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Abstract: Within the last few decades, the need for subject authentication has grown steadily, and
biometric recognition technology has been established as a reliable alternative to passwords and
tokens, offering automatic decisions. However, as unsupervised processes, biometric systems
are vulnerable to presentation attacks targeting the capture devices, where presentation attack
instruments (PAI) instead of bona fide characteristics are presented. Due to the capture devices being
exposed to the public, any person could potentially execute such attacks. In this work, a fingerprint
capture device based on thin film transistor (TFT) technology has been modified to additionally
acquire the impedances of the presented fingers. Since the conductance of human skin differs from
artificial PAIs, those impedance values were used to train a presentation attack detection (PAD)
algorithm. Based on a dataset comprising 42 different PAI species, the results showed remarkable
performance in detecting most attack presentations with an APCER = 2.89% in a user-friendly
scenario specified by a BPCER = 0.2%. However, additional experiments utilising unknown attacks
revealed a weakness towards particular PAI species.

Keywords: fingerprint recognition; presentation attack detection; impedance measurement;
unknown attacks

1. Introduction

Within the last decade, biometric recognition systems have been deployed in several
applications used in our daily lives. Almost all new smartphones can be unlocked with
biometrics, which is very user-friendly. On the other hand, border control utilises biometrics
to enhance the security. Hence, the usage of biometric recognition itself is flexible and suits
different scenarios. In this context, the fingerprint has always been one of the most used
biometric characteristics [1].

However, with the capture devices being exposed to the public, biometric systems
are vulnerable to external attacks [2]. This kind of attack is defined within the ISO/IEC
30107-1 [3] as a “presentation to the biometric data capture subsystem with the goal of
interfering with the operation of the biometric system”. The intention of the attacker can
be either to impersonate someone’s identity or to conceal his own identity. In both cases,
a presentation attack instrument (PAI) instead of the bona fide characteristic is presented
to the capture device. In this context, a group of PAIs made from the same material is
called a PAI species. As a consequence, a secure biometric system requires an automated
presentation attack detection (PAD) module, which needs to learn the differences between
bona fide presentations (BPs) and attack presentations (APs) [4]. Correct assignment of the
two classes is becoming more complicated with the many options available for creating
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PAIs. For fingerprint artefacts in particular, there are multiple recipes based on a variety of
materials available [5].

The challenge of PAD was addressed by multiple international research projects, such
as Tabula Rasa [6], BEAT [7], Odin [8], and RESPECT [9]. Additionally, the LivDet chal-
lenges [10,11] have invited researchers from academia and industry to benchmark their
PAD algorithms on identical datasets since 2009. These efforts allowed significant research
and development of new countermeasures across different biometric characteristics. In gen-
eral, PAD methods can be categorised into software-based and hardware-based approaches.
While the first category analyses the samples acquired with legacy fingerprint captures
in a deeper way (i.e., PAD based solely on data of the biometric sensor), the latter one
introduces additional sensors to capture complementary information solely used by the
PAD algorithm (i.e., PAD based on data of additional dedicated PAD sensors). Examples
of hardware-based methods are multispectral illuminations and pulse detection, which
require additional modules and thus usually result in bigger capture devices than pure
fingerprint sensors [12].

This work focused on adding a hardware-based sensor to an existing capture device
and validating whether this additional information is suited to detecting APs for fingerprint
recognition. The idea is that human skin has different conductivity than the artificial
materials of PAIs, and hence can be discriminated from them. Therefore, this study aims
to answer the question of whether a finger’s impedance is an effective feature for reliable
fingerprint PAD. To that end, we describe the functionality of the capture device which
was used to acquire a dataset of 757 BPs and 915 APs from 42 different PAI species. A
fingerprint PAD algorithm was trained and evaluated on this dataset.

The development of fingerprint PAD methods requires a dataset with BPs and APs.
As a consequence, PAIs need to be created from either cooperative target subjects or latent
(or synthetic) fingerprints. In a cooperative approach, the bona fide finger is placed in
a moulding material, which includes the negative fingerprint pattern after hardening.
Subsequently, this mould can be filled with the casting material (e.g., latex or ecoflex)
to retrieve the actual PAI. Depending on the properties of the moulding and casting
materials, the mould can be reused for additional fabrications. For latent fingerprints, the
representation needs to be digitised first. Then the negative image is used to create the
mould (e.g., 3D printer or laser cutter), which can be filled again with the casting material.

