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Abstract: The study was undertaken in Krakow, which is situated in Lesser Poland Voivodeship,
where bad PM10 air-quality indicators occurred on more than 100 days in the years 2010–2019.
Krakow has continuous air quality measurement in seven locations that are run by the Province
Environmental Protection Inspectorate. The research aimed to create regression and classification
models for PM10 and PM2.5 estimation based on sky photos and basic weather data. For this research,
one short video with a resolution of 1920 × 1080 px was captured each day. From each film, only five
frames were used, the information from which was averaged. Then, texture analysis was performed
on each averaged photo frame. The results of the texture analysis were used in the regression and
classification models. The regression models’ quality for the test datasets equals 0.85 and 0.73 for
PM10 and 0.63 for PM2.5. The quality of each classification model differs (0.86 and 0.73 for PM10, and
0.80 for PM2.5). The obtained results show that the created classification models could be used in
PM10 and PM2.5 air quality assessment. Moreover, the character of the obtained regression models
indicates that their quality could be enhanced; thus, improved results could be obtained.

Keywords: classification; particulate matter; regression; texture analysis

1. Introduction

Air quality in cities and suburban areas is a crucial and emerging problem for govern-
ments. Among various air pollutants, airborne particulate matter (PM) with diameters less
than 10 micrometers (PM10) and less than 2.5 micrometers (PM2.5) are the most common
pollutants in Polish cities. PM is a complex mixture of extremely small particles and liquid
droplets made up of acids, organic chemicals, metal, soil, and dust particles. Sources of
PM are both natural and anthropogenic. Man-made sources of PM include combustion in
mechanical and industrial processes, vehicle emissions, and even tobacco smoke. Natural
sources include volcanoes, fires, dust storms, and aerosolized sea salt [1].

PM has a considerable negative effect on human health, including increased rates
of cardiovascular, cerebrovascular, and respiratory diseases [2,3]. Puentes et al. in [4]
showed that every 50 µg/m3 increase in PM10 caused 4–12% growth of hospital visits for
children with respiratory syndromes. Many techniques are available to measure the mass
concentration of PM in air. The most popular methods include filter-based gravimetric
methods [5], tapered element oscillating microbalance [6], beta attenuation monitoring [7],
optical analysis [8–10], and black smoke measurement [11]. All these methods require
sophisticated equipment, space to install, and staff to maintain the equipment and evaluate
the data. A simple, fast, and cheap method of monitoring PM in the air has the potential to
increase public awareness, alert those with respiratory diseases to take proper prevention
measures, and provide local air quality data that are not otherwise available. Easy access

Sensors 2021, 21, 5483. https://doi.org/10.3390/s21165483 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-0381-4697
https://orcid.org/0000-0002-7789-4765
https://orcid.org/0000-0001-5137-5732
https://doi.org/10.3390/s21165483
https://doi.org/10.3390/s21165483
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21165483
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s21165483?type=check_update&version=3


Sensors 2021, 21, 5483 2 of 20

to cheap cameras makes the described method easily accessible. The current methods,
although undoubtedly more precise, are burdened with a very high cost of purchasing the
equipment required for PM analysis. As indicated by the authors of the evaluation, the
cost of purchasing a professional measuring device is so high that it becomes inaccessible
for ordinary people [12].

The literature mentions the use of artificial neural networks, SVM, spatial interpolation
models, and statistical models for air quality modeling. In neural network-based methods,
Vahdatpour et al. proposed a method to estimate pollution forecast with Convolutional
Neural Network based on sky images and Gabor transform [13,14]. Yang et al. presented
shallow ResNet with layer enhancement for PM2.5 index prediction [15] based on image
data from Beijing, Shanghai in China. The usage of MLP was presented by the authors
in [16,17]. Their results demonstrated that the MLP approach obtains good PM levels
prediction quality.

Liu et al. in [18] proposed PM2.5 level prediction with the SVR method based on
six features (including textures) and weather data, time, and geographical location. The
research was based on outdoor photographs from Beijing, Shanghai in China and Phoenix in
US. In [19], the authors proposed a system to estimate air quality based on publicly available
sky photos from Flickr and public webcams and statistics computed from sky pixels color
values. The research of Sajjadi et al. in [20] presented PM2.5 and PM10 assessment in
Sabzevar in Iran based on spatial interpolation models. Models of Radial Basis Functions,
Inverse Distance Weighting, Ordinary Kriging, and Universal Kriging were used on 48 PM
station data. The use of neural networks and public cameras or even smartphones with an
integrated full-HD camera can provide an effective tool for assessing air quality [21,22].
Several forecasting models have been developed to assess levels of PM in atmospheric
air without using photographs. In paper [23], the authors presentend generalized models
with gamma distribution to predict daily average PM10 in Brno, Czech Republic. Models
were created for daily averaged data from two stations using weather data and addictional
seasonal informations. A similar approach was presented by the authors of [4]. The authors
used a bivariate predictive model based on GBS distribution to predict next-day maximum
PM10 and PM2.5 levels. In paper [24], the authors analyzed the impact of weather on PM
level using generalized additive models. Finally, in [25], the authors presented a system to
estimate PM2.5/haze level based on a single photograph. Experiments were performed
both on synthetic and real datasets with depth trans and jcsb2014 methods.

The aim of the project was assessment of PM10 and PM2.5 pollution using image
texture analysis and commonly available weather data (air temperature, precipitation,
average wind speed). The authors aimed to verify whether it is possible to correctly
forecast the pollution having information obtained from a simple camera, an image sensor
that everyone has at home, and weather forecast one can obtain online. The task used
the signal processing approach to derive discriminative features from images that are
not visible with the naked eye. These data were combined with information collected by
sensors built into commercial devices (Vaisala WXT520, Plantower PMS5003) that were
measuring parameters such as wind, rain, pressure, temperature, and relative humidity.
The assessment of air pollution with PM10 and PM2.5 was carried out quantitatively and
qualitatively with the use of multilayer perceptron (MLP) artificial neural networks. Despite
the fact that air quality in Krakow has improved in recent years, a tool that could quickly
assess air quality anywhere and at any time of day would be useful. Such a tool could be
based on regression or classification models that assess air quality based on texture and
weather information. For example, the entire model could be integrated into a smartphone
or tablet application.

