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Abstract: Wearable sensor technology has gradually extended its usability into a wide range of well-
known applications. Wearable sensors can typically assess and quantify the wearer’s physiology and
are commonly employed for human activity detection and quantified self-assessment. Wearable sen-
sors are increasingly utilised to monitor patient health, rapidly assist with disease diagnosis, and help
predict and often improve patient outcomes. Clinicians use various self-report questionnaires and
well-known tests to report patient symptoms and assess their functional ability. These assessments
are time consuming and costly and depend on subjective patient recall. Moreover, measurements
may not accurately demonstrate the patient’s functional ability whilst at home. Wearable sensors
can be used to detect and quantify specific movements in different applications. The volume of data
collected by wearable sensors during long-term assessment of ambulatory movement can become
immense in tuple size. This paper discusses current techniques used to track and record various
human body movements, as well as techniques used to measure activity and sleep from long-term
data collected by wearable technology devices.

Keywords: wearable technology; digital healthcare; quantified self (QS); deep learning (DL); neural
network (NN)

1. Introduction

Wearable sensor technology has steadily grown in availability within a wide variety
of well-established consumer and medical devices. Wearable devices can provide real-time
feedback regarding a person’s health conditions; hence, they can provide an objective
alternative to manage and monitor chronic disease progression, such as with the elderly,
within rehabilitation, and for those with various disabilities [1]. Wearable sensors are
widely used in healthcare, due to their hardware capacity, small footprint and lower cost
compared to equivalent medical instruments capable of monitoring the same vital signs [2].
Furthermore, wearable technology decreases the cost of intensive treatment by allowing
rehabilitation outside of the hospital in an ambulatory environment [3]. According to recent
estimates, wearable technology will flourish over the next 25 years, resulting in a global
cost savings of over $200 billion in the healthcare industry and a considerable reduction in
clinician/patient interaction time [4]. Reports suggest that the number of wearable devices
in use in 2020 was approximately 600 million, and current trends predict the number to
increase to 928 million in 2021, and to reach 1100 million in 2022 [5].

Wearable technology offers many advantages within the healthcare environment
but approved clinical devices have been slow to appear in healthcare settings. Data
gloves and a ball with sensors have been used to track finger motions in stroke patients’
hand recovery therapy [6]. Wearable EMG sensors containing a sensor, electrodes, and
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Bluetooth Low Energy (BLE) communication technology can be used to assess nerve
conduction, activation frequency, quantify and monitor electrical activity associated with
muscle contractions and muscle response in injured tissue. Optical sensors that use a
light-based technique to quantify the delicate magnetic fields produced by neurons firing
in the brain may be used instead of MRI machines to create similar imaging, eliminating
the expensive cooling or electromagnetic shielding required when patients require an MRI
scan [4]. Additionally, the attachable skin format of these sensors improves the portability
of the otherwise cumbersome devices, and can optimise bioelectrical signals obtained
from users [7]. In patients with Chronic Obstructive Pulmonary Disease (COPD), self-
management has been shown to increase the quality of life and reduce respiratory-related
hospital admissions. Lightweight wireless pulse oximeters that detect oxygen levels in the
blood by analysing real-time patient data are commonly used with COPD [8,9]. Apple has
FDA approval for its ECG, as well as clearance in the European Economic Area, with more
than 20 countries now able to make use of the health feature. Remote patient monitoring
provided by wearable technology has also become an important tool throughout the Covid-
19 pandemic. Wearables have been used in the UK to remotely monitor people with chronic
disease or post-covid symptoms, and clinicians can remotely examine, regularly view vital
sign data and provide adequate remote consultations [10].

Wearable devices are typically placed either directly on the wearer’s body, within
clothing, or in semi-rigid structures, such as gloves, insoles, headwear and smartwatches.
They can inter-communicate using the human body as a transmission channel [11] or
through an appropriate transmission medium, such as BLE, Zigbee or Wi-Fi. Wearable
devices capture, filter, and archive long-term physiological and activity data from the
wearer. Due to their limited storage and computing capabilities, wearables may be unable
to process data locally. As a result, they transfer captured data to a powerful remote
computer or a cloud implementation, where the sensor information is deciphered, decon-
structed, and results are meaningfully generated, interpreted and presented to the user [12].
Communication networks facilitate the intercommunication of sensors and control systems.
Fifth generation (5G) communication technology improves broadband networks to support
demanding requirements, such as always-available transmission services, low end-to-end
latency, and a significant data rate boost over fourth generation (4G) communication tech-
nologies [13]. Digital healthcare uses this improved data transmission speed to enhance
healthcare facilities, human health and ultimately population welfare.

Automatic human activity recognition is an essential element in developing human-
interaction applications in personal fitness and healthcare [14]. Fitness tracking measure-
ments, such as step counts, distance covered, altitude climbed, rate of walking/running
are all useful and are now well integrated into smartphones. Position sensing is also useful
as the amount of sedentary time is a powerful predictor of health problems. Sleep sensing
may also be done using movement sensors. Athletes have several specific sensor-based
applications, and Inertial Measurement Unit (IMU) sensors are now widely deployed in
professional sports [15]. The cost of these applications is also usually too high for regular
use in the health service. Sensors typically used for detecting human activity are depicted
in Figure 1. An accelerometer built into a smartwatch can track activity and sleep habits.
Sensors positioned on the neck and lower back can collect data on the range of motion
(ROM) of the head and upper body. Sensors may be attached to the leg postsurgical
treatment to aid rehabilitation, and they are commonly used in athletics to track analytics,
such as speed, velocity and long-term fitness progression. Headbands are used to collect
data on head and neck motion. Data gloves are being tested at the research level for their
effectiveness in capturing information on finger movements and tremors, as well as finger
joint limitations. These gadgets are commercially available and are frequently utilised in
fitness tracking and healthcare monitoring.
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Figure 1. Various sensors can be attached to the body for motion capture, such as Smart Shoe, 
Pressure mat, sensors attached to leg, smartwatches, head sensors, data glove and Biometrics Go-
niometers and Torsiometers on toe and arm [15–19]. 

Wearable sensors are commonly used to assist in the transition of patient treatment 
from the clinic to the ambulatory environment. Their functionality can provide constant 
quantification of progress through treatment regimens by analysing patients’ prescribed 
physical activity routines for continuous improvement or decline [20]. Wearable devices 
have the advantage of providing objective data about movement and summarising this 
information in a way that clinicians can easily interpret. They can also be used in remote 
settings where access to health care is difficult (for example, on an oil rig) or when the 
patient is too ill or disabled to travel to the clinic/hospital. Furthermore, wearable data 
collected in an ambulatory environment is likely to provide a more accurate and repre-
sentative measure of an individual’s physical status than a snapshot of data collected dur-
ing a routine hospital appointment [21].  

This review provides a detailed investigation of wearable devices and assessment 
techniques that are currently used in self-care and healthcare environments for monitor-
ing device wearers, including those with musculoskeletal disorders. The paper begins 
with an overview of wearable technology and its applicability within a clinical environ-
ment. Typical healthcare sensor systems are investigated and discussed. Then self-care 
systems that are commonly used to quantify and monitor personal improvement are in-
vestigated. Measurement accuracy and other important wearable sensor discussions are 
then investigated, including device and data security. Finally, deep learning approaches 
and various algorithms for automated activity and sleep identification are discussed in 
detail. DL techniques may be able to detect and segment important objective data auto-
matically within an ambulatory environment. 

2. Wearable Technology in Clinical Trials 
Research studies using IMU devices are becoming more common, but most are car-

ried out in a controlled clinical environment under supervision. They focus on analysing 
multivariate sensor data to achieve unconstrained patient monitoring and extraction of 
patients’ physical and psychological conditions. Before a wearable device can be used for 

Figure 1. Various sensors can be attached to the body for motion capture, such as Smart Shoe, Pressure
mat, sensors attached to leg, smartwatches, head sensors, data glove and Biometrics Goniometers
and Torsiometers on toe and arm [15–19].

Wearable sensors are commonly used to assist in the transition of patient treatment
from the clinic to the ambulatory environment. Their functionality can provide constant
quantification of progress through treatment regimens by analysing patients’ prescribed
physical activity routines for continuous improvement or decline [20]. Wearable devices
have the advantage of providing objective data about movement and summarising this
information in a way that clinicians can easily interpret. They can also be used in remote
settings where access to health care is difficult (for example, on an oil rig) or when the
patient is too ill or disabled to travel to the clinic/hospital. Furthermore, wearable data
collected in an ambulatory environment is likely to provide a more accurate and represen-
tative measure of an individual’s physical status than a snapshot of data collected during a
routine hospital appointment [21].

