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Abstract: A single server GI/M/1 queue with a limited buffer and an energy-saving mechanism
based on a single working vacation policy is analyzed. The general independent input stream and
exponential service times are considered. When the queue is empty after a service completion epoch,
the server lowers the service speed for a random amount of time following an exponential distribution.
Packets that arrive while the buffer is saturated are rejected. The analysis is focused on the duration
of the time period with no packet losses. A system of equations for the transient time to the first
buffer overflow cumulative distribution functions conditioned by the initial state and working mode
of the service unit is stated using the idea of an embedded Markov chain and the continuous version
of the law of total probability. The explicit representation for the Laplace transform of considered
characteristics is found using a linear algebra-based approach. The results are illustrated using
numerical examples, and the impact of the key parameters of the model is investigated.

Keywords: energy saving; queueing model; time to buffer overflow; transient analysis; working
vacation policy

1. Introduction

Evidently, the problem of reducing energy consumption is global. This results in
large-scale research on algorithms supporting power-saving control and the accompanying
technical solutions. Energy-saving solutions are particularly desired in the area of computer
and telecommunications networks, which is related to the rapidly growing share of wireless
transmissions. Wireless network components, such as sensor network sensors, are powered
by batteries. Such networks are designed to constantly monitor the air temperature,
humidity, road traffic intensity, etc. According to their purpose, e.g., to warn about fire
hazards, sensors (network nodes) are often located in hard-to-reach places.

Limiting energy consumption and, consequently, extending the possibility of pow-
ering a node from a single battery is, therefore, of key importance in ensuring reliable
data transmission and the associated security. Queueing theory is widely used in traffic
modelling in energy-efficient packet networks. Indeed, queueing models, especially those
with a finite capacity of accumulating buffer in which a mechanism limiting the operation
of the service station has been implemented (in the case of, e.g., low-intensity traffic),
can be effectively used in the process of controlling the QoS (Quality of Service) and the
energy consumption of individual nodes. The knowledge of stochastic characteristics
changing in time, such as the distribution of the queue length, queueing delay, or the time
to buffer overflow, allows for ongoing monitoring of the system and, thus, for control of
the transmission quality.

The concept of a queue model was proposed for the first time in [1], in which a
service station remains unavailable for job service for some time. Queueing systems with
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server vacations quickly gained popularity, and many new models and a whole range of
analytical results concerning such models appeared in the literature. An exhaustive study
on queueing models with different types of vacation policies can be found, e.g., in [2] or in
survey papers [3,4].

In [5], a model was proposed in which—instead of temporarily suspending the
service—the server processes jobs with different intensities (speeds) depending, e.g., on
the intensity of incoming traffic. On the one hand, such a policy, called a working vacation
(WV), allows for energy savings (caused by a temporary reduction in job service intensity),
and on the other hand, allows for better control of the queue length and reduces the risk of
serial job loss. Moreover, it allows to redirect the unused resources for other tasks, e.g., for
maintenance purpose or for redirecting traffic from other nodes.

Under a single working vacation policy, the service station takes only one working
vacation when the queue is emptied. An alternative is multiple vacation policy, in which
successive single working vacations are initialized as far as at least one job waiting in
the queue is detected. In [6], a model of working vacation was studied in the context of
energy saving and latency control in wireless sensor networks. The authors introduced a
two-threshold working vacation policy, which is a combination of a vacation and working
vacation policy.

In [7], the two–channel model M/M/2 with WV, negative customers, feedback, and
N-strategy was proposed to reduce the energy consumption in wireless communication
networks. The energy saving capabilities of WV models were also discussed from the cloud
platform point of view, see, e.g., [8,9].

An M/G/1-type queueing model with single server working vacations was studied
in [10], where the stationary queue-size distribution was obtained via the supplementary
variable technique and matrix-analytic approach. A G/M/1 infinite-buffer system with
a single working vacation policy was investigated in [11,12]. A discrete-time model with
single working vacations was analysed in [13], where interarrival times and service times
are geometrically distributed.

In [14], a model with a general independent input stream and single working vacation
policy is studied in the case of memoryless service time distribution (both exponential and
geometrical). A M/G/1-type queueing model with single working vacations and vacation
interruption under a Bernoulli schedule was considered in [15].

