2(k) and its node degree
dl(k) are within given thresholds defined with the following inequalities:

1. λl
2(k) ≤ λ2c

2. dl(k) ≤ dc.

where λ2c > 0 is a constant that defines a critical value of the algebraic connectivity, dc > 0
is a constant that defines a threshold for minimal node degree, and k is a discrete time step.
If the first condition is satisfied, then the agent l should check the second condition.

In order to demonstrate the effectiveness of the proposed algorithm, consider a net-
work of n = 9 agents where the agent’s l adjacency matrix Tl with the corresponding
agents’ identification numbers at the initial moment is equal to

0 1 0 1 0 0 0 0 0
1 0 1 0 1 0 0 0 0
0 1 0 0 0 1 0 0 0
1 0 0 0 1 0 1 0 0
0 1 0 1 0 1 0 1 0
0 0 1 0 1 0 0 0 1
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0





1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

Tl =

Now, suppose that at some time step, the agent with identification number 2 fails.
A resulting communication graph is presented in Figure 3, where links with agent 2 no
longer exist.
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Figure 3. A graph of networked multi-agent system after failure of agent 2.

Therefore, after the period of transient response, the elements of all local adjacency
matrices regarding agent 2 converge to zero, and the value of the agent’s l matrix is equal to

0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0
1 0 0 0 1 0 1 0 0
0 0 0 1 0 1 0 1 0
0 0 1 0 1 0 0 0 1
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
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1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

Tl =

The local value of the algebraic connectivity is calculated from its corresponding
adjacency matrix and is equal to zero, i.e., λl

2 = 0. Note that all elements regarding agent
2 are equal to zero, and its node degree is also equal to zero d2 = 0. Accordingly, both
conditions about the critical agent are satisfied. Thus, each agent l should construct a new
adjacency matrix by removing the row and column that represent the critical agent. In the
given example, agent 2 is the critical agent, and a new matrix should not contain a row
and column that represent that agent. Illustratively, the row and column of the adjacency
matrix that should be removed are struckthrough as presented in the following matrix:

0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0
1 0 0 0 1 0 1 0 0
0 0 0 1 0 1 0 1 0
0 0 1 0 1 0 0 0 1
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0





1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

Tl =

It can be noticed that the indexes of elements in a new matrix do not correspond to
the agents’ identification numbers, except for agent 1. For instance, the adjacency matrix
elements index for the agent with identification number 3 is equal to 2. For this reason,
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an identification vector M has been introduced. For the given example, the identification
vector after failure of agent 2 is equal to

1
3
4
5
6
7
8
9





1

2

3

4

5

6

7

8

Ml =

In the demonstrated simple scenario, we have presented the limitations of connectivity
maintenance when an agent fails. To overcome these challenges, we have proposed an
algorithm for removing a critical agent from a cooperation multi-agent system. Algorithm 1
summarizes the strategy for determining a critical agent in the systems based on a local
estimate of the algebraic connectivity and node degree. When a critical agent is detected, the
algorithm removes a row and column from the agent’s local estimate of the adjacency matrix
and updates the agent’s identification matrix. The algorithm is executed distributively on
each agent l in the system and requires the following input variables: local estimate of
the algebraic connectivity λl

2(k− 1), adjacency matrix Al(k− 1), and identification vector
Ml(k− 1). The algorithm calculates a new adjacency matrix Al(k) and identification vector
Ml(k).

The second possible scenario in a dynamically changing cooperating multi-agent sys-
tem is adding a new agent in the system during task preformation. Consider a multi-agent
system with an implemented decentralized connectivity maintenance strategy, and sup-
pose that in those systems, a method for preserving the connectivity of the communication
network is used. However, to the best of our knowledge connectivity maintenance algo-
rithms are based on a fixed number of agents. To overcome the presented limitation in
this section, we have proposed an algorithm for extending the local adjacency matrix and
corresponding identification vector.
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Algoritam 1: Removing a critical agent from the system.

Input: algebraic connectivity λl
2(k− 1), adjacency matrix Al(k− 1), identification

vector Ml(k− 1)
Output: adjacency matrix Al(k), identification vector Ml(k)
if λl

2(k) ≤ λ2c then
foreach dc(k) ∈ D do

if dc ≤ dc and dc 6= l then
Remove row and column c from the adjacency matrix:

Al(k) = del(Al(c, c))
Remove element c for identification vector: Ml(k) = del(Ml(c))

end
end

end

The procedure of adding an agent to an existing system starts with its ability to
establish communication links with one or more agents in the existing system. If agent
m, which is not a part of the system, is within a communication radius, it can initiate an
adding procedure with one of its neighbours. The responsibility of the agent that receives
the request is to check the ability of the new agent. We defined the ability of an agent as a
sum of the links’ weights or the agent’s degree. In the other words, if the agent’s degree dm
is not greater than the minimal required constant dmin, this means that its performance does
not satisfy the minimal control quality of the operating system and is not an acceptable
candidate for enlarging the system. On the contrary, when a new agent satisfies the minimal
node degree requirement, it initiates an adding procedure and initializes its local estimate
of the adjacency matrix elements and identification vector to the values of the neighbouring
agent. After initialization, the new agent continues to compute is local estimate of the
adjacency matrix by using the trust-based consensus algorithm described in Section 3.