This review provides a detailed investigation of wearable devices and assessment
techniques that are currently used in self-care and healthcare environments for monitoring
device wearers, including those with musculoskeletal disorders. The paper begins with
an overview of wearable technology and its applicability within a clinical environment.
Typical healthcare sensor systems are investigated and discussed. Then self-care systems
that are commonly used to quantify and monitor personal improvement are investigated.
Measurement accuracy and other important wearable sensor discussions are then investi-
gated, including device and data security. Finally, deep learning approaches and various
algorithms for automated activity and sleep identification are discussed in detail. DL tech-
niques may be able to detect and segment important objective data automatically within
an ambulatory environment.

2. Wearable Technology in Clinical Trials

Research studies using IMU devices are becoming more common, but most are carried
out in a controlled clinical environment under supervision. They focus on analysing
multivariate sensor data to achieve unconstrained patient monitoring and extraction of
patients’ physical and psychological conditions. Before a wearable device can be used for
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clinical or research purposes, it is important to understand the different types of data that
may be required throughout the duration from a data collection perspective [22].

IMU sensors are most commonly used to measure and capture participant movement
in a clinical environment. IMU’s are placed on specific locations of the patient’s body, such
as the wrist, neck, back or waist [23], and the wearer’s motions are objectively observed and
documented under the supervision of a physician or an experienced technical specialist.
During a clinical assessment, patients may be assessed on specific functional tests that
are relevant for the disease under scrutiny. Data collected from each sensor can then
be used as additional information to further inform a clinician during a patient health
status assessment of improvement or decline [24]. IMU sensors are widely used in motion
tracking applications, such as altimeter sensors, gaming controllers, and Global Positioning
System (GPS), and are used in a wide range of military and commercial use cases [25]. IMU
movement data are usually stored in a controlling device, such as a microcontroller unit that
controls data capture from the IMU sensor, can improve signal quality, and then implement
a transmission protocol to forward sensor data to a connected third-party device, thus,
permitting a posteriori data processing.

In a clinical trial, participants wear sensors and perform various predefined move-
ments with respect to the study protocol. To give an example, axial spondyloarthritis is
a condition where changes in spinal mobility mark the progression of the disease—but
up to now, clinicians have lacked an accurate way of monitoring this. Figure 2 shows
the various types and sources of data that can be sourced and used within a clinical trial.
Patient-related outcomes (PRO) refer to Health Assessment Questionnaires (HAQ) and
Bath Ankylosing Spondylitis Functional Index (BASFI) scores and clinical tests, such as
the Disease Activity Score (DAS28) and Bath Ankylosing Spondylitis Disease Activity
Index (BASDAI) scores. These traditional clinical trial questionnaires and tests are used
by physicians for musculoskeletal assessments, such as Rheumatoid Arthritis (RA) and
Ankylosing Spondylitis (AS) [26]. Sensors or smartphone apps can capture digital data that
corresponds to participant movements related to a clinical trial. The data may be clinical,
or ambulatory based. A filter is typically used to minimise noise or unwanted data from
sensor input signals. The inclusion of a reference movement or activity dataset can be used
to process data obtained for a specific study or application and used for comparisons of
representative movements, such as when using Artificial Intelligence (AI) techniques.
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Figure 2. Various sources of data that may be used in a clinical trial.

An IMU device contains an accelerometer, gyroscope and magnetometer that are
combined to create independent measurements of the locations of an object to which
it is attached [27]. Degrees of freedom (DOF) for an IMU sensor refers to the number
of axes the sensor can measure to detect object orientation. Figure 3a depicts an IMU
sensor and its controlling circuitry, and Figure 3b shows the 3 DOF measured by an
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IMU [28]. Data generated by an IMU may be incomplete, imprecise, or prone to error, due
to (i) accelerometer data may be tainted by a gravitational force experienced by the IMU
device [29], (ii) nearby magnetic disturbances may affect magnetometer measurements,
and (iii) gyroscope data may drift due to unbounded time-varying factors [30].
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The difference in IMU output values versus the expected output values is referred
to as noise. The noise associated with IMU outputs owing to thermoelectrical reactions
is known as random walk errors. Calibration errors are those that are caused by scale
variables and orientations. The reaction of an accelerometer to rectification in the sensor
is referred to as the vibration rectification error (VRE). It can cause a change in the offset
value of the accelerometer reading [32]. When integrating sensor readings, the presence of
these linear accelerations can cause orientation estimates to become corrupted during the
sensor fusion process [33].

Using a complementary filter in conjunction with IMU devices can help to eliminate
noise and reduce errors typically associated with IMU output data. Alternatively, a Kalman
filter is frequently used with IMU sensors to enhance sensor output by eliminating various
structural and ambient disturbances. To estimate the state of the IMU system, Kalman
filters use mean square error minimisation, although they are unable to reduce vibration
sounds caused by sensors. As a result, mechanical and certain software-based vibration
filters have been designed to address this issue [34]. Complementary filters can be used
with IMU sensors if there are two separate measurement sources for predicting the output
variable and their values depend on the frequencies. Complementary filters typically
include a high pass filter (HPF) and a low pass filter (LPF).

The construction of a complementary filter is shown in Figure 4. In the diagram, input
1 and input 2 represent data from two different sources, such as three-axis readings from
an IMU sensor, or alternatively, an accelerometer and gyroscope when sensor orientation
is unimportant. This data contains inherent both low and high frequency noise. Input 1
contains data related to relatively low-frequency noise, whereas input 2 has data related
to high-frequency noise. The LPF selects a higher cut-off frequency, and any data with
frequencies less than that will be routed through that module. Similarly, an HPF config-
ured with a lower cut-off value permits all data values above that. LPF and HPF cut-off
settings are determined by the input data and application [6]. If given with correct cut-off
frequencies, the predicted output of a complementary filter is practically noise-free and
should enable quality data to flow through the filter [35]. IMUs are used in conjunction
with complementary filters to produce high-quality input data for data processing when
sufficient processing is not available to implement the computationally complex Kalman
filter.
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3. Wearable Devices in the Healthcare Environment

IMU sensors are commonly used for home monitoring of patient activity and recovery
and are the typical sensor element used within a home monitoring system. A patient may
be required to wear IMU sensors for longer than 24 h in any assessment session during
an ambulatory monitoring scenario. During this period, the wearer is usually required to
complete standardised functional assessments as part of their normal daily activities, whilst
data are continually recorded from each wearable sensor. Therefore, rather than comprising
only standardised functional test data, as would be the case in a clinical setting, the patient
ambulatory movement dataset contains data corresponding to all patient movements
whilst wearing each IMU sensor, including rest, casual walking, strenuous exercise and
sleeping [36].

Clinical studies show that wearable devices are now being widely used to monitor
activity at home to assess patients’ lifestyle concerns, obesity and disease symptoms, such
as pulmonary conditions, diabetes, hypertension and cardiovascular disease. These are
monitored by a suitably relevant wearable device which is commonly integrated with an
IMU sensor and controlled with a smartphone application [37]. Wearable sensors are being
used effectively to track musculoskeletal fitness. These sensors can accurately determine
the angle of joint motion, neck movement, head rotation and flexion and extension move-
ment [38]. Standardised functional tests are also effective ways of assessing musculoskeletal
fitness by examining a person’s ability to perform tasks, such as bathing, dressing, feeding,
grooming, mobility, stairs, toileting and transition without assistance. They are often used
to validate human body functionality against standardised expected functionality values.
Both assessment outcomes are used to estimate the patient’s degree of mobility. Devices
capable of detailed functional assessment, such as the VICON and ViMove are efficient at
collecting data related to standardised functional tests in a clinical setting or even in an
ambulatory environment [39]. Table 1 provides a summary of various wearable technology
devices are commonly used in a healthcare environment to quantify disease progression.
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Table 1. Wearable devices that are used in the healthcare environment to quantify disease progression.

Wearable Device Body Location Typical Use Case/Disease Condition Captured Movement

Wearable Cutaneous Haptic
Interface (WCHI) [40] Finger Parkinson’s Disease Three degrees of freedom to measure disease

conditions, such as tremor and bradykinesia.

Smart Electro-Clothing
Systems (SeCSs) [41] Heart Health Monitoring Surface electromyography (sEMG); HR,

heart rate variability.

Xsens DOT [42] All over the body Healthcare, sports Osteoarthritis

5DT data glove [43] Fingers and wrist Robust Hand Motion Tracking

Fibre optic sensors measure flexion and
extension of the Interphalangeal (IP),
metacarpophalangeal (MCP) joints of the
fingers and thumb, abduction and
adduction, and the orientation (pitch and
roll) of the user’s hand.

Neofect Raphael data
glove [44]

Fingers, wrist and
forearm Poststroke patients

Accelerometer and bending sensors
measuring flexion and extension of finger
and thumb.

Stretchsense data glove [45] Hand motion capture
Gaming, augmented and virtual
reality domains, robotics and the
biomedical industries.

