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Abstract: In the last few years, many works have addressed Predictive Maintenance (PdM) by
the use of Machine Learning (ML) and Deep Learning (DL) solutions, especially the latter. The
monitoring and logging of industrial equipment events, like temporal behavior and fault events—
anomaly detection in time-series—can be obtained from records generated by sensors installed in
different parts of an industrial plant. However, such progress is incipient because we still have many
challenges, and the performance of applications depends on the appropriate choice of the method.
This article presents a survey of existing ML and DL techniques for handling PdM in the railway
industry. This survey discusses the main approaches for this specific application within a taxonomy
defined by the type of task, employed methods, metrics of evaluation, the specific equipment or
process, and datasets. Lastly, we conclude and outline some suggestions for future research.

Keywords: condition-based maintenance; predictive maintenance; machine learning; deep learning;
artificial intelligence; railway industry

1. Introduction

Cyber-physical systems in Industry 4.0 are reforming conventional decision-making
processes, mainly through the integration of entities and functionalities via intercommuni-
cation systems and intelligent data processing approaches. This reformation brings new
challenges and high complexity. Operational decisions are tougher to be made. However,
these advancements might provide new solutions for typical problems, as system failures,
and thus, for maintenance approaches. Among many existing maintenance approaches,
Predictive Maintenance (PdM) is a data-based approach that emerged as a prominent
field of research. It uses statistical analysis, Machine Learning (ML) models, and Deep
Learning (DL) solutions for modeling system behavior, discovering the trends and pre-
dicting failures, which improves a system’s reliability. PdM methods divide into three
main categories, namely [1]: model-based prognosis, knowledge-based prognosis, and
data-driven prognosis. Data-driven PdM strategies appeared with great prominence and
importance both in industry and academia.

Detecting and preventing failures in industries with high operational risk (e.g., the
railway industry) is ultimately essential to improve not only the system efficiency (e.g.,
equipment utilization) but also its effectiveness (e.g., the integrity of the environment and
human safety). An effective maintenance management approach is vital, and industries
seek to minimize the number of operational failures, minimize their operational costs, and
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increase their productivity. Consequently, planning and analysis strategies are necessary to
assess the equipment’s operating status and useful life. However, due to the complexity
involved in an industrial process, several automated solutions were implemented to
perform future projections about the state of equipment by signal processing techniques
that can support decision making.

This literature survey attempts to present, classify, and analyze the existing data-
driven approaches developed for the PdM, specifically in the railway industry. Modern
transportation is highly dependent on it to move cargo and passengers. The global increase
in production and logistics needs higher use of the railway industry. Thus, common
damages will occur in the overall structure and components due to factors such as weather
and degradation. These could potentially lead to accidents of different proportions, which
can even cause fatalities [2]. Indeed, operational and technical failures have a significant
impact on the railway industry.

Recent advances in sensing and computing technology have given rise to PdM which,
unlike traditional maintenance management techniques (e.g., corrective maintenance and
preventive maintenance), attempts to predict failures and avoid system shut down proac-
tively. Doing so maximizes system utilization, minimizes maintenance costs, and improves
the system’s safety, reliability, and efficiency. Precisely, for the railway industry, with recent
technology advances in cloud storage, communication, and sensing, we can monitor any
part of the system more precisely and in real-time. Thus, it is a natural need for more
complex solutions to analyze data with more scalability, precision, and efficiency.

In the past decade, a large number of works addressed PdM by the use of ML/DL
approaches, but mainly the latter. The monitoring and logging of industrial equipment
events, like temporal behavior and fault events, can be obtained from data and records
generated by various sensors installed on the equipment. Specifically, sensors can be
implemented to PdM in order to decrease the failure rate and enhance the system relia-
bility [3]. Such sensors can monitor and generate alerts for equipment with the need for
attention. Progressive development of industrial (wireless) sensor networks and emerging
technologies, e.g., IoT [3–5], brings about generating a massive amount of data with scale
and higher reliability. In this perspective, ML/DL algorithms are particularly relevant to
create advanced mining methods for the PdM.