When a new agent is an appropriate candidate for an existing network of cooperating
agents, all agents in the system should add the new agent to their local estimates. Here, we
defined two categories which have different sequences for adding a new agent. The first
category includes all agents that are in the set of neighbours of a new agent m. Thus,
if agent l is within a set of neighbours of agent m, or it holds l ∈ Nm, the following
sequence is conducted:

1. Add agent m into the set of neighbours Nl = {Nl , IDm}.
2. Enlarge the identification vector Ml with the address of the new agent m.
3. Enlarge the adjacency matrix Al with a row and column that correspond to the new

agent m.

The second category includes all other agents that are more than one step away from
the new agent. For each agent l that is not within the set of neighbours l /∈ Nm, its local
identification vector and adjacency matrix should be synchronized to a new size of the
cooperating group. To achieve this goal, in the proposed algorithm, the following steps
are conducted:

1. Agent l compares the size of the identification vectors with each agent in its set of
neighbours Nl .

2. If the size of the agent’s l identification vector is lower than the size of some agent from
its neighbourhood, then the agent l should determine the address of new agent m.

3. If the degree of the new agent m is greater than the required threshold, then the
adjacency matrix and identification vector of agent l are enlarged with values that
correspond to the new agent.

The described procedure of adding one or more agents to the system in a decentralized
way is summarized in Algorithm 2. Note that in the general case, if agent l does not have
any neighbours, or it holds that Nl = ∅, this means that it is not a part of the multi-agent
system. When agent l is not a part of a group, it should continuously try to establish
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communication links with agents that are eventually present in its communication range,
and it initiates an adding procedure if it increases its node degree to a certain level.

Algorithm 2: Add a new agent to the system.

Input: adjacency matrix Al(k− 1), identification vector Ml(k− 1), set of
neighbours Nl(k− 1), identification number of the new agent m - IDm
Output: adjacency matrix Al(k), identification vector Ml(k)
if Nl = ∅ then // Agent m initialize the adding request

l = m;
if dl > dmin then

Initialize the adjacency matrix Al

Initialize the identification vector Ml

Initialize the set of neighbouring agents Nl
Sent the request for connection

end
else if IDm 6= 0 then // Agent l that satisfies l ∈ Nm

Add new agent to the set of neighbours Nl = {Nl , IDm}
Enlarge the identification vector Ml = [Ml , IDm]
Enlarge the adjacency matrix Al

else // Agent l is not in the set l /∈ Nm
foreach i ∈ Nl do

if |Ml | < |Mi| then
foreach j ∈ Mi do

if j /∈ Mi and di(j) > dmin then
Enlarge the identification vector Ml = [Ml , Mi(j)]
Enlarge the adjacency matrix Al

Use a new matrix in the connectivity maintenance algorithm
end

end
end

end
end

In the remainder of this section, we demonstrate the principle of the proposed algo-
rithm on a system with eight agents. The agent’s l adjacency matrix Tl and identification
vector Ml are equal to

0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0
1 0 0 1 0 1 0 0
0 0 1 0 1 0 1 0
0 1 0 1 0 0 0 1
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
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In Figure 4, a network topology of the multi-agent system with nine agents is pre-
sented, where agent 2 is added to a group of eight agents. Dashed lines represent links
established by agent 2 before sending an adding request. Therefore, agent 2’s set of
neighbours is equal to N2 = {1, 3, 5}.

1

2

4

5

3

6

7

8

9

Figure 4. Network topology of the multi-agent system when a new agent is added. Solid lines
represent a graph topology of 8 agents, while dashed lines represent established links of a new agent
whose identification address is 2.

For the purpose of this example, suppose that agent 2 has ideal communication links
whose weights are equal to 1. When its node degree is greater than the required threshold,
it begins the adding procedure by sending a request to its neighbours and initializes
its local estimates using values exchanged with its neighbours and local measurements.
Accordingly, agent 2’s adjacency matrix and identification vector are equal to

0 0 1 0 0 0 0 0 1
0 0 0 0 1 0 0 0 1
1 0 0 1 0 1 0 0 0
0 0 1 0 1 0 1 0 1
0 1 0 1 0 0 0 1 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
1 1 0 1 0 0 0 0 0
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Following the procedure of the algorithm, the local estimates of agents 1, 3, and 5
will be enlarged by the measurement of agent 2. Since the proposed algorithm is executed
in a distributed manner, a new agent will be added to a local estimate of each agent on
different time steps. The consequence of a distributed approach will be of a different order
of identification vector and adjacency matrix elements when multiple agents are added
in the same time period. However, this does not influence the final result of the algebraic
connectivity estimate because of the described method of referencing the elements of the
agent’s local adjacency matrix.