Flexion, extension of fingers and thumb.

Flex Sensor (Data glove) [46] Finger

Rheumatoid Arthritis (RA),
Parkinson’s disease and other
neurological conditions/rehabilitative
requirements.

Flexion and extension of the (IP), (MCP)
joints of the fingers and thumb and the
abduction and adduction movements.

X-IST Data Glove [47] Hand and fingers Poststroke patients
Five bend sensors and five pressure sensors
measure MCP, PIP finger and thumb
movement.

MoCap Pro (Smart
Glove) [48] Hand and fingers Stroke Capture bend of each MCP and proximal

interphalangeal (PIP) joint.

Textile-Based Wearable
Gesture Sensing Device [49] Elbow and knee Musculoskeletal disorders Flexion angle of elbow and knee movements

VICON system [50] Shoulder and elbow Musculoskeletal disorders Humerothoracic, scapulothoracic joint
angles and elbow kinematics.

Goniometer-Pro [51] Knee Stroke Passive flexion of knee.

Smart Garment Sensor
System [52] Leg Strain sensor Lower limb joint position analysis.

Fineck [53,54] Neck Monitor neck movements and
respiratory frequency.

Flexion-extension and axial rotation
repetitions, and respiratory frequency.

SMART DX [55] All over the body Gait clinical assessment and
multifactorial movement analysis.

Dynamic analysis of muscle activity,
postural analysis, motor rehabilitation.

ViMove [56] Neck, lower back and
knee

Movement and Activity Recognition
in sports and clinical monitoring. Flexion-extension and axial rotation.

Dubbed Halo [57] Wrist Voice monitoring application called
‘Tone’.

Detect the “positivity” and “energy” from
the human voice.

Polysomnography
sensors [58]

Chest, hand, leg and
head Identify sleep apnoea Breathing volume and heart rate.

Pulse oximetry [59] Finger Pulmonary disease Monitor oxygen saturation, respiratory rate,
breathing pattern and air quality.

TZOA [60] Textile Respiratory disease Measure air quality and humidity.

Eversense Glucose
Monitoring, Guardian
Connect System and Dexcom
CGM [61]

Hand Diabetes Glucose level monitoring.

Traditional musculoskeletal disease detection methods depend on interpretation, ques-
tionnaires, and structured observations of patients [62]. Therefore, there exists the potential
for a great deal of ambiguity during patient diagnosis. As an example, joint stiffness
is a significant RA identifier and disease severity indicator that none of the traditional
approaches can quantify. Wearable data gloves work on the principle of indirectly detecting
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the change in sensor angular rotation throughout a measurement session. A data glove
equipped with IMU sensors can detect hand stability, and as a result, joint stiffness can be
identified with reasonable precision. Machine Learning (ML) algorithms based on linear
regression can also determine the disease seriousness of RA using a smartphone, reducing
the need to visit a clinician. In a smartphone application, the device will train using the
patients’ DAS28 and HAQ scores, as well as a self-assessed tender joint count (sTJC) and
a self-assessed swollen joint count (sSJC). Patients’ trunk acceleration captured during
walking can be measured with a smartphone application. This predictive model accounts
for 67% of the DAS28 variance. It proposes that a smartphone program can accurately
predict RA disease activity based on a non-invasive self-assessment of a combination of
disabilities in everyday tasks, joint symptoms and walking ability [63].

ASQOL is a metric that measures the quality of life in individuals with Ankylosing
Spondylitis (AS) [64,65]. The musculoskeletal changes associated with RA and AS are
shown in Figure 5. ASQOL is a measure of a person’s ability to fulfil the demands of
daily life, while suffering from AS. This evaluation test requires answers about pain
tolerance, sleep, relationships, independence and social life. These tests evaluate a patients’
peripheral and spinal joint pain, fatigue severity, morning stiffness, functional ability,
axial position of the dorsal, lumbar, cervical spines, pelvic soft tissue, and hips, as well
as localised tenderness. Patients, however, can encounter memory bias or incorrect self-
judgments from outputs. Instrumented BASFI (iBASFI) adds a wearable accelerometer with
activity measuring algorithms for evaluating performance-based measurements (PBM) [66].
It yields an index that describes clinically significant changes in different spinal movements
in patients [67]. In patients with AS, IMUs are both reliable and valid in assessing spinal
mobility. IMU sensors are attached to the collar, head, and lumbar spine to gather range of
motion (ROM) data. The full ROM values calculated over a series of motions is used to
calculate disease intensity. Thus, wearable sensors have been used to support clinicians
during the diagnosis and rehabilitation of patients suffering from RA and AS.
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Figure 5. Musculoskeletal changes for (a) RA and (b) AS [64,65].

The issue of using various health appraisal questionnaires is that (a) if an alternative
is not available to patients, they can leave it null or N/A rather than entering details
on what their opinion at that time (b) the pain scale cannot be used to accurately map
pain magnitude and (c) all answers depend on a patient’s current physical and mental
conditions which can be influenced by other factors, such as prescribed drugs or emotional
state [68].

4. Wearable Devices for Quantified Self

The concept “quantified self” refers to the process of collecting personalised data
about one’s own life and wellbeing using wearable devices and other advanced technology.
Due to the prevalence of smartphones and sensor-rich wearable devices, data collection
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and analysis approaches are becoming more commonplace. Hence, the area of life logging
and QS is rapidly expanding [69].

Wearable technology devices can assist the wearer in improving their sleep patterns,
manage stress and increase productivity. If wearers are suffering from chronic disease
conditions, these devices can provide sufficiently detailed data to monitor their disease
progression [70]. Figure 6 shows a variety of wearable devices and their positioning on the
human body. Headbands, sociometric badges, cameras, smartwatches and textile sensors
are examples of commonly used wearable gadgets. These devices are integrated with
various sensors that collect data from the human body.
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Wearable devices, such as wristbands and associated mobile applications, can identify
depression symptoms by monitoring vocal tones within phone conversations, measuring
the duration of physical activity and sleep patterns. Basic fitness tracking functionalities in
QS devices include step count, monitoring heart rate, counting calories burnt and gathering
vital health data over time. Table 2 shows various smartwatches and activity trackers with
their underlying technologies, common use and battery life. Such devices are typically
used within the realm of QS.
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Table 2. Various wearable devices are commonly used for QS. Battery life indicates the number of days available to capture
data before recharging the onboard battery.

Wearable Device
for QS Type Technology Used Well Known Applications Battery Life

Apple Watch [72] Smartwatch
IMU, Blood oxygen
sensor, electrical heart
sensor, optical sensors.

Basic fitness tracking, Blood
Oxygen Level, ECG, step
count, sleep patterns.

1 day

Fitbit Sense [73] Smartwatch

IMU, blood oxygen
sensor, electrical heart
sensor, optical sensors,
temperature sensor,
electrodermal sensor.

Basic fitness tracking, stress
management, SpO2, skin
temperature, sleep and
FDA-cleared ECG, tracking
electrodermal activity.

6 days

Samsung Gear2 [74] Smartwatch IMU, electrical heart
sensor. Basic fitness tracking. <1 day

Samsung GearS [75] Smartwatch IMU, electrical heart
sensor. Basic fitness tracking. <1 day

iHealth Tracker
(AM3) [76] Fitness Tracker IMU

Steps taken, calories burned,
distance travelled, sleep
hours and sleep efficiency.

5–7 days

Pebble Watch [77] Smartwatch IMU, ambient light
sensor.

Cycling app to measure
speed, distance and pace
through GPS.

3–6 days

Mi Band 6 [78] Fitness Tracker
IMU, PPG heart rate
sensor, capacitive
proximity sensor.

Heartrate measurements,
sleep tracking, sport
tracking.

14 days

MisFit Shine [79] Fitness Tracker IMU, capacitive touch
sensor.

Tracks steps, calories,
distance, automatically
tracks light and deep sleep,
activity tagging feature for
any sports.

4–6 months

Sony Smartwatch 4
(SWR10) [80] Smartwatch GPS, IMU, optical heart

rate sensor and altimeter.

Distance and duration of
workout, heart rate
monitoring, steps count

2–4 days

Fitbit Flex [81] Fitness Tracker IMU, heart monitor,
altimeter.

Track steps, sleep and
calories. Up to 5 days

Decathlon ONCoach
100 [82] Activity Tracker GPS, IMU, altimeter

Step count, track light and
deep sleep, record the start
and the end of a sport
session, average speed and
distance and calories
consumed.

6 months

Actigraphy [83]
Activity
recognition/Sleep
pattern recognition

IMU
Inclination, gait analysis, fall
detection, sleep quality
analysis.

