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Abstract: Solar energy penetration has been on the rise worldwide during the past decade, attracting
a growing interest in solar power forecasting over short time horizons. The increasing integration
of these resources without accurate power forecasts hinders the grid operation and discourages the
use of this renewable resource. To overcome this problem, Virtual Power Plants (VPPs) provide
a solution to centralize the management of several installations to minimize the forecasting error.
This paper introduces a method to efficiently produce intra-day accurate Photovoltaic (PV) power
forecasts at different locations, by using free and available information. Prediction intervals, which
are based on the Mean Absolute Error (MAE), account for the forecast uncertainty which provides
additional information about the VPP node power generation. The performance of the forecasting
strategy has been verified against the power generated by a real PV installation, and a set of ground-
based meteorological stations in geographical proximity have been used to emulate a VPP. The
forecasting approach is based on a Long Short-Term Memory (LSTM) network and shows similar
errors to those obtained with other deep learning methods published in the literature, offering a
MAE performance of 44.19 W/m2 under different lead times and launch times. By applying this
technique to 8 VPP nodes, the global error is reduced by 12.37% in terms of the MAE, showing huge
potential in this environment.

Keywords: power forecasting; long short-term memory recurrent neural network (LSTM-RNN);
virtual power plant (VPP)

1. Introduction

Around the world, the full deployment of solar energy is being facilitated by several
factors including, but not limited to, the reduced price of solar panels; environmental, polit-
ical and social concerns; and solar energy undercutting utility prices, inter alia. According
to [1] global installed capacity will double every two years; however, significant factors
have been identified which impede the speed at which solar dominance can be achieved: (i)
lack of investments in efficiency, (ii) insufficient government incentives, and (iii) regulatory
constraints. Small-scale Photovoltaic (PV) installations such those in the residential sector
benefit from self-consumption by shifting a load from hours when electricity prices are high
to hours when the PV energy is being generated, thereby achieving electricity bill savings.
Going one step further, the aggregation and coordination of several PV installations in the
shape of a Virtual Power Plant (VPP) with the accurate forecasting of global production
facilitates its integration into the network [2]. Consequently, the increasing PV penetration
can lead to the increasing aggregation of PV systems into VPPs. However, these new
business models are difficult to implement due to the previously mentioned regulatory
constraints.
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Power forecasting along with load demand and energy prices, for different time
horizons and resolutions, are factored into the equation. For VPPs, spatial horizons should
also be considered. Forecasting methods can be classified according to different factors,
such as: the forecasted parameter (irradiance or power), the time horizon and resolution,
the lead time, the model approach, and the nature of the forecasting statistic. Regarding
the forecasted parameter, two different alternatives exist: direct [3] and indirect [4]. The
direct method predicts the solar power through historical datasets of PV power generation
and weather conditions. Indirect forecasting differs from the direct method in that it
firstly predicts the solar irradiance and then, the solar power is calculated by using a
performance model of the PV plant. As far as the time horizon is concerned, four categories
can be found [5,6]: nowcasting (from 1 min to several minutes) which is used for real-
time optimization in Energy Management Systems (EMSs); short-term forecast (from 1 h
to several hours) used for intra-day market participation and for day-ahead operation
optimization; medium term forecast (from 1 month to 1 year); and long-term forecast
(up to several years). Time resolutions may range from 1 minute for real-time market
operations, and 15-minute periods for load-shifting strategies and for optimizing Battery
Energy Storage Systems (BESSs), to 1 hour for longer time horizons used by consumption
monitoring, and a 1-week resolution for 1-year time horizons which can be used to identify
consumption trends [7]. The lead time can be defined as the time difference between
the instant when the forecast is launched and the occurrence of the forecasted value,
considering the forecast horizon as the maximum forecast lead time. Forecast errors
increase with forecast lead time due to the atmospheric motion. As for the model, the
optimal method for solar irradiance prediction depends on the forecast lead time [8]. In
this regard, four approaches have been widely used [9]: (a) time-series-based statistical
models whose aim is to identify patterns between historical datasets and the output
parameters; (b) machine learning (ML) models mainly based on artificial neural networks
(ANNs), which use historical datasets to learn the dependency between the past and the
future; (c) physical strategies which utilize Numerical Weather Prediction (NWP) and
PV models for solar power forecasting; and (d) hybrid models which explore different
algorithm combinations with the aim of improving forecast accuracy and reducing the
computational burden of online forecasting applications [5]. The objective of all the models
is to improve forecasting accuracy by minimizing some quality metrics, usually the sum
of squared errors. The existence of different models raises the question of whether one
method is better than the others. This is particularly true for statistical and ML models.
Some studies conclude that statistical models outperform ML models [10] while others
state the opposite [11,12]. However, this interpretation may appear to be fairly simplistic
without taking into account the dataset size [13], the variable being forecast [14], the time
horizon [15], or the computational load [16]. Although historically, the forecasts have been
dominated by statistical methods, over the last decade there has been a significant shift
toward ML strategies [17]. This comparative study is beyond the scope of the paper.