2. Air Quality Assessment for the City of Krakow

Krakow agglomeration is located in the Lesser Poland Voivodeship; it is inhabited by
around 770,000 people and covers an area of 327 km2. Air quality assessment for the city is
based on the Regulation of the Minister of the Environment from 24 August 2012 on the
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topic of levels of certain substances in the air and EU directives for the protection of human
health and plant protection [26–29] in which acceptable levels of atmospheric pollution are
specified. The maximum yearly average concentration of PM10 equals 40 µg/m3, but the
aforementioned regulation [28] also allows the daily average concentration to be exceeded
(Table 1). The norm for PM2.5 concentration equals 25 µg/m3 without any exceptions.

Table 1. Acceptable daily and annual maximum levels of PM10 concentration in the air.

Average Period of
Concentration

Permissible Level of PM10 in
the Air [µg/m3]

Allowed Frequency of
Exceeding the Permissible

Level of PM10

24 h 50 35 times
Calendar year 40 N/A

Measurements of PM10 and PM2.5 content were carried out every day using continu-
ous, high-quality, automatic or manual methods. The main factor affecting air quality in
Lesser Poland Voivodeship is emissions from the municipal and household sectors. In the
structure of pollutants, these emissions account for approximately 77% PM10, 88% PM2.5,
97% BaP, 14% NOx, and 65% SOx. An increased pollution level is especially visible in
winter, when fuel consumption for heating increases due to low temperatures. In summer,
emissions from the municipal and household sectors decrease; therefore, emissions only
come from households that use solid-fuel furnaces to heat water. As in other highly pol-
luted cities, such as Santiago, Chile, it should be noted that topographic (poor ventilation),
meteorological (low temperature at winter), and socio-economic (coal-fired home heating)
conditions negatively affect air quality in the city, especially during the winter period [4].
Another source of emissions that is visible especially in large cities and agglomerations is
transport, which accounts for around 5% of PM10 emissions, 4% of PM2.5 emissions, and
44% of NOx emissions for the whole voivodeship [30].

To assess air quality in Krakow for PM10, measurement series from seven stations
(two automatic optical and five manual gravimetrical) were collected and analyzed by the
Province Environmental Protection Inspectorate. The locations of all stations are presented
in Figure 1. The most frequently exceeded norm was observed at Krasinski Avenue [30],
and the highest yearly PM10 number is also observed there (Figure 2).
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Figure 2. Concentration of PM10 at WIOS stations in Krakow in 2017.

To assess air quality in terms of PM2.5 particulate matter, measurement series from
three stations (two automatic and one manual) were analyzed. The average annual concen-
trations ranged from 39 µg/m3 at Krasinski Avenue up to 27 µg/m3 at Bulwarowa Street
in 2017 [30].

The analysis of the number of exceedances of PM10 levels showed that the worst
year in terms of air quality was 2010, which had 223 exceedances. The data show a
decreasing trend, with a period of increased values in 2014–2015 (Figure 3) and a lower
exceedance value in 2012. The concentrations of PM10 and PM2.5 show a clear decreasing
trend (Figure 3), but a slight increase in concentrations was visible in the years 2014–2015.
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concentrations at Krasinskiego.

3. Theory

In this paper, texture analysis using First-order Features, Gray-level Co-occurrence
Matrix, and Grey Tone Difference Matrix methods was used to extract information from
images. On the basis of the obtained results and weather data, regression and classification
neural networks were created using multilayer perceptron. The task of the neural networks
was to estimate PM10 and PM2.5 in atmospheric air and exceedances of air quality. In this
section, the theory of used methds is presented.
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3.1. Texture Analysis

The image processing literature illustrates multiple methods of describing the charac-
teristics of a texture. The simplest method is image histogram analysis (e.g., First-order
Features). More sophisticated approaches additionally analyze local changes in pixel inten-
sities (e.g., Gray-level Co-occurrence Matrix); others try to mimic the way the human visual
system works (e.g., Gray Tone Difference Matrix) [31,32]. Since the texture operator has
already proved its sensitiveness for tiny changes resulting from noise introduction [33], it is
believed the pollution recorded on images may also be visible. Moreover, in the presented
research, a texture operator, which returns a short vector of values that could describe the
image quality, was needed (which in assumption should vary depending on air condition).
As a consequence, the authors have concentrated on early approaches of texture description
and neglected the more up-to-date methods, e.g., Local Binary Patterns or Histogram of
Oriented Gradients, that describe the image with extremely long feature vectors. Details of
the methods chosen for this research are described in the following paragraphs.

The First-order Features method (FOF) is based on statistical information derived
from a normalized image histogram. It denotes a gray-scale image whose resolution is
HxW, and there are G pixel intensities. The normalized histogram is formulated as:

p(i) = 1/WH ∑W
x=1 ∑H

y=1 I (x, y ) == i. (1)

From such a histogram, the following features can be derived: mean, variance, kurtosis,
skewness, energy, and entropy; their formulas are given in Equation (2) [34].

FOF1 : mean : µ =
G−1
∑

i=0
ip(i)

FOF2 : variance : σ2 =
G−1
∑

i=0

(
i− µ2)p(i)

FOF3 : kurtosis : µ3 = σ−3 ∑G−1
i=0

(
i− µ3)p(i)b

FOF4 : skewness : µ4 = σ−4
G−1
∑

i=0

(
i− µ4)p(i)− 3

FOF5 : energy : E =
G−1
∑

i=0
[p(i)]2

FOF6 : entropy : H = −
G−1
∑

i=0
p(i) log2[p(i)] (2)

In the Neighborhood Gray-tone Difference Matrix method (GTDM) [35], higher-order
parameters are based on the histogram of differences between the intensity of the central
pixel and its eight-sided neighborhood average. Such a definition mimics the way humans
perceive brightness. From this data structure, five features are derived, which describe
the general image quality: thickness, contrast, business value, complexity, and endurance.
Equation (3) defines these features.