Research in PdM practices for the railway industry progressively receive more atten-
tion by the industry and academia. A recent literature review regarding Big Data Analytics
in the railway industry can be found in [6], where the level and the types of big data models
are reviewed and summarized for operations, maintenance, and safety applications. Most
of the works focus on solutions that assess the infrastructure health state like railway points
(switches) and interlocking systems. Although, in the case of trains, there exist many other
challenges related both to internal conditions, like the general functioning of wagons (e.g.,
wheels, air compressed units, brakes) and external conditions, like weather, geographical
position, in addition to other variables.

The dynamic context of the railway system is exceptionally challenging and these
areas, by themselves, require the study of many combinations of analysis. In this sense, we
define a taxonomy specific to the context of the railway industry. Differently, from [6], our
taxonomy classifies the related works in three areas: infrastructure, scheduling policies,
and vehicles. We also classify the works based on the type of data analysis method used
to address PdM practices. We also employed a classification grounded on ML and DL
algorithms, following the work in [1]. In practice, PdM needs a timely decision-making
process which in turn needs models able to process data and adjust themselves in a
timely manner.

In short, in this survey, we try to answer the following questions.

1. What parts of the overall railway industry are subject to PdM techniques?
2. What kind of data are being used with PdM?
3. How the DL methods are employed in the PdM applications?
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4. What solutions are supported by DL methods and which are being used to perform
PdM on the railway industry?

The contributions of this paper are threefold: (i) we review the maintenance appli-
cations, specifically the PdM practices describing the taxonomy of the solution space in
addition to some technical aspects and current trends, (ii) we review recent advancements
for data-driven PdM practices, specifically for the railway industry, and (iii) we present
some of the main evaluation metrics for the PdM practices.

This paper is organized as follows. Section 2 presents and classify the PdM practices.
Section 3 reviews the main ML and DL algorithms implemented for the PdM practices,
also, the reader can find some of the most used datasets for Data-driven PdM, serving as a
starting point for new projects. Section 4 specifically devoted to data-driven PdM practices
in the railway industry, and Section 5 reviews the evaluation metrics for the PdM methods.
Finally, in Section 6, we conclude with our final remarks and envision potential future
research directions.

2. Predictive Maintenance

Maintenance corresponds to the process that deals with equipment or system compo-
nents to ensure their normal functioning under any circumstances. Over the years, several
different maintenance approaches have been developed, each representing a different
generation over time due to technological advances. Three main maintenance approaches
can be classified as below [7]:

• Corrective maintenance: it means run-to-failure, which is the simplest and the oldest
method. The idea is to take action only after a machine or equipment fails. It would
almost always lead to high (unexpected) downtime, besides having maintenance staff
expenditure. This method usually generates a critical situation that will demand a
great cost for companies.

• Preventive maintenance: it provides planning of regular replacement of components
and/or equipment. Considering historical failure data and/or the data provided
by the equipment manufacturer, MTTF is calculated, which in turn is used by the
maintenance team to propose a preventive action plan. Although this approach
prevents unexpected shutdown, it usually needs additional costs and an increased
unexploited lifetime.

• PdM: it needs direct monitoring of the mechanical condition and other parameters
that can determine the operating conditions over time. Indeed, due to technological
advances, existing tools can process real-time data acquired from different equipment
parts to predict any sign of failure.

An equipment failure is almost random and unpredictable which is impacted by
several (unknown) factors. A well-known technique to decide on the maintenance approach
is P-F curve analysis (cf. Figure 1), which allows understanding the condition of equipment
over time [8]. During the time between the detection of potential failure and the actual
failure, it is crucial to perform a maintenance action to address the problem before a
functional failure occurs.

The improvement of computing capacity, communication, and storage infrastructure
allowed the triggering of PdM of mechanical equipment as the focus of the next stage of
development [5]. In industrial manufacturing, IoT embedded in machines and production
lines is now a reality. Large-scale stream processing for real-time data also becomes a
reality that needs to be considered by industries, mainly because of competitive issues.
PdM became one of the central answers to this challenge [9].
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Figure 1. P-F reliability curve in maintenance management [8].