Regardless of the method used, the existence of forecasting errors poses a major
challenge in optimizing the PV plant operation. While minor forecasting errors may
not adversely affect the PV plant operation, larger errors can produce negative effects in
the optimization models. Uncertainties hinder the performance in terms of accurately
assessing the variables during the PV plant scheduling and operation. Forecast uncertainty
quantification is, therefore, crucial. For this reason, considering the prediction intervals,
which account for the uncertainty, provides additional accurate information about the
expected values in terms of the range of plausible values and the probability assigned
to each of them [17,18]. Another solution to the problem involves the aggregation of
several PV sites for a unique forecasting strategy, since the error is significantly reduced
as the number of installations increases. To prove this, in [19] the authors present an
approach to forecast the PV power from irradiance prediction maps, obtaining the power
forecast of 200 sites located in Germany. Results show that the error is reduced from a
Root Mean Square Error (RMSE) of 0.11 kW/kWpeak for single sites, to 0.06 kW/kWpeak
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for an area of 220 km × 220 km with multiple sites. The distance among sites is also an
important factor which influences accuracy, since the error is significantly reduced when
the distance between facilities increases. This strategy provides a powerful solution in the
context of VPPs, since multiple systems or nodes are controlled, managing Distributed
Generation (DG) units, Energy Storage Systems (ESSs), flexible loads and Information and
Communication Technologies (ICTs) [20]. Regarding the types of DG units, PV systems
can be considered as the easiest and most cost-effective Renewable Energy Sources (RESs)
to exploit, mainly for households, where it is possible to turn PV installations into flexible
VPP nodes [21].

Finally, as stated above, for indirect forecasting approaches, performance models of
PV systems are required to obtain the prediction of solar power generation. To this end,
a strategy that works under arbitrary conditions of irradiance and temperature must be
adopted. Methods that exhibit these key characteristics are the Osterwald’s method [22],
which stands out by its simplicity, or similar studies from the literature that improve the
performance of the Osterwald’s method by adjusting the results under low irradiance lev-
els [23,24]. When the operating point of the PV panels is known, alternative methods, such
as those reported in [25,26], can improve accuracy, while other research uses parametriza-
tion models to simplify the process [27]. Sometimes, the irradiance of the site is measured
on a horizontal plane, obtaining the Global Horizontal Irradiance (GHI). However, the
panels are on a different plane. This is typical in satellite measurements but can also be the
case in installations with multiple Maximum Power Point Trackers (MPPT) or PV panels
with axis trackers. To solve this problem, a conversion process is needed, using: (i) different
expressions to tackle the problem step-by-step by separating the global components into
direct irradiance, diffuse irradiance, and albedo, modifying the angle of these components
to obtain the global irradiance on the plane of the panel, estimating its losses to obtain the
effective irradiance, or (ii) an approach that simplifies the process [28]. In this regard, it
becomes crucial to reduce the complexity and the computational burden placed on the
forecasting algorithms. With this in mind, this work makes use of the Osterwald’s method
to calculate the PV power, since low irradiance values (G < 125 W/m2) are barely existent
in the dataset and a generalization of the algorithm for VPP environments leads to better
results. Satellite data are also required in this work since they offer information on the GHI,
which is converted into irradiance on the tilted plane by following the steps stated above.

The forecasting strategy developed in this paper, uses long short-term memory recur-
rent neural networks (LSTM-RNNs) and is based on an indirect approach in which the
irradiance is forecasted first and the output power is calculated by using the PV model.
LSTM-RNNs have been used in several works, achieving satisfactory results on account of
their recurrent architecture, which includes memory units [16]. These allow the ANN to
identify temporal patterns from the historical data of the forecast variable, thereby reducing
the forecast error in comparison to other alternatives. The authors in [29] propose a PV
power forecasting strategy based on LSTM-RNN which is compared with other methods
without memory units, showing their limitations in terms of not being able to model the
dynamics of the PV output power data. In [30] a LSTM-RNN with only exogenous inputs,
e.g., dry bulb and wet bulb temperatures, and relative humidity, is used to forecast the
day-ahead solar irradiance.

The main contributions of this paper are summarized as follows: (i) the PV forecasting
method is applied to a VPP environment to reduce the forecasting error, which is mod-
elled as a function of two well-defined parameters called lead time and launch time; (ii)
prediction intervals are used to model the forecast uncertainty as a function of not only the
lead time and the launch time, but also the Cloud Cover Factor (CCF), which allows the
type of day to be identified; (iii) the input data for the forecasting strategy are derived from
free-of-charge open-access data sources, offering a viable and cost-effective solution; and
(iv) a trade-off between accuracy and computational burden facilitates the application of
multiple PV power forecasts at different locations, within the context of a VPP.
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The remainder of this paper is organized as follows: Section 2 introduces the frame-
work for the intra-day power forecasting strategy; the experimental results are presented
in Section 3; and finally, some conclusions are drawn in Section 4.

2. Intra-Day Power Forecasting Framework

The proposed intra-day power forecasting strategy is depicted in Figure 1. It consists
of four main blocks, namely: (i) input data; (ii) data preprocessing; (iii) model design and
forecasting; and (iv) VPP coordination. The input data, which come from different sources,
are fed to the preprocessing stage. The preprocessing step prepares the data as required
by the training and forecasting models. Finally, the output of the forecasting algorithms is
used as the input of the EMS of the VPP. In the following, the different parts are explained
in detail.

Sensors 2021, 21, x FOR PEER REVIEW 4 of 21 
 

 

and (iv) a trade-off between accuracy and computational burden facilitates the application 
of multiple PV power forecasts at different locations, within the context of a VPP. 

The remainder of this paper is organized as follows: Section 2 introduces the frame-
work for the intra-day power forecasting strategy; the experimental results are presented 
in Section 3; and finally, some conclusions are drawn in Section 4. 