GTDM1 : coarseness :

[
ε +

Gh

∑
i=0

pis(i)

]−1

GTDM2 : contrast :

[
1

Ng
(

Ng
)
− 1

Gh

∑
i=0

Gh

∑
j=0

pi pj(i− j)2

][
1
n2

Gh

∑
i=0

s(i)

]
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GTDM3 : business value :

[
∑Gh

i=0 pis(i)
]

∑Gh
i=0 ∑Gh

j=0 i pi − jpj

GTDM4 : complexity :

∑Gh
i=0 ∑Gh

j=0(mod(i, j))

n2(pi + pj)

(
pis(i) + pjs(j)

)
GTDM5 : strength : ∑Gh

i=0 ∑Gh
j=0(pi + pj)

(i− j)2

ε−∑Gh
i=0 s(i)

(3)

where

pi—the probability of the dependence of a pixel on intensity i;
s(i)—NGTDM intensity value calculated as ∑|i− Ai|;
Ai—the average intensity of the surrounding pixels without considering the center voxel
(calculated from the intensity i).

The Gray-Level Co-occurrence Matrix (COM) is the third texture method used in this
paper. This method was introduced by Haralick [36] and is based on a symmetrical co-
occurrence matrix. Each matrix entry stores information about the number of occurrences
of two-pixel intensities that index this element in an image. This definition makes it possible
to memorize not only an image’s intensity distribution but also its spatial relation to the
image. The matrix dimensions are related to the number of gray-level pixel values, G, and
may be reduced to a smaller number to optimize the calculation time. In the presented
research, G equals 64. To assure the rotational invariance of the method, Haralick et al.
suggested incorporating into the co-occurrence matrix the information that is obtained from
analyzing the pixel adjacency in four directions [36]. Moreover, it is possible to define the
distance between pixels, which are assumed to be adjacent. In the presented experiments,
this distance equals one. These authors also suggested deriving 14 features that describe
various qualities of a texture. The detailed formulation is presented in Equation (4).

COM1 : Angular Second Moment : ∑i ∑j p(i, j)2

COM2 : Contrast :
Np−1

∑
n=0

n2

{Np

∑
i=1

Np

∑
j=1

p(i, j)

}
, mod(i− j) = n

COM3 : Correlation :
∑i ∑j(ij)p(i, j)− µxµy

σxσy

COM4 : Sum of Squares : Variance : ∑i ∑j(i− µ)2 p(i, j)

COM5 : Inverse Difference Moment : ∑i ∑j
1

1 + (i− j)2 p(i, j)

COM6 : Total Average :
2Np

∑
i=2

ipx+y(i)

COM7 : Sum of Variance :
2Np

∑
i=2

(i− fs)
2 px+y(i)

COM8 : Sum of Entropy : −
2Np

∑
i=2

px+y(i) log
{

px+y(i)
}

COM9 : Entropy : −∑
i

∑
j

p(i, j) log(p(i, j))
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COM10 : Difference Variance :
Np−1

∑
i=0

i2 px+y(i)

COM11 : Difference Entropy : −
Np−1

∑
i=0

i2 px−y(i) log
{

px−y(i)
}

COM12 : Information Measures of Correlation 1 :
HXY− HXY1
max{HX, HY}

COM13 : Information Measures of Correlation 2 : (1− exp[−2(HXY2− HXY)])1/2

COM14 : Max. Correlation Coefficient : (sec ond biggest value of Q)
1/2

HXY = −∑
i

∑
j

p(i, j) log(p(i, j))

HX, HY—entropies px, py

HXY1 = −∑
i

∑
j

p(i, j) log
(

px
(
i) py(j

))
HXY2 = −∑

i
∑

j
px
(
i) py(j

)
log
(

px
(
i) py(j

))
Q(i, j) = ∑k

P(i, k)P(j, k)
Px(i)Py(k)

. (4)

where

µ—average value, σ—standard deviation;
px—partial probability density function;
x, y—input coordinates in the co-occurrence matrix;
px+y(i)—probability of the sum of the x and y coordinates from the matrix of co-occurrences;

3.2. Correlation

The correlation coefficient describes the statistical relationship between features. Pear-
son’s correlation is used to measure the statistical relationship or association between
two continuous variables. It provides information about the magnitude of the association
and the direction of the relationship [37]. Calculation of Pearson’s correlation coefficient
requires the assumption that two samples are normally distributed. If normality is violated,
Pearson’s correlation coefficient gives unreliable results. Hence, an alternative to Pearson’s
correlation coefficient may be Spearman’s rank correlation. The dependence of ordinal
variables is designated as rank correlation, and their intensity is represented by correlation
coefficients [37]. Correlations with p ≤ 0.05 are considered statistically significant, which
corresponds to correlation values greater than 0.195.

3.3. Artificial Neural Networks

Artificial neural networks are a powerful data modeling tool with a high proven
efficiency in dealing with nonlinearity in a dataset as well as complex problems in the
classification, regression, and clustering fields [17,37,38]. An extensive description of neural
networks has been provided by the authors in [15,17,37–39]. For the regression problem,
a neural network with a multilayer perceptron (MLP) was selected [16,17,40]. Network
training was performed with the Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm,
which is an iterative method for solving unconstrained nonlinear optimization problems.
The BFGS is a memory-efficient training algorithm usually used for nonlinear least squares
and may require in a smaller number of iterations to train a neural network [38]. The
sum of squares (SOS) was selected as the error function. Initially, the number of neurons
in the input layer depended on statistically significant correlations: one neuron for each
quantitative variable. The optimal number of variables used in the model was based on
sensitivity analysis, so the number of neurons in the input layer was changeable. Variables
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that did not improve the quality of the obtained networks were removed from the neural
network models. The constructed neural networks included one layer of hidden neurons
with five to 25 neurons and one neuron in the output layer [17,38].

Originally, two types of neural networks were considered for the classification prob-
lem: a multilayer perceptron and a network with a radial basis function (RBF) [39]. After
preliminary analyses, it turned out that the quality of the RBF network was lower than that
of MLP; therefore, the multilayer perceptron was chosen. Moreover, for neural networks
classification, sensitivity analysis was used to select the optimal number of variables, and
the number of neurons in the hidden layer was from five to 25 neurons. The output layer
contained as many neurons as the air quality classes (for PM10—3, for PM2.5—2).