14 days

Garmin VivoSmart
HR+ [84]

Activity
recognition/Sleep
analysis

IMU, heartrate monitor
altimeter, GPS

Steps, distance, calories,
floors climbed, activity
intensity and heart rate.

8 h

MotionNode Bus [85] Motion tracking miniature IMU Motion tracking using IMU
data. 7 h

The ability to accurately quantify movement dates back around 30 years with devel-
oping motion capture gait laboratories based upon techniques, such as optical photogram-
metry in Vicon, magnetometry, such as Fastrack and force platform walkways, including
GaitRite [86]. A variety of IMU sensor setups have been developed to study gait, but the
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optimal clinical analyses had not then been defined. Gait analysis has been quite widely
investigated in patients with hip and knee osteoarthritis, but less so for RA and axSpA.
The improvement in objective gait kinematics (such as asymmetry of gait) has become an
important outcome measure that has led to improvements in patient care. Some clinicians
advocate the use of standardised timed functional testing, such as the ‘five times ‘timed
up-and-go test’ and the sit-to-stand’ test. These tests are regarded as a reliable measure of
functional performance that capture transfer between legs, gait and turning movements.
Formal assessments of walking ability are also important in a variety of chronic health
conditions that affect gait. It is widely recognised that performance in these tests is strongly
linked to functional ability and independence in the home [87].

Many tools support the assessment of various patient functional levels and ability and
detect a person’s activity level throughout daily activities. Functional questionnaires and
patient diaries are sometimes included in the analysis. They are subjective, require accurate
patient recall, and usually cannot accurately reflect the functional ability of a patient at
home. Specialist health practitioners can also carry out standardised functional tests with
careful observation, but these measures are costly and time consuming, and the results are
difficult to interpret by other members of a clinical team. Formal gait laboratory kinematic
assessments are more accurate, but expensive, and availability is limited to a small number
of specialist centres [88].

Wearable devices solve many of these limitations by using sensors for precise data
acquisition, interpretation and prediction. The ePhysio, wearable system is designed to
give remote monitoring and virtual coaching to patients who are completing rehabilitation
tasks outside a clinical centre. It is equipped with IMUs and an Android program called
Rehabilitation Hub that collects and processes data in real-time [89]. The RAPAEL Smart
Glove19 by Neofect allows patients to rehabilitate their hands by wearing a glove and using
associated technologies. This can be used to heal from injuries or to aid with complications
that may occur as a result of neurological illnesses [90]. Wearable devices with cameras
and motion sensors are used in a rehabilitation exercise evaluation for knee osteoarthritis,
allowing the patient to self-manage rehabilitation progress. The accuracy for activity type
categorisation was 97%, while the accuracy for exercise posture recognition was 88% [91].
Remote monitoring of workouts via sensors might allow experts to keep a close eye on a
patient’s actions and development. The collection of data from everyday physical activities
may also help clinicians to evaluate the progression of a condition more quickly and
without the need for control sessions. Real-time monitoring of physical activities may also
aid in delivering immediate feedback to the patient, while they do the activity, therefore
boosting the quality of the rehabilitation. As a result, wearable sensors are widely being
used in musculoskeletal healthcare assessments.

Data scientists can create new frameworks to assist with QS data processing, analysis
and integration, as well as to take the lead in identifying open-access database tools and
privacy requirements for how personal data are used. Next-generation QS implementations
may provide methods for setting baselines and variability in objective measurements,
making QS data relevant in behaviour improvement, using novel pattern recognition
techniques and aggregating several self-tracking data streams from biosensors, wearable
electronics, genomic data, cell phones and cloud-based services [92].

5. Measurement Accuracy

Accuracy refers to a sensor’s ability to produce a reading comparable to a “gold-
standard” measuring device. The reproducibility of a calculation is referred to as its
reliability. It denotes a sensor’s ability to detect and produce the same measurement
multiple times, although the measurement may not be precise [93]. Wearable device valida-
tion entails demonstrating material validity, consistency, reliability and responsiveness to
change. Technical requirements for wearable technology in healthcare applications include
that they are fit-for-purpose for various use cases within the specific domain, can collect
data in real-life environments, and are precise, consistent and tested in the healthcare
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community in which they would be utilised [94]. In addition, the type of data required for
processing as part of healthcare applications or the applicability of sensors within a specific
research study determines the relevant choice of suitable wearable sensors [95]. Table 3
compares the benefits of wearable technology applications to conventional healthcare mon-
itoring systems. Wearable health monitoring devices outperform homecare and hospital
environments in terms of scale, efficiency and ease of use.

Table 3. Requirements of wearable health monitoring devices within various healthcare services [96].

Medical Service Place of Care
Required Sensor Performance and Accuracy

Requirements
Healthcare Use Self-Monitoring

Domiciliary care Patient’s home High Medium Portable, robust, ease of use

Hospital care Hospital environment High Medium Portable within a hospital
setting, high accuracy

Wearable health
monitoring Anywhere, Any time Medium Medium Small and light, highly

portable and unobtrusive

Many wearable sensors, such as headbands and textile sensors, are effective in the
short-term for activity tracking inside a controlled environment, but are inaccurate in the
long-term [8]. Various wearable optical heart rate sensors have been shown in studies
to be remarkably stable and accurate at rest and during sustained elevated heart rate.
However, there are notable variances in how different devices respond to behavioural
changes. Motion artefact is a suspected error with wrist-worn sensors, particularly during
long-term heart rate monitoring [97]. It is commonly caused by sensor movement over
the skin, temperature differences at the start and end of physical exercises, blood flow
patterns, surface structure and thickness of the skin, and tissue density under the skin [98].
The accuracy of various wearable devices has been extensively discussed in the scholarly
and scientific literature [99]. Table 4 shows various wearable sensors, their applications,
technologies and the mean accuracy of each sensor type. Research indicates that wearable
Inertial Motion Unit sensors ((IMUs) outperform other hardware sensors regarding the
accuracy of measurements within a wide range of applications.

Table 4. Measurement accuracy and use cases for various wearable systems.

Wearable Sensor Usage Sensor Technology Reported Accuracy

Grid-eye [100] Human tracking or detection Temperature sensing using
Infrared radiation 80%

Wearable Biochemical
Sensors [101]

Detect biomarkers in
biological fluids Physicochemical transducer 95%

Wearable Biophysical
Sensors [102]

Detect biophysical parameters,
such as heartrate, temperature
and blood pressure

Sensor electrodes 94%

Adhesive patch-type wearable
sensor [103] Monitoring of sweat electrolytes Radio-frequency identification

(RFID) 96%

Tattoo-Based Wearable
Electrochemical Devices [104]

Monitor fluoride and pH levels
of saliva

Body-compliant wearable
electrochemical devices on
temporary tattoos

85%

RFID Tag Antenna [105] Tracking of patients in a
healthcare environment RFID 99%

Pedar system [106,107] Human gait analysis Pressure sensors capture
insole-based foot pressure data 88%

Wearable IMU Sensor [21–23] Motion tracking, activity tracking,
gait altitude, fall detection

Accelerometer, Gyroscope,
Magnetometer 99%
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Wearable sensor noise is classified into two types: Motion-induced noise and sensor-
intrinsic noise. Sensor implementations, such as those monitoring body movement and
respiration rate, contain motion-induced noise. Sensor-intrinsic noise is typically caused
by resistive sensor temperature noise and repetitive noise in capacitive sensors [108].
The sensor wearer may unintentionally cause errors throughout a lengthy initialisation
or calibration procedure. Most wearable systems use wireless networking technologies
to send captured data to a central processing system for analysis. The vulnerability of
wireless communication channels can result in data loss during transmission, as well as
errors in data analysis and prediction [109].

Almost all smartwatches and smartphones can now determine step count, with many
systems reporting >95% accuracy. Various devices, such as MisFit Shine, Samsung Gear
1, Motorola Moto 360 and Apple Watch, are used to record step count and provide heart
rate monitoring from the wearer. The accuracy and precision of wearable devices typically
range from 92% to 99% [110]. Some technologies are more suited to indoor activities than
others, due to restricted movements. Some devices can accurately detect step count, while
others may be better for measuring heart rate. As a result, the accuracy of wearable devices
varies depending on the device and application.

However, measurement accuracy in patients with low levels of activity is often lacking,
and research indicates that when gait speed is slow and/or uneven, step count and activity
determination are often unreliable. Research indicates a positive correlation between accu-
racy and the cost of wearable devices [111]. Table 5 demonstrates how the accuracy of step
count and heart rate monitoring is affected by device cost. In this study, four participants
completed each activity three times when wearing all smartwatches. Steps were manually
calculated, and heart rate was measured with a pulse meter. After completing the activities,
results from the smartwatches were compared to the pulse meter readings.

Table 5. Accuracy of step count and heart rate monitoring for smartwatches. Information adapted
from [112].