2. Intra-day Power Forecasting Framework 
The proposed intra-day power forecasting strategy is depicted in Figure 1. It consists 

of four main blocks, namely: (i) input data; (ii) data preprocessing; (iii) model design and 
forecasting; and (iv) VPP coordination. The input data, which come from different 
sources, are fed to the preprocessing stage. The preprocessing step prepares the data as 
required by the training and forecasting models. Finally, the output of the forecasting al-
gorithms is used as the input of the EMS of the VPP. In the following, the different parts 
are explained in detail. 

 
Figure 1. Forecasting framework. 

2.1. Input Data 
The input data consist of three specific categories according to the source and type of 

the information provided. The first category includes cloudiness and temperature, which 
are obtained from forecast maps, at different spatial and temporal scales, generated and 
regularly published by the Spanish agency of meteorology AEMET, via NWP [31]. The 
cloudiness dataset is used to define the Cloud Cover Factor (CCF), which indicates to what 
extent a cloud area on the NWP-based cloudiness maps creates shadows on the PV instal-
lation. This parameter is used to define the type of day: sunny, cloudy, and overcast. This 
allows the dataset to be split in different groups to create prediction intervals. Tempera-
ture data, on the other hand, are used to estimate the cell temperature of the solar panel 
at the prediction instant [32]. NWP-based weather maps are of great interest since some 
useful weather variables might not be available in solar installations. The deviation in the 
estimation of the cell temperature is then assessed by using the data obtained from the 
experimental setup, which is located at the Polytechnic School of the University of Alcala 

Figure 1. Forecasting framework.

2.1. Input Data

The input data consist of three specific categories according to the source and type of
the information provided. The first category includes cloudiness and temperature, which
are obtained from forecast maps, at different spatial and temporal scales, generated and
regularly published by the Spanish agency of meteorology AEMET, via NWP [31]. The
cloudiness dataset is used to define the Cloud Cover Factor (CCF), which indicates to
what extent a cloud area on the NWP-based cloudiness maps creates shadows on the
PV installation. This parameter is used to define the type of day: sunny, cloudy, and
overcast. This allows the dataset to be split in different groups to create prediction intervals.
Temperature data, on the other hand, are used to estimate the cell temperature of the solar
panel at the prediction instant [32]. NWP-based weather maps are of great interest since
some useful weather variables might not be available in solar installations. The deviation
in the estimation of the cell temperature is then assessed by using the data obtained from
the experimental setup, which is located at the Polytechnic School of the University of
Alcala (Spain) and consists of a 2.97 kWp PV facility with a meteorological station that
gathers information of GHI, temperature and cell temperature [33]. The dataset, obtained
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from the PV facility, is taken during the period between 1 June 2020 and 31 May 2021,
with a resolution of 15 min. In the second category, the Global Horizontal Irradiance
(GHI) measurements are obtained from two sources: (i) a pyrometer, which is installed
in the experimental setup and 30-second GHI measurements are taken and stored on the
cloud (ThingSpeak) [34]; and (ii) the Copernicus Atmosphere Monitoring Service (CAMS),
which provides a free historical dataset of the incoming surface solar irradiance that can be
used for any purpose. The data accuracy is ensured by a regular quality control against
information from in situ systems such as ground stations [35]. At the PV facility, the Mean
Absolute Error (MAE) committed for the temperature with respect to NWP maps is 2.12 oC.
Likewise, the MAE obtained between the CAMS and the PV station is 46.97 W/m2, for
the whole year of measurements. This database is used to provide the forecasting models
with a large GHI dataset for training purposes. Finally, the third category comprises
non-stochastic data, such as sun position, used for the CCF calculation to determine the
type of day; the extraterrestrial radiation for generating the forecasts and working out the
irradiance on the tilted plane of the PV modules; and the installation parameters which are
required for the PV power forecasting, as is explained in the following sections.

2.2. Data Preprocessing

The information obtained from the NWP-based weather forecasts must be transformed
into numerical values. The forecasting time resolution is set to 15 min, mainly to follow
the European Electricity Market Directive to be implemented in the coming years, which
sets 15-minute energy matching periods. However, the AEMET only generates the weather
maps hourly. This poses the inherent problem of merging time series with different time
steps. For instance, for the PV power forecasting, the cell temperature (based on the ambient
temperature) and the irradiance on the tilted plane are required. Since the latter has a
time resolution of 15 min, so too should the time resolution of the time series for the cell
temperature. To this end, quadratic interpolation is performed to create an oversampling
of the NWP time series. Changes in the ambient temperature are usually smooth and
it is assumed that the measurements shown in the NWP maps are defined with their
intermediate values, since the Darboux property [36] is accomplished.

To prove the accuracy of this approach, Figure 2 depicts the ambient temperature
obtained from the AEMET forecasts with respect to the values measured by a weather
station located in the PV installation. The remarkable accuracy of the weather forecast for
the temperature is noticeable.
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Figure 2. A comparison between the ambient temperature measured at the station and the tempera-
ture obtained from the AEMET website.

The CCF, on the other hand, is obtained by processing cloudiness information from
weather maps. This parameter, which allows the type of the day to be defined, is used
to identify those periods of time for which the presence of clouds can alter the PV power
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generation over a region through blocking the sun’s radiation. The CCF is obtained using a
similar method as the work presented in [37], which provides a detailed description of how
to calculate this parameter; mainly by detecting cloud-contaminated pixels in the weather
maps that interfere between the sun and the installation.

