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Abstract: This paper presents the first photoplethysmographic (PPG) signal dynamic-based biomet-
ric authentication system with a Siamese convolutional neural network (CNN). Our method extracts
the PPG signal’s biometric characteristics from its diffusive dynamics, characterized by geometric
patterns in the (p, q)-planes specific to the 0–1 test. PPG signal diffusive dynamics are strongly
dependent on the vascular bed’s biostructure, unique to each individual. The dynamic characteristics
of the PPG signal are more stable over time than its morphological features, particularly in the
presence of psychosomatic conditions. Besides its robustness, our biometric method is anti-spoofing,
given the complex nature of the blood network. Our proposal trains using a national research study
database with 40 real-world PPG signals measured with commercial equipment. Biometric system
results for input data, raw and preprocessed, are studied and compared with eight primary biometric
methods related to PPG, achieving the best equal error rate (ERR) and processing times with a single
attempt, among all of them.

Keywords: biometric system; PPG signal dynamic; 0–1 test; CNN architecture; pattern analysis

1. Introduction

The relentless outbreak of the pandemic in our lives has put the globalized world in
check. The paralysis to which economies across the globe are driven has been reversed, in
many cases, by the spread of a latent wave for decades: the digitization of society. Life will
be conditioned by new technologies, an entire online ecosystem whose real impact remains
a chimera even among those experts who timidly venture into hasty forecasts [1–3].

The role that technology will play in future societies is unquestionable. However, this
profound metamorphosis carries challenges that digital platforms themselves have to face.
One of them is to keep the identities of the users of the different services protected, that is,
to avoid identity theft so that the platform can unequivocally verify that a user is who they
say they are and not an impostor intruder with clearly fraudulent purposes. Today, the
most secure authentication mechanisms are based on biometric methods [4]. Compared
to traditional access passwords, the different biometric identification systems are reliable
and free the user from memorizing numerous keys [5]. The only access password lies in
the user’s anatomical characteristic, supposedly exclusive and non-transferable, whose
emulation is extremely problematic even for the most seasoned intruders. Face, voice,
iris, palm, and finger recognition are already a reality that safeguards socioeconomic
transactions [6–8].
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The conventional biometric systems focus on the analysis of physical characteristics of
an individual, in some cases highly sensitive to involuntary morphological disturbances—
for example, a cut on the fingertip undergoes a fingerprint analysis. By contrast, biological
signals lend themselves to a more robust biometric examination. Besides morphological
details of the biological signal waveform, dynamic peculiarities by the expected functional
response of the physiological system of interest are evaluated.

In recent decades, the preliminary diagnostic examination of an individual’s state
of health and its follow-up has been entrusted on many occasions to clinical analysis,
through non-invasive methods, of the biological signals generated by the human body—
more recently, with body sensor networks (BSN) and thanks to the rapid development
of health informatics [9,10]. Among the different biological signals usually measured
today, one particularly deserves special consideration, the photoplethysmographic (PPG)
signal [11,12].

Since Alrick Hertzman, an American physiologist, devised the first photoelectric
photoplethysmograph in 1937 [13], although rudimentary, recent technological advances
provide devices, such as modern pulse oximeters, that are increasingly smaller, lighter,
and with a marked tendency to market themselves as wireless devices at a very affordable
price [14,15]. An essential aspect of the PPG technique lies in its low sensitivity to the
sensors’ location, which gives versatility to photoplethysmography for its application in
many areas, such as health, sports, or the agri-food industry. Its appearance has been
due to the electronic simplicity, the cost-benefit ratio, the ease of signal acquisition, and,
mainly, its non-invasive character [16–18]. Unlike other biological signals that require
bulky measurement equipment, or even accessories, such as gels (EEG) or electrodes (ECG),
the PPG signal requires relatively modest electronics. Uncomplicated electronics and
optoelectronics encourage the construction of small pulse oximeters, easily integrable into
smart devices [19]. A pulse oximeter consists of a light emitter and a photodetector. The
photodetector senses changes in light absorption resulting from arterial blood pulses (pulse
signal or PPG) when a light beam passes through or reflects in human tissue [20].

The PPG signal is widely used in clinical settings to monitor physiological parameters
related to the cardiorespiratory system [21]. It is complex. It is composed of an AC
component—peripheral pulse synchronizes to each heartbeat—and a quasi-DC part that
varies slowly due to respiration, vasomotor activity, and vasoconstrictor waves [22]. The
mutual coupling between the different components is intricate and operates at different
timescales to regulate blood volume based on physiological needs.

1.1. PPG Biometric System—State of the Art

The development of biometrics during the 20th century—according to its definition
in [23]: “Measurable physical characteristics or personal behavioral traits used to identify
or verify the identity of an individual”—began by conforming to the old paradigm of
facial recognition and fingerprints. Nevertheless, continued progress in the area of image
processing and analysis has fostered the exploration of more sophisticated biometric system
designs [24,25] (for a known review of classical biometric approaches and their evolution
over time, readers are referred to [26], and for advanced deep learning technologies in
biometric recognition to [27]).

So far, in the 21st century, the development of biometric pattern recognition systems
has evolved enormously, broadening its application spectrum in the context of morpholog-
ical analysis, as reflected between the proposal of the anatomical characterization of the
hand geometry in [8] and that made by [28] concerning 3D palmprint modeling. The same
is true for other biostructure patterns as disparate as the geometric characterization of the
ear [29], the iris [30], the eye as a multimodal biometric system [31], face detection [32],
of the distribution of veins in a finger [33] or on the wrist [34], and of 3D fingerprint
identification [35].

However, in this century, particular attention must be paid to the use of biological
signals such as biometric markers, in addition to morphological and behavioral character-
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istics. In this regard, it is worth highlighting biometrics studies involving the analysis of
electrocardiographic (ECG) and encephalographic (EEG) signals [36], to which could be
added biometric applications that obtain biological signals from galvanic response of skin
(GSR), electromyogram (EMG) [10], electrooculography (EOG), and mechanomyogram
(MMG), among others [37].