Metric Smartwatch
Accuracy (Steps) Typical Cost

(May 2021)200 Steps 1000 Steps

Step count
Apple Watch 99.1% 99.5% €480

MisFit Shine 98.3% 99.7% €185

Samsung Gear 1 97% 94% €150

Heart rate
measurement

Apple Watch 99% 99.9% €480

Motorola Moto 360 89.5% 92.8% €110

Samsung Gear Fit 93% 97.4%, €150

Samsung Gear 2 92.3% 97.7% €130

Samsung Gear S 91.4% 89.4% €110

Apple iPhone 6
(with cardio application 99% 99.2% €180

Smartwatches are movement sensitive. The tightness of the watch fit on the wearers
arm is important for increased accuracy when measuring heart rate. Photoplethysmogra-
phy (PPG)-based heart rate sensor outputs are influenced by varying degrees of tightness.
Random user gestures will often confuse the predefined sensor calibration model, caus-
ing it to misread the user’s heart rate [113]. Micro Electromechanical System (MEMS)
technology enables the design of compact, low power, low cost and high-performance
wearable technology systems for a wide range of applications. The use of MEMS in fitness
trackers attempts to strike a balance between energy consumption, performance, expense
and size [114]. MEMS within Android devices attempts to reduce the data sampling rate
to balance power consumption and efficiency. It is obvious that a high sampling rate
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contains more data than a low sampling rate, resulting in a hysteresis effect in the overall
output [115]. The high sampling dataset includes more dynamic motions, which allows for
a more effective filter design [116].

The wearable device’s main assessment problems are power consumption, connectiv-
ity capability, design constraints and security concerns. In today’s technology, the biggest
obstacle in fabricating wearable and implantable devices is the powering process [117].
Since the communication area for wireless transmissions is normally restricted, the com-
munication capability of wearable devices is reduced. Wearable interface security remains
an unresolved problem. These devices jeopardise users’ privacy and security [118].

Despite their potential for use within clinical environments, wearable device accuracy
and validity remain the most difficult challenges to overcome. Wearable applications
must be easy to use and easily integrated into consumers’ daily lives if they are to be
used for ongoing monitoring without causing disruption [119]. They should only require
a minimal amount of charging in between measurement sessions. When wearable de-
vice computing and storage migrate to the cloud, health management solutions must be
platform-independent, low-cost, universally available, and quickly deployable. Many
off-the-shelf devices have immediate access to personalised monitoring software through
cloud-based services [120].

6. Other Considerations for Wearable Technology

The outcome of self-care or clinical trial evaluations is anticipated by quantifying
data acquired by wearables. As a result, wearable device apps deal with a large amount
of physiological data from the user. Therefore, the wearer and the captured sensor data
from the sensor worn by the wearer are the two most important components of wearable
device applications. Hence, the psychological elements of wearable devices, as well as
data privacy and security, should be carefully considered. The psychological aspect of a
wearable device includes the wearer’s comfort and mental wellbeing. Moreover, the data
captured, stored and transmitted by a wearable device must be sufficiently private and
secure, and must be stored and transferred with both traits in mind.

6.1. Psychological Aspects

Patients may be reluctant to use wearable technology devices that are uncomfortable to
wear or that can be visually identifiable as wearable devices. Some users feel awkwardness
and embarrassment when wearing an unusual looking sensor in public, such as when
wearing a wristwatch alongside an activity tracker on the wrist or ankle. Epidermal
biosensors, such as a graphene electronic tattoo (GET), are an emerging field in electronics
that allows wearers to disguise sensor wearing from the public eye. This type of sensor
resembles a tattoo, and is not distinguishable when worn, thus providing more confidence
in using this type of wearable sensor to capture disease data [121]. Patients can experience
trouble when charging wearable devices regularly, and this can cause emotional fatigue,
due to the possibility that their wearable device could shut down. Important diagnostic
data may be lost, due to no battery power. Larger batteries tend to reduce charging time and
increase between-charging time, but they are uncomfortable to use, since they are larger
in form size than smaller batteries and increase the overall dimensions of the wearable
device [122].

Wearable sensors may also increase a wearer’s anxiety regarding their physical health.
Elderly and physically unfit people who are keen to avail of detailed information regarding
their general health conditions, such as heart rate, step speed and count, may attempt to
complete physical exercises beyond their physical ability. It is quite common for wearers to
follow fitness enhancement advice and recommendations from wearable devices without
the guidance of clinical experts. Users may mistakenly correlate data from wearable devices
with other diseases from which they are already suffering, giving them further emotional
distress. Wearable devices inspire people to work out more, but they may leave them
frustrated if they fail to meet the recommended activity level [123]. A retrospective analysis
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of data from wearable sensors used by chronic heart patients during self-care found that
many participants wanted to learn more about their health and the possible connections
between their daily activities and their disease status [124].

Wearers can use various mood tracking applications, such as MyTherapy, Breathe2Relax,
MoodKit, MoodTracker or Daylio as part of QS [125]. Studies [126,127] show that those
who use QS applications feel more in control over their mood, which helps them control
their mood and show more confidence, a positive attitude and a better outlook towards
their emotional wellbeing. Users can understand their emotional cycles by using mood-
tracking applications. Then they can plan different strategies to improve happiness and
manage stress. Changes in a person’s phone use pattern, regular everyday tasks and
ordinary travel schedules where GPS data can help identify a change in a person’s mood.
Mood-tracking apps play an important part in QS. A survey by the Institute of Health
Matrix and Evaluation (IHME) estimated that more than one of every six individuals in
European countries have a mental health problem [128]. Advancements in QS applications
for mental wellbeing provide an important role for people who use them daily.

6.2. Data Privacy and Security

Data privacy and security must be considered within the context of wearable tech-
nology. Many wearable devices store data in local storage without encryption or data
protection. As a result, there could be a high risk of losing confidential and personal health
data. Wearable devices commonly connect to a smartphone using Bluetooth, NFC, or
Wi-Fi. Unsecure wireless connectivity channels are insufficient to guard data against a
brute-force attack [129]. Wearable sensors are always synchronised with smartphones for
data transfer, and third-party apps installed on smartphones can increase the susceptibility
to data hacking.

There are two types of data protection threats involved with wearable devices: Passive
and active attacks. Passive attacks attempt to obtain the user’s password and personal
information from the smart device. This technique does not damage or disrupt the target
device. Active attacks, on the other hand, attempt to change or destroy the device. In a
passive attack, a possible intruder can easily obtain data without the users’ knowledge,
due to a lack of security on the wearable device communication pathway. Recent research
indicated how a Fitbit device was subjected to data injection attacks, battery drain hacks
and denial-of-service attacks [130]. Wearable devices are also exploited to obtain IMU data,
including data from accelerometers, gyroscopes and magnetometers on fine-grained hand
motions. This data can be used to execute Backward PIN-sequence inference algorithms to
reproduce secret key entries to ATMs and electronic door locks [131].

Research demonstrates that most wearable device owners are concerned about the
privacy of data stored within a wearable device [132]. Many fitness trackers save the user’s
running, walking, or cycling routes by tracking GPS coordinates. This information could
pose potential threats that could result in a breach of privacy. When switching GPS tracked
locations between devices via Bluetooth or Wi-Fi, a privacy violation occurs [133]. Data
protection threats can occur with integrated cameras and microphones in wearable devices.
Microphones can trigger a privacy risk by capturing unauthorised audio or recording the
voices of others without their consent. A wearable camera could also be hacked, exposing
the user’s personal information and current surroundings. Many people can still use
wearable systems to violate the privacy of others [118].

Since health information is sensitive or confidential in nature, data privacy and security
are critical in healthcare applications that use wearable devices. To improve data protection
and safety, users should be aware of the kind and volume of data captured by devices, as
well as their potential significance. Other approaches to increase protection and privacy
are to (i) use cryptographic mechanisms, such as a PIN to encrypt the device at all times,
(ii) store data in cloud storage rather than local storage, which provides improved security
and (iii) use secure network interfaces to migrate data from a wearable device to central
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storage [134]. It is impractical to use wearable devices with complete data protection.
However, diligent use of these devices limits the likelihood of data loss.

7. Human Activity Detection Using Deep Learning Techniques

Human activity detection using deep learning (DL) techniques is a new field of
innovation within wearable technology. Using DL techniques, a trained system thinks of
the same intuition as a person does when identifying patterns for various activities. Pattern
recognition and pattern matching techniques have been used to extract specific movement
patterns from long-term datasets obtained by wearable sensor devices, especially those
equipped with accelerometers and IMUs [135]. Pattern recognition techniques usually
attempt to classify a dataset based on training and information extracted from previous
patterns [136]. A pattern matching module checks for specific patterns amongst a large
dataset, and results indicate whether searched patterns exist or not [137,138]. Pattern
matching has also been used in a wide range of data science applications, such as Natural
Language Processing, spam filtering, digital libraries and web search engines [139].