Finally, missing data can negatively affect the accuracy of the forecasts. To fill the
missing gaps in the temperature and GHI datasets obtained from the weather station in the
PV installation, GHI satellite data and the data from the NWP-based weather forecasts are
used. Figure 3 shows an example of the reconstruction of missing data for the temperature
and irradiance time series.
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2.3. Model Design and Irradiance Forecasting

The third part in the forecasting framework deals with the LSTM-RNN-based model
design and the forecasting itself, which aims to: (a) predict the mean PV power for a
particular day with a 15-minute time step at the experimental PV facility, and (b) compute
prediction intervals intended to show the likely uncertainty in the forecasting outcome [17].
This information constitutes an important input for the EMS in the VPP.

Figure 4 shows the flowchart of the model design and forecasting. The forecasting
process starts with the LSTM-RNN model definition based on an iterative approach. Five
years of GHI measurements from the Copernicus databases are utilized in the training
process. The LSTM-RNN architecture depends on the characteristics of the input and
output data and the cross-validation process. When creating the LSTM-RNN, 10% of the
training set is used as the cross-validation set, optimizing the number of hidden layer
units, mini-batch sizes, regularization factors, learn rate, and epochs (Table 1). Once these
parameters are defined, the algorithm is extended to be used for future forecasts. The
error in the training process is minimized by computing the RMSE, taking into account
not only the proper convergence of the system but the computational time of the process.
Squared errors lead the convergence in the LSTM-RNN as they are responsible for avoiding
atypical errors, which have remarkable importance in energy management tasks. The
architecture is composed of two input layers, one recurrent hidden layer (based on fifty
memory blocks), and one output layer (Table 1). The memory block includes one or
more self-connected memory cells along with four multiplicative gates (input, output,
update, and forget gates). These gates provide the mechanism whereby the information
can be stored and accessed over long periods of time, thereby avoiding the vanishing and
exploding gradient problem posed by the conventional RNNs [38], e.g., the activation of
the cell can be delayed, providing that the input gate remains closed to new inputs which
can later become available by opening the output gate. The purpose of LSTM-RNN is,
therefore, to model long-range dependencies. When training with sequential data, Gated
Recurrent Unit (GRU), LSTM-RNN, and the Convolutional Neural Network (CNN)-LSTM
are predominant in the literature [16]. As for CNN-LSTM models, they ensure higher
accuracies for predictions based on more features which significantly compromise the
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computational time. It is worth noting that only two variables are used in this work.
In [39] the authors show that these deep learning techniques ensure a higher accuracy than
conventional ANNs or Support Vector Machines (SVMs) in GHI short-term forecasting.
Consequently, LSTM-RNNs are used in this paper for the forecasting process. LSTM-RNNs
achieve remarkable forecast accuracy with different prediction intervals, on account of
their ability to memorize long historical data and determine the optimal time lags for the
time series. These features are fundamental in the context of irradiance forecasting since
there is no previous knowledge of the relationship between forecasts and the length of the
historical dataset.
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Table 1. Parameters selected in the LSTM-RNN.

Number of Features 2 (GHI, Extra-Terrestrial Radiation)

Hidden layer units 50
Number of responses 1

Mini-batch size 256
Regularization factor 5× 10−4

Optimizer Adam (β1 = 0.9, β2 = 0.999, ε = 1× 10−8)
Initial learn rate 0.01

Learn rate schedule Piecewise (periodically)
Learning drop 0.5 every 20 epochs

Epochs 70
Limited gradient 1

Once the LSTM-RNN model has been devised, the GHI prediction is made, followed
by the estimation of the effective irradiance on the tilted plane of the PV module. Firstly,
the calculation of the effective irradiance uses information from the two components of
irradiance in the horizontal plane (direct and diffuse, since the albedo is zero in this case),
calculated as a function of the clarity index (kth), to obtain the diffuse fraction (kdh) [40].
Once this information is obtained, the conversion into the tilted plane is estimated with the
diffuse irradiance [41] and the albedo:

albedo = ro ghm0 (1− cosβ)/2 (1)
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where ro is the albedo coefficient, considering that a value of 0.2, ghm0 is the GHI and β is
the tilted angle of the panels. Finally, the effective irradiance is determined by considering
angular [42] and spectral [43] losses for p-Si modules and a typical moderate dust degree
of DT = 0.97 for the installation.

The Osterwald’s model [22] is used to convert the effective irradiance into PV power:

PDC = SF ηDC Ppeak
Gpanel

GSTC
(1 + δPm(Tcell − Tcell,STC)), (2)

where PDC is the PV power forecasted; SF represents the shading losses due to the sur-
roundings of the installation, determined in Section 3.2 for this particular case; ηDC = 0.927
includes wiring losses, module tolerances and mismatch losses; Ppeak = 2.97 kW is the
peak power of the installation; Gpanel is the effective irradiance of the panels previously
calculated; GSTC = 1 kW/m2 is the irradiance under Standard Test Conditions; (STC),
δPm = −0.4%/oC is the temperature coefficient of the PV panels of the installation; Tcell is
the cell temperature; and Tcell,STC is the cell temperature under STC.

The cell temperature can be determined with the following expression, assuming the
wind speed is negligible, since it can be considered as a nonsignificant effect complex to
model because the wind does not affect each panel in the facility equally:

Tcell =
Tcell,NOCT − Tamb,NOCT

GNOCT
Gpanel + Tamb, (3)

where Tcell,NOCT = 45 oC is the cell temperature under Normal Operating Cell Temperature
(NOCT) conditions; Tamb,NOCT = 20 oC is the ambient temperature under NOCT conditions;
GNOCT = 0.8 kW/m2 is the irradiance under NOCT conditions; and Tamb is the ambient
temperature, obtained from NWP forecasts.