Over the years, technological advances have simplified the acquisition of biological
data; somehow, traditional biometric systems (TBS) have been increasingly giving way to
wearable biometric systems (WBS) and, thus, to new methodological approaches to comput-
ing and validating biometric patterns [38]. Accordingly, new biometric technologies are
gradually abandoning the rigidity imposed by a stationary and static analysis of biometric
patterns [39] towards biometric patterns adapted to the variations that the biological signals
may undergo over time—the so-called adaptive biometric systems [40]. In the particular case
of the PPG signal, biometric patterns are strongly conditioned to physiological alterations,
such as physical activity, emotional states, and time intervals, in which measurements
will do, apart from the impact of the different noise sources coupled in the PPG signal
acquisition procedure [19], mainly when the PPG signal is obtained from a camera or of
wrist-worn PPG collected in an ambulant environment [41].

Focusing now on the matter at hand, the first documented reference to the PPG-based
biometric system dates back to Gu et al.’s research in 2003 [42]. In all the works that use the
PPG signal as a biometric reference, specific biomarkers correspond to features implicitly
or explicitly extracted from the signal waveform: for example, time-domain features
acquired from the PPG signal’s first and second derivatives for biometric identification [43],
approximating each PPG signal as a sum of Gaussians and using the parameters in a
discriminant analysis framework to distinguish individuals [44], or defining the waveform
of the PPG signal in five consecutive PPG cycles [45], from 22 cycles [46] or 100 cycles [47]
parametrically. One of the latest works is related to the non-fiducial and fiducial approaches
for feature extraction with supervised and unsupervised machine learning classification
techniques [48], recently expanded with other multi-feature classification techniques [49,50].
Another is the simultaneous PPG signal acquisition using different wavelengths that
allows the video camera detectors to extract the colour segment (e.g., red, green, and blue)
[51]. In all PPG-based biometric models, a negative aspect is the non-stationary nature
of the PPG signal over time, which prevents the stable identification of an individual’s
biometric patterns.

1.2. PPG Biometric System—Proposal

This work uses the PPG signal dynamics as a biometric reference of any individual.
In this sense, we focus our attention on the geometric distribution of the PPG signal’s
diffusive behavior, according to the (p, q)-plane proposed by the 0–1 test [52–54]. We
feel that the PPG signal’s diffusive dynamics are unique to each individual since the
diffusion constant of blood flow is subject to the structural configuration with which each
individual has been endowed [55]. A whole complex network of arterioles and capillaries
transports blood from the heart to the rest of the body thanks to the heart’s driving force
and being synchronized with the respiratory rhythm. Although variations in the PPG
signal’s diffusive dynamics can hide point or progressive pathological abnormalities, such
as physiological deterioration resulting from aging, specific congenital characteristics
remain practically unchanged.

Each subject’s credentials and identity are collected in blood flow dynamics through
the peripheral capillary network. Its falsification is very difficult because of the capillary
network’s intricacy and the complexity which involves blood flow driven by the cardiores-
piratory system. Furthermore, a significant detail is that any biometric system verifying
the PPG signal’s diffusive dynamics requires the individual’s vital integrity. Someone,
not without a negligible effort, could imitate the particular capillary morphology of an
artificial finger. Still, it would be practically impossible to reproduce the diffusive dynamics
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that blood flow undergoes when circulating through that capillary structure, given the
contribution of many subsystems that nonlinearly make up the cardiovascular system.

The paper is organized as follows. Section 2 describes the two fundamental concepts
that are applied for the first time on biometry. The mathematical framework of the 0–1 test,
which underpins the biometric potential of the geometric patterns traced by the PPG
signal’s diffusive behavior, is in Section 2.1, and Section 2.2 explains our novel proposal
for a biometric classifier based on convolutional neural networks in detail. Section 3 is
about the data, optimizer, and logic error employed in the experiment; it includes a brief
description of the parameters used to evaluate the system. Section 4 shows the obtained
results, both graphically and numerically, for various experimental settings. Additionally,
in this section, we analyze and interpret the obtained results. Finally, in Section 5, we shortly
outline the conclusions drawn from this study, which serve as the basis for future work.

2. Method

In PPG-based biometrics within the deep neural network (DNN) framework, as a
general concept of the system, we propose a biometric system based on the diffusive
dynamics of the PPG signal with a DNN design adapted to diffusive images and a specific
biometrics method. Our proposal technically rests on the 0–1 test [56] and the Siamese
residual network structures.

2.1. 0–1 Test

In analyzing dynamical systems, one of the key aspects is to characterize the dynamic
behavior present in the physical system’s response under study. The response dynamics do
not provide direct relevant information on the internal physical structure from which the
response derives. Still, it does provide at least its operational complexity, which is crucial
in evaluating its correct functioning and its greater or lesser adaptability to unforeseen
situations in the context of physiological systems.

In an experimental setting, observables are usually obtained from the physical system
under consideration so that the observables are making measurements at regular time
intervals. An observable is any physical quantity that can be measured. The measurements
or observations themselves are in what is known as time sequences (time series), and then
each observable gives rise to a scalar time sequence (scalar time series).

We could define a state vector in phase space if we measured all the observables con-
tributing to a given dynamical system evolution. In physiological systems, it is widespread
to work with univariate time series or scalar time series, in which only the measurements
of an observable are available. With a single observable, it is possible to obtain information
on the system’s state since each usually contains information from the others, given the
mutual coupling between them, whether linear or non-linear.