In such a model, if there are jobs present in the system at the working vacation
completion moment, the server can initialize the next working vacation period (with
probability p) or it can return to the normal mode (with probability 1 − p). The joint
distribution of the steady-state queue size and service status is then derived by using the
supplementary variable technique.

A similar model was investigated in [16], where the sojourn time distribution is
obtained. Recently, in [17], the steady-state characteristics of a Markovian queue with
working vacations and breakdowns were studied using the spectral expansion method.
In [18], a discrete-time model with general batch input and geometric service time with
multiple working vacations was studied with the supplementary variable technique.

A model with a single working vacation, customer impatience, and catastrophes was
analysed in [19]. The steady-state distribution of the system size for a model with customer
impatience and server breakdowns was obtained in [20]. Additionally, the authors solved
a profit optimization problem using a particle swarm optimization algorithm.

As can be seen, the vast majority of the results obtained for models with working vaca-
tions concern the steady state of the system. In practice, however, there are often situations
in which stationary analysis is insufficient. This is the case, for example, when observing a
system immediately after its opening (when its steady state has not yet been established),
after changing the control mechanism, or after removing a failure.

In the case of low traffic intensity (which is typical for, e.g., sensor networks), system
stabilization may take a long time and, consequently, the steady state ceases to be an
indicator of system operation. There are few results for the transient state, especially for
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models with a general input stream. In [21], the study of a model with general input and
phase type service was carried out using a simulation-based approach.

In [22], the transient results for the number served during a busy period in a GI/M/1/N
queue was obtained by approximating the interarrival distribution according to a two-
phase Cox distribution. A more general model, G/G/m/m + K, was studied in [23] using
the diffusion approximation technique.

With regards to working vacation policy, most of the papers concern only a M/M/1
queue, e.g., [24,25]. A M/M/1 queue with working vacation and impatient customers
was studied in [25]. The transient system size probabilities were obtained using a contin-
ued fractions approach. In [24], the transient solution was found by solving differential
equations using the Runge–Kutta algorithm.

In [26], the transient behaviour of a finite-capacity model with a general independent
input flow of jobs and single working vacation policy was investigated. Using an analytic
approach based on the idea of an embedded Markov chain and linear algebra, the compact-
form representation for the Laplace transform of the queue-size distribution conditioned
by the initial buffer state was derived.

An energy-saving mechanism based on a threshold-controlled multiple vacation policy
was considered in [27] as a model for the operation a wireless sensor network node. The
Laplace transform representations were obtained for queue-size distribution at an arbitrary
fixed time and for idle and processing periods.

Moreover, the compact-form formulae for the distributions of the idle and processing
period duration were found. A mathematical model for the node of a wireless sensor
network with discrete-time parameters was proposed in [28]. An explicit formula for
the tail cumulative distribution function of the first buffer overflow period duration was
obtained. Hence, the corresponding result for the next buffer overflow periods was found.

In this paper, we study a finite-buffer GI/M/1/N queueing model with general-
type independent input flow of jobs, exponentially distributed service times, and a single
working vacation policy. Applying an analytic approach based on the idea of embedded
Markov chain and linear algebra, we find the closed-form representation for the Laplace
transform of the time to the first buffer overflow distribution, conditioned by the initial
system state and working mode of the service unit. The theoretical results are illustrated
using numerical examples.

The remainder of the article is organized as follows. In Section 2, we provide a precise
mathematical description of the considered queueing model and present an auxiliary
algebraic result. In Section 3, systems of integral equations for conditional distributions of
the time to the first buffer overflow, based on the idea of embedded Markov chain and the
continuous version of the formula of total probability, are established for both the system
start and operation in normal and working vacation mode. The closed-form solutions for
corresponding systems written for Laplace transforms are found in Section 4. Section 5 is
devoted to detailed numerical examples illustrating theoretical results. Finally, Section 6
contains a short conclusion.

2. Model Description and Auxiliary Result

Let us consider a GI/M/1/N/WV model, where the times between successive ar-
rivals are independent random variables with a common cumulative distribution function
(CDF) F(t), and the service times are exponential random variables with parameters µ and
µv in normal mode and during a working vacation, respectively. The system is character-
ized by a finite buffer. At any given time, only N jobs can be present, namely one in the
service unit and N − 1 in the queue.