The quality of the regression neural networks was expressed as the value of Pearson’s
correlation coefficient between the data and the model, and the Coefficient of Determi-
nation (R2). Mean Error (ME), and Mean Absolute Percentage Error (MAPE) were used
additionally for test datasets. The quality of the classification networks was expressed as
the percentage of correct classifications, which corresponds with accuracy * 100%. Addi-
tionally, Area Under Curve (AUC) was used to assess the ability of a classifier to distinguish
between classes.

4. Proposed Method

For this project dataset of images, numerical datasets of weather data and air pollution
with PM10 and PM2.5 data have been used. Proposed method for estimating PM10 and
PM2.5 in atmospheric air and exceedances of air quality was based on the Cross-Industry
Standard Process for Data Mining (CRISP-dm) methodology. Figure 4 illustrates the
block diagram of the proposed method. The authors described the phases presented in
Figure 4 in the following parts of this paper. The proposed method is a transitive method
between the use of neural networks to predict air quality based on photos presented in
publications [13–15] and the approach based on modeling numerical data presented by
the authors in [16,23,24]. In the first step, texture analysis for each of the average photo
frames has been performed, using three complementary methods. Thanks to the selected
methods, a single value for each texture feature was obtained. The next step was to combine
the results from the texture analysis, weather, and air pollution data. Then, regression
and classification MLP neural networks were performed for numerical data. The selected
method allowed for the creation and preliminary evaluation of a single neural network in
less than 1 s. In the last step, the quality of selected neural network models was assessed.

4.1. Data Collection

Data analysis was performed on good-quality image data that were acquired daily.
Image data acquisition was performed periodically for 100 days (from 21 November
2018 to 28 February 2019) at sunrise (between 7 and 7.30 AM, UTC+1) from the “Wawel
castle and the Vistula bend” city monitoring station, whose coordinates are 50◦03′ N
19◦55′ [41]. The automated process was downloading videos from the camera according to
the aforementioned schedule. Short *.mp4 files (movies with resolution 1920 × 1080 px)
were saved in the disk space, from which five random frames were extracted and averaged.
Each frame contains the same view presented in Figure 5. Images carry unstructured sets
of pixels; however, each image has a texture that has been analyzed in further steps. On
the other hand, weather parameters collected by sensors have been provided as structured
*.csv files. The combination of both sources done by the automated process gave the results
presented below. To ensure the best possible convergence of parameters, weather and air
quality data were collected from two weather stations located in the neighborhood of the
image acquisition location, which is presented in Figure 1.



Sensors 2021, 21, 5483 9 of 20
Sensors 2021, 21, x FOR PEER REVIEW 10 of 21 
 

 

 
Figure 4. Block diagram of the proposed method. 

4.1. Data Collection 
Data analysis was performed on good-quality image data that were acquired daily. 

Image data acquisition was performed periodically for 100 days (from 21 November 2018 
to 28 February 2019) at sunrise (between 7 and 7.30 AM, UTC+1) from the “Wawel castle 
and the Vistula bend” city monitoring station, whose coordinates are 50°03′N 19°55′ [41]. 
The automated process was downloading videos from the camera according to the afore-
mentioned schedule. Short *.mp4 files (movies with resolution 1920 × 1080 px) were saved 
in the disk space, from which five random frames were extracted and averaged. Each 
frame contains the same view presented in Figure 5. Images carry unstructured sets of 
pixels; however, each image has a texture that has been analyzed in further steps. On the 
other hand, weather parameters collected by sensors have been provided as structured 
*.csv files. The combination of both sources done by the automated process gave the re-
sults presented below. To ensure the best possible convergence of parameters, weather 
and air quality data were collected from two weather stations located in the neighborhood 
of the image acquisition location, which is presented in Figure 1. 

Figure 4. Block diagram of the proposed method.
Sensors 2021, 21, x FOR PEER REVIEW 11 of 21 
 

 

 
Figure 5. Single frame used in visual inspection of air quality. 

Weather data were obtained from the weather station run by the Environmental 
Physics Group of AGH University of Science and Technology in Krakow (AGH), which is 
shown on the map (Figure 1) as a green square [42]. The averaged results of parameter 
measurements from a full hour were registered. For this period (21 November 2018 to 28 
February 2019), 7:00 am was established as a measuring point. The location of the station 
is 50°04′N 19°55′E, and its foundation height is 220 m a.s.l. The weather station provided 
meteorological information, including average air temperature, average relative humid-
ity, average atmospheric pressure, average wind speed, maximum speed of wind gusts, 
precipitation and air quality status assessed using the PM10 indicator. Weather and air-
borne particulate matter measurements were provided by a Vaisala WXT520 automatic 
weather station and a Plantower PMS5003 [42]. 

Additional air quality status information was obtained from the station of the Voi-
vodeship Inspectorate of Environmental Protection in Krakow (WIOS), located at Krasin-
ski Avenue (Figure 1) [43]. The measuring point coordinates are 50°03′N 19°55′E; its foun-
dation height is 207 m a.s.l. The station is located close to the “Wawel Castle and Vistula 
bend” monitoring point, which provided images from webcams. The measuring station 
at Krasinski Avenue recorded the following parameters: nitrogen oxide content, carbon 
monoxide content, nitrogen dioxide content, benzene content, PM10, and PM2.5 indicators. 

4.2. Preprocessing 
Every object has a texture that can be used to characterize it. Even if one considers an 

object to have no texture, image processing methods consider it to have a plain texture. 
An example of a plain texture is a photograph of a clear sky on a sunny day. When clouds 
are visible, each of them may have a different texture. Changes in air pollution are also 
noticeable in photographs and can be reflected as changes in texture. The project used 
three complementary texture methods presented in Section 3 on average images from the 
camera. The textures features were saved into structured *.csv file. In the next step, files 
with weather data, texture features, and PM data were combined into one file with a time 
index (see Figure 4). Such a prepared file was used in correlation analysis and modeling. 