There are three types of ML algorithms: Supervised, semi-supervised and unsuper-
vised. Supervised learning algorithms are trained by fully labelled datasets [140], and
can then make predictions on new data [141]. Mapping inputs to outputs are predictive
and can be evaluated through a well-defined system [142]. Supervised learning is mainly
applicable for the classification of a discrete-class problem. The most important classifiers
for supervised learning techniques are Decision trees, Bayesian Network (BN), Instance
based learning (IBL) and Support Vector Machines (SVM) [143]. Offline Human Activity
Recognition (HAR) systems produce results using supervised learning techniques. For
example, supervised learning methods are used to train the machine in HAR applications
that analyse eating patterns and exercise in patients suffering from diabetes, obesity and
heart disease, as well as applications that measure the number of calories expended during
an exercise regimen [144].

Unsupervised learning algorithms process unlabelled data and find patterns and
relationships from them [145]. Data collected from mobile-based activity recognition appli-
cations are commonly defined as unsupervised. Smart environments integrated with a set
of sensors generates heterogeneous data in terms of both semantics and format. Clustering
is the primary strategy for creating a learning structure from unsupervised data collection.
Data should be pre-processed for attribute extraction before implementing the clustering
algorithm [146]. System training for semi-supervised learning system combines small
quantities of a fully labelled dataset with large quantities of unlabelled data [147]. Semi-
supervised learning techniques are used to train unlabelled data to a recognition model
for applications, such as feature extraction, pattern recognition and speech recognition.
Semi-supervised learning techniques are implemented using multigraphs, which propagate
labels through a graph containing both labelled and unlabelled data [148]. DL is a subset
of ML which can learn from unsupervised data and provides a system to learn from those
datasets [149]. Continuous human movement detection and analysis is a tough problem
in ML, since it is difficult to define the characteristics and duration of various movement
patterns. Human motion characteristics vary from person to person. Each person’s motions
of body components, such as the arm, leg and head for regular activities, such as walking,
jogging and eating, are unique. The time required to do each of these activities also varies
between individuals. As a result, generating patterns for each activity to train the ML
system is a major undertaking. With the advancement of DL technology, manual feature
extraction is no longer necessary, and performance improvement in complicated human
activity identification is possible [150].

An Artificial Neural Network (ANN) based classifier performs well in real-time
gesture identification using IMU data inputs [151]. To extract movement data from a
sensor-enabled smartphone, pattern recognition algorithms are used [152]. Human motion
detection and categorisation from IMU sensors have been used to aid in sporting activities.
They are also implemented utilising pattern recognition and an ANN [153]. Pattern
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recognition algorithms are also employed in face recognition systems, where patterns for
diverse facial configurations are retrieved and examined for pattern matching in order to
perform the facial recognition process [154]. An ANN system trained on clinical datasets for
pattern identification and matching is capable of automatically distinguishing standardised
functional data patterns from datasets containing long-term movement patterns [155]. If an
ANN system can automatically detect standardised functional tests of human movement
from long-term data, then the sensors could provide a long-term measurement of patient
activity and recovery at home with minimal intervention [156].

HAR based on data outputs from wearable sensors is a new research area within
the field of Body Area Networks (BAN) and ubiquitous computing. Applications of
online HAR systems are highly applicable within healthcare environments. For example,
monitoring patients with mental or physical pathologies are essential for their protection,
safety and recovery. eWatch is the most significant online HAR technology. An eWatch
usually includes four sensors: A light sensor, an accelerometer, a microphone and a
thermometer. They demonstrated accuracy ranging from 70% to 90% for six different
ambulatory tasks [157]. Vigilante is a HAR-capable Android application. This program is
linked to a chest sensor, which collects patient physiological data. For three ambulatory
behaviour identification applications, they achieved an average accuracy of 92.6% [158].
Tapia et al. is another HAR system that generates 80.6% accuracy for 30 activities, including
lifting weights, doing push-ups and rowing [159]. Finally, Kao is a HAR device that
incorporates a triaxial accelerometer. It assessed seven activities: Driving, biking, punching,
brushing teeth, knocking, swinging and using a computer. It has a total accuracy of
94.71% [160]. OpenHealth is an open-source platform for health monitoring. This includes
a wearable device, standard software interfaces and reference implementations of human
activity and gesture recognition applications. Experiment results demonstrate that the
system achieves greater than 90% accuracy for all actions, such as stand, jump, walk and
sit. When the user performs a gesture, the OpenHealth wearable device is mounted on the
user’s wrist and records accelerometer data. The OpenHealth software program identifies
movements, such as up, down, left and right by using a NN classifier. Trials with seven
users show that the wearable device can identify these movements with an accuracy of
98.6% [161]. WaistonBelt X is a belt-style wearable device with sensing and intervention
capabilities. This approach attempts to assist health behaviour change to prevent health
issues caused by poor lifestyle behaviours, such as inactivity and poor body posture. Seven
activities were trailed with 17 participants: Lying down, sitting, standing, walking, walking
down and upstairs, and running. WaistonBelt X received an F1 score of 0.82, with some
misclassifications occurring between sitting and standing, walking and walking up and
down stairs [162].

HAR research often uses various statistical ML tools and techniques to manually con-
struct new features and extract existing ones from various movement patterns. Statistical
learning methods have been widely used to analyse and find solutions for different activity
identification problems [163]. The nature of the sensors used for activity recognition (either
external or wearable) makes the criterion to classify HAR systems. Hybrid approaches are
an efficient class of systems that intend to exploit both techniques [164].

Naive Bayes (NB) and K-Nearest Neighbour (KNN) classifiers are often used to
recognise seven human body motions, including jumping, walking and running [165]. HAR
can extract traits that can accurately discriminate between different activities. Transform
coding, and symbolic representation of raw data are two more popular feature extraction
approaches in human activity identification research; however, they employ an average
of previously extracted features and need expert knowledge to build new ones. In recent
years, the recognition and popularity of DL approaches have impacted their incorporation
into HAR applications [147].

Various NN architectures are better suitable for movement categorisation than others.
A study that collects data for movement data classifications using a Nexus One Android
smartphone integrated with accelerometer sensor devices. The data were fed into two DL al-
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gorithms: Convolutional Neural Network (CNN) and Long Short-Term Memory-Recurrent
Neural Network (LSTM-RNN). The findings of CNN and LSTM-RNN are compared to
those of classic classifiers, such as k-NN and Feed Forward Neural Network. The accuracy
of a TensorFlow-based Convolution Neural Network (CNN) in classifying movements,
such as walking patterns, limps and foot placement, was 84% [166]. The CNN exceeded
the LSTM in terms of developing an ideal Deep Q Network (DQN) for pattern recognition
of human arm movement and gesture recognition using DL methods and wearable-sensor
technologies [167]. Non-parametric discovery of human movement patterns for walking,
sedentary activities, running and jumping from accelerometer data using a Hierarchical
Dirichlet process (HDP) model implemented using Support Vector Machine (SVM) ex-
hibited precision of 0.81 and recall of 0.77 for sliding window time durations. However,
studies have shown that an HDP model cannot estimate activity levels automatically over
lengthy periods of time [135]. Apriori and Pattern Recognition (PR) algorithms were used
to represent tracking and forecasting patterns of a moving item in a wireless sensor network.
The model’s accuracy was determined by comparing actual graph data to predicted graph
data [168], and results demonstrated the PR algorithm indicated better prediction than the
Apriori algorithm. The PR-Algorithm and Apriori Algorithm Standard Deviations were
around 2.6 and 3.32, respectively. CNN were used to build HAR-based motion detection
utilising U-Net. U-Net is a data segmentation architecture based on a CNN system that
improves the sliding window approach in data segmentation. Research [169] employed
four distinct datasets in their research, including WISDM, UCI HAPT, UCI OPPORTUNITY
and the self-collected “Sanitation” dataset. Simple accuracy and F-scores were used to
calculate prediction accuracy. The U-Net technique outperformed SVM, Decision Tree,
CNN, LSTM and CovLSTM (architecture combines two convolutional layers and two
LSTM layers with 32 hidden units) in terms of accuracy and F-Score. The accuracy of
the U-Net approach is up to 94.7% in a dataset with a significant number of short-term
actions. The F-Score for the Sanitation dataset was 0.998 for Run and 0.905 for a walk. CNN
obtained an F-score of 0.78 for walking.