The remainder of this article is structured as follows: Section 2 reviews the state-of-
the-art for fingerprint PAD. Our capture device is introduced in Section 3, followed by
the method for fingerprint PAD in Section 4. Subsequently, the experimental evaluation is
presented and discussed in Section 5, and finally, Section 6 concludes the findings.

2. Related Work

The PAD approaches reviewed in the following are also summarised in Table 1. Since
this work proposes a new hardware-based approach and presents a detailed analysis with
regard to generalisation capabilities towards unknown attacks, related work has been
selected from these areas as well. Due to the fact that most of these works were tested on
different datasets and report results from multiple experiments, a fair comparison is not
possible. Finally, this overview is by no means complete but focuses on selected approaches
to put our own contribution into context. However, the interested reader is referred to
more extensive surveys on fingerprint PAD methods [13–17].

The publicly available LivDet datasets [18–23] established a well known and com-
monly used foundation for software-based fingerprint PAD development. While early
fingerprint PAD algorithms mostly utilised handcrafted feature extractions and classi-
fiers [24–29], a shift towards deep learning approaches is noticeable in more recent pub-
lications [30–33]. However, when focussing on unknown attacks and cross-sensor and
cross-database scenarios, it is clear that handcrafted methods are able to outperform deep
learning approaches, as was shown by the winner of the LivDet 2019 competition [34].
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This work was further extended in [35] to include even more features into the fisher vector
encoding before classifying these with a support vector machine (SVM).

Table 1. A summary of related fingerprint PAD approaches.

Year Ref. Approach Description Database (# PAI Species)

2008 [36] handcrafted pulse + oxygen level own DB (1)

2011 [24] handcrafted static + intensity features LivDet 2009 (3)
[37] handcrafted pulse + multi-spectral own DB (4)

2013 [38] handcrafted optical methods own DB (N/A)
2014 [25] handcrafted data augmentation + SVM LivDet 2009–2013 (8)

2015
[26] handcrafted one-class SVM LivDet 2011 (7)
[27] handcrafted one-class SVM/GMM LivDet 2013 (7)
[30] deep learning deep representations LivDet 2013 (7)

2016
[28] handcrafted one-class SVMs LivDet 2011 (7)
[31] deep learning deep belief network LivDet 2013 (7)
[32] deep learning pre-trained CNNs LivDet 2009–2013 (8)

2017
[29] handcrafted feature fusion LivDet 2009–2013 (8)
[33] deep learning patch-based CNN LivDet 2011–2013 (8)
[39] sensor design ultrasonic fingerprint no DB (0)

2018 [40] deep learning Fingerprint Spoof Buster LivDet 2011–2015, (12)
MSU-FPAD, PBSKD

2019 [41] deep learning one-class GANs own DB (12)

2020

[42] handcrafted finger vein skeleton own DB (32)
[43] deep learning adversarial learning LivDet 2015 (9)

[44] deep learning universal material generator LivDet 2017, (12)
MSU-FPAD, PBSKD

[45] deep learning adversarial representations LivDet 2015–2017, (11)
MSU-FPAD

2021

[34] handcrafted local feature encoding LivDet 2011–2019 (15)
[35] handcrafted fisher vector encoding LivDet 2011–2017 (13)
[46] deep learning convolutional autoencoder own DB 1 (45)
[47] deep learning LOO benchmark own DB 1 (45)
[48] deep learning OCT autoencoder own DB (101)
[49] sensor design ultrasonic fingerprint no DB (0)