Then, with the historical dataset of PV power forecasts, it is possible to compute
prediction intervals for new forecasts. A prediction interval is an interval estimate for
an unknown future value [17] which can be regarded as a random variable at the time
when the prediction is made. In this paper, statistical prediction intervals are employed
based on the work presented in [44], considering a Laplacian distribution model for the
error as a function of the lead time, the launch time, and the type of day. Figure 5 shows
the intervals for a specified day with 90% confidence, providing additional, valuable
information from the forecast. PV power generation strongly depends on the weather
conditions, the latter varying according to the season. This greatly hinders the ability of the
forecasting algorithms to deliver accurate predictions, causing some degree of uncertainty
which should be evaluated. Prediction intervals constitute the tool that can be used to
express the degree of uncertainty of point forecasts which add a given confidence level.
Additional details about the definition of the intervals, such as group selection and accuracy,
are further explained in Section 3.3.
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Figure 5. Prediction intervals with respect to the PV power.

3. Results

This section presents the results obtained by the proposed intra-day forecasting strat-
egy for VPP, which is divided into different steps: (a) GHI forecasting for a real VPP node
and for an emulated VPP; (b) PV power estimation from the GHI forecasting output; (c) the
quantitative assessment of prediction intervals; and (d) VPP scheduling. Firstly, the results
are validated for a real PV installation, which plays the role of a VPP node. The PV installa-
tion is located in the Polytechnic School, at the University of Alcala (Madrid). Secondly, the
strategy is developed for an emulated VPP, by using several ground-based meteorological
stations uniformly spread over the Community of Madrid [33]. In order to evaluate the
effectiveness of the model, a performance comparison in terms of accuracy/error, with
respect to other methods proposed in literature, is also performed.

3.1. LSTM-RNN-Based GHI Forecasting for a Real VPP Node

The LSTM-RNN-based GHI forecasting for the real VPP node is performed by using
measurements of irradiance taken in the PV facility located at the Polytechnic School of
the University of Alcala (Spain). The initial training dataset is based on a 5-year period of
irradiance values obtained from the CAMS dataset, since RNNs require a large amount
of data for the learning process and GHI measurements are scarce in new installations.
However, the test dataset is based on real measurements taken during the period from
1 June 2020 to 31 May 2021. Therefore, a whole year of real GHI values under different
seasonal weather conditions are used to assess the accuracy of the forecasting approach.
With a resolution of 15 min, the forecasting process starts at sunrise and ends at sunset.
Furthermore, a new prediction is launched every 15 min and the dataset of irradiance is
then updated, which ensures the accuracy of the results obtained. The network is trained
with new measurements every day, during the night, to yield the best results. The GHI
forecasts are given as a function of both the launch time and the lead time, parameters
which are further defined, with the aim of computing the prediction intervals.

As far as the error assessment is concerned, this work relies on two types of metrics:
(i) scale-dependent metrics such as the MAE and the Root Mean Square Error (RMSE);
(ii) percentage-error metrics, such as the relative Mean Absolute Error (rMAE); and (iii)
the relative Root Mean Square Error (rRMSE). Absolute values provide information about
the average forecasting whereas the quadratic values are more sensitive to outliers, the
combined analysis of the two allows for a thorough study of the results.. Error percentage
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values, on the other hand, provide an intuitive understanding of the error committed,
which allows for a fair comparison to be conducted since the dependence on the magnitude
is removed. However, when these values are near zero, scale-dependent metrics constitute
the preferred option. The error metrics are summarized in Table 2, where Yt is the measured
data at time t, Ŷt is the forecast value at time t, and T is the length of the time series used to
assess the accuracy of the algorithm.

Table 2. Metrics used to evaluate the model performance.

Metrics Scaled (W/m2) Percentage (%)