Every time the server finds the queue empty after the service completion epoch, it
enters a single working vacation period, changing the service intensity to a lower value µv,
and stays in this mode for a period of time that is exponentially distributed with parameter
α. When the WV period ends, the server returns to normal mode and normal service speed
µ > µv.
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Let X(t) be the number of jobs present in the system at a time epoch t. The random variable

γ = min{t ≥ 0 : X(t) = N}

denotes the time to the first buffer overflow. Our goal is to determine the conditional CDFs
of γ given the initial state and working mode of the server, i.e.,

Tn(t) = P{γ ≤ t|X(0) = n, Y(0) = 0},

and

Tv
n (t) = P{γ ≤ t|X(0) = n, Y(0) = 1},

where Y(t) = 0 if at the time instant t, the server is in normal mode, and Y(t) = 1,
otherwise.

In the following subsections, a system of integral equations for Tn(t) and Tv
n (t),

n = 0, 1, . . . , N is stated using the formula of total probability and the method of embedded
Markov chain. In the next section, the corresponding system for Laplace transforms of
Tn(t) and Tv

n (t) is solved applying the method of potential.
For the rest of this paper, we use the following notations:

pi(a) =
ai

i!
e−a, i = 0, 1, . . . ,

Ei,a(t) = 1−
i−1

∑
j=0

(at)i

i!
e−at, i = 1, 2, . . . ,

i.e., pi(a) is the probability function of a Poisson distribution with parameter a, and Ei,a(t)
is the CDF of the Erlang distribution with a shape parameter i and a scale parameter a.
We also assume that N > 2, µ 6= α, and α + µv 6= µ. If any of these assumptions are not
satisfied, the model is simplified, and those cases are not taken into consideration.

The concept of potential random walk is introduced in [29] as a tool for the analysis
of compound Poisson processes. In particular, it is proven in [29] (see also [30]) that each
solution of the infinite-size system of linear equations of the form

n−2

∑
k=−1

ak+1xn−k − xn = θn, (1)

where n ≥ 2, can be written as

xn = MRn−1 +
n

∑
k=2

Rn−kφk, n ≥ 2, (2)

where M ∈ R, and the sequence (Rk) is defined as indicated below.
Consider the following generating functions:

r(θ)
de f
=

∞

∑
k=0

θkRk (3)

and

a(θ)
de f
=

∞

∑
k=0

θkak, (4)

where |θ| < 1.
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It can be shown ([29,30]) that the following representation is true:

r(θ) =
θ

a(θ)− θ
. (5)

As a consequence, applying Maclaurin’s expansion, we obtain

Rk =
1
k!

dk

dθk

( θ

a(θ)− θ

)∣∣∣
θ=0

, k ≥ 1. (6)

Equivalently (see [29,30]), the sequence (Rk) can be defined in a recursive way as
follows:

R0 = 0, R1 = (a0)
−1,

Rk = R1

(
Rk−1 −

k−1

∑
j=0

aj+1Rk−1−i

)
, (7)

where k ≥ 2.

3. Transient Equations for the Time to the Buffer Overflow Distribution
3.1. Server Starting in Normal Mode

When the buffer is empty and in normal mode upon opening, we have

T0(t) =
∫ t

0
T1(t− x)dF(x). (8)

If the first arrival occurs before t (at some epoch x), then the probability that the buffer
overflows before t can be expressed using the probability of the buffer overflow before
t− x, given that there is one job present at the beginning, since the system renews at x
and behaves like it has just started with one job present. If no new jobs enter the system
before t, then there will clearly be no buffer overflow up to t.