1 Part of the dataset has already been released: https://github.com/ISICV/PADISI_USC_Dataset accessed on 20
August 2021.

In the area of deep learning, Chugh and Jain [40] proposed their Fingerprint Spoof
Buster as a patch-based convolutional neural network (CNN) together with two datasets,
MSU-FPAD and PBSKD. Using a training set, this approach was able to detect additional
unknown attacks due to their similarity to known attacks. The authors followed up on
this and extended the approach with a synthetic sample generator [44]. Based on these
additional samples for different PAI species, the network could be trained on a larger
dataset. Subsequently, Grosz et al. [45] combined this synthetic generator with adversarial
representation learning to overcome the weakness regarding cross-sensor and unknown
attack scenarios. Using an adversarial and transfer learning approach, Pereira et al. [43]
improved the robustness of the model to unknown PAI species. After their encoder mapped
the input to a latent space, a classifier distinguished between APs and BPs. However,
another classifier additionally tried to determine the corresponding PAI species of the
latent feature vector. This information was then returned to the encoder with the goal of
finding a new representation that was independent of the PAI species. Thus, the encoder
learnt a generalising representation that was robust to unknown PAI species.

https://github.com/ISICV/PADISI_USC_Dataset
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While the previous approaches targeted the problem of unknown attacks, they still
needed numerous APs for training. In the area of anomaly detection, one-class classifiers
can be trained on BPs only. Hence, all attacks are unknown by default, and every presenta-
tion that appears different to the BPs in training is automatically classified as AP. In this
context, some research evaluated handcrafted classifiers such as SVMs or Gaussian mixture
models (GMMs), which did not see APs during training [26,27]. Later, Engelsma and
Jain [41] utilised one-class generative adversarial networks (GANs) for fingerprint PAD
based on images captured with the RaspiReader [50]. In another approach, Kolberg et al. [46]
proposed a convolutional autoencoder for multi-spectral images from a camera-based cap-
ture device. In a similar fashion, Liu et al. [48] evaluated an autoencoder on samples
acquired with an optical coherence tomography (OCT) sensor.

Regarding hardware-based approaches, various methods and sensing techniques
have been proposed. One of the early approaches [36] combines pulse measurement with
haemoglobin observation within the finger veins. Using a near infra-red light source, the
oxygen saturation is analysed, which also allows the detection of cadaver fingers. The idea
of extracting the finger vein skeleton for fingerprint PAD was later evaluated in [42]. The
analysis showed that full fake fingers were easily detected, and for thin and transparent
overlays the veins were still visible. Hence, those PAI species could not be distinguished
from BPs. Following up on pulse measurement, Hengfoss et al. [37] additionally acquired
multi-spectral samples. Their conclusion states that the capture time for pulse measurement
exceeds the time taken for others, and thus is less favourable. A similar observation was
made by Drahansky et al. [38], who tested optical methods for pulse, pressure, and skin
reflections.

In a different approach, Jiang et al. [39] proposed a new ultrasonic fingerprint capture
device. This technology allows one to acquire fingerprint images beneath the epidermis,
which is theoretically harder to attack than, e.g., capacitive sensors. A more recent ap-
proach [49] additionally captures the finger vessels underneath the fingerprint, which
in theory is even more robust against APs. However, both works did not collect APs to
confirm the PAD capabilities. On the other hand, Kolberg et al. [47] presented an extensive
benchmark of multiple fingerprint PAD algorithms for multi-spectral images. The leave-
one-out (LOO) experiments showed that a fusion of complementary input data benefits
the PAD performance in the presence of unknown attacks.

3. Capture Device and Data

Even if it is possible to implement software-based PAD methods to distinguish be-
tween BPs and APs, this work instead introduces a hardware-based adjustment to derive
the decision based on additional data. The goal is to measure the impedance, since the
conductivity of human skin differs from the conductivity other artificial materials.

The capture device is based on the Jenetric LIVETOUCH QUATTRO (https://www.
jenetric.com/en/products/livetouch-quattro.html, accessed on 20 August 2021), which is
depicted in Figure 1a. The optical thin film transistor (TFT) technology allows capturing
up to four fingerprints at a time. In this process, the display beneath serves as illumination
source (Figure 1b) and can be used for user guidance as well. While this technique enables
reliable acquisitions of bona fide fingerprints, it also captures the fingerprint patterns from
particular APs as shown in Figure 2. The main advantage of TFT sensors is their size.
While it is possible to cover large areas (e.g., four fingers simultaneously), the glass is
only 0.7 mm thick, and thus it is easy to include in various devices. As this offers huge
potential for numerous applications, fingerprint PAD for TFT capture devices has relied so
far on software-based analysis of fingerprint images. However, research has shown that
APs can indeed have similar fingerprint quality as BPs [51], which can be a problem for
purely software-based PAD solutions. On the other hand, adding established PAD sensors
is difficult to do without losing the advantage of the TFT technology.

https://www.jenetric.com/en/products/livetouch-quattro.html
https://www.jenetric.com/en/products/livetouch-quattro.html
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(a) Jenetric LIVETOUCH QUATTRO.