Absolute MAE = 1
T

T
∑

t=1

∣∣Yt − Ŷt
∣∣ rMAE =

1
T ∑T

t=1|Yt−Ŷt|
1
T ∑T

t=1 Yt
× 100

Quadratic RMSE =

√
1
T

T
∑

t=1

(
Yt − Ŷt

)2 rRMSE =

√
1
T ∑T

t=1(Yt−Ŷt)
2

1
T ∑T

t=1 Yt
× 100

The value of Yt denotes GHI at a specific hour of the day, t, and Ŷt′ ,t is the prediction
of Yt at t′. The initial time, t0, is fixed for each day and corresponds to the sunrise. To assess
the error, two parameters are defined: lead time and launch time. Lead time corresponds
to (t′ − t) and is the difference between the time instant of the prediction and the moment
when the prediction is launched. Launch time, on the other hand, is denoted by (t′ − t0)
and is the difference between the current time and sunrise. Launch and lead time for the
predictions of a particular day are better explained in Figure 6. When the launch time is
fixed and the lead time is used as a parameter, a vector of predictions is obtained. However,
when both parameters are set to a value, a single point forecast is obtained (red diamond
in Figure 6).
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The 3D plot in Figure 7 depicts the errors as a function of the lead time and the launch
time which leads to the following conclusions. Firstly, for the scaled error, a high error
rate is observed for short launch times under medium lead times. It is expected that the
scaled error is large under the previous conditions since the radiation is high. However,
as the launch time increases, this error significantly decreases. Secondly, it was clear that
the lower the radiation, the smaller the scaled error; however, for percentage errors, the
opposite is the case; when the launch time is small (less than 1 h), the percentage error
is high, irrespective of the lead time. These plots give some insight into the prediction
behavior and become particularly useful in enhancing confidence in the prediction with
respect to other forecasting techniques. In this particular case, the intra-daily prediction is
used when the mean error is smaller than the day-ahead prediction [37]. Finally, prediction
intervals are derived from the MAE, assuming a particular distribution and splitting the
predictions into groups as a function of the lead time, the launch time and the type of day,
being very useful when a high degree of accuracy is required for the prediction.
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Finally, the predictions obtained by the LSTM-RNN used in this work are compared
with those available in the literature, which are depicted in Table 3. It is worth noting
that this comparative analysis should not be strictly considered, since each dataset can
have a relative influence on the performance. Nevertheless, some preliminary conclusions
can be drawn from the study. Firstly, taking into account other widely used techniques
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from [45], the forecast error obtained in this work, in terms of the rMAE, is much smaller
under short lead times (15 min), increasing until a similar value of the error is obtained
under large lead times (6 h). A good performance under small forecast horizons is also
obtained when comparing the results with [46] for a statistical AutoRegressive Integrated
Moving Average (ARIMA) model, in terms of the MAE, obtaining a similar error to that
of traditional RNNs, and a higher error with respect to a similar LSTM-based approach
presented in [46], despite considering other inputs highly correlated with the irradiance.
Finally, comparing the strategy presented in this paper with respect to the deep learning
techniques (GRU, LSTM-RNN, and CNN-LSTM) from [39,47–49], a similar performance
can be observed. To conclude, for small lead times, the forecasting approach introduced in
this paper yields better results than those obtained by traditional methods. However, the
forecasting error of the proposed LSTM-RNN-based method increases for higher lead times,
until a similar performance is obtained with respect to the traditional methods compared
from the literature. It is also observed that an increase in the number of inputs seems to
slightly improve the performance of the forecast approach. Adding exogenous inputs to
the forecast process is an alternative which is often used by researchers but negatively
affects the performance when those resources are not available.

Table 3. Comparison between the research results from this paper and those from other articles in the literature.

Model [Article] Error Forecast
Horizon

Time
Interval Inputs Results from This Paper

Smart pers. [45] rMAE = (8–18)%

6 h 15 min
GHI, Clear Sky GHI, Cloud

index maps, Cloud top height
maps, . . .

rMAE = (4.17–17.73) %
CIAD Cast [45] rMAE = (11–20)%

Satellite [45] rMAE = (10.5–19.5)%
WRF-Solar [45] rMAE = (12–18)%

SVM-Radial [45] rMAE = (7.5–15.5)%

ARIMA [46] MAE = 71.48 W/m2

1 h 1 h
GHI, Clear Sky GHI, Cloud

type, Temperature, Humidity,
Precipitation, Wind, . . .

MAE = 41.88 W/m2RNN [46] MAE = 41.83 W/m2

LSTM [46] MAE = 31.86 W/m2

CNN-LSTM [39] MAE = 41.88 W/m2

1 h 1 h
GHI, Temperature, Wind,
Precipitation, Humidity,

Azimuth, . . .

MAE = 41.88 W/m2

CNN-LSTM [39] RMSE = 78.17 W/m2 RMSE = 72.54 W/m2

CNN-LSTM [39] rMAE = 10.58 % rMAE = 8.72 %
CNN-LSTM [39] rRMSE = 19.75 % rRMSE = 15.1 %

LSTM [47] RMSE = (77–143) W/m2
8 h 1 h

GHI, Humidity, Cloudiness,
Temperature, Extra-terrestrial

RMSE = (72–124) W/m2

LSTM [47] rRMSE = (18.4–33)% rRMSE = (15.1–29.2) %

GRU [48] RMSE = 67.29 W/m2
1 h 1 h

GHI, Zenith, Humidity,
Temperature RMSE = 72.54 W/m2

LSTM [48] RMSE = 66.57 W/m2

GRU [49] RMSE = 58 W/m2
30 min 1 min GHI RMSE = 55.78 W/m2

LSTM [49] RMSE = 55.29 W/m2

3.2. PV Power Estimation from the Forecasted GHI

The following step consists of estimating the power delivered by the PV modules from
the GHI forecasts. To this end, the following parameters are required: (i) the prediction
time instant; (ii) the site location in terms of latitude, longitude, and altitude; (iii) the
installation characteristics, which include the orientation and inclination of the panels,
rated parameters of the PV models available in datasheets, and losses associated with each
part of the installation; and (iv) the ambient temperature, obtained from NWP maps. As
stated above, analytical techniques exist to achieve this goal and, as a result, it is possible
to quantify the error committed in the procedure.