For 1 ≤ n < N, the following is true:

Tn(t) = S1(t, n) + S2(t, n). (9)

The summand S1(t, n) stands for the case of a new arrival before epoch t, and 0 ≤ i < n
jobs are finished before this event. Therefore, the system renews with n− i + 1 jobs present.
This summand can be expressed by

S1(t, n) =
∫ t

0

n−1

∑
i=0

pi(µx)Tn−i+1(t− x)dF(x). (10)

The second summand, S2(t, n), results from the case where all jobs are finished before
the new one arrives. This means that the server must change its operation mode to WV.
Then, with the probability 1− e−α(x−y), the system will switch back to the normal mode
before the first arrival. Otherwise, the system will renew in WV mode:

S2(t, n) =
∫ t

0
dF(x)

∫ x

0

[(
1− e−α(x−y)

)
T1(t− x) + e−α(x−y)Tv

1 (t− x)
]
dEn,µ(y). (11)

The last considered case is n = N. It is clear that if N customers are present at the
beginning, then the buffer overflow before any time instant t is a certain event; therefore,

TN(t) = 1. (12)
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3.2. Server Starting in WV Mode

If the server starts in WV mode with no jobs, we have

Tv
0 (t) =

∫ t

0

[(
1− e−αx)T1(t− x) + e−αxTv

1 (t− x)
]
dF(x). (13)

For 1 ≤ n < N, the CDF Tv
n (t) satisfies

Tv
n (t) =

5

∑
i=1

Sv
i (t, n). (14)

In the first two summands, the case of the system still being in WV mode when the
new job enters is considered. Allowing for the fact that not all of the customers were served
before the first arrival, we have

Sv
1(t, n) =

∫ t

0
e−αx

n−1

∑
i=0

pi(µvx)Tv
n−i+1(t− x)dF(x), (15)

and, given all of the jobs were finished before this arrival, we conclude that

Sv
2(t, n) =

∫ t

0
e−αxEn,µv(x)Tv

1 (t− x)dF(x). (16)

For the remaining summands, we assume that the WV period ends before the first
arrival epoch. Hence, we need to take into account the number of customers served in WV
(i) and in normal mode (j).

If i + j < n, the following expression is obtained:

Sv
3(t, n) =

∫ t

0
dF(x)

∫ x

0
αe−αy

n−1

∑
i=0

pi(µvy)
n−i−1

∑
j=0

pj(µ(x− y))Tn−i−j+1(t− x)dy. (17)

When i = n at the arrival epoch, the system is operating in normal mode, since
the system empties not in normal but in the WV period, and thus no new WV period is
initialized; therefore,

Sv
4(t, n) =

∫ t

0
dF(x)

∫ x

0
αe−αyEn,µv(y)T1(t− x)dy. (18)

If the last job is finished after switching to normal mode, the system starts a new WV
period, we need to consider both cases of normal and WV mode at the arrival instant, and
we can write

Sv
5(t, n) =

∫ t

0
dF(x)

∫ x

0
αe−αy

n−1

∑
i=0

pi(µvy)

·
∫ x−y

0

[(
1− e−α(x−(y+u))

)
T1(t− x) + e−α(x−(y+u))Tv

1 (t− x)
]
dEn−i,µ(u)dy. (19)

For n = N, we have

Tv
N(t) = 1. (20)

4. Solution of the System of Equations for Tn(T) and TV
n (T)

In this section, the system (8)–(20) is solved. It is divided into two subsections de-
pending on the state of the server at the beginning. First, the solutions of (8) and (9)
are found. Next, the solutions of (13) and (14) are explicitly obtained and introduced to
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the former, which results in an explicit solution for the Laplace transforms of Ti(t) and
Tv

i (t), i = 0, . . . , N − 1.

4.1. Solution for the Normal Mode

Let us denote

T̃n(s) =
∫ ∞

0
e−stTn(t)dt, F̃(s) =

∫ ∞

0
e−stdF(t).

Additionally, we introduce the following notation:

ai(s) =
∫ ∞

0
e−st pi(µt)dF(t), bi(s) =

∫ ∞

0
e−stEi,µ(t)dF(t),

ci(s) =
(

µ

µ− α

)i ∫ ∞

0
e−t(s+α)Ei,µ−α(t)dF(t).