The most common data collected from sensors are vibration, thermography, and
tribology [7]. PdM planning usually uses data streams to obtain operational conditions
information and predicts equipment failures. Usually, it contributes to cost reduction and
the overall improvement of quality in production. Nevertheless, results could still be better
if we make use of data from more sensors or even the combination of some of them [8].

Over the years, PdM practices have been developed from several perspectives;
namely, ref. [10]: (i) f6+ailure prediction, to predict equipment failure overtime inter-
val; (ii) RUL estimation, to estimate the remaining useful lifetime of equipment. These two
perspectives are illustrated in Figure 2 and are detailed next.

 

 

Corrective 

 

Preventive Predictive 

Industrial 

Maintenance 

Remaining Useful Life Failure Prediction 

Figure 2. Classification of automatic industrial maintenance approaches.

2.1. Failure Prediction

Failure Prediction is the most generic and direct perspective for the PdM practices for
which the main goal is to predict the approximate moment where some failure could occur.

PdM is generally employed based on the health status of critical elements. In an
attempt to avoid possible interruptions or even more severe damage, based on the opera-
tional history of different components, this strategy can be used to predict failures over
time, minimizing costs and extending the useful life of the components.
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2.2. Remaining Useful Life (RUL)

Different maintenance management policies can be employed by the use of anomaly
detection, diagnostics, and prognostics [11]. The RUL is strongly related to prognostics,
which provides the amount of time equipment will be operational before it requires any
repair or replacement. Prognostic is directly related to MTTF estimation and the likelihood
of system failure occurrence. It can be regarded as a forecasting process given the current
machine conditions and its historical record [12].

Based on the application type, goals may differ, i.e., PdM can be performed to predict
the RUL of a specific asset or a set of assets to predict failure within a given time window
or even just flagging abnormal behavior in a system. Current works reflect this modeling
behavior, as will be seen in the following sections.

A categorization of methods and techniques for RUL can be found in [13]. As a
fundamental task for RUL, prediction clearly defines the difference between run-to-failure
(corrective maintenance) and time-to-failure (prognostics) strategies.

3. Data-Driven PdM

Unlike the model-based maintenance approaches (e.g., preventive maintenance ap-
proaches) that rely on forecasting the performance degradation by the use of stochastic
models, data-driven PdM practices are based on data without prior knowledge of degra-
dation conditions. Its performance strictly depends on the analysis of signals and data.
While for complex systems, model-based solutions can be expensive and inaccurate, data-
driven diagnosis methods are a promising alternative to fault/anomaly detection and
isolation [14]. ML and DL algorithms and tools are naturally relevant to the PdM practices,
mainly due to a large amount of data (specifically the unlabeled ones). Based on the
availability of data and respective labels, learning methods can be classified into three
different categories: (i) supervised learning, in which a labeled training data set are used
for a mapping from the set of predictor variables values to a specified target variable;
(ii) semi-supervised learning, where the goal is to learn from data sets that have the target
variable value for only a subset of examples [15]; and (iii) Unsupervised learning, in which
machine learns from data sets with no target variable.

In addition, RL and DL are also mainly implemented often under the scope of semi-
supervised and/or unsupervised approaches [16]. The former is a technique that looks
forward to discovering the actions needed to maximize a numerical reward in a trial-
and-error fashion, while the latter is defined by the structure and functions of NNs [17].
DL differs on how features are handled. There is a hierarchy with features at different
levels, where the composition of low-level features forms higher-level ones and, complex
functions can be learned by mapping the input to the output [18].