This section focuses on two different approaches Firstly, real measurements of PV
power are compared against the estimated values of PV power obtained from real measure-
ments of GHI at the site. Secondly, the PV power is estimated from the forecasted values of
GHI, evaluating the errors associated with the whole process. The GHI conversion searches
for a reduced value of the error to maintain a similar performance to that obtained in the
previous section, using the errors to construct the prediction intervals (Section 3.3).
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Figure 8 depicts the comparison between the measured values of PV power at the site
with respect to the PV power estimation obtained from real GHI measurements taken at
the site. Three types of days have been selected: a cloudy day, an overcast day and a sunny
day. The x axis is expressed in solar time. It is worth noting that the experimental setup
at the site location has a building near the PV panels that generates partial shadows on
some of them, starting from 16:36 and continuing until sunset. This event is also modelled
in Equation (2), assuming a linear variation of this effect with respect to time (in Figure 8
SF = 0.95 at 16:36, decreasing until SF = 0.4 at sunset), and it also varies depending on
the season of the year. Results show a reduced value for the error similar to that reported
in other works [28], obtaining an rMAE = 2.54% for sunny days, an rMAE = 3.04%
for partially cloudy days, and an increased value of rMAE = 4.03% for overcast days.
In terms of the squared error, values range from rRMSE = 3.44% on sunny days and
rRMSE = 3.90% on partially cloudy days, to rRMSE = 5.95% for overcast days. The
transient characteristic of the inverter MPPT controller reveals that, in the presence of
passing clouds, the inverter operating point becomes unstable. This is the reason why the
error increases on these days. However, this does not pose any problem for the forecasting
process since the time interval is 15 min, which considerably mitigates this negative effect.
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Figure 8. Comparison between the measured values of PV power with respect to values obtained from the conversion
of real GHI measurements at the site. The selected days are: (a) a partially cloudy day (17 May 2021: rMAE = 3.04%
rRMSE = 3.90%), (b) an overcast day (1 June 2021: rMAE = 4.03% rRMSE = 5.95%) and (c) a sunny day (4 June 2021:
rMAE = 2.54% rRMSE = 3.44%).

Finally, Figure 9 depicts the forecast error in terms of the difference between the
measured and estimated PV power as a function of the lead time and the launch time. The
shapes of the figures are similar to the previous section, with similar percentage errors.
Therefore, from the figure, the same conclusions reached by analyzing Figure 7 can be
drawn: (i) the scaled error is high for short launch times and medium lead times but
decreases significantly as the launch time increases; (ii) for launch times of less than an
hour the percentage error is high, irrespective of the lead time; and (iii) the percentage error
is high at lead times higher than approximately 7 h. The forecast error, which is dependent
on the lead time and the launch time, is used to generate the prediction intervals in the
following section.
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3.3. Prediction Intervals of the Forecasted PV Power

Prediction intervals provide additional information about the plausible range of PV
energy that will be generated at the site, for a defined confidence level selected by the user.
Prediction intervals also indicate the degree of uncertainty in point forecasts. This could
avoid unexpected energy shortages or, by contrast, energy surpluses, which are less critical
than the former since the inverter can change its operational point to produce only the
energy needed, despite wasting an exploitable energy resource.

In this paper, prediction intervals are obtained based on the work carried out in [44].
Previous results show how dependent the forecast accuracy is on the lead time and the
launch time. This fact is used to split the dataset of predictions and create groups, assuming
a specific distribution which is built based on the MAE. Therefore, each group is defined
by selecting a launch time and a lead time, obtaining 365 samples per group, since a whole
year is forecasted on this research. Figure 10 shows different error distributions for launch
time values of 2, 4, and 6 h, and lead time values of 1, 2, and 3 h. In all of them, a Laplacian
distribution is considered, similar to the work carried out in [37] but as a function of the
CCF. Prediction intervals (E15m ± ps) for each subset can be defined in terms of the MAE
under this assumption: for a Laplacian distribution, a percentile p of probability (1− s)
has an interval of ps = ±MAE· ln(2s).
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More detailed distributions can be determined provided that the selected groups are
also created as a function of the CCF. However, by considering 10 groups as presented
in [37], the number of samples of each group is not sufficient to create a proper error
distribution. To overcome this drawback, the number of CCF groups is reduced to three,
using the type of day classification criteria (e.g., sunny, cloudy, and overcast). The CCF
parameter has an hourly resolution, its value is 0 when the sun is not covered by clouds
and 1 when the sunlight is totally blocked. The type of day is classified evaluating the CCF
during the daylight hours, with an hourly weighting of the amount of energy produced
during the day. After that, the k-nearest neighbors (k-NN) method is used to form the
groups, since it allows the dataset to be split in a simple way, offering an independent
solution for each site in the VPP.

The assumption of a Laplacian distribution for each new selected subset carries an
error that is necessary to quantify. The Prediction Interval Coverage Probability (PICP) [50],
in Equation (4), indicates the percentage of predicted values that are inside the interval
selected, and it must be close to the confidence level (γL). The confidence level selected
in this research is γL = 80%, although this parameter can be modified depending on the
operational risks that the site can handle: the higher the risks, the higher the benefits from
the installation:

PICP =
1
T ∑T

t=1 εt, where εi =

{
1 if xi ∈ [Li, Ui]
0 if xi /∈ [Li, Ui]

. (4)

Figure 11 depicts the absolute difference between the confidence level and the PICP
for each type of day, being an effective method when this difference is close to zero. On
sunny days, the PICP is close to the confidence level across the whole area, except for high
lead times under small launch times where the difference increases. On cloudy days, the
PICP is quite different from the confidence level during sunset. Nevertheless, the difference
is acceptable in the rest of the area. In this case, the forecast has a lesser value during sunset
since the energy produced is significantly reduced. Hence, prediction intervals also offer
valuable information on cloudy days. Finally, for overcast days, the difference between
the PICP and the confidence level increases with respect to sunny days, but the magnitude
is acceptable and the prediction intervals are still valuable. To conclude, there are some
zones with a high difference between the PICP and the confidence level. However, these
scenarios correspond to small PV power measurements with bad forecasting performance
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(Figure 9). Therefore, prediction intervals are of little value for these points, since the
strategy presented in this paper does not focus on those cases.
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3.4. Evaluation of the GHI Forecasting for an Emulated VPP