The 0–1 test’s initial motivation was to have a method applied directly to a scalar
time series to identify the presence of chaotic dynamics without resorting to other, more
complicated techniques requiring a deep level of knowledge for its correct application
and interpretation [52,53,57]. Given its easy implementation, its increasing popularity has
sparked the interest of countless scientific disciplines in an excessive race to detect chaos
anywhere [54]. However, beyond the initial scope of the 0–1 test and its many applications,
one of the steps of the test is surprisingly useful in the field of biometrics: specifically, the
auxiliary trajectory of the two-dimensional Euclidean group (the Fourier transform series), or
p-q diagram or (p, q)-plane [56], which underlies the dynamics of the physical system.

The 0–1 test cornerstone construction of an extended dynamic serves a two-dimen-
sional Euclidean group SE(2) [56]. The elements of SE(2) form rigid displacements, that
is, a translation and a rotation, in some two-dimensional affine Euclidean plane—the
(p, q)-plane—that, in principle, does not relate in topological terms to the state space in
which the dynamics of the system unfold. However, parameters that characterize rigid
transformations depend at all times on the current state of the system. Therefore, there is a
certain equivalence relationship itself between the dynamics of the physical system under
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study and the dynamic evolution of the trajectory described by the elements of SE(2) in
the (p, q)-plane.

The 0–1 test requires as input a scalar time series of N observations s(n), for n =
1, 2, . . . , N, where s(n) is a one-dimensional observable of the underlying dynamical system.
According to the rigid transformations’ parameterization, the extension of the dynamics is
characterized by s(n) forces to define three scalar quantities (p, q, φ). An element or point
on the (p, q)-plane is defined by its position on the plane, whose coordinates are (p, q),
although its evolution, a change in coordinates, is driven (forcing term) by the dynamic
evolution of s(n) according to

pn+1 = pn + s(n) cos φn,

qn+1 = qn + s(n) sin φn, (1)

φn+1 = c + αs(n),

where parameters c, α ∈ R.
The evolution of any point on the (p, q)-plane describes a trajectory called the auxiliary

trajectory since it reproduces an indirect or complementary evolution of the true dynamics
observed in the system. The auxiliary trajectory involves an angular rotation φn with respect
to a circumference of radius s(n) centered on the point (pn, qn), as shown in Figure 1.

(p5 , q5)

p

(p1 , q1)

φ1

φ2

(p2 , q2)

φ3

(p3 , q3)

(p4 , q4)

φ4 s(3)
s(2)

s(1)

s(4)
φ5

s(5)

q

Figure 1. Descriptive construction of the auxiliary trajectory in the (p, q)-plane.

Somehow, the auxiliary trajectory derives from a diffusive process in which the
diffusion dynamics are forced or driven by the s(n) observations. In the presence of
noise, for dynamic simplicity, α usually assigns a value of 0 [53,57] so that Equation (1) is
reformulated as

pn =
n

∑
k=1

s(k) cos(kc),

qn =
n

∑
k=1

s(k) sin(kc), (2)

φn = cn,

where the angle of rotation φn increases at a uniform rate governed by the value of c.
Furthermore, since the parameter c participates in the trigonometric function’s argument,
it is pertinent that c ∈ [0, 2π).

Although the theory underlying the dynamic extensions is based on the dynamics’
asymptotic behavior, an interesting consequence focuses on the limited nature of auxiliary
trajectories in the (p, q)-plane, that is, how the auxiliary trajectory evolves spatially in the
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(p, q)-plane if the trajectory is circumscribed in an area delimited or inexorably diffuses
in the same way that a Brownian motion unfolds [57]. The 0–1 test quantifies, by the
computation of an indicator, whether the auxiliary trajectory is bounded. It reflects the
presence of regular dynamics or those not sublinearly bounded, which manifests chaotic
dynamics. This inductive argument is the basis of the 0–1 test; a more in-depth description
goes beyond this paper’s purpose. Readers are referred to this method’s original work,
widely referred to in the scientific literature in the last decade [52,53,57,58].

The auxiliary trajectories must be for a range of values of the parameter c that pre-
vents the appearance of spurious phenomena, as already stated in another article [55].
The dynamic richness of the auxiliary trajectories of the PPG signals reveals the inherent
functional complexity to signal dynamics, to which multiple conveniently coupled physio-
logical subsystems contribute. The coordinated action of these subsystems is responsible
for homeostatic regulation of the cardiorespiratory system at all times. However, despite
the certain global similarity that the auxiliary trajectories of PPG signals may have at first
glance, closer scrutiny of each individual shows distinctive signs. These signs could hide
more or less diagnostic severe pathologies and, more invariably, the inalienable character
of the anatomical and functional configuration of each subject’s cardiorespiratory system.

As far as we know, diffusive dynamics, the cornerstone of the 0–1 test, of a biological
signal have never been used to extract biometric characteristics, which gives this work a
new operational perspective in physiological biometrics.

2.2. Classifier

This paper explores an approach based on convolutional neural networks to identify
users through their PPG signals. The proposed system receives two time segments (user
A and user B) of PPG signals, each time segmented with three segments of 1000 points
each (4 s), as input. The first time segment is the standard segment, and the second time
segment is for the user to compare. The system delivers a matching score normalized to
the interval [0, 1], which defines the degree of agreement between the two incoming PPG
segments. If the two input segments belong to the same user, the matching score is closer
to 1; if not, the matching score is closer to 0.

Architecture

This paper proposes a non-conventional network, as we can see in Figure 2, with an
architecture based on a Siamese network whose main trunk is characterized by a fully-
connected encoder. It is a multiscale architecture with residual connections according
to the guidelines of Szegedy et al. [59]. Fully connected encoder architectures are those
traditionally used in classification tasks such as [60,61]. It is well-known for its use in
one-shot learning and image verification [62] in the Siamese configuration. To these layers
and architectures, somewhat better known in the field, is added a layer to the system
that performs preprocessing based on the diffusive behavior peculiar to the PPG signal
dynamics [55], highlighted as a new contribution of this paper.

same weights
User B

(p, q)-planes

User A

(p, q)-planes

User B

PPG segments

User A

PPG segments

0–1 test preprocessing

PPG input

(p, q)-plane output

Similarity function

|Ha −Hb|

La

Lb

Ia

Ib

Recognition
Score

Ha

Hb

C

Siamese network

Figure 2. System architecture schematic overview (a zoomed view is shown in Appendix A).