Recent reviews on the ML/DL methods for PdM are found in the literature. We
highlight some of those next. In [16], authors describe the recent advances in techniques
and applications. In [19] the authors provide a review of the recent advancements of
ML/DL techniques applied to PdM for smart manufacturing, and the works are classified
based on ML/DL algorithms, ML/DL category, machinery and equipment used, device
used in data acquisition, and data size and type. Finally, in [20] authors provide an insight
into ML/DL used for PdM practices and provides an overview of industrial sensors and
future research aspects of sensors in PdM practices.

Regarding the data available for the PdM practices, it is challenging to assign labels to
the real-time data stream from sensors in an industrial plant. Firstly because of the limited
types of measurements and secondly because of the cost and feasibility of having one or
more specialists analyze data. Thus, we can argue that using supervised learning is not a
feasible solution way in this context. Another important aspect is the scale. Different types
of sensors are massively being adopted for use in a great variety of automation applications.
With the IoT paradigm, new challenges are imposed for the storage and retrieval of large
amounts of data and their meaningful visualization [21].
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The last 6 years have been very productive in PdM research and works with ML/DL
methods for industrial applications are becoming the majority of them. The current
advances in this area contribute mutually to enhancing methods and the improvement
of industrial planning. From this scenario, we can conceive many challenges. Next, we
review the main ML and DL tools implemented in PdM practices and on the following
public datasets available on the Web for PdM is reviewed.

3.1. Traditional Machine Learning Methods

Several ML algorithms and methods have been used to predict failures and RUL. Some
approaches explored the use of classical algorithms as LR [22], SVR [23], SVM [24], RF [25]
while osthers explored the combined use of algorithms with step phased approaches:
ARIMA and SVM [26], SVR and SVM [27] and TL with RF [28]; and also with a comparative
approach: RF, QRF, DT, KNN, SVR and PCR [25]. In here, we briefly review recent works
used traditional ML methods in PdM applications.

AE, a network trained to attempt to copy its input to its output, is widely used in PdM
practices. It is a method well-suited for unsupervised feature extraction. Based on the AE
architecture, many works have adopted a common solution of extracting features from the
input in an attempt to reduce concerns of overfitting in the models [29–36], or as in the case
of [37], where AE was used as part of the ensemble model.

To make simple AE more robust, a Variational AE (VAR) is also proposed for learning
deep latent-variable models and corresponding inference models by the use of stochastic
gradient descent. In [38], the Variational AE was used to deal with insufficient labels in an
asset failure prediction application.

Baptista et al. [39] proposed a framework based on ARMA to make predictions as an
alternative to traditional life usage modeling. The case study involved a critical component
of commercial aircraft. Zheng [40] presented a method to predict a bearing RUL based on a
health indicator algorithm and a linear degradation model. Ordóñez et al. [26] proposed an
algorithm supported by ARIMA and SVM models for RUL prediction of aircraft engines.

Using Empirical Mode Decomposition and Wavelet Transforms as pre-processing
techniques to improve input quality, coupled with Particle Swarm Optimized Support
Vector Machines (PSO+SVM), Souto Maior et al. [41] has estimated the RUL of bearing
from the IEEE PHM Challenge 2012 big dataset.

Zhang et al. [42] proposed to use transfer learning with bi-directional LSTM for RUL
estimation. They firstly train the models on different but related datasets and then fine-
tuned by the target dataset. The performance of the estimation model is evaluated with
two measures that were used: Scoring Function [43] and RMSE.

3.2. Deep Learning Methods

Traditional ML approaches show better performance for lesser amounts of input data.
However, advancements in sensing technologies and the emergence of technologies such
as IoT produce a vast amount of data, and consequently, the performance of traditional
ML techniques could not meet the required scale. In this context, DL becomes a necessary
choice [16]. DL techniques process highly non-linear and varying sequential data with
minimal human input in several knowledge domains [44].

A recent survey in [45] presents a systematic review specifically DL techniques applied
to PdM practices, where the DL benefits and limitations for fault diagnosis and prognostics
are discussed. Another recent review for DL techniques applied to PdM practices can be
found in [46]. Nevertheless, another recent review can be read in [47] specifically for DL
applied to machine health monitoring in which an overview on AE and its variants and
RBM and its variants including DBN and DBM, CNN, RNN are presented.