(b) Profile of the optical TFT technology.

Figure 1. An illustration of the fingerprint capture device. ©Jenetric GmbH.

bona fide dragonskin ecoflex gelatin paper playdoh

Figure 2. A bona fide fingerprint and five different PAIs.

In the proposed approach, we measure the impedance on top of the optical fingerprint
sensor. To that end, the usage of transparent electrodes is necessary in order not to interfere
with the fingerprint acquisition. Hence, a strip-shaped indium-tin-oxide (ITO) coating is
applied to the top layer of the capture device. The electric circuit utilises an alternating
current source with various specified frequencies and a peak-to-peak voltage of 1 V. Once
a finger connects the two electrodes, the finger’s impedance can be measured. This PAD
adjustment is illustrated in Figure 3. According to Ohm’s law, voltage drops within
the circuit are indirectly proportional to the corresponding resistances. In our case, the
resistance of human skin is a complex quantity, as it is composed of capacitive and ohmic
resistances. Hence, the resistance of skin decreases with increasing frequency, which causes
the voltage to increase.

The prototype has a controllable output, and for the context of fingerprint PAD, nine
frequencies in the range between 1 and 500 kHz are used. Finally, a second-order high-pass
filter in combination with a bridge rectifier removes 50 Hz noise and smoothes the signal,
which thus corresponds to a DC voltage. Those measured impedance values can then be
used by PAD algorithms.
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Sensor

ITOITO ITOITO ITO

(a) ITO conductors attached to the sensor.

Sensor

ITOITO ITOITO ITO

FingerFinger

(b) A finger connecting two conductors.

Figure 3. The ITO conductors are structured vertically on the capture device to lie in the same
direction as the fingers.

4. Presentation Attack Detection Method

With our fingerprint PAD approach, we aimed to keep things as simple as possible,
while preserving full compatibility with the base fingerprint sensor. The finger’s impedance
is measured at nine selected frequencies in the range from 1 to 500 kHz, which are listed in
Table 2. The first frequency was chosen to have enough distance from the 50 Hz high-pass
filter to avoid interference with the attenuation. Additionally, the frequency generator is
technically capped at 1 MHz; thus, the remaining frequencies were selected such that the
maximum possible range is covered with few selected measurement points, while also
taking into account the decreasing resistance for increasing frequencies. Therefore, for
each presentation, nine float values of PAD data are acquired. No conductivity results in a
zero vector and the measured impedance values rise for conductive presentations. Hence,
this nine-dimensional feature vector can directly be used for classification without further
pre-processing.

Table 2. Nine different frequencies in the range from 1 to 500 kHz are used for the impedance
measurements.

FQ1 FQ2 FQ3 FQ4 FQ5 FQ6 FQ7 FQ8 FQ9

(Hz) 1000 2500 5000 10,000 25,000 50,000 100,000 250,000 500,000

For this purpose, the SVM [52] is used as a classifier, since it constantly achieved
remarkable performances across different fingerprint PAD studies [34,35,53–57]. The SVM
is designed to work on high-dimensional input data and derive binary decisions by defining
a hyperplane that separates both classes. Hence, it is perfectly suited for fingerprint PAD
tasks. We are only interested in detecting whether an input is an AP and not which material
was used to fabricate this particular PAI. In the training process, 5-fold cross-validation
was used to automatically determine the best-suited hyperparameters for the RBF kernel
on the available training data. During prediction, the test sample is mapped into the
SVM feature space, where it can be compared to the hyperplane in order to retrieve a
real-time classification result. The full fingerprint PAD processing pipeline is illustrated
in Figure 4. Although the main contribution is the impedance measurement and not a
classifier benchmark, the SVM approach is shown in comparison to k-nearest neighbours
(KNN) and multi-layer perceptron (MLP) classifiers.
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SVM
BP

AP


i1
i2
...
i9

impedance
measurement

Figure 4. While capturing the fingerprint, the impedance is measured at nine selected frequencies.
The resulting feature vector i = (i1, i2, ..., i9) is processed by the SVM to derive a decision.