Now, the Laplace transform of the system (8)–(12) can be written in the following form:

T̃0(s) = T̃1(s)F̃(s) (21)

T̃n(s) =
n−1

∑
i=0

T̃n−i+1(s)ai(s) + T̃1(s)(bn(s)− cn(s)) + T̃v
1 (s)cn(s),

n = 1, . . . N − 1 (22)

T̃N(s) =
1
s

(23)

If we denote

φn(s) = T̃1(s)(cn(s)− bn(s))− T̃v
1 (s)cn(s), (24)

we can rewrite system (22) for n = 1, . . . , N − 1 in the form

n−2

∑
i=−1

ai+1(s)T̃n−i(s)− T̃n(s) = φn(s). (25)

We can observe that the former system has the same form as system (1), and thus the
solution can be obtained using (2), which leads to the following representation:

T̃n(s) = M(s)Rn−1(s) +
n

∑
i=2

Rn−i(s)φi(s), n ≥ 2, (26)

where Rk(s) is a sequence defined as follows (see (7)):

R0(s) = 0, R1(s) = a−1
0 (s), Rk+1(s) = R1(s)

(
Rk(s)−

k

∑
i=0

ai+1(s)Rk−i(s)

)
,

and M(s) is some unknown function.
Taking n = 1 in (22) and n = 2 in (26), we can derive M(s) as

M(s) = T̃1(s)(1− b1(s) + c1(s))− T̃v
1 (s)c1(s). (27)
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Now, the solution (26) can be rewritten in the form:

T̃n(s) = T̃1(s)

(
Rn−1(s) +

n

∑
i=1

Rn−i(s)(ci(s)− bi(s))

)

− T̃v
1 (s)

n

∑
i=1

Rn−i(s)ci(s), n ≥ 2.

(28)

Combining (22) and (28) for n = N − 1 yields

T̃1(s) =
K(s)
L(s)

T̃v
1 (s) +

a0(s)
sL(s)

, (29)

where

K(s) =
N−2

∑
i=1

(
RN−i−1(s)ci(s)− ai(s)

N−i

∑
j=1

RN−i−j(s)cj(s)

)
+ cN−1(s), (30)

L(s) =
N−2

∑
i=1

(
RN−i−1(s)(ci(s)− ai(s)− bi(s))−

N−i

∑
j=1

RN−i−j(s)
(
cj(s)− bj(s)

))
+ RN−2(s) + cN−1(s)− bN−1(s). (31)

Using the former expression in (28), we can state the solution (depending on T̃v
1 (s)) in

the form

T̃n(s) =T̃v
1 (s)

(
K(s)
L(s)

Rn−1(s) +
n

∑
i=1

Rn−i(s)
(

K(s)
L(s)

(ci(s)− bi(s))− ci(s)
))

+
a0(s)
sL(s)

(
Rn−1(s) +

n

∑
i=1

Rn−i(ci(s)− bi(s))

)
.

(32)

4.2. Solution for the WV Mode

In this subsection, the solution for the case of the server starting in WV mode
is obtained.

The Laplace transform of the system (13)–(20) is given by

T̃v
0 (s) =T̃1(s)

(
F̃(s)− F̃(s + α)

)
+ T̃v

1 (s)F̃(s + α), (33)

T̃v
n (s) =

n−1

∑
i=0

T̃v
n−i+1 Ai(s) + T̃v

1 (s)Bn(s)

+
n−1

∑
i=0

n−i−1

∑
j=0

T̃n−i−j+1(s)Cij(s) + T̃1(s)Dn(s), n = 1, . . . , N − 1, (34)

T̃v
N(s) =

1
s

, (35)
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where

Ai(s) =
∫ ∞

0
e−t(s+α)pi(µvt)dF(t), (36)

Bi(s) =
∫ ∞

0
e−t(s+α)Ei,µv(t)dF(t)

+ α
i−1

∑
j=0

(
µ

µ− α

)i−j ∫ ∞

0
e−t(s+α)

∫ t

0
pj(µvy)Ei−j,µ−α(t− y)dy dF(t), (37)

Cij(s) =α
∫ ∞

0
e−st

∫ t

0
e−αy pi(µvy)pj(µ(t− y))dydF(t), (38)

Di(s) =α
∫ ∞

0
e−st

∫ t

0
e−αyEi,µv(y)dy dF(t) + α

∫ ∞

0
e−st

∫ t

0
pj(µvy)