4.3. Modeling and Evaluation 
Regression and classification of the neural network models were used to assess the 

possibility of predicting the content of PM10 and PM2.5 in atmospheric air. Moreover, based 
on image texture parameters and basic meteorological data (air temperature, average 
wind speed, humidity, precipitation), they were also used to predict the exceedances of 
air quality standards. 

The analyzed particulate matter data from each of the measuring stations were di-
vided into 3 subsets. Since the analyzed data are a time series, the data were not randomly 
divided into subsets. The oldest 70% of the observations were assigned to the training set, 

Figure 5. Single frame used in visual inspection of air quality.

Weather data were obtained from the weather station run by the Environmental
Physics Group of AGH University of Science and Technology in Krakow (AGH), which
is shown on the map (Figure 1) as a green square [42]. The averaged results of parameter
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measurements from a full hour were registered. For this period (21 November 2018 to
28 February 2019), 7:00 a.m. was established as a measuring point. The location of the
station is 50◦04′ N 19◦55′ E, and its foundation height is 220 m a.s.l. The weather station
provided meteorological information, including average air temperature, average relative
humidity, average atmospheric pressure, average wind speed, maximum speed of wind
gusts, precipitation and air quality status assessed using the PM10 indicator. Weather and
airborne particulate matter measurements were provided by a Vaisala WXT520 automatic
weather station and a Plantower PMS5003 [42].

Additional air quality status information was obtained from the station of the Voivode-
ship Inspectorate of Environmental Protection in Krakow (WIOS), located at Krasinski
Avenue (Figure 1) [43]. The measuring point coordinates are 50◦03′ N 19◦55′ E; its foun-
dation height is 207 m a.s.l. The station is located close to the “Wawel Castle and Vistula
bend” monitoring point, which provided images from webcams. The measuring station
at Krasinski Avenue recorded the following parameters: nitrogen oxide content, carbon
monoxide content, nitrogen dioxide content, benzene content, PM10, and PM2.5 indicators.

4.2. Preprocessing

Every object has a texture that can be used to characterize it. Even if one considers
an object to have no texture, image processing methods consider it to have a plain texture.
An example of a plain texture is a photograph of a clear sky on a sunny day. When clouds
are visible, each of them may have a different texture. Changes in air pollution are also
noticeable in photographs and can be reflected as changes in texture. The project used
three complementary texture methods presented in Section 3 on average images from the
camera. The textures features were saved into structured *.csv file. In the next step, files
with weather data, texture features, and PM data were combined into one file with a time
index (see Figure 4). Such a prepared file was used in correlation analysis and modeling.

4.3. Modeling and Evaluation

Regression and classification of the neural network models were used to assess the
possibility of predicting the content of PM10 and PM2.5 in atmospheric air. Moreover,
based on image texture parameters and basic meteorological data (air temperature, average
wind speed, humidity, precipitation), they were also used to predict the exceedances of air
quality standards.

The analyzed particulate matter data from each of the measuring stations were divided
into 3 subsets. Since the analyzed data are a time series, the data were not randomly divided
into subsets. The oldest 70% of the observations were assigned to the training set, another
15% was assigned to the validation set, and the newest observations were assigned to the
test set. One thousand different regression neural networks with different architectures
were made for each parameter. The neural network was created using a training dataset
with the automatic Data Mining toolbox in Statistica 13.1. The created neural networks
had a three-layer structure with one hidden layer. In the hidden layer, we tested from
5 to 25 neurons. The maximum number of epochs was 200, and the stop criterion was
0.00001. The initial weights were random using normally distributed values within a range
whose mean is zero and standard deviation is equal to one. These networks differed also
in the activation functions of neurons in the hidden layer and the output layer. Each neural
network was created based on a training dataset. Successively, the fitted model is used to
predict the responses for the observations in a second dataset called the validation dataset.
The validation dataset provides an unbiased evaluation of a model fit on the training
dataset. In the last step, an unbiased evaluation of a final model fit on the training dataset
is performed with the test dataset.

Of all the created networks, the one with the highest quality values for all three
datasets and the lowest number of neurons in the hidden layer was selected for each
predicted PM dataset, to present in this paper.
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Classification methods are sensitive to the unevenness of the occurrence of classes in
subsets. Therefore, for the classification methods, only a random selection of observations
for individual sets was used to better balance the observations belonging to individual
classes. For the classification models, the quantitative data were changed to 3 PM10 classes.
The good air quality class was defined as PM10 lower than 50 µg/m3; the poor air quality
class was PM10 between 50 and 100 µg/m3; and the very poor-quality class was PM10
higher than 100 µg/m3. This division was made based on the ordinance of the Polish
Minister of the Environment [28,29]. For suspended particle matter with a diameter smaller
than 2.5 micrometers, two classes were distinguished: air quality is considered good if dust
content is lower than 25 µg/m3, and it is considered poor for higher values [28]. The same
as for the regression models, one thousand models were created automatically for each PM
dataset, with the same conditions as presented in previous paragraph; from these, only the
ones with the highest quality were used in the tests.

4.4. Software

The project was implemented on computers with a Windows 10 × 64-bit system
with an Intel Core i7-3630QM CPU 2.4 GHz processor, 16 GB RAM, and a Windows 10
× 64-bit system with an Intel Core i7-10710U CPU 1.10 GHz processor, 16 GHz RAM.
In this project, we used specialized software, computing platforms, and programming
languages for statistical computing and graphics. For texture analysis, we used MATLAB
2016a, which is a programming and numeric computing platform. Correlation matrices
and quality assessment were prepared in the R × 64 4.0.2 language with function cor
from stats package version 3.6.2, and caret package version 6.0–88. Neural networks were
created in the Statistica 13.1 64-bit program with SANN toolbox for automatic neural
network building.

5. Results

Data analysis was performed to assess the relationship between dust suspended in
atmospheric air and the texture parameters calculated from the averaged film frames
recorded at sunrise and the basic weather data: air temperature, humidity, precipitation,
average wind speed. The following analyses were carried out in sequence: Pearson’s linear
correlation, Spearman’s rank nonlinear correlation, MLP regression neural network model,
and MLP neural network classification models.