5. Experimental Evaluation

In this section, we first introduce the database and experimental protocol, which
were used to run the experiments with the goal of answering the question of whether the
impedance-based technology presented here is suited for fingerprint PAD. We then present
and discuss the results.

5.1. Database and Experimental Protocol

The data acquisition was split over three distinct locations. Each party collected BPs
from all ten fingers, and in total, 59 subjects contributed 757 BPs. Since the data collection
took place during a pandemic, fingers and the sensor surface were disinfected between
collecting data from different subjects. Apart from that, the presented fingers had different
moisture levels. In addition, each party created their own PAIs, which resulted in a total of
915 APs from 42 different PAI species for the dataset. On the other hand, this led to unequal
numbers of APs per PAI species, as shown in Table 3. It should be noted that for some
PAI species (e.g., 3D printed) it was not possible to capture the fingerprint with the optical
sensor. However, those APs were still included (5) in the database in order to show that
this PAI species was considered in the data collection. In a similar manner, the acquisition
of particular PAI species was stopped when it turned out that those materials showed no
conductive properties. Thus, the focus lay on acquiring APs with measurable impedance
values. Hence, non conductive materials were, e.g., additionally coated with electric paint,
or, e.g., glycerol was added during the casting process. Those augmentations are listed
on the right-hand side of Table 3 and example photos are shown in Figure 5. While both
nanotips and bare paint can be applied to solid PAIs, the viscous bare paint cannot be used
on softer PAIs without destroying the ridge lines. An overview of the impedance values
for all conductive presentations is plotted in the Figure A1 in Appendix A.

The goal was to collect a wide variety of different PAI species in first place. Hence,
the used materials were selected based on their availability and experience from former
projects. All ingredients are easily purchasable, and their fabrication requires low expertise
to allow sufficient numbers of PAIs for the data collection. Based on the results, more
sophisticated PAIs exploiting the vulnerability of this capture device can be created.

(a) Nanotips. (b) Bare paint. (c) Latex + nanotips.

Figure 5. Conductive augmentations can be created by applying, e.g., nanotips (a) or electric bare
paint (b) to the fingerprint PAI (c).
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Table 3. A detailed list with the number of samples per PAI species.

# PAI Species # Conductive Augmentations

5 3D printed 22 dragonskin + bare paint
17 acryl 22 ecoflex + bare paint
16 dragonskin 20 hot glue + bare paint
32 ecoflex 60 latex + bare paint
18 foil 15 school glue + bare paint
37 gelafix 15 wax + bare paint
69 gelatin 15 wood glue + bare paint

6 glove nitrile
5 hot glue 23 dragonskin + nanotips

57 latex 19 ecoflex + nanotips
6 micro kristal klear 20 hot glue + nanotips
6 MINT stamp 60 latex + nanotips

20 mouldable glue 20 mouldable glue + nanotips
6 nyloprint 20 school glue + nanotips
8 opti clean 60 silly putty + nanotips

33 paper 15 wax + nanotips
20 playdoh 19 wood glue + nanotips

4 school glue
27 silicone 13 wood glue + glycerol
20 silly putty
10 silly putty metallic
10 wax
21 windowcolour

5 wood
19 wood glue

For the experimental protocol, different dataset partitions were defined in order to
evaluate the following scenarios. In general, all partitions were split into non-overlapping
training and test sets to guarantee a fair evaluation of the proposed fingerprint PAD method.
First, a mixed partitioning was used, where each conductive PAI species was present in
both training and test sets. A maximum of 1/3 of APs from a particular PAI species were
used for training, and the other samples were seen only during testing. This served as a
baseline experiment with only known PAI species in the test set. Second, an additional
set of experiments aimed to analyse the fingerprint PAD performance towards unknown
PAI species. In this context, a leave-one-out protocol was applied were single PAI species
were removed from the training set and only occurred during testing. The LOO partitions
were created only for conductive materials or their conductive augmentations, respectively.
In other words, one particular PAI species (e.g., playdoh) or all its augmentations (e.g.,
latex + nanotips and latex + bare paint) were not seen during training. Since the same
augmentations were applied to multiple base materials, additional LOO partitions excluded
all modifications with bare paint or nanotips, respectively.