In addition to the review works, some recent works proposed to perform a compara-
tive analysis of their PdM strategy to different classical ML algorithms [48–51]. Given the
steadily increasing use of sensors and the amount of data produced by them, and the fact
that these data are often materialized as real-time time series DL methods will undoubtedly
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be among the future PdM tools. Thus, in the following subsections, we will give focus on
DL algorithms and methods.

3.2.1. Deep Neural Network (DNN)

A DNN is an ANN with multiple layers (more than two hidden layers) between the
input and output layers without looping back, and the flow of the network goes through
the layers, calculating the probability of each output [52,53].

Among the early applications of DL methods, we can refer to a multi-layer feed-
forward ANN for engine fault diagnosis is developed in [54], an ANN method to classify
diesel engine fault occurrences in [55], a feed-forward ANN prediction model to estimate
conditions of laser welding processes in [56], and a two-layer ANN for a fault diagnosis
framework which can learn features extracted from mechanical vibration signal.

Several relevant works also employed DNN to develop prediction models. In general,
the goals are to diagnose different elements of an industrial plant, e.g., wind turbine
gearbox [57], rolling bearings, and planetary gearboxes [58], among others [59–63].

3.2.2. Convolutional Neural Network (CNN)

A CNN is a type of DNN that is trained with the backpropagation algorithm and is
common in image processing tasks [64] and is widely used for PdM practices. A diagnosis
strategy to detect the fault type in the planet bearing is proposed in [65]. The strategy is
based on the SST, where the Hilbert transform processes raw vibration signals to obtain
the fault information. The 1D time-series signals are converted into 2D images, from
which a DCNN can automatically learn underlying fault features by fault classification.
Additionally, DCNN used in [66] to monitor the wear condition of an abrasive belt from
grinding sound signals. Another fault recognition method for rotating machinery is
proposed in [67] in which a multi-sensor data fusion and bottleneck layer optimized CNN
is used to (i) convert vibration signals from multiple sensors to 2D images and (ii) extract
features and fuse the multi-sensor data.

Fault diagnosis is also considered in Chen et al. [68], where a CNN and DWT method
is used to identify the fault conditions of planetary gearboxes of wind turbines. CNN
is used to learn the discriminating features from the coefficients of DWT. Moreover, Ma
and Chu [37] proposes a diagnosis method for rotor and rolling bearings faults based on
an ensemble DL formulation, which in turn is based on a multi-objective optimization
algorithm. The ensemble learning approach is based on ResCNN, DBN and Deep AE.

CNN methods are also used for RUL estimation; e.g., Wang et al. [10] proposes an
approach supported by Functional Data Analysis (FDA) for RUL estimation. The method
incorporates the correlations within the same equipment and the discrepancy across sensor
time series from different equipment. Additionally, Al-Dulaimi et al. [69] propose a Hybrid
DNN model for RUL estimation that integrates two parallel paths (one LSTM and one
CNN) followed by a fully connected multilayer fusion NN which combines the output of
the two paths to form the target RUL.

3.2.3. Recurrent Neural Network (RNN)

In contrast to feed-forward networks, in RNN feedback loops are possible. Addition-
ally, a cascade of neurons get fired in this kind of network, and the output of a neuron only
affects its input at some later point in time, i.e., they have some limited duration before
becoming inactive.

In [70], a method based on LSTM RNN, is proposed to assess bearing performance
degradation. LSTM is an RNN architecture that has feedback connections and, in addition
to single data points, it can also process sequences of data. A bearing degradation indicator
is constructed to represent the bearing running states, validated with feature verification
and selection by a simulation model based on a vibration response mechanism. Another
LSTM architecture is proposed in [71] to predict whether a truck compressor failure will
happen within a specified time window of 90 days. However, Nguyen and Medjaher [72]
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design a LSTM classifier to calculate the probabilities that the system will fall into different
time intervals.