InnoHAR, a deep neural network model for complex human activity identification,
was created in 2019 by combining Recurrent Neural Network (RNN) with inception neural
network architectures constructed using Keras. On a sliding window dataset, InnoHAR
demonstrated significantly higher performance and strong generalisation performance than
state-of-the-art and baselines. This model has been generalised and validated using three
datasets: Opportunity, PAMAP2, and Smartphone, with F-scores of 0.946, 0.935 and 0.945,
respectively [170]. DL models based on a mixture of recurrent and CNN neural networks
were developed for automatically recognising athletic tasks using wearable sensor data.
Deep neural networks trained on optical and IMU data obtained nearly identical F1 scores
between 0.8 and 0.9. According to this study, integrating more body parts increased the
classification accuracy of their NN system [171].

Using integrating inertial sensor data and visuals, a Deep NN implemented by a
CNN was investigated for recognising multimodal human motions. Their study looked
at the outcomes of three distinct types of input data: IMU only, the camera only and a
combination model that accepted IMU and camera inputs, as well as the classification
network for matching inputs. The cross-validated accuracy for action classification showed
that the combination setting outperformed camera-only and IMU-only systems. According
to the findings, a NN system based on IMU sensor data can help physicians in situations
when action recognition approaches based on cameras fail to reliably forecast the precise
human position [172]. Combining Simple Recurrent Units (SRUs) with Gated Recurrent
Units (GRUs) of a NN resulted in developing a Hybrid DL model for human activity
identification utilising multimodal body sensing data. The F1-score estimated for deep
SRUs-GRUs models is greater than the F1-score generated for current models. This increase
in efficiency is due to the system’s capacity to process and retain patterns that recognise
human activities from multimodal body sensing data. This shows that pattern recognition
algorithms may be used to identify human activities [173]. Human action recognition util-
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ising wearable sensors and a neural network based on the Akamatsu Transform employing
CNN were also developed effectively and efficiently. This approach recognises human
behaviours based on data acquired from wearable sensors and learnt using a suitable
NN. The Akamatsu transform is a method for extracting characteristics from sensor data.
It reached an accuracy of more than 85% [174]. Table 6 shows numerous techniques em-
ployed within wearable technology studies for autonomously monitoring human activity,
including the technologies employed, the number of participants, and the model accuracy.

Other ML approaches, such as SVM, Hidden Markov Model (HMM), and linear
regression, have also been used to detect HAR from wearable sensor data. For monitoring
the balancing abilities of patients or the elderly with impaired balance, an ANN system
based on single inertial sensor data were created. During walking, this system calculated
Inclination Angle (IA) and Center Of Mass–Center Of Pressure (COM-COP) characteristics
for various participants. The devised method assessed individuals with Scoliosis, Cerebral
Palsy and Parkinson’s Disease’s capacity to balance. Feed-forward ANN and Long-Short-
Term Memory (LSTM) network models were created independently, and the root-mean-
square error (rRMSE) for each model was determined separately. The Feed-forward ANN
had a 15% error rate, whereas the LSTM exhibited a 9% improvement in accuracy [175].

Table 6. Comparison of various methods to automatically detect human activity monitoring using wearable sensor
technology.

Ref ML Model/NN Type Details Epochs No. of
Participants Test for Analysis Results

[166] (CNN) and
(LSTM-RNN)

TensorFlow is used
to implement the
NN.

40 22 Accuracy (84%)
CNNs may perform
better than LSTM-RNN
for real-time datasets.

[167]

CNN with the Deep Q
Neural Network (DQN)
model compared with
LSTM models and DQN

CCR, EER, AUC,
MAP and the CMC. 50 Classification accuracy

(98.33%)

CNN model performing
better than the LSTM
model.

[176]

1-D Convolutional
neural network (1-D
CNN)—a RNN model
with LSTM

3+3 C-RNN
designed for data
processing.

1000 80 Accuracy (90.29%)

Model works well for
lower sampling rates.
However, for large data
set accuracy is getting
lower.

[135]

Hierarchical Dirichlet
process (HDP) model to
detect human activity
levels

SVM 27 Precision of 0.81 and
recall of 0.77.

(HDP) model that can
infer the number of
levels automatically
from a sliding window
time duration.

[168]
Apriori Algorithm and
Pattern Recognition
(PR) Algorithm

New algorithm for
PR is designed and
implemented in
MATLAB.

9

Standard deviation of
Predicted v/s Actual
Graph (Standard
Deviations were around
2.6 for PR-Algorithm
and 3.32 for Apriori
algorithm).

PR algorithm indicated
better prediction than
the Apriori algorithm.

[177] Hierarchical Dirichlet
Process Model (HDPM)

Feed forward
neural network. 50 201

Simple accuracy
(sitting—78.60%,
standing—9.45%,
walking—26.87%)

The physical activity
levels are automatically
learned from the input
data using the HDPM.

[169] HAR method based on
U-Net CNN 100

266,555 samples
and 5026
windows

Accuracy and Fw-score
(Max. Accuracy of
96.4% and Fw-Score of
0.965).

U-Net method
overcomes the
multiclass window
problem inherent in the
sliding window method
and realises the
prediction of each
sampling point’s label
in time series data.
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Table 6. Cont.

Ref ML Model/NN Type Details Epochs No. of
Participants Test for Analysis Results

[170] InnoHAR—DL model

Combination of
inception neural
network and RNN
structure built with
Keras.

9

Opportunity, PAMAP2,
and Smartphone
datasets with F-scores
of 0.946, 0.935 and 0.945,
respectively.

Consistent superior
performance and has
good generalisation
performance.

[171] Deep Neural Network
Combination of
convolutional and
recurrent NN.

417
F1-Score in between
0.8–0.9 for different
activities.

Simulated sensor data
demonstrates the
feasibility of classifying
athletic tasks using
wearable sensors.

[172] Deep Neural Network Fully connected
CNN. 50

5
(20 actions per
person)

cross validated accuracy
for action classification.
(Camera only—85.3%
IMU only 67.1%,
Combined—86.9%).

Action recognition
algorithm utilising both
images and inertial
sensor data that can
efficiently extract
feature vectors using a
CNN and performs the
classification using an
RNN.

[173] Hybrid DL model

Combines the
simple recurrent
units (SRUs) with
the gated recurrent
units (GRUs) of
neural networks.

50 1007 Accuracy (99.8%)

Deep SRUs-GRUs
networks to process the
sequences of
multisensors input data
by using the capability
of their internal memory
states and exploit their
speed advantage.

[174] CNN Akamatsu
Transform 120 Accuracy (85%)

Proposed a human
action recognition
method using data
acquired from wearable
sensors and learned
using a Neural
Network.

[178]

SVM, ANN and HMM,
and one compressed
sensing algorithm,
SRC-RP

DL using MATLAB. 4 people with 5
different tests

Recognition accuracy
for different datasets
(Debora—93.4%,
Katia—99.6%,
Wallace—95.6%).

Three different ML
algorithms, such as
SVM, HMM and ANN,
and one compressed
sensing-based
algorithm, SRC-RP are
implemented to
recognise human body
activities.

[179] ML

Ensemble Empirical
Mode
Decomposition
(EEMD), Sparse
Multinomial
Logistic Regression
algorithm with
Bayesian
regularisation
(SBMLR) and the
Fuzzy Least
Squares Support
Vector Machine
(FLS-SVM).

23 Classification accuracy
(93.43%).

A novel approach based
on the EEMD and
FLS-SVM techniques is
presented to recognise
human activities.
Demonstrated that the
EEMD features can
make significant
contributions in
improving classification
accuracy.

[180] ML WEKA 30 Accuracy
(98.5333%)

Sensors on a
smartphone, including
an accelerometer and a
gyroscope were used to
gather and log the
wearable sensing data
for human activities.
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Table 6. Cont.

Ref ML Model/NN Type Details Epochs No. of
Participants Test for Analysis Results

[151] Real-time Gesture
Pattern Classification

Neural
network-based
classifier model.

1040 Accuracy
(77%)

Human hand gesture
recognition using
manually collected data
and processed by LSTM
layer structure.
Accuracy is denoted
using unity
visualisation.

[181]

Pattern Recognition
Methods for Head
Gesture-Based Interface
of a Virtual Reality
Helmet (VRH)
Equipped with a Single
IMU Sensor

Classifier uses a
two-stage
PCA-based method,
a feedforward
artificial neural
network, and
random forest.

975 gestures
from 12
patients

Classification rate
(0.975)

VRH with sensors are
used to collect data.
Dynamic Time Warping
(DTW) algorithm used
for pattern recognition.

[182]
Hand Gesture
Recognition (HGR)
System.

Restricted Coulomb
Energy (RCE)
neural networks
distance
measurement
scheme of DTW.

252 Accuracy (98.6%)

Hand Gesture
Recognition (HAR)
system for
Human-Computer
Interaction (HCI) based
on time-dependent data
from IMU sensors.

[183]
Motion capturing
gloves are designed
using 3D sensory data

Classification
model with ANN. 6700 Accuracy (98%)

Data gloves with IMU
sensors are used to
capture finger and palm
movements.