The numbers of training and testing samples for the different partitions are sum-
marised in Table 4. An identical number of APs and BPs was chosen for the training
partition to prevent bias towards a particular class. Additional samples were moved to the
test set for the baseline partition. The LOO partitions removed AP samples after filling the
training set. In order to maintain a meaningful training set, a maximum of 15 conductive
APs from the same PAI species were included in the training set, and finally, the remain-
ing space was filled with random samples from non-conductive PAI species. Hence, the
training set had no bias towards one class (AP or BP), nor towards particular PAI species.
Therefore, the experiments allowed fair benchmarking of different LOO partitions and
sound conclusions regarding the vulnerability towards unknown attacks.
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Table 4. Numbers of samples per dataset partition. The same BPs of the baseline partition were used
in all LOO partitions.

Training Test

baseline (AP) 223 692
baseline (BP) 223 534

LOO dragonskin b,n 223 45
LOO ecoflex b,n 223 41
LOO gelafix 223 37
LOO gelatin 223 69
LOO hot glue b,n 223 40
LOO latex b,n 223 120
LOO micro kristal klear 223 6
LOO mouldable glue n 223 20
LOO playdoh 223 20
LOO school glue b,n 223 35
LOO silly putty n 223 60
LOO wax b,n 223 30
LOO wood glue b,n 223 34
LOO wood glue glycerol 223 13

LOO bare paint 223 169
LOO nanotips 223 256

b = bare paint, n = nanotips.

5.2. Metrics

The results of the impedance-based PAD algorithm were analysed with the following
metrics defined in ISO/IEC 30107-3 [58]:

• Attack Presentation Classification Error Rate (APCER): percentage of APs incorrectly
classified as BPs.

• Bona fide Presentation Classification Error Rate (BPCER): percentage of BPs incorrectly
classified as APs.

For this purpose, the detection error tradeoff (DET) visualises the fingerprint PAD
performance for all possible decision thresholds. While high security applications require
a low APCER, low BPCERs represent convenient use cases. In order to benchmark the
different results, two operation points were chosen: (i) detection equal error rate (D-EER),
as the point where APCER = BPCER; and (ii) APCER0.2, as the APCER for a fixed BPCER
of 0.2%, thereby representing a convenient scenario.

5.3. Results and Discussion

Based on the specified protocol, different experiments were evaluated. The DET plot of
the baseline partition is shown in Figure 6a. The SVM approach significantly outperformed
the other two approaches; thus, the further analysis and the LOO experiments focused on
these results. The plot shows that there is one BP that will always be misclassified as an AP.
Hence, a BPCER below 0.2% is not possible for this scenario. On the other hand, over 97%
of all APs were correctly classified for both operation points, D-EER and APCER0.2.

The next set of experiments evaluated the generalisation capabilities of the fingerprint
PAD algorithm towards unknown attacks. The results of the 16 LOO experiments are
plotted in Figure 6b. Since the BPs within the test set remained identical to the baseline
partition, the same sample kept getting wrongly classified across all LOO partitions. Addi-
tionally, the number of APs in the test set was generally lower for the LOO experiments
than for the baseline. Thus, the corresponding DET curves ended earlier, and achieving
very low APCERs was not possible in these cases. Depending on the PAI species used in
the particular training set and their similarity to BPs, the BPCER could be significantly
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higher than for the baseline partition. On the other hand, some of the conductive PAI
species that were left out during training were completely classified as APs without error.
Those perfect classifications cannot be shown by the DET plot; thus, the specific error rates
in terms of D-EER and APCER0.2 are additionally in Table 5 for all experiments.

0.1 0.2 0.5 1 2 5 10 20 40
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(a) DET curves of the baseline results.
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loo_ecoflex
loo_gelafix
loo_gelatin
loo_glycerol
loo_hot-glue
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loo_mouldable-glue
loo_nanotips
loo_playdoh
loo_school-glue
loo_silly-putty
loo_wax
loo_wood-glue

(b) DET curves of the different LOO partitions. Perfectly classified results show no curve.

Figure 6. DET plots for the different experiments: (a) baseline and (b) LOO.