·
i−1

∑
j=0

(
e−αyEi−j,µ(t− y)−

(
µ

µ− α

)i−j
Ei−j,µ−α(t− y)

)
dy dF(t). (39)

The solutions (29) and (32) can be introduced into (34), which leads to the following form:

T̃v
n (s) =

n−1

∑
i=0

T̃v
n−i+1(s)Ai(s) + T̃v

1 (s)Gn(s) + Hn(s), (40)

T̃v
N(s) =

1
s

, (41)

where (we set l = n− i− j for readability):

Gn(s) = Bn(s) +
K(s)
L(s)

Dn(s) +
n−1

∑
i=0

n−i−1

∑
j=0

Cij(s)

·
(

K(s)
L(s)

Rl(s) +
l

∑
k=1

Rl−k+1(s)
(

K(s)
L(s)

(ck(s)− bk(s))− ck(s)
))

(42)

−I{n = N − 1}C00(s)

(
K(s)
L(s)

RN−1(s) +
N−1

∑
k=1

RN−k(s)
(

K(s)
L(s)

(ck(s)− bk(s))− ck(s)
))

,

Hn(s) =
a0(s)
sL(s)

·
(

Dn(s) +
n−1

∑
i=0

n−i−1

∑
j=0

Cij(s)

(
Rl(s) +

l+1

∑
k=1

Rl−k+1(s)(ck(s)− bk(s))

))
(43)

−I{n = N − 1}C00(s)

(
RN−1(s) +

N−1

∑
k=1

RN−k(s)(ck(s)− bk(s))

)
,

for n < N − 1, where I{·} is an indicator function. The system (40) can be solved with the
approach used in previous subsection. It can be rewritten in the following form (compare (1)):

n−2

∑
i=−1

Ai+1(s)T̃v
n−i(s)− T̃v

n (s) = Φn(s), n = 1, 2, . . . , N − 1, (44)

where Φn(s) = −T̃v
1 (s)Gn(s)− Hn(s).

Now, the solution is found in the form (see (2)):

T̃v
n (s) = Mv(s)Rv

n−1(s) +
n

∑
i=2

Rv
n−i(s)Φi(s), n ≥ 2, (45)
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where Mv(s) is some function, and Rv
n(s) is a sequence:

Rv
0(s) = 0, Rv

1(s) = A−1
0 (s), Rv

k+1(s) = Rv
1(s)

(
Rv

k(s)−
k

∑
i=0

Ai+1(s)Rv
k−i(s)

)
.

Comparing (40) for n = 1 with (45) for n = 2, we find

Mv(s) = T̃v
1 (s)(1− G1(s))− H1(s). (46)

Introducing Mv(s) to (45), we can write

T̃v
n (s) = T̃v

1 (s)

(
Rv

n−1(s)−
n

∑
i=1

Rv
n−i(s)Gi(s)

)
−

n

∑
i=1

Rv
n−i(s)Hi(s). (47)

Now, T̃v
1 (s) can be obtained taking (47) for n = N − 1 and comparing it to T̃v

N−1(s)
from (40) (after introducing the solutions T̃v

k (s) for k < N − 1). Finally, we obtain the
explicit solution for Tv

1 (s):

Tv
1 (s) =

V(s)
W(s)

, (48)

where

V(s) =
A0(s)

s
+ HN−1(s)−

N−2

∑
i=1

Ai(s)
N−i

∑
j=1

Rv
N−i−j(s)Hj(s) +

N−1

∑
i=1

Rv
N−i−1(s)Hi(s), (49)

W(s) =
N−2

∑
i=1

(
Ai(s)

N−i

∑
j=1

Rv
N−i−j(s)Gj(s)− Rv

N−i−1(s)(Gi(s) + Ai(s))

)
+ Rv

N−2(s)− GN−1(s). (50)

Utilizing (48) in (29), (32) and (47), the solution for the Laplace transforms T̃i(s) and
T̃v

i (s) for i = 0, . . . , N − 1 can be expressed as a function of the input parameters.

5. Numerical Examples

In this section, numerical examples are presented, and the impact of the model param-
eters is investigated. The CDFs Tk(t) and Tv

k (t) were computed using the Gaver–Wynn rho
method of numerical Laplace transform inversion (see [31]).