In [73], authors present two models to capture and encode characteristics of signals,
or groups of signals on-board vehicles caused by air compressor faults in city buses. One
approach used histograms, and the other is based on echo state networks (ESNs), a specific
type of RNN, that exhibits fast training without local optima, and it is used for modeling the
signal. Recently, Gugulothu et al. [74] present an approach based on RNN that processes
sensor data in a sequence-to-sequence model to generate embeddings for multivariate time
series. They generate separate embeddings for normal machines and degraded machines
and, after comparison, it is possible to estimate the RUL, even in the presence of noise in
sensor readings.

More recently, a RNN classifier has been introduced by Onchis [75] for condition mon-
itoring of cantilever beams. They used the changes in natural frequencies based on time-
frequency processing extracted from vibrating beams. Most recently, Lepenioti et al. [76]
implements a RNN for predictive analytic and a multi-objective RL method for prescrip-
tive analytic. The proposed method was implemented for a PdM scenario in a steel-
making company.

3.2.4. Generative Adversarial Network (GAN)

CAN is an approach to generative modeling using DL, where two NNs compete
with each other. It offers an alternative approach to maximum likelihood estimation
techniques [16]. Yoon et al. [38] present a semi-supervised learning approach for modeling
failures when there is a lack of a high number of labels on historical data. Using a non-
linear embedding technique, based on a variational AE, they combined a GAN model
parameterized by DNN. Authors have also used turbofan engine degradation data sets
from NASA CMAPSS [77].

In a recent work Shao et al. [78] propose the framework based on GAN) to learn
from mechanical sensor data. The framework composes of two parts: generator and
discriminator. The network makes use of stacking one-dimensional convolution layers
to learn local features from the original input. Most recently, two GAN networks were
proposed in [79] for failure prediction based on experimental data collected from an Air
Pressure System (APS) data set [80] and a turbofan engine degradation data sets from
NASA CMAPSS [77].

Finally, we summarize the works on general data-driven solutions for PdM in Table 1.
This table is outlined by employed methods and data sources, the equipment or process
where the solutions were applied, and the respective references. From Table 1 we can
observe that independently of the Goal or the Learning Task, most used techniques rely
on different types of neural networks, showing the applicability of these techniques on
different data sources (type of sensors/equipment).
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Table 1. ML/DL methods used for PdM.

Goal Learning
Task

ML/DL
Method Data Source Equipment/Process Ref.

Failure
Prediction
(FP)

Anomaly
Detection

Hierarchical
Clustering General faults Time and

Frequency [81]

Classification

RF, SVM and LR Physical faults Track geometry [82]

AE

General faults

Rolling bearing [35,36]

Spacecraft [32]

Transformers [34]

Rotor bearing
systems [37]

Vibration
Tidal turbine [33]

Bearings [29]

Acoustic signals
Sensor data Motors [83]

DNN

Vibration

Bearings [84]

Gasoline engines [54]

Engines [63]

Vibration, pressure
and speed Diesel engines [55]

Optical and visual Laser welding [56]

CNN

Vibration Planetary gearbox [65,68]

Grinding faults Abrasive belt wear [66]

General faults Rotor bearing
systems [37]

Vibration and images Rotating machinery [67]

RNN

General faults

Rolling bearing [70]

Air compressor [71]

Air compressor in
buses [73]

Sensor data Turbofan engine
degradation [72]

Time-frequencies Cantilever beams [75]

GAN
Sensor data Turbofan engine

degradation [79]

Vibration Induction motor [78]

Remaining
Useful
Life
(RUL)

Regression

Online-SVR Vibration Rolling Bearing [85]

PSO+SVM Vibration Rolling Bearing [41]

Bi-directional
LSTM Sensor data Turbofan engine

degradation [42]

AE Acoustic signal
Sensor data

Turbofan engine
degradation [38]

CNN Sensor data Turbofan engine
degradation [10,69,86]

RNN Sensor data Turbofan engine
degradation [74]