The branch of Siamese network architecture is an Inception-ResNet-V1 [59] due to its
recognized capacity as a classifier and its characteristics compared to its previous versions
and competing networks:
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• Reduction of architectural bottlenecks [61,63] because the neural network works better
if the dimensional input changes are not too drastic. Large dimensional changes can
cause a significant loss of information called a “representational bottleneck”.

• Use of factoring methods to reduce the computational complexity of the convolutions
used [63].

• Use of residual connections between the inputs and outputs of the blocks used [64].
These connections prevent the loss of information and improve the stability of the
gradients when training.

• Use of batch normalization to immunize the network to some extent against scale
changes, reduce training time, and avoid covariance displacement [65].

The basic structure of the proposed system takes the form of a network combining
1D information (PPG signals) and 2D information ((p, q)-planes of PPG segments). This
structure contains two distinct phases. The first phase consists of a preprocessing layer
based on the characteristic (p, q)-planes of the 0–1 test. This phase will have as input six
segments of the PPG signal from two users, three belonging to a registered userPr1,Pr2,Pr3,
and the rest to a candidate user Pc1,Pc2,Pc3, not necessarily different. Once these signal
segments enter the 0–1 test preprocessing layer, their signals are featured with this process,
and six output matrices are obtained, Ir1, Ir2, Ir3 and Ic1, Ic2, Ic3, which can be represented
as an image, I = [I1, I2, I3], representing the patterns corresponding to the PPG signals of
those users.

The second phase will use as input these six output matrices obtained in the previous
phase, in two matrices with three channels each, since each user has three matrices assigned
to him or her. This phase consists of a Siamese network whose architecture is based on [59].
This network will use a single coding branch to process the two input matrices separately,
with the same trunk and sharing the same weights. Some coded output features, Fr and
Fc, will be obtained for each of the input matrices. Once the features are obtained, a
relation function of these characteristics quantifies the error between them and quantifies
how similar these users are to each other. This error function represents the L1-norm
between the vectors of characteristics previously obtained. Once the L1-norm standard is
obtained between the characteristics vectors, these will go through a final fully connected
binary classification layer. A sigmoidal activation is used to obtain a final C matching
score between 0 and 1, quantifying how similar or different the evaluated users are. The
architecture can be observed in detail in Table 1, where the sub-blocks that belong to the
original Inception-ResNet architecture can be found in the seminal paper [59].

Table 1. Detailed architecture of the proposed CNN (convolutional neural network)

Layer Number Type Output Size Configuration

1A Input (1000, 3) —
1B Input (1000, 3) —
2 0–1 test preprocessing 2 · (299, 299, 3) Siamese
3 Stem 2 · (35, 35, 256) Siamese
4 5× Inception-ResNet-A 2 · (35, 35, 256) Siamese
5 Reduction-A 2 · (17, 17, 896) Siamese
6 10× Inception-Resnet-B 2 · (17, 17, 896) Siamese
7 Reduction-B 2 · (8, 8, 1792) Siamese
8 5× Inception-Resnet-C 2 · (8, 8, 1792) Siamese
9 Similarity function (8, 8, 1792) —

11 Flatten 114688 —
12 Dense 1 —
13 Sigmoidal activation 1 —
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3. Material and Methodology

The database used comes from 40 students between 18 and 30 years old, who are non-
regular psychotropic substance, alcohol, or tobacco consumers. The students were selected to
participate in a national research study to assess how stress reflects in biological signals [66,67].
Signals were captured from the middle finger of the left hand and sampled at a frequency
of 250 Hz [66], with the psychophysiological telemetric system “Rehacor-T” version “Mini”
from Medicom MTD Ltd [66].

3.1. Preprocessing

In practice, the PPG signal is usually impaired by many common noise sources during
the signal acquisition process, such as motion artifacts, sensor movements, breathing, etc.,
and the discretization error (truncation error) involved in normalizing the input signal
amplitudes. A common and direct mechanism to mitigate noise is to submit the PPG
signal to a bandpass filter. For filtered PPG signals, it uses a Butterworth bandpass filter
tuned to different cutoff frequencies. Anything below 0.5 Hz can be attributed to baseline
wandering, while anything above 8 Hz is high-frequency noise [68], though some studies
have reported clinical information up to 15 Hz [16,69]. To examine the impact that this
early preprocessing has on the learning and the final performances of our biometric system,
it studies the following variations:

1. Raw data: in this first mode, the PPG signals are not preprocessed and transferred
directly, as they were acquired, to the 0–1 test preprocessing layer (see Figure 2),
where once segmented, they convert to diffusive geometric maps.

2. Filtered data [0.1–8 Hz]: in this second mode, the PPG signals, before moving to the
0–1 test preprocessing layer, are filtered with a Butterworth bandpass filter with cutoff
frequencies at 0.1 and 8 Hz, and the amplitudes are not normalized.

3. Filtered data [0.5–8 Hz]: in this third mode, the PPG signals, before moving to the 0–1
test preprocessing layer, are filtered with a Butterworth bandpass filter with cutoff
frequencies at 0.5 and 8 Hz, and the amplitudes are not normalized.

4. Filtered data [0.5–8 Hz] and normalized: in the latter mode, the PPG signals, before
moving to the 0–1 test preprocessing layer, are filtered with a Butterworth bandpass
filter with cutoff frequencies at 0.5 and 8 Hz, and the amplitudes normalized to the
[0, 1] interval.