In the first step, the relationship between the measurement stations for the recorded
suspended PM10 dust measurements was determined. The linear correlation coefficient
between PM10 at AGH station and PM10 at WIOS is 0.52. The value of the Spearman’s
rank correlation is slightly higher, which indicates the presence of nonlinear relationships
between these stations (0.6). This is a relatively low similarity when it is considered that
the stations are only about one kilometer apart. The analysis of the line graph of both PM10
datasets shows that the data are positively correlated with each other (Figure 6a), but there
are also significant differences in mean values and variation between those two stations
(Figure 6a). Differences between measurements are smaller for low PM10 values (Figure 6b).
As the measured values increase, the difference between the PM10 datasets also increases. In
Figure 6a, two periods are visible with very high differences between the PM10 WIOS station
and PM10 AGH station values. The first period is 70–73 observations with a maximum
of 73 observations. The difference between measurements is 155.6 µg/m3. The second
period is 76–81 observations with a maximum of 81 observations. The difference between
measurements is 178 µg/m3. Both days with very high differences in measurements are
days with negative air temperature lower than −5 ◦C, with an average wind speed lower
than 1.5 m/s and without precipitation. Both periods are in a validation dataset. This may
be related to the fact that the WIOS station is located in a green area in the middle of a busy
road, while the AGH station is located near a less busy road on the AGH campus.
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Based on the correlation analysis, we can conclude that there is a significant variation
in PM content even over short distances; therefore, the models will be local in nature
and will only be accurate in the immediate vicinity. In the next step, the relationship
between the measurements for the WIOS station was computed. The Pearson’s correlation
coefficient between PM2.5 and PM10 is 0.89. The value of the Spearman’s rank correlation
is slightly lower, which indicates the presence of strong linear relationships between these
stations (0.87).

The correlations between PM10, PM2.5, and texture parameters as well as air tem-
perature, precipitation, and air humidity were calculated. Pearson’s linear correlation
coefficient was used to assess linear relationships; Spearman’s rank coefficient was used
to assess nonlinear relationships. In the Pearson’s correlation coefficients, the results with
the highest correlation coefficient values for texture parameters (Table 2) were obtained
using the GTDM method. All texture parameters are statistically significant with the PM10
and PM2.5 datasets. The highest correlation coefficient values were observed for PM10
from the WIOS station. In the FOF method, only two parameters correlated at a significant
level for PM10 from the WIOS station (FOF1, FOF3). PM10 from the AGH station and
PM2.5 were not significantly correlated with First-order Feature texture data. In Haral-
ick’s method, almost all texture parameters correlated with PM10 WIOS; only correlations
with COM1, COM8, and COM14 were not statistically significant (p > 0.05). Pearson’s
correlation coefficients obtained for PM2.5 at WIOS and PM10 at AGH were weaker: 4%
and 10%, respectively. Furthermore, the number of statistically significant correlations
decreased: 20 for PM10 WIOS, 15 for PM2.5 WIOS, and 12 for PM10 AGH (Table 2). The
highest Pearson’s correlation coefficient value was observed for the correlation between
average wind speed and PM10 at WIOS station (−0.626). Moreover, Pearson’s correlation
coefficient between PM2.5 from WIOS station and the average wind speed equals −0.58.
It is visible that a medium-strength negative relationship exists between PM data and
average wind speed. The highest correlation between PM datasets and texture parameters
was observed between PM2.5 from WIOS station and GTDM2 (−0.485).

When comparing the results of the two correlation methods, the Spearman correla-
tion coefficient was found to have higher values. The number of statistically significant
correlations increases for PM10 from the AGH station. For all stations, the FOF4 and COM1
Spearman rank correlation coefficients are higher than Pearson’s correlation coefficients
and are statistically significant.
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Table 2. Pearson’s (R) and Spearman (S) correlation coefficients between PM10 and PM2.5 texture
parameters and weather data. Statistically significant correlations with p ≤ 0.005 are marked in bold.

Parameter Cor. PM10_AGH PM10_WIOS PM2.5_WIOS

Average hourly air
temperature

R −0.224 −0.300 −0.284
S −0.270 −0.294 −0.238

Average hourly
wind speed

R −0.487 −0.626 −0.580
S −0.526 −0.628 −0.550

Average hourly
relative humidity

R −0.016 −0.112 −0.047
S 0.004 −0.169 −0.068

GTDM1
R 0.297 0.451 0.441
S 0.338 0.479 0.454

GTDM2
R −0.401 −0.483 −0.485
S −0.457 −0.516 −0.498

GTDM3
R −0.286 −0.379 −0.405
S −0.339 −0.394 −0.424

GTDM4
R −0.301 −0.448 −0.413
S −0.372 −0.497 −0.458

GTDM5
R 0.250 0.479 0.423
S 0.314 0.445 0.392

FOF1
R −0.064 −0.220 −0.139
S −0.008 −0.162 −0.083

FOF2
R −0.020 0.156 0.076
S −0.051 0.159 0.079

FOF3
R 0.062 0.249 0.153
S 0.011 0.238 0.142

FOF4
R 0.175 0.126 0.162
S 0.225 0.259 0.256

FOF5
R 0.025 0.130 0.106
S 0.119 0.124 0.124

FOF6
R −0.053 −0.049 −0.06
S −0.122 −0.045 −0.084

COM1
R 0.059 0.153 0.129
S 0.210 0.211 0.221

COM2
R −0.292 −0.416 −0.383
S −0.392 −0.518 −0.471

COM3
R 0.174 0.309 0.262
S 0.303 0.447 0.384

COM4
R −0.175 −0.249 −0.192
S −0.156 −0.229 −0.152

COM5
R 0.296 0.464 0.429
S 0.353 0.465 0.429

COM6
R −0.064 −0.219 −0.139
S −0.009 −0.162 −0.083

COM7
R −0.172 −0.244 −0.187
S −0.155 −0.227 −0.149

COM8
R −0.105 −0.129 −0.14
S −0.181 −0.148 −0.168

COM9
R −0.24 −0.366 −0.344
S −0.324 −0.399 −0.371
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Table 2. Cont.