3.3. Datasets for PdM

Some public datasets for testing and evaluating PdM techniques in different scenarios
are provided in [87]. PdM strategy is distinctive and application-dependent, supported by
the environment, available data, hardware, among others. Thus, these data sources give
support to the development, testing, and comparisons with different ML techniques.
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For failure prediction methods, a dataset proposed by [88] for a robot failure can
be used, in which 463 samples and 30 attributes are provided. A second data source,
proposed by [89], aimed to detect faults and estimate weights for a gearbox using some
data and information about bearing geometry. In the dataset in [90], component failures
were detected in the air pressure system of trucks, from where 76,000 samples and 171
attributes were obtained. A fourth data set, proposed by [91] is composed of faults detected
from robot swarms.

For the mechanical failures, a well-known dataset, the Commercial Modular Aero-
Propulsion System Simulation (C-MAPSS) [77] developed by NASA to simulate the op-
eration of turbofan engines. The Case Western Reserve University Bearing Data Center
(CWRU) [92] contains motor bearing data from different operation condition, as normal
operating state, single-point drive, and fan defects. The third dataset can be considered as
the one proposed in the Numenta Anomaly Benchmark (NAB) [93], where NAB version
1.1 is composed of over 50 labeled real-world and artificial time series data files. Measure-
ments from motor current and vibration signals from the Paderborn University bearing
Dataset [94] enable the verification of models and sensors of different signals to increase
the accuracy of fail detection from bearings. We also can introduce PRONOSTIA [95], a
popular dataset for predicting bearing’s RUL. It is known as the bearing accelerated life
test dataset, which serves to investigate new algorithms. It provides real data related to the
accelerated degradation of bearings in different operating conditions.

In Table 2, we collected the datasets mentioned above that can support experiments
and comparative analysis in PdM studies. For each dataset, we provide the reference and a
brief description.

Table 2. List of datasets publicly available for PdM experiments.

Ref. Dataset Description

[93] Numenta Anomaly Benchmark (NAB) dataset: temperature sensors on industrial machines
[88] Force and torque measurements to detect robot failures
[89] Failure data of a generic gearbox
[92] CWRU: ball bearing test data for normal and faulty bearings
[94] Synchronous measurement of motor current and vibration signals
[90] Operational data from a pressurizing system in trucks
[95] PRONOSTIA: bearing accelerated life test dataset
[77] NASA C-MAPSS tools: simulate realistic large commercial turbofan engines
[91] Failure data in a simulated swarm of robots

4. Data-Driven PdM for the Railway Industry

PdM practices in the railway industry are not so recent as with many other application
areas. However, recent advancements of AI technologies provide new opportunities for
its expansion. Although ML/DL methods developed for the PdM practices in a wide
range of applications, the literature with specific applications in the railway industry is yet
scarce. A recent review regarding the data-driven PdM works in the railway tracks can
be found in [96]. The works have been classified based on model types and application
types. Their study indicates that in the new research trend ML/DL methods, unsupervised
methods, and ensemble methods are the most implemented learning methods. Next,
we also provide a review of the works developed between 2000 and 2021, classified in
infrastructure, scheduling policies, and vehicles topics.

4.1. Infrastructure

Automated inspections and maintenance prediction of the infrastructure is becoming
a major concern for the rail industry practitioners. Examples include but are not limited to
the works reported for rail tracks and anchors. Failures on railway tracks can cause many
problems related to costs, and consequently, there is great demand imposed to maintain
rail tracks in a good state of repair [82].
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Among the first works, an SVM based algorithm to predict impending failures and
alarms of critical rail car components is proposed in [97], in which they use data from sen-
sors installed along the railway. Recently, a data-driven PdM method has been developed
in [98] for the railroad switch which is an arrangement of equipment that enables railway
trains to switch from one track to another. Faults in this system can cause traffic delays.
The author uses the data available from maintenance bookkeeping and railway controlling
system logging. The proposal faced the problem with a supervised learning strategy to
make predictions and tests are performed by SVM, RF, naive Bayes generative model, and
LR methods. Railway tracks are critical components in the rail industry. Faults and failures
will necessarily occur to tracks as with any other mechanical system with time and usage.