3.2. Training

The data used for training are PPG signals obtained for 10 minutes from different
individuals with a sampling frequency of 250 Hz in all of them. Each signal is separated
into 150 randomly chosen segments (4 s each, which means a 1000-point segment). Each
segment generates an image with the 0–1 test. If a database of 40 individuals is used, there
are 6000 different PPG segments with all users, and taking three images per user results

in 6000
3

6000
3 possible training combinations. All PPG segments are divided into training,

validation, and test sets, composed of 60%, 20%, and 20%, respectively, of the database’s
data. Division ranges commonly are chosen to ensure that almost half of the data are used
for evaluation.

The problem to be solved by this system is a binary classification problem with only
two possible classes: class 0 indicates that the input PPG segments of branch A and branch
B do not belong to the same user; class 1 indicates that these segments belong to the
same user. Each of the predefined training segments, generated with a specific output
label, links these input segments A and B to an output classification, allowing the system
to learn how to differentiate or associate the input segments of different users. Once
in the training process, a random batch generator will be used, allowing 3 PPG signal
segments belonging to user A from among the 40 PPG signals used and another 3 PPG
signal segments belonging to user B to be chosen, once again randomized, so that if these
two users coincide, an output label will be applied with class 1. At the same time, if not, it
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will be associated with class 0. This generator allows guaranteeing the highest possible
variability, greatly enriching the training and providing it with generality. Once the batches
generate, an Adam optimizer is used to train the system to recognize similar users.

3.3. Optimizer

The used optimizer is Adam or adaptive moment estimation [70]. This optimizer
is an excellent alternative to the conventional stochastic gradient descent (SGD). It com-
bines the advantages of two previous alternatives [71,72], creating a new approach that
uses the averages of the first and second moments of the gradient to adapt the learning
rate dynamically.

The training ratio parameter, which indicates the learning rate—how much and how
fast the system learns in each period—is crucial and can produce great learning problems if
it does not choose correctly. A very high learning rate can produce divergence in training,
while a meager rate can easily fall into local training minima or take a long time to complete.
When we talk about Adam’s adaptive capability, we mean that it starts with a user-defined
learning rate, and after, it modifies the learning rate through unsupervised training. This
capability allows using an adaptive training ratio that depends strongly on the batch size
and how noisy the input is. The training ratio initially used is 10−4.

In addition to Adam’s functionality, a callback called early stopping is employed in
this training. This tool allows the best weight settings to be saved that the system has
achieved throughout the training. In order to achieve this, the training session uses the
validation metrics and losses obtained after evaluating the model in each period to save the
better-trained weights of the training and avoid undesired effects, such as overfitting. We
have to recall that the training sessions were carried out using 100 epochs and a batch size
of 5 samples. However, with a predefined number of epochs used, as we have commented
before, the early stopping will keep the best of them. The total training time on a GPU
NVIDIA GeForce GTX 1080 was 9 h.

3.4. Loss Function

The proposed convolutional neural network uses as input two PPG signal segments
Ia and Ib, while as output, it uses a binary classification vector C. This binary classification
task’s proposed loss function is the cross-entropy (CE), as indicated in Equation (3), which
evaluates the differences between ground truth and predictions to provide an output score
associated with the input signals’ similarity. In classical machine learning, this loss function
has been widely used to solve the problems associated with a binary classification between
distributions, d(x) being the correct distribution and d̂(x) the estimated one, in such a way
that it allows a similarity score for those distributions to be associated.

CE
(

d, d̂
)
= −∑

∀x
d(x) log

(
d̂(x)

)
. (3)

Binary cross-entropy measures the classifier’s capacity understudy, whose output is
a classification level that associates the input with the distribution of interest. The more
this classification level decreases, the more the cross-entropy losses increase. The perfect
classifier would have zero cross-entropy with a maximum classification level. Usually, this
loss function is used in neural networks accompanied by an output activation according to
it. In binary cross-entropy, the activation is a sigmoid function, which places the output
score level in the interval [0, 1], with a smooth transition.

3.5. Metrics

Once the modalities in which the experimentation will be carried out are fixed, the
metrics used to evaluate the proposed system’s performance are explained:
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• Precision-Recall curve. The precision-recall curve depicts the precision vs. the sen-
sitivity (recall) for different operating points (matching score or threshold values).
The closer the curve is to the upper right corner (the area under the curve is closer to
1), the more precise and sensitive the system behaves. The accuracy evaluates how
often the output is correct (positive). An accurate system is very finicky, validating
a legitimate user, i.e., in an accurate system, it is unlikely that an intrusive user will
be admitted as valid, but it is also possible that legitimate users will be rejected (false
negatives). Sensitivity assesses how permissive the system is, i.e., in a highly sensitive
system, it is improbable that a valid user will be rejected, but it is also possible that
unregistered users will be admitted as valid (false positives).

• ROC (Receiver Operating Characteristic) curve. The ROC curve depicts sensitivity
vs. FPR (false positive rate). The closer the curve is to the upper left corner (the
area under the curve is closer to 1), the more sensitive the system behaves without
increasing FPR. In short, the ROC curve graphically represents TPR (true positive
rate) vs. FPR (false positive rate) for different operating points (matching score or
threshold values).

• F1 score–threshold curve. The F1 score–threshold curve complements the information
provided by the precision-recall curve. F1 score is a joint and overall metric that brings
together the precision and recall values in a unique metric (precision and recall
harmonic mean) that allows us to estimate the stability of the system’s performance
for different threshold values. In a stable and high-performance system, the range
of threshold values for which the curve remains almost constant and close to 1 is
virtually a flat line over the whole range.

• Equal Error Rate (EER). The equal error rate or crossover error rate (CER) is a metric
concerning biometric authentication systems that determines a working threshold
where FPR (false positive rate) and FNR (false negative rate) are the same. The
point where these decision errors cross defines the working point, and the lower the
crossover rate, the higher the system’s accuracy. At the experimental level, EER is
used as a metric to compare different biometric authentication techniques.