Parameter Cor. PM10_AGH PM10_WIOS PM2.5_WIOS

COM10
R −0.214 −0.279 −0.256
S −0.396 −0.52 −0.474

COM11
R −0.298 −0.472 −0.433
S −0.357 −0.476 −0.433

COM12
R −0.278 −0.467 −0.427
S −0.332 −0.472 −0.432

COM13
R 0.155 0.293 0.247
S 0.286 0.461 0.433

COM14
R 0.109 0.102 0.109
S 0.110 0.087 0.109

For PM10 AGH, four more statistically significant correlations were measured with
Spearman rank correlation than with the Pearson correlation coefficient: FOF4, COM1,
COM3, and COM13. The highest changes in correlation values between the Pearson
and Spearman correlation coefficients are visible for Haralick’s texture parameters: 0.241
(correlation was measured between COM10 and PM10 WIOS). When comparing the results
of the two correlation methods, higher values for Spearman’s correlation coefficient are
visible. The number of statistically significant correlations increases especially for PM10
from AGH station. For all stations, the FOF4 and COM1 correlation values increased and
became statistically significant compared to the Pearson correlation coefficient. For PM10
from AGH station, four more statistically significant correlations were measured with
Spearman rank coefficient (FOF4, COM1, COM3, COM13).

Due to the nonlinear relationships between PM data and texture parameters, a multi-
layer perceptron was used as a regression model. Texture parameters and weather data
were chosen as independent variables, and they showed a statistically significant corre-
lation with PM data. The number of neurons in the input layer equals the number of
variables in the model. The variables used in the models are marked in dark blue italics in
Table 2. From the 1000 neural networks that were created for each PM dataset, only the one
with highest quality was chosen for tests.

The regression neural network prediction for PM10 values from the AGH measuring
station consisted of 17 neurons in the input layer. The best network presented in the results
had one hidden layer consisting of seven neurons, and an output layer with one neuron.
An exponential function was chosen as the hidden layer activation function, and the neuron
activation function in the output layer was linear. Learning, validation and testing qualities
are high: 0.9, 0.8, and 0.85, respectively. The neural network algorithm required 57 epochs.
The neural network that predicted PM10 values from WIOS station had two more neurons
in the input layer and two fewer neurons in the hidden layer. The activation functions
are the same as for the first neural network. Learning quality is similar to the first neural
network (0.89); validation quality is higher (0.9); however, testing quality is lower (0.73).
This neural network required 34 epochs. The last neural network, which predicted PM2.5
values, had 14 neurons in the input and hidden layers, and one neuron in the output layer.
Its activation functions differ from the previous networks: in the hidden layer, we used the
logistic function; in the output layer, we used the hyperbolic tangent; the learning process
takes 26 epochs. The learning, validation, and testing qualities are the lowest from all the
three neural networks: 0.8, 0.84, and 0.63, respectively. The coefficient of determination
(R2) was computed for learning, validation, and test datasets. For PM10, AGH equals 0.81,
0.64, and 0.72, respectively. The R2 for PM10 WIOS are 0.79, 0.81, and 0.53. Lower R2 values
were computed for PM2.5 WIOS: 0.64, 0.70, and 0.40.

Moreover, the models’ qualities were checked with mean error (ME) in the test dataset
and mean absolute percentage error (MAPE). The MAPE values for the test dataset equal
27% (PM10 AGH), 13% (PM10 WIOS), and 19% (PM2.5 WIOS). The MEs for the test datasets
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equal 3.7, 5.5, and 3.9, respectively. The high ex-post measure values for the created models
relate to differences in the dataset. The test datasets had higher variability than the training
datasets for all PM data (Figure 7).
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Air quality assessment of PM10 and PM2.5 exceedances was performed based on the
MLP network. According to the ordinance of the Minister of the Environment, the PM
data were divided into three classes (PM10) and two classes (PM2.5). The number of classes
determined the number of neurons in the created networks’ output layers.

The best three neural networks were tested. The architecture differences between
these neural networks are significant. The PM10 AGH neural network has 17 neurons in the
input layer and nine neurons in the hidden layer. All statistically significantly correlated
variables were used in the model (Table 2). The activating functions of the neurons were
hyperbolic tangent and softmax. A more extensive network was obtained for PM10 WIOS,
in which the input layer had one more neuron and the same number of neurons in the
hidden layer as PM10 AGH. This network is additionally distinguished by the functions of
the activating neurons in the hidden and output layers: logistics and hyperbolic tangent,
respectively. The last PM2.5 WIOS neural network had 17 neurons in the input layer and
12 neurons in the hidden layer, and the activation functions were hyperbolic tangent and
softmax, respectively.

The obtained percentage of correct classifications (accuracy * 100%) in the learning
datasets varies from 87.3% for PM10 AGH to 94.4% for PM2.5 WIOS. For PM10 WIOS, the
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percentage of correct classification is 92%. The percentage of misclassifications is evenly
distributed over the classes. The percentage of correct classifications in the validation
datasets are 92% for PM10 AGH, 71% for PM10 WIOS, and 85% for PM2.5 WIOS. The quality
of the neural networks in the test dataset is lower than in the learning dataset, but it is
still high, and in the worst case (PM2.5 WIOS), it achieves 80% of correct classifications.
The best results were obtained by the network that predicts PM10 AGH class. The test set
achieved 92.9% correct classifications. PM10 WIOS obtained 85.7% correct classifications
in the test dataset. The Area under Curve (AUC) values computed for whole datasets are
0.792 for PM10 AGH, 0.802 for PM10 WIOS, and 0.928 for PM2.5 WIOS.

The created confusion matrix for the test dataset shows that no error repeats constantly
(Table 3). All the neural networks have one wrong classification, where poor air quality
was classified as good. Two observations classified as “good” were classified as poor in
PM2.5 WIOS, thus giving a total of only 80% of correct classifications. In addition, for PM10
WIOS, one additional wrong classification was observed: poor air quality was classified as
very poor (Table 3).

Table 3. Neural networks’ confusion matrices for the testing datasets.