5. Results

The proposed algorithms for combining multiple communication channels and al-
gebraic connectivity control in dynamic networked multi-agent systems have been ex-
perimentally verified, first in simulations, then in an experimental environment. The
simulations, carried out in MATLAB, have been designed with the real multi-agent system
described in [6] and presented in Figure 5 in mind. In the simulation environment, in
which the agent’s operational principles are extracted from the ASSISI Playground platform
introduced in [50], different scenarios have been evaluated using a relatively small number
of agents (because of the presentation purposes). In Section 5.1, the proposed idea of com-
bining multiple channels into a resulting communication network is evaluated. Section 5.2
provides the simulation results of the time responses of the graph’s algebraic connectivity
when the number of agents in the collaborating group is changing. Finally, in Section 5.3,
the algorithms proposed in this paper are experimentally verified using the developed
multi-robot system comprised of 61 independent robots, called CASUs (combined actuator
sensor units).

Figure 5. Multi-robot system for interacting with honeybees containing 61 independent devices
called CASUs (combined actuator sensor units) [6].
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5.1. Multi-Channel Communication

In this experiment, we combine two different communication protocols, denoted as chan-
nel A and B, the performance of which has been embodied in the following quality constants:

• KA
c = 1;

• KB
c = 0.9.

We consider different network topologies for channels A and B as presented in
Figures 1 and 2, respectively. The experimental verification of multi-channel communica-
tion was carried out by changing the weight of the communication link between agents
4 and 5, or, in our case, the difference between the transmitted and received numbers
of packages δA

45 for channel A and δB
45 for channel B. Table 1 summarizes the values

of δ45 with respect to time t. The intervals have been chosen in a manner to capture
three specific scenarios. The first scenario presents a case when both channels have the
maximum performance, i.e., there is no difference between transmitted and received
data. The second scenario describes the situation when the quality of channel A drops
below the quality of channel B, i.e., δA

45 < δB
45. Finally, the third scenario considers the

case when channel A again has better quality than channel B, or it holds that δA
45 < δB

45.
Figure 6 shows the responses of agents’ local adjacency matrix elements (4,5) of channels
A, B, and T.

Table 1. The difference between transmitted and received number of packages for the links between
agents 4 and 5 for channels A and B.

t [s] [0, 100〉 [100, 200〉 [200, 300]

Channel A (δA
45) 0 0.3 0.3

Channel B (δB
45) 0 0 0.5

Figure 6. Adjacency matrix element (4,5) responses for channels A, B, and T.

Based on the estimated local adjacency matrix, each agent l calculates its local algebraic
connectivity value, denoted as λl

2. The local estimate of the algebraic connectivity of each
agent for graphs A, B, and T is depicted in Figure 7, where the dashed line represents
the maximal value of the algebraic connectivity obtained in the case when all links in
the considered graph topology exist. It can be observed that the maximal value of the
algebraic connectivity for graph A is λA

2max = 0.26, for graph B is λB
2max = 0.26, and for

the resulting graph T is λT
2max = 1. Therefore, the value of the algebraic connectivity of

the resulting graph T is almost 4 times greater than that from graphs A and B. The reason
for this is that the resulting graph T combines links with better quality from both graphs.
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In other words, graph T is the union of graphs A and B. In the conducted experiment,
the value of the algebraic connectivity estimate of graphs A and B depends on the link
weight between agents 4 and 5, i.e., δA

45 and δB
45. The proposed algorithm is constantly

optimizing the usage of available links in the resulting graph T in order to maintain the
required value of algebraic connectivity. The robustness of the algorithm has been shown
in the conducted experiment, where the algebraic connectivity value of the resulting graph
T does not change until t > 200 s.

Figure 7. The responses for estimated algebraic connectivity for graph topologies defined with
channels A, B, and T. Dashed line represents maximal value of the algebraic connectivity obtained in
the case when all links in the considered graph’s topology exist.