Let us consider a GI/M/1/N model with single working vacations with N = 30.
We introduce the following notation for random variables Xi (interarrival times in the
considered model):

X1 ∼ Exponential(15),

X2 ∼ Uni f orm(0, 2/15),

X3 ∼ Pareto(0.05, 4),

X4 ∼ Gamma(1/3, 1/5),

X5 ∼Weibull(2, 0.0752),

and with Fi(t), we denote the CDF of the corresponding variable Xi. For all of these
distributions, we have E(Xi) ≈ 1/15, and therefore, in all cases, the arrival intensity is
λ ≈ 15. These distributions are used through the examples.

The parameter λ can be interpreted as the number of packets arriving to the node per
second. If a single packet has size 100 B, then λ = 1500 B/s. Similarly, the service intensity
can be converted. This way, the mean time spent in WV mode 1/α is expressed in seconds.
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Example 1. The interarrival times are independent, exponentially distributed random variables.
The service speed is µ = 19 in normal and µv = 9 in WV mode.

Figure 1 shows the pairs of CDFs T0(t) and Tv
0 (t) for the mean WV period duration

1/α = 3 (Figure 1a) and 1/α = 9 (Figure 1b). As we could expect, the Tv
0 (t) values tend to

be higher than those of T0(t). In addition, we can observe that the growth is faster in the
case of longer WV.

(a) T0(t) and Tv
0 (t) for the mean WV du-

ration 1/α = 3.
(b) T0(t) and Tv

0 (t) for mean WV dura-
tion 1/α = 9.

Figure 1. The time to buffer overflow CDFs for µ = 19 and µv = 9.

Example 2. The interarrival times are uniformly distributed. The service speed in normal mode is
µ = 19.

Figure 2 shows the CDFs T0(t) for three different values of WV service rate in case
of shorter (1/α = 3, Figure 2a) and longer (1/α = 9, Figure 2b) WV periods. As expected,
the values of T0(t) are greater for lower intensities µv. In addition, we can observe that they
grow as the expected WV duration increases.

(a) CDFs T0(t) for three different µv values and
mean WV period duration 1/α = 3.

(b) T0(t) for three different µv values and mean
WV duration 1/α = 9.

Figure 2. The time to buffer overflow CDFs for µ = 19.

Example 3. The interarrival times follow a Weibull distribution. The service rates are µ = 21 and
µv = 9 in normal and WV mode, respectively.

The visualization of the impact of mean WV duration is shown in Figure 3. Clearly,
the WV duration parameter strongly affects the length of the period with no packet losses.
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(a) CDFs T0(t) for different mean WV durations. (b) CDFs Tv
0 (t) for different mean WV durations.

Figure 3. The time to buffer overflow CDFs for µ = 21.

Example 4. Interarrival times follow a Pareto distribution. The normal service speed is µ = 17
and is reduced to µv = 9 during WV.

In Figure 4, we can see that, for the longer WV periods, if the server starts in normal
mode, the CDF T0(t) grows faster than T10(t) and T20(t) (Figure 4c). Of course, if the buffer
is initially empty, the server may enter the WV period sooner, changing the workload from
ρ ≈ 0.88 to ρv ≈ 1.67. When the server is initially in WV mode (Figure 4b,d), the results
seem more natural, i.e., the more packets that are initially present, the more probable that
buffer overflow occurs before some time epoch t.

(a) CDFs Tk(t) for different initial state k and
mean WV duration 1/α = 1.

(b) CDFs Tv
k (t) for different initial state k and

mean WV duration 1/α = 1.

(c) CDFs Tk(t) for different initial state k and
mean WV duration 1/α = 7.

(d) CDFs Tv
k (t) for different initial state k and

mean WV duration 1/α = 7.

Figure 4. The time to buffer overflow CDFs for µ = 17 and µv = 9.
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Example 5. The arrival intensity is λ ≈ 15. The incoming packets are processed with rate µ = 21
in normal and µv = 12 in WV mode.