For the baseline partition, a D-EER of 2.45% and an APCER0.2 of 2.89% were achieved.
This translates to 20 misclassified APs, which mainly stemmed from the gelatin PAI species.
As a consequence, the fingerprint PAD method reliably detected all other known PAI species
in the baseline scenario. These findings were basically confirmed by the LOO experiments.
For most LOO partitions, a D-EER below 1% was reported, with gelatin being the biggest
outlier (D-EER = 19%). It should be noted that the computation of the D-EER anticipated
both error rates to be equal at some point. Therefore, the computation reported BPCER/2
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for those cases where all APs were correctly classified. Given the one misclassified BP, this
resulted in a D-EER of 0.1%. When switching to the convenient threshold for BPCER = 0.2%,
additional outliers were revealed. Following gelatin (APCER0.2 ≈ 25%), gelafix was
misclassified in 7/37 cases (APCER0.2 = 19%). However, the least convenient performance
was reported after leaving out all bare paint adjustments from training. This LOO group
achieved an APCER0.2 > 90%, but the D-EER seemed stable at 1.15%. The reason for this
behaviour lies in the fact that these unknown attacks have very similar impedance values as
the BPs. Hence, the classifier mixed both classes such that the results allowed no separation
for very low BPCERs.

Summarising the results, one can say that the concept of using an impedance-based
fingerprint PAD module is generally suited for convenient use cases. Except for one
constant error, the remaining BPs could be separated from APs and thus kept the false
alarm rate low. Additionally, the reported baseline performance showed that a large
share of the APs were correctly detected, which indicates strong security against APs in
general. However, the following LOO experiments revealed that this fingerprint PAD
method is indeed vulnerable against unknown attacks. In particular, PAI species that are
conductive by nature (e.g., gelatin and gelafix) pose a severe threat when unknown to the
PAD algorithm. Additionally, the results from the LOO bare paint partition show that
unknown conductive adjustments are likely to be misclassified as BPs independently of
the base material used for the PAI. Since there are more ways to add conductance to PAI
species than the ones used in this work, impedance on its own might not be sufficient for
secure fingerprint PAD.

Table 5. Results in terms of D-EER and APCER0.2 for the particular partitions.

Partition D-EER APCER0.2
(%) (%) (#)

baseline 2.45 2.89 20/692

LOO dragonskin 2.24 2.22 1/45
LOO ecoflex 0.28 2.44 1/41
LOO gelafix 0.28 18.92 7/37
LOO gelatin 19.06 24.64 17/69
LOO hot glue 0.00 0.00 0/40
LOO latex 0.98 2.50 3/120
LOO micro kristal klear 0.10 0.00 0/6
LOO mouldable glue 0.10 0.00 0/20
LOO playdoh 0.10 0.00 0/20
LOO school glue 0.10 0.00 0/35
LOO silly putty 0.18 1.67 1/60
LOO wax 0.10 0.00 0/30
LOO wood glue 0.10 0.00 0/34
LOO wood glue glycerol 0.10 0.00 0/13

LOO bare paint 1.15 90.53 153/169
LOO nanotips 0.38 0.39 1/256

5.4. Comparison to State-of-the-Art

This Section places our results next to already published ones of state-of-the-art
fingerprint PAD approaches. However, since all experimental test sets differ, the focus is on
a baseline scenario. Moreover, software-based methods that evaluated the LivDet protocols
often only reported the average classification error rate (ACER), which is defined as:

ACER =
APCER + BPCER

2
(1)
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Since the error rates highly depend on the database size and the PAI species that are in-
cluded, those specifications are presented. The main specifications for the comparison are
summarised in Table 6. It should be noted that the numbers of PAI species, APs and BPs for
the software-based solutions were added up for all evaluated datasets. However, the best
performance is usually not achieved through cross-sensor or cross-database experiments;
thus, only a fraction of the overall samples were used for this. In general, it is difficult
to compare fingerprint PAD performances across totally different scenarios. However,
it can be observed that the datasets for software-based methods usually comprised less
PAI species than in the data for hardware-based methods. On the other hand, it is pos-
sible to evaluate a software-based PAD algorithm with multiple datasets to analyse the
generalisation capabilities.