[184]

Quaternion-Based
Gesture Recognition
Using Wireless
Wearable Motion
Capture Sensors

SVM and ANN 11 Accuracy (90%)

Multisensor motion
capturing system that is
capable of identifying
six hand and upper
body movements.

To recognise people’s emotional states from entire body motion patterns, a feedfor-
ward deep convolution neural network model was constructed [185]. Based on data from
a single wearable IMU, the ML system was designed to identify age-related and surface
changes in walking. DL with LSTM was used to complete system training, prediction
and implementation. Four models were trained using all sensor data from an IMU vs.
accelerometer, gyroscope and magnetometer data only. The results revealed that com-
pletely trained models for surface and age with complete IMU data had good precision
(96.4, 95.2%), recall (96.3, 94.7%), f1-score (96.3, 94.6%) and accuracy (96.3, 94.6%). (96.3,
94.7%) [186].

ML algorithms have already been used to identify movement patterns. The researchers
used a VRH and incorporated IMU sensors to assess head gesture position. Data from 975
head movement patterns from 12 people were used as input data for feedforward ANN,
a two-stage PCA-based approach and a random forest. The system, which comprised of
VRH and integrated IMUs, achieved 91% accuracy [181].

Using Restricted Coulomb Energy (RCE) neural networks, a real-time Hand Ges-
ture Recognition (HGR) system for Human-Computer Interaction (HCI) based on time-
dependent input from IMU sensors was developed. Every neuron in RCE NN has a central
point and a radius. The system attempted to determine the central point and radius of
each neuron throughout the training phase. The mechanism determined the distance
factor between various neurons throughout the pattern recognition process. This data were
coupled with input feature values to decide which neuron would be activated next. This
sort of technology had a 98.6% accuracy rate [182]. To record finger joint flexibility and
hand movements, data gloves with integrated IMU sensors were employed. Data gloves
collect information and transmit it wirelessly and in real-time to a compatible receiving
device. With 0.1 s of predicting, the system reached a speed of 8.94 milliseconds per frame
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and an accuracy of 98% [183]. Using this data glove system, a multi-sensor motion capture
system capable of identifying six motions was constructed. Participants’ hand and upper
body movements were used to collect data. The motion identification module was created
using SVM and ANN. Gestures as a jab, upper cut, throw, raise, block and sway were
detected with greater than 85% accuracy [184].

Automatic pattern recognition for various activities and sleep states accurately is
a milestone in wearable device research. It has many applications in healthcare, sports
and personal care. Many studies use data from wrist-worn accelerometers determine
the activity level and sleep level of individuals [187]. Polysomnographic (PSG) pattern
recognition for automated classification of sleep-waking stages in neonates is implanted
using EEG, electrooculogram (EOG) and EMG. The system records sleep data from EEG,
ocular movements from EOG and muscular tone from EMG. The automated system’s
performance was tested indirectly by analysing different sleep phases in newborns with
70% accuracy [188]. PSG data are used to create a pattern recognition algorithm for
multiclass sleep stage analysis. ANN with sigmoidal and softmax transfer functions is
used to classify different phases of sleep. The Bayesian network evaluates the probability
of several classes. The system’s mean classification accuracy was 88.7% [189]. Linear
regression is efficient and applicable for finding cause and effect relationships between
input and output variables. There are different libraries and algorithms available to
implement pattern recognition techniques using the linear regression concept [190], and it
is commonly used to correlate personal health factors with sleep quality by analysing data
collected from wearable sensors. Multivariate analyses show that poor sleep scores cause
more medical expenses and depressive symptoms [191].

8. Algorithms for Activity and Sleep Recognition

Data collected during an occasional clinical assessment represents a very limited
snapshot of a patient’s physiological condition. Decisions about the patient’s health condi-
tion, status of disease and recommended types of treatments and medical procedures are
concluded by comparing data recorded during a clinical assessment to general population
averages. These decisions may not always be relevant and tailored to the individual. The
extrapolation of such a snapshot should be extended to a longer period for generating
valid inferences about a patient’s health. Automatically extracting activity and sleep pat-
terns from long-term datasets can aid to increase diagnostic accuracy [24]. Sensor data
can, therefore, be used to extrapolate activity and sleep measurement using relevant soft-
ware techniques and libraries. Figure 7 shows data from a supervised clinical trial for
the identification of the range of movement tests. The X-axis represents normalised time,
whereas the Y-axis represents angular values of movement in degrees. The motions in the
red box represent the real movements, whereas the data in the black box are noises. The
algorithm for automatically detecting activities should be fine-tuned to distinguish patterns
of expected activities from alternative activities or rest periods that are considered noise.
The time required to accomplish each activity varies by gender, age and health condition.
As a result, developing an efficient automated activity detection system is a difficult task.

GGIR is a widely used R package used to process and extract physical activity from
multiday raw accelerometer data, and for sleep research. Regardless of brand-specific
accelerometer units, data are entered into GGIR in m/s2 or gravitational acceleration.
GGIR estimates the degree of physical activity, idleness and sleep based on accelerometer
data. It comes with lots of built-in functions and arguments for analysing data from
wearable sensors. In terms of input data, it may provide output summaries for several
levels of activity, such as personal, daily and night. Unfortunately, only a small body of
evidence exists to indicate that raw accelerometer data are an accurate representation of
body acceleration and most scientific evidence indicates that the validity of accelerometer
data are dependent mostly on epoch averages [192]. In 52 children, the GGIR algorithm
classifies seven distinct types of activities with 91% accuracy for hip-worn accelerometers
and 88% accuracy for wrist-worn accelerometers [193].
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Cole–Kripke is an algorithm used to devise a sleep score. This algorithm was initially
tested for adult populations ranging from 35 to 65 years of age [194]. The algorithm
calculates a Sleep Index (SI) value with respect to levels of physical activity. If the SI is less
than 1, the sleep state is deemed awake (W), otherwise, it is regarded as sleeping (S). The
Cole–Kripke algorithm is sensitive because genuine sleep state is typically predicted as
asleep (s); however, research suggests that [195] Cole–Kripke sleep misclassification was
high in research involving children as compared to adults. Previous research indicates that
this algorithm undervalued sleep and exaggerated wakefulness in children and vice versa
in adults. Both GGIR and Cole–Kripke algorithms do not provide facilities to segment data
based on specific movement patterns.

An in-home sleep study of 40 healthy people measuring sleep characteristics using
Motionlogger® Micro Watch Actigraphy (MMWA) using Cole–Kripke algorithm, revealed
94% to 98% sensitivity and 42% to 54% specificity in identifying Sleep epochs [196]. Another
research study for in-home polysomnography (PSG) using the Cole–Kripke algorithm
on a sample of 35 healthy volunteers found that it was more sensitive to identify sleep
(88–96%), but less specific to detect awake time (35–64%) [195]. ActiGraph Link’s sleep-
monitoring feature was tested on 49 adults. Both accelerometers’ epochs were categorised
as sleep or awake, and the data were transformed to total sleeping duration, wake after
sleep beginning and sleep efficiency. Cole–Kripke’s algorithm’s sleep/wake state was
determined to be 96.13% effective [197]. Studies suggest that the Cole–Kripke algorithm is
effective in extracting sleeping patterns in adults.

If all human activities can be extracted automatically from ambulatory gestures,
patient monitoring effort can be considerably reduced. This could prove to be a significant
leap in wearable technology applications, and ultimately, in the medical area.

9. Conclusions

Human movement analysis is an interesting area of research and is growing in popu-
larity, due to the increase in the implementation of wearable technology within ambulatory
and home care environments. Wearable devices can enable users to assess their own health.
Analysing and identifying specific types of activity within sensor data can further enhance
the assessment of the patient’s quality of daily life. This can be achieved by analysing a
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wide variety of sensor variables using various techniques. Wearable sensors can passively
collect information about a patient’s daily activities, and hence. These data are rich in
objective detail when compared to clinical assessment data. The increased availability of
sensor data allows clinicians to gain closer insights into a patient’s health than is possible
using traditional subjective methods. This review examined various wearable devices used
for QS, clinical assessments and automated monitoring of activity and sleep patterns. Cur-
rent studies employing DL approaches to automatically detect certain activity or sleeping
patterns from data received from wearable technologies are also examined.

One of the main purposes of wearable devices is to create and develop precise, accurate
and unambiguous results. Research in this area requires completing explicitly quantifiable
work packages, including hardware validation assessment, development and testing of
a clinical protocol, and implementation and evaluation of a feasibility study. Future
advancements in this area will provide clinicians with more detailed information on
various movements contained in data recorded at home. This data will provide users with
a better awareness of their health and clinicians with a more granular assessment of the
patient’s fitness, as well as specific insights into physical mobility.
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