5.2. Time Variable Multi-Agent System

In this section, we performed experimental verification of the proposed algorithms for
maintaining the algebraic connectivity in a multi-agent system. The simulation is performed
using a multi-agent system whose initial topology at t = 0 s is presented in Figures 3 and 4.
We simulated a failure and recovery of agent 2. At time t = 50 s, agent 2 fails and recovers
at t = 150 s, as shown in time responses of the link a12 weight on all agents (Figure 8). The
objective of the proposed algorithm is to detect and remove all agents without satisfactory
quality of communication from a group decision-making process in the multi-agent system.
Figure 9 presents the time responses of the algebraic connectivity local estimate of all agents
in the system. The algorithm detects that agent 2’s algebraic connectivity and node degree
are below the required minimal values and decides to disconnect agent 2 at approximately
t = 75 s.

Agent 2 recovers from the failure at time t = 200 s by creating communication links
with its fist neighbours. All agents in the systems detect a new agent and enlarge their
estimated adjacency matrices. After a transient time, the local estimates of the algebraic
connectivity converge to a common value that is equal to the value before failure.
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Figure 8. Time responses of the link a12 weight on all agents in the system. At t = 50 s agent 2 fails
and recovers at t = 150 s.

Figure 9. Time responses of the algebraic connectivity local estimate of all agents in the system.

5.3. Experimental Results

Experimental verification was performed in a real multi-robot system containing
61 CASUs. In particular, units inside this experimental setup do not have the possibility to
change their positions during execution of the experiment. They are initially positioned
inside a square area of 1 by 1 m, where each unit is able to communicate with its neigh-
bouring units. The neighbouring set of each unit is unknown before the start of task
execution and depends on the unit’s initial position and chosen communication protocol.
The advantage of the chosen experimental setup is developed by two different types of
communication protocols, i.e., Ethernet and infrared communication protocols.

The algebraic connectivity for every fifth agent was presented in Figure 10. At the
beginning of the experiment, agents first estimate the graph topology of the underlying
network. The effect can be noticed until t = 100 s, where a collective decision about the
value of the algebraic connectivity of the communication graph converges to a common
value. A new agent joined the group at time t = 100 s, after which the algebraic connection
of the group increased from λi

2 = 0.13 to λi
2 = 0.24. It can be noticed that the maximal

value of the algebraic connectivity before reaching the stationary value of approximately
λi

2 = 0.24 at the end of the experiment was λi
2 = 0.28. The main reason for the described

overshoot is because a new unit does not have information about graph topology. Therefore,
the connectivity maintenance algorithm wants to achieve the desired value of the algebraic
connectivity in a short period.
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Compared to the experiments conducted with nine agents, the convergence speed of the
algorithm is much slower, which is a result of the different topology used in this experiment.

Figure 10. The responses for the algebraic connectivity for every fifth agent during experimental
verification using 61 CASUs.

6. Discussion

As shown in [51,52], in multi-agent applications where the communication network is
based on the agent’s onboard capabilities, connectivity control between agents is necessary
to guarantee the system’s performance and achievement of the global goal. Several differ-
ent approaches to preserve connectivity have been exploited, including approaches based
on the algebraic connectivity of the underlying graph, methods that control the distance
between neighbouring agents, and probabilistic models. Herein, we demonstrated that
by introducing multiple communication channels, it is possible to control the value of the
algebraic connectivity without the need for adding new links. In the obtained simulation
results, two different scenarios were tested. The first scenario, presented in Section 5.1,
demonstrates the implications of using multiple communication channels on the alge-
braic connectivity. With the proposed method, each agent in a distributed multi-agent
system selects links whose qualities are the best among its set of neighbours. The second
scenario, presented in Section 5.2, shows the impact of the agent’s failure or recovery to
the connectivity measure. In simulations after a failed agent is no longer included in the
estimation of the algebraic connectivity, its value is calculated for a graph that contains the
remaining agents, as has been shown in Figure 3. Furthermore, the algebraic connectivity
increases after node failure. This feature is the basic purpose of the proposed algorithm for
controlling the number of nodes in a distributed ad hoc network. Since the algorithm is
executed in a decentralized way, note that agents that are closer to the failed agent in the
graph topology detect its inability to cooperate earlier.

In addition, preliminary experimental verification has been carried out in a real multi-
robot system which contains 61 robots. The presented results show the scalability and
effectiveness of the proposed distributed method for combining multiple communication
channels and an algorithm that dynamically determines the collaboration group size.

To the best of our knowledge, a general approach that combines multiple communi-
cation protocols to create a reliable and resilient distributed network commonly used in
applications such as sensor networks and multi-agent systems has not yet been presented
in the literature. In the described distributed network, a communication graph becomes
tolerant to variations in the link’s quality and the failures of agents. Consequently, agents
that remain active are able to perform a given task. Since the computational complexity
of the consensus algorithm is dependent on the number of agents in the network, future
works will thoroughly investigate the influence of group size on the speed of convergence
of the algebraic connectivity value in different real experimental setups.
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