Usually, a high decision threshold identifies an accurate model with a very low FPR
(false positive rate); a low threshold value indicates a high sensitivity (too permissive, with
a very low FNR (false negative rate)). The precision-recall and ROC curves help us to find
the equilibrium threshold. In our case, the criteria for selecting the optimal threshold comes
from the EER, but the F1 score–threshold curve tells us if variations of the optimal threshold
upwards or downwards would dramatically affect the system performance. Based on
the results we will see later, the precision-recall and ROC curves’ equilibrium threshold
would not be so critical, as the system’s stability has a wide operating margin for a not
insignificant range of working thresholds.

4. Results and Discussion

In this section, we show the biometric potential of the diffusive dynamics of the
PPG signal. To do this, we explore its operational feasibility under different experimental
conditions to mimic its effectiveness in possible real-life scenarios. As an authentication
mechanism [5], the biometric architecture consists of two stages: in the first phase, the
enrollment phase, 12 s of the PPG signal is acquired from each individual using a pulse
oximeter. These signal fractions are preprocessed to obtain several (p, q)-planes represen-
tative of each subject, and the PPG signal’s diffusive behavior is obtained from the 0–1
test as the biometric pattern. >From these (p, q)-planes, the neural network extracts 51,200
characteristics that encapsulate each individual’s biometric pattern and conveniently stores
them in memory. Afterward, in the verification phase, a 12 s PPG signal is acquired from
anyone who wishes to verify their identity, proceeding to their preprocessing. A classifier
and their comparison with the rest of the registered biometric patterns authenticate the
identity of the user that requests it. The use of 12 s of a PPG signal in each of the phases of
the system is because it is the time necessary to obtain three consecutive segments of the
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PPG signal (4 s or 1000 points each), with their respective (p, q)-planes from the user, to
be recorded or verified. Additionally, 12 s to verify a user’s identity enables applying this
system in real environments, since, with this relatively short time, it achieves an accuracy
above 90%.

4.1. Experimental Conditions

We present two different modalities of experiments that differ in how the database of
the PPG signal from various individuals is used for training. We use the whole signal in the
first modality, with randomized segments, from 60% of users for training and the remaining
40% for testing. This approximation allows us to show the system’s generalization capacity,
with better applicability to real systems, showing its results in new user patterns isolated
from the trained users.

The second modality, the most used in the published biometry papers [5,19,43–46,48,51],
uses 60% of all data, with the segments randomly taken between and from all users, for
training and 40% for testing, and this means that the used patterns are isolated but belong
to the same users, which leads, to a certain extent, to the presence of similarities.

4.1.1. Leaving 40% of Users out of Training

In this first experiment, the training set is 60% of users, and the testing set is the other
40% of users. In this way, the network is trained with 24 users and tested with 16 users
never seen before. This experiment allows us to completely isolate 16 users so that the
network has never seen a similar pattern in the training phase. Therefore, the register of
authorized users does not record the biometrics ID of the 16 users who are kept out.

Figure 3 shows the different EERs for all the input PPG signal modalities used
(Section 3.1). For raw and filtered data in the range of 0.1 to 8 Hz, the network’s dis-
criminating power is penalized by the noise present in the signal, distorting and blurring
the diffusive geometrical patterns in the (p, q)-planes. As filtering narrows its bandpass
in the range of 0.5 to 8 Hz, the impact of noise is attenuated, and the diffusive geometric
pattern becomes clearer, allowing the network to discriminate between different users’
biometric patterns more easily. Additionally, if the PPG signal is normalized to the [0, 1]
interval, once filtered in the range of 0.5 to 8 Hz, the EER has a slight reduction. This
effect is because the signal’s normalization improves the numerical quantification, and the
diffusive geometric patterns trace a better structural resolution, making it easier to extract
the biometric features.
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Figure 3. Minimum equal error rate (EER) for different input photoplethysmographic (PPG) signal
preprocessing modalities. The inset shows the entire EER curves as well as FPR (false positive rate)
and FNR (false negative rate) trends for different threshold values.
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From the EER curve, the working points for each of the preprocessing modes can be
measured. These working points can obtain other performance measures, as shown in
Figure 4a–c. For raw data and filtered data in the range of 0.1 to 8 Hz, the functional effi-
ciency curves, precision-recall, ROC, and F1 score–threshold curves, behave quite similarly.
However, the filtering in the range of 0.5 to 8 Hz, as illustrated in Figure 4a–c, provides a
significant enhancement in the system operating performance, especially concerning the
stability of the working point, pointed out by the F1 score–threshold curve, which is much
higher than the raw data and filtered data in the range of 0.1 to 8 Hz. Unlike in terms of
the EER curve in functional efficiency curves, the benefit of [0, 1] interval normalization,
once filtering the data in the range of 0.5 to 8 Hz, is remarkable. On the one hand, there is a
marked improvement in performance for high thresholds, and, on the other hand, in the F1
score–threshold curve, the working point is much more stable than in any other mode.
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Figure 4. Functional efficiency curves in the case of leaving 40% of users out of training. The working
points of the EER curve (see Figure 3) are tagged with the symbol •: (a) precision-recall curve;
(b) ROC curve; (c) F1 score–threshold curve.
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Table 2 shows the performance metrics of the experiment whereby 40% of the users
are left out of training.

Table 2. Performance metrics for all the input PPG signal modalities used in the case of leaving 40%
of users out of training. The thresholds refer to the optimal classification thresholds where EER is
minimal for each modality (preprocessing) considered.