Figure 5 shows the CDFs T0(t) for different interarrival time distributions. For the
gamma distributed interarrival times, the buffer tends to overflow sooner, compared to the
other distributions taken into consideration. On the other side, the probability of overflow
before t is the lowest, when the interarrival times follow a Pareto distribution. Note that
X4 has the highest variance and X3 the lowest.

Figure 5. The CDFs T0(t) for µ = 21, µv = 12, 1/α = 9, and different types of input stream.

Example 6. The arrival intensity is λ ≈ 15. The server works with intensity µv = 9 in WV mode,
and the mean time spent in WV is 1/α = 9.

In this example, we investigate the impact of µ on the expected value of the time
to the first buffer overflow. As we can see in Figure 6, the expected time to the buffer
overflow grows with µ for the lower range of µ, and then starts to decrease. This behaviour
is linked to the fact that, as µ grows, the WV period occurrences tend to be more frequent.
Another interesting observation is that, when the server starts in normal mode with 20 jobs,
the mean time to the buffer overflow is greater than when it is initially empty (except for
the case of µ < λ). Note that if the server starts to empty, the normal working period will
end sooner; therefore, this behaviour is not surprising.

For k = 20, we can observe that µ has a tenuous impact on the analysed characteristics
for the server initializing its operation in WV mode. Presumably, the server would not
complete the WV period before buffer overflow. Comparing the results for different inter-
arrival distributions, namely, exponential (Figure 6a,b), gamma (Figure 6c,d), and uniform
distribution (Figure 6e,f), we can draw an analogous conclusion as in the former example.
For gamma distribution, the plotted expected values tend to be the lowest in the whole µ
range considered.

Example 7. The arrival intensity is λ ≈ 15. The jobs are processed with rate µ = 17 in normal
and µv = 9 in WV mode. The mean WV duration is 1/α = 7.

The goal of this analysis is to validate the numerical results. Figure 7 contains the
plots of CDFs T0(t) and Tv

0 (t) juxtaposed with corresponding simulated values in the case
of interarrival times following uniform (Figure 7a,b), Pareto (Figure 7c,d), and Weibull
distribution (Figure 7e,f). As one can note, the simulation results fit in with numerical
results obtained by adopting the method described in this paper, which validate the
correctness of the obtained formulae.
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(a) Mean time to overflow for exponentially dis-
tributed interarrival times and k = 0.

(b) Mean time to overflow for exponentially
distributed interarrival times and k = 20.

(c) Mean time to overflow for gamma dis-
tributed interarrival times and k = 0.

(d) Mean time to overflow for gamma dis-
tributed interarrival times and k = 20.

(e) Mean time to overflow for uniformly dis-
tributed interarrival times and k = 0.

(f) Mean time to overflow for uniformly dis-
tributed interarrival times and k = 20.

Figure 6. Mean value of the time to buffer overflow for different interarrival distributions with λ ≈ 15, µv = 9, and 1/α = 9.
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(a) T0(t) for uniformly distributed interarrival
times.

(b) Tv
0 (t) for uniformly distributed interarrival

times.

(c) T0(t) for interarrival times following Pareto
distribution.

(d) Tv
0 (t) for interarrival times following

Pareto distribution.

(e) T0(t) for interarrival times following
Weibull distribution.

(f) Tv
0 (t) for interarrival times following

Weibull distribution.

Figure 7. CDFs of the time to buffer overflow for µ = 17, µv = 9, and 1/α = 7. Method results and simulated values.

6. Conclusions

We investigated a finite-capacity queueing model with an independent general input
flow, exponential service times, and a single working vacation policy. Applying an analytic
approach based on the idea of an embedded Markov chain and a continuous version of
the total probability law and linear algebra, the closed form representations for Laplace
transforms of the time to the first buffer overflow were found for the system starting
operation in both normal and working vacation mode. A detailed numerical study was
conducted in which the impact of the key system parameters was analysed, such as the
type of probability distribution of the interarrival times, service speeds, and single working
vacation duration on the time to buffer overflow distribution.

The considered queueing system has potential applications in the modelling of energy
saving modes in wireless network nodes. Energy savings can be obtained by temporarily
reducing the service speed. This approach can help to reduce the latency and packet loss
ratio compared to the simple vacation policy and N-policy models. The influence of the
model parameters on energy usage is a subject for future research.
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