The effectiveness of the whole forecasting process has been demonstrated for a single
PV installation, which plays the role of a VPP node, along with its limitations with respect
to the launch time and the lead time. The next step consists of assessing the algorithm
performance for a set of PV facilities, forming a VPP. There are, however, no additional
PV installations available in the study. Therefore, seven ground-based meteorological
stations located in the Community of Madrid, apart from the PV facility at the university,
are used to emulate the VPP nodes. Their locations are depicted in Figure 12. These
ground-based stations are equipped with GHI sensors which allow the GHI forecasts to
be generated. As for the power conversion, the characteristics of the PV installation from
the university are used to obtain the power estimation for each emulated VPP node (peak
power, Ppeak = 2.97 kW, temperature coefficient, δPm = −0.4%/oC, and the performance
of the equipment).
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The same results as those shown in Figure 9 are used to quantify the accuracy of the
prediction. However, in this case, the PV power forecast for each station is individually
evaluated and the sum of power forecasts of the stations represents the PV power generated
by the VPP, whose forecast error is depicted in Figure 13. By doing so, the PV power
obtained at each station can be compared with respect to the total PV power forecasted.
It can be observed that the scaled values of the error (MAE and RMSE) are higher than
those in Figure 9. However, there is an 8-fold increase in the peak power with respect to a
single facility. As a result, by looking at the relative values of the error (rMAE and rRMSE)
it can be noted that the performance of the prediction increased for the VPP. The accuracy
improvement of the PV power forecast can be expressed as the difference between the VPP
forecast error and the sum of the error on each installation, dividing that value by the mean
error committed on a single installation, obtaining a mean value of 12.37% with respect to
the MAE, and 11.84% with respect to the RMSE. The shapes of the figures lead to identical
conclusions to those reached by the analysis in Figure 9. Therefore, the prediction intervals
maintain their potential value for error forecasting in the case of a VPP.
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4. Discussion and Conclusions

The technical development of VPPs must be supported by EMSs, for which PV power
forecasting is an essential part. By knowing the energy produced by each VPP node,
usually based on renewable resources such as solar technologies, it is possible to optimize
the expected profit generated by energy exchanges with the grid operator. However, it
is difficult to obtain PV power forecasts when it is necessary to gather information from
several nodes scattered throughout a wide area, especially when the input data, required for
the predictions, incur costs. This research presents a way of accomplishing this objective,
using an LSTM-RNN-based strategy to, firstly, forecast the GHI by using a dataset of
irradiance values derived from satellite data freely obtained from the CAMS, and secondly,
estimate the solar power by utilizing a PV model of the installation. The forecast is updated
during the day to achieve the highest accuracy, and prediction intervals are estimated as a
function of the MAE. This provides a useful framework to understand the behavior of each
installation that composes the VPP.

The first results provided are related to the GHI forecast for the installation and are
based on the lead time and the launch time, which allow zones with a reduced error and a
high level of confidence to be created in the shape of prediction intervals which depend on
the type of day. The GHI error, as a function of the lead time and the launch time, shows
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a low performance when the launch time is lower than 1.5 h, corresponding to sunrise.
To avoid this, the forecasting process can begin at 1.5 h after sunrise; before this time,
this research can rely on the day-ahead prediction made in [37] to obtain the irradiance
forecast. To assess the accuracy of the intraday forecast, the results have been compared
with those in the literature, achieving similar results to those obtained from deep learning
algorithms and outperforming traditional techniques. The distinction between the lead
time and the launch time means it possible to create better comparisons with respect to the
literature, but also means it is difficult to summarize the research with only one value. The
MAE committed, without considering the lead time and the launch time, is of 44.19 W/m2,
which is coherent with other studies.

Once the irradiance is forecasted, the conversion to PV power is analytically calculated,
minimizing the error, which ranges from 2.54% to 4.03% in terms of the rMAE and from
3.44% to 5.95% in terms of the rRMSE. The error committed in this case is similar to the
errors found in other articles [26,28]. The shapes of the error matrixes show similar results
to those presented above. Therefore, similar conclusions can be drawn. The global MAE
committed in this case is 137.21 W in a PV facility of 2.97 kWp.

Prediction intervals are selected once the PV power forecast is available, which allow
a range of plausible values of point forecasts to be obtained. The method considers a
Laplacian distribution of the error and distinguishes between the lead time, the launch
time and the type of day, which is selected with a k-NN algorithm as a function of the CCF.
To verify whether the boundaries maintain the associated level of confidence, the PICP is
calculated, obtaining values close to the selected confidence level of γL = 80%. In this case,
results reveal a noticeable difference between the PICP and the confidence level on cloudy
days close to sunset. However, the predictions at those hours have minor importance. It
can be concluded that the selected prediction intervals are of great relevance.

Finally, the PV power forecast is created, and the prediction intervals are selected for
the PV facility so that conclusions under a VPP environment can be drawn. In this case,
a real PV facility and seven ground-based weather stations in the Community of Madrid
are selected to emulate the VPP, obtaining an improvement in the accuracy of 12.37% with
respect to the MAE, and 11.84% with respect to the RMSE. Similar conclusions can be
reached regarding the error as a function of the lead time and the launch time. Therefore,
the whole strategy can be applied under different scenarios for launch times higher than
1.5 hours, relying on the day-ahead prediction prior to this. For this case, the error matrixes
also indicate the best moments to obtain the predictions of the nodes, making it possible to
increase the reliability of the VPP operation.

The major limitation of this study is related to the information of temperature and
cloudiness freely obtained in Spain from NWP maps. In locations where this information
is not available forecasts cannot be provided. Future works will focus on the application of
this strategy along with a day-ahead time horizon strategy to schedule the operation of a
VPP, creating a software that simplifies the process.
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