RAW DATA

Precision Recall F1 Score Threshold Equal Error Rate (EER)

0.82 0.82 0.82 0.48 0.22
FILTERED DATA [0.1–8 HZ]

0.80 0.80 0.80 0.37 0.23
FILTERED DATA [0.5–8 HZ]

0.89 0.89 0.89 0.40 0.19
FILTERED DATA [0.5–8 HZ] AND NORMALIZED IN [0, 1] INTERVAL

0.90 0.90 0.90 0.73 0.18

4.1.2. Leaving 40% of Data out of Training

In the second experiment, the training set is 60% of the total data, including all users
and all users’ segments. The testing set is with the remaining 40% of the data, which means
that the network handles (p, q)-planes for all users in the training phase but in a different
way than they will be treated for testing, even though they are undoubtedly related to the
specific users’ biometric patterns.

This experimental framework establishes a particular environment where the regis-
tered users’ database is known and new user registrations are not contemplated. All users
are well known to the network as they have previously registered.

Figure 5 shows the different EERs for all the input PPG signal modalities used
(Section 3.1). For raw and filtered data in the range of 0.1 to 8 Hz, the network’s dis-
criminating power is similar to that obtained in the preceding experimental framework
(Section 4.1.1, Figure 3). The noise present in the signal, which distorts and blurs the
diffusive geometrical patterns in the (p, q)-planes, is a critical constraint on the biometrics
system’s operational capability.
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Figure 5. Minimum equal error rate (EER) for different input PPG signal preprocessing modalities.
The inset shows the entire EER curves as well as FPR (false positive rate) and FNR (false negative
rate) trends for different threshold values.
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Nevertheless, contrary to what appears in Figure 3, for filtering in the range of 0.5 to
8 Hz, the network offers high efficiency, with a significant reduction of EER. If, in addition
to PPG signal normalization in the interval [0, 1], it applies a filter in the range of 0.5 to
8 Hz, it reaches the lowest EER, very close to zero (6%, as indicated in Table 3). With such
credentials, it is clear how proper preprocessing of incoming PPG signals can positively
influence the ultimate performance of the biometric system.

Table 3. Performance metrics for all the input PPG signal modalities used in the case of leaving 40%
of data out of training. The thresholds refer to the optimal classification thresholds where EER is
minimal for each modality (preprocessing) considered.

RAW DATA

Precision Recall F1 Score Threshold Equal Error Rate (EER)
0.86 0.86 0.86 0.53 0.21

FILTERED DATA [0.1–8 HZ]
0.82 0.82 0.82 0.57 0.22

FILTERED DATA [0.5–8 HZ]
0.93 0.93 0.93 0.68 0.11

FILTERED DATA [0.5–8 HZ] AND NORMALIZED IN [0, 1] INTERVAL
0.97 0.97 0.97 0.34 0.06

From the EER curve, the working points for each of the preprocessing modes can be
measured. These working points can obtain other performance measures, as shown in
Figure 6a–c. For raw and filtered data in the range of 0.1 to 8 Hz, the functional efficiency
curves (precision-recall, ROC, and F1 score–threshold curves) behave almost identical for
classification purposes. Otherwise, when filtering in the range of 0.5 to 8 Hz is applied
to the input data, a qualitative leap obtains in terms of operational performance, notably
about the smooth stability of the F1 score–threshold curve (see Figure 6c). Additionally,
normalizing the data to the [0, 1] interval, once filtering the data in the range of 0.5 to 8 Hz,
enables the network to operate with a quasi-optimal behavior similar to a perfect classifier.

Table 3 shows the experiment’s performance metrics, whereby 40% of the data are
left out of training. Finally, we compare in Table 4 performance metrics with other PPG-
based biometric methods to consolidate the potential viability attributable to our biometric
authentication system. Ratings shown in Table 4 are merely indicative and are limited to
the achievements obtained in different experimental scenarios and with different databases.
Unfortunately, there is no common roadmap available for the different PPG-based methods
to communicate the obtained results. However, always with the utmost respect for the
work carried out by the authors, we chose to report the best performances when there is
not enough information available to conduct a comparison that is as fair as possible on
equal terms.

As Spachos et al. noted [45], the performance of PPG signal acquisition equipment and
the environmental conditions when acquiring the signals impact any biometric authentica-
tion system’s operational feasibility. So far, most PPG-based biometric systems, as listed in
Table 4, extract the representative features of an individual from the morphology of the PPG
signal, either directly from the acquired PPG signal itself or with time or frequency domain
transformations. Accordingly, the vulnerability of the morphology of the PPG signal to
the physical state of the subject and the environmental and instrumental conditions in the
signal acquisition process restrict its field of application to biometric environments where
very stable conditions are guaranteed, namely when PPG signals, in enrollment and testing
phases, were collected under a controlled environment and with accurate sensors.

In light of the above, the inherent biometric limitations of PPG signal morphology are
not reflected in the methods collected in Table 4, where an in-depth analysis reveals the
high variability experienced by the parameter EER, degrading its expectations, a priori of
the most promising, when PPG signals are acquired under different conditions.
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Figure 6. Functional efficiency curves in the case of leaving 40% of data out of training. The working
points of the EER curve (see Figure 5) are tagged with the symbol •: (a) precision-recall curve;
(b) ROC curve; (c) F1 score–threshold curve.