Class

PM10 AGH
(MLP 17−9−3)

PM10 WIOS
(MLP 18−9−3)

PM2.5 WIOS
(MLP 17−12−2)

Good Poor Very Poor Good Poor Very Poor Good Poor

good 11 0 0 10 0 0 2 2
poor 1 2 0 1 1 1 1 10

very poor 0 0 0 0 0 1 -

Quality 92.9% 85.7% 80%

6. Conclusions, Limitations, and Future Research

The issue of air pollution, including the particulate matter, has been extensively pre-
sented in the literature [1–3,24]. This is a key issue for most urbanized areas, especially for
big agglomerations [4,14,16,23,24,44]. Air pollution in Poland is a big problem, especially
in urbanized areas [22]. In the analyzed period in the city of Krakow, exceedances of the
permissible standards presented in Table 1 were observed over 100 times a year (Figure 3).
Due to frequency with which air quality limits were exceeded, cheap and effective tools
are needed to quantify and qualify air quality.

The assessment of PM air pollution is commonly carried out using various types of
methods discussed in the literature [5–9]. Carretero-Peña et al. (2019) and Sarimveis et al.
(2006) proposed assessing air quality using image analysis. The assessment of air pollution
with particulate matter is often based on images and images analysis. Papers presented
models based on images analysis with Gabor filter [13], conversion to gray scale, and
the Otsu method [18]. Liu et al. also proposed using six image features: transmission,
whole image and local image contrast, entropy, sky smoothness, and color. The authors
in [25] used Dark Channel Prior for transmission matrix estimation from multiple scene
images. In paper [45], the authors used the Gray-level Co-occurrence Matrix method
(COM) for texture feature extraction in PM assessment. In this paper, we used COM
and two additional complementary textures methods: FOF and GTDM. Additionally, in
previous research [20], RBF neural networks were used for the quantitative estimation
of air quality, which was assessed with quality measures of ex-post forecast assessment.
This paper also proposes the use of artificial neural networks; however, in the work of
Ordieres et al., the MLP multilayer perceptron proved to be a better solution [17]. The
use of MLP neural networks to predict air pollution on the basis of numerical data was
presented by the authors in [16,17]. In paper [16], the authors use numerical variables and
a K-mean algorithm for PM10 prediction with MLP and MLR. The R was between 0.67 and
0.77, depending on measurement localization for the regression model. Better regression
results were obtained with CNN models with the PMIE method: R2 was between 0.68
(multiple-scene images) and 0.91 (single-scene images) for PM2.5 prediction [15]. The main
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limitation in using CNN is a small dataset of images. In paper [13], the authors presented
shallow (Random Forest) and deep classifiers (CNN) for five-class air quality assessment
for an Air Quality Index (AQI). The authors used a method for multiple-scene images and
obtained an AUC of 0.6 and an accuracy of 0.53. A very similar approach to modeling
was used in this article by adding texture features as additional variables. Additionally, a
similar application of texture analysis in PM2.5 prediction was presented in [18] for images
from China and United States. The main difference between [18] and this paper is in the
used methods: six texture features versus three texture methods. Quality SVR models
for Beijing were between 0.68 and 0.7 R2, for Shanghai, between 0.72 and 0.76 R2. The
air quality analysis was based on analysis of textures on averaged images with full HD
resolution: 1920 × 1080 px. The texture features were measured using three methods: The
First-order Features, the Neighborhoods Gray-tone Difference Matrix method, and the
Gray-Level Co-occurrence Matrix. For each of the three methods, statistically significant
nonlinear correlations were demonstrated between the texture parameters and PM10 AGH,
PM10 WIOS, and PM2.5 WIOS data. The correlations are weak to moderate. The highest
correlation value is −0.518 between COM2 and PM10 WIOS. Based on the results obtained
from the correlation analysis, two types of neural networks were created: regression and
classification. Both types of networks had a satisfactory quality. The regression models
obtained quality (R) in the 0.63–0.85 range for the test sets. However, the R2 vary from only
0.4 for PM10 AGH in the test dataset to 0.81 for PM10 AGH in the learning dataset, and
PM10 WIOS in the validation dataset. Relatively low R2 values for PM10 AGH show model
weakness, especially in validation and test datasets. What is more, the calculated MAPE
value exceeds 10% for all the regression networks, which indicates that they will probably
not be good enough to use, despite the relatively low average errors of these networks:
PM10 AGH—3.7; PM10 WIOS—5.5; PM2.5 WIOS—3.9. The datasets used in the tests have
high variation and higher mean values than in the learning datasets, so the neural network
algorithms did not correctly predict data variation. This could be changed by using longer
time series in each dataset. Better results were obtained with the classification models
than with the regression models. The worst quality was obtained for the PM2.5 WIOS
classification in the test dataset: 80% (Table 3). The qualities of other neural networks
are equal and higher than 85%. The higher the AUC, the better the performance of the
model at distinguishing between classes. The lowest AUC was calculated for PM10 AGH
(0.792). The highest AUC equals 0.928 and was calculated for PM2.5 WIOS. High AUC
values indicate a good fit of the classification models to the data.

The results of this study indicate that photo texture analysis could be useful in air
quality assessment. All chosen texture methods were useful in the performed analysis.
Additionally, it is possible to predict air quality exceedances by analyzing textures in HD
photos with basic weather data as additional information. It is also possible to predict the
values of PM10 and PM2.5 in atmospheric air, but these results have a greater error. This
error could probably be minimized by using a longer period of data in the learning dataset
that contains all seasons, or higher resolution photos, e.g., 4 K.

The obtained models could be used as part of an application for air quality control
using smartphone camera photographs, especially for checking air quality because of the
high quality and sensitivity of the PM10 model (higher than 90%). Currently, image sensors
are widely accessible, for example, in online cameras and smartphones [21]. Existing
infrastructure could be used to provide more photos to create better air quality models.
Classification models could be even implemented in mobile phone applications, which
will make analysis more accessible for end users. Future work should focus on building
a process that will continuously examine images captured at different locations. Such a
constant stream of input data combined with weather data will give a much better model
that will assess air quality over a larger area. The limitation of this approach is not only
the quality of the camera sensor but also the registered image itself. Night-time photos are
not providing enough information for the model; the same applies to photos taken in bad
weather conditions. Both of these aspects can be eliminated with the use of appropriate
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lighting and background, but at the same time, it would make this method much more
difficult and more expensive to implement.
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