On the other hand, the hardware-based approaches have shown remarkable numbers
of PAI species and total database sizes. The reported performances are similar to that of our
approach in the baseline scenario. Furthermore, the topic of unknown attacks is addressed
by using one-class classifiers. In accordance with our LOO experiments, the overall error
rates are generally higher than for the baseline results, which proves the need for further
research in this area.

All in all, it can be said that our fingerprint PAD performance is among the state-
of-the-art. However, a larger data collection effort is required to confirm these findings
regarding the suitability in highly frequented real-world applications.

Table 6. Comparison of state-of-the-art with the proposed fingerprint PAD method regarding the
main specifications. The error rates are presented in percentages.

Ref. APCER BPCER ACER # PAI Species # APs # BPs

software-based
[34] - - 1.74 15 ≈11,000 ≈10,200
[35] - - 2.23 13 ≈9700 ≈9200
[40] 7.30 1.00 4.15 12 ≈13,000 ≈9500
[44] 8.22 0.20 4.71 12 ≈9700 ≈5700

hardware-based
[47] 1.81 0.20 1.01 45 4339 19,711
[57] 5.00 1.11 3.06 7 1386 396
[59] 3.55 0.20 1.83 16 21,700 14,892

one-class + hardware-based
[41] 50.20 0.20 25.20 12 5531 11,880
[46] 6.59 0.20 3.40 45 4339 19,711
[48] 5.00 3.41 4.21 101 121 233

ours 2.89 0.20 1.55 42 915 757

6. Conclusions and Future Work

In this study, an optical capture device was modified to additionally measure the
finger’s impedance across nine selected frequencies. These additional data were then used
to train an SVM for the task of fingerprint PAD. The idea is that all BPs show a common
conductive response, but APs should differ in this regard, due to their physical properties
differing from those of human skin. The collected dataset comprises a total of 1672 samples,
including 42 different PAI species. The proposed fingerprint PAD method made a real-
time decision based on the measured impedance values, thereby taking into account the
conductivity itself and the separation between the different frequencies. The experiments
showed remarkable results for the baseline scenario, such that an APCER = 2.89% was
reached for a convenient use case defined by a BPCER = 0.2%. Hence, 41/42 PAI species
were correctly classified in the best case. The only weakness was gelatin APs, which have
natural conductance.
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On the other hand, the LOO experiments showed additional limitations of this fin-
gerprint PAD method unseen during training: gelafix and bare paint adjustments. While
all other PAI species were reliably detected, even if unknown to the classifier, real-life
applications can be considered unsafe when there is one attack that succeeds at remain-
ing undetected regularly. Hence, it must be concluded that impedance on its own is not
sufficient for secure fingerprint PAD, although all BPs (except for one) were correctly
classified.

In this context, it was shown that complementary information channels can be fused to
improve the overall PAD performance [47,60]. For this particular capture device, the optical
fingerprint image could be used as a second data source, thereby combining software
and hardware-based fingerprint PAD approaches. Furthermore, since the display is the
illumination source for the optical capture process, differently coloured illuminations are
already available, which should allow a multi-spectral fingerprint PAD approach similar
to [61,62].
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ACER Average Classification Error Rate
AP Attack Presentation
APCER Attack Presentation Classification Error Rate
BP Bona fide Presentation
BPCER Bona fide Presentation Classification Error Rate
CNN Convolutional Neural Network
D-EER Detection Equal Error Rate
DET Detection Error Tradeoff
GAN Generative Adversarial Network
GMM Gaussian Mixture Model
ITO Indium-Tin-Oxide
KNN K-nearest Neighbours
LOO Leave-one-out
MLP Multi-Layer Perceptron
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PAD Presentation Attack Detection
PAI Presentation Attack Instrument
SVM Support Vector Machine
TFT Thin Film Transistor

Appendix A

Medians and standard deviations of the impedance values for all conductive presenta-
tions across all nine frequencies are plotted in Figure A1.
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(d) 10,000 Hz
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(e) 25,000 Hz
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(f) 50,000 Hz

Figure A1. Cont.
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(h) 250,000 Hz
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(i) 500,000 Hz

Figure A1. For each frequency (a–i), the plots visualise the impedance values using the median
(orange), ±25% (box), the standard deviation (end of line), and outliers (green dots) for all conductive
presentations.
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