Thus, in Yang et al. [50], the best EER is 2.36 with a maximum rank-1 accuracy of
99.69%, evaluated on different datasets, but 10 minutes of PPG signal is required, against the
12 s of our approach. Moreover, as a reference, in Yang et al. [50] the internal computation
time for the authentication process, once the data is stored, is about 27 ms, while it is 10 ms
in our system. In Yang et al. [49], with 8 min of PPG signal required, a maximum rank-1
accuracy of 99.92% is achieved on three different datasets, but at the expense of an internal
computation time for the authentication process of 0.44 s. In Lee et al. [47], the maximum
rank-1 accuracy is 99%, evaluated on a dataset containing 42 PPG signals, with roughly
2.5 min of PPG signal required. Either way, all three proposals do not show analysis on
different time lapses or different states. In this connection, in Sancho et al. [5], the range of
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percentage variation of EER is 13.9 (from 6.9 to 20.8%) when evaluated on different time
lapses. In Yadav et al. [19], the mean EER is 2.82, evaluated on different states and datasets,
or in Spachos et al. [45], it is 12.75, evaluated on different datasets. In the other methods,
only the method’s potential is evaluated focusing on the research approach, rather than
as a feasible real biometric solution, such as in Karimian et al. [48], where the proposed
solution provides an error rate and rank-1 accuracy of 3.91% and 99.44%, respectively,
but 8 min of PPG signal is required, against the 12 s of our approach. Either way, and
because all of them use PPG individual cycles, exogenous and endogenous factors in the
PPG signal’s morphological fluctuations may discourage its use in wearable biometric
systems, as consistent and reliable results with proper operations could not be guaranteed.
Our approach holds the best EER of all methods, with a 17% margin over the second-best
result [50]. Our method is fifth in precision, the best being that obtained in the report of
Yang et al. [49]. Finally, in terms of acquisition and processing time, from all the available
time values reported by the studies, our method holds first place with 12.01 s. In this sense,
it is worth highlighting that our approach does not require new training every time a new
user registers; only the user’s template pattern to register is needed, which only takes 12 s
to record.

Table 4. The performance of recognition systems based on PPG with state-of-the-art methods
compared. Claimed error rates (EERs) involve those in the trial; three attempts were allowed.
Acquisition and processing time refers to the system’s time to identify whether the user is valid
or not.

PPG-Based Biometric
Recognition Method

Equal Error Rate
(EER) (%)

Rank-1 Accuracy
(%)

Acquisition and
Processing Time (s)

Yang et al. 2021 [50] 2.36 99.69 600.027
Yang et al. 2020 [49] — 99.92 480.44
Lee et al. 2019 [47] — 99.00 —
Sancho et al. 2018 [5] 6.9 — 21.35
Patil et al. 2018 [51] 23.34 86.67 —
Yadav et al. 2018 [19] 2.82 — —
Karimian et al. 2017 [48] 3.91 99.44 —
Sarkar et al. 2016 [44] — 90.53 14.00
Lee and Kim 2015 [46] 3.7 96.04 —
Kavsaoğlu et al. 2014 [43] — 94.44 13.50
Spachos et al. 2011 [45] 12.75 — —
Our approach 2.02 97.00 12.01

The present proposal opens up a new line of work in PPG-based biometry. Studying its
diffusion dynamics replaces the analysis of the PPG signal’s morphology, our (p, q)-planes,
which are highly dependent on the vascular bed’s biostructure, an intricate network of tiny
blood vessels that branches through body tissues. While deteriorating with age and/or with
certain cardiovascular diseases, this vascular microstructure is unique to each individual
and maintains a reasonably regular and stable diffusive conductivity over time, making this
an excellent biometric marker. Preliminary trials with our biometric authentication system
yielded similar performance ratings, with EER and rank-1 accuracy, with one attempt, in
the range of about 6% and 97%, respectively, when users, initially registered in a relaxed
state, were successfully identified about 30 days later under stress-induced conditions.



Sensors 2021, 21, 5661 17 of 21

5. Conclusions

Over the past ten years, the easily accessible PPG signal has attracted those involved
in biometric security. Most PPG-based biometric solutions define the biometric signature
out of certain features of the PPG signal morphology. Nevertheless, the high variability
of the PPG signal morphology, in reaction to changes in measurement conditions and the
individual’s psychophysical state, is hampering its adoption as a biometric solution in
wearable devices.

In this research work, still in progress, we propose a robust PPG-based biometric
authentication system based on the diffusive dynamics of the PPG signal, arguably very
stable in changing environments, instead of morphological aspects of the signal. Our bio-
metrics approach is based upon Siamese convolutional neural networks, easily integrated
into embedded environments that can reach high speeds in the identification process. An
error rate, rank-1 accuracy, and enrollment time of 2%, 97%, and 12 s, respectively, make
our proposal the best among the 11 compared state-of-the-art methods in terms of EER and
processing time and the fifth-best proposal in terms of rank-1 accuracy, indicating a great
significance and potential viability as a real-world biometric system.

With an enrollment time of 12 s, we truly feel that our technical approach can become a
real low-cost technological solution. Built-in in miniaturized tensor processing units (TPUs)
can be customized for particular use in wearable biometric systems, since once the network
has been suitably trained, the authentication methodology does not require successive
retraining for reliable serving. Moreover, the memory requirements for storing users’
biometric templates, around 120 kB, pose no apparent constraints on the authorized user
database’s portable logistics. With different hardware and software solutions, our efforts
aim at reducing PPG signal acquisition time, more in step with the average comparison
time, about 10 ms, verifying a user’s biometric credentials requesting access to the system.

Future work involves expanding the dataset with different physiological conditions,
but preliminary results with the same individuals under stress conditions and on different
days suggest a good operational consistency in the authentication process.
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Magnified Figure 2:

sa
m

e
w

ei
gh

ts
U

se
r

B

(p
,q
)-

pl
an

es

U
se

r
A

(p
,q
)-

pl
an

es

U
se

r
B

PP
G

se
gm

en
ts

U
se

r
A

PP
G

se
gm

en
ts

0–
1

te
st

pr
ep

ro
ce

ss
in

g

PP
G

in
pu

t

(p
,q
)-

pl
an

e
ou

tp
ut

Si
m

ila
ri

ty
fu

nc
ti

on

|H
a
−
H

b|

L a L b

I a I b

R
ec

og
ni

ti
on

Sc
or

e

H
a

H
b

C

Si
am

es
e

ne
tw

or
k

Figure A1. System architecture schematic overview (zoomed view of Figure 2).
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