Another recent work in [99] proposes tree-based classification techniques (e.g., deci-
sion tree, random forest, and gradient boosted trees) for the maintenance need prediction,
activity type, and trigger’s status of railway switches. This study criticized the expensive-
ness of employing additional data collection measures to record the assets’ behavior. The
author has utilized historical data of visual inspection, condition state, and maintenance
records. From comprehensive maintenance action data, e.g., visual inspections and mainte-
nance records, this classification technique employs multiple models based on a DT, an RF
and GBT.

More recently, ref. [100] design a four-layer big data architecture for establishing a data
management framework to manage enormous amounts of data produced by railway switch
points. A LSTM prediction model is implemented within the framework for detecting
failures based on analytical tasks in the Italian railway industry. Additionally, a data-driven
risk prediction model to predict and evaluate rail defects and service failures is proposed
in [101], in which a framework to predict the risk of rail defects recurrence in different
segments of the network is also developed.

Lately, an advanced data mining method based on ML techniques to create strategic
decision support and draw up a risk and control plan for trains was proposed in [102]. They
used stored-inactive data from a Greek railway company for the random forest classifier
and decision tree classifier algorithms trained by the historical data for 6 years. According
to the experience extraction from domain experts and the available resources from the
system, the approach improves operations efficiency.

4.2. Scheduling Policies

Recent reviews for the railway industry [82,103] reveals that most works address
track defects using corrective maintenance. In addition, the scheduling process is mainly
planned in cases when defects are already known. Among the few works considered
data-driven PdM practices, predictive and risk-based maintenance activities schedule is
considered in [104], in which predictions for maintenance of railway infrastructure are
performed by predicting the degradation state of certain assets. A two-stage stochastic
linear program forecasts the future track conditions.

A data-driven policy for the inspection and maintenance of track geometry to give
support on both corrective and preventive maintenance is proposed in [82], where a Markov
chain and Bernoulli process were used to modeling data from some observed magnitudes.
The results using RF, SVM and LR algorithms are compared and further used to model the
relationship between the explanatory and the dependent variables. Moreover, a MCMC
simulation is employed to calculate and compare the total cost of different policies.

An integrated method for the prediction of rail and geometry defects and optimal
scheduling is proposed in [105]. In railway industry terminology, geometry defects are
horizontal and/or vertical misalignment on the track, while rail defects include track wear
such as corrosion or impairments such as broken rails or cracks. The solutions provide
inspection and maintenance schedules. The authors make use of K-means to perform
feature selection, followed by predicting the number of defects by RF and RNN methods.
Moreover, a MDP to integrate the stochastic nature of defect occurrence into scheduling is
used to find the optimum inspection policies.
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4.3. Vehicles

Considering the components for which a data-driven PdM is practisced, vehicle main-
tenance prevails with a particular emphasis on the maintenance of four components: wheel,
bearing, truck, and traction. In an early work, a knowledge discovery solution is presented
to extract data from historical behavioral data collected by sensors in [106]. It is based on
association rules, more specifically sequential pattern mining, to extract specialized classes.
Using anomaly detection, they compare new patterns with sequential patterns describing
normal behavior that were extracted before. Later, a RF based methodology was developed
in [25] to assess the current health and predict RUL of both trucks (bogies) and wheels of
a rail-car by fusing measurements from three types of detector. The MissForest, an RF
based non-parametric imputation method, is also used to handle missing data in detector
reading. The work in Fumeo et al. [85] deals with data streams coming from onboard
sensors to make RUL predictions. They proposed a novel algorithm based on Streaming
Data Analysis (SDA), where predictions are performed with online-SVR.

Recently, data extraction from open/close cycles controlling valves of a train door
is proposed in [2], where the authors aimed to detect structural failures in the train door
controlling system. Firstly, an anomaly detection algorithm is used with the support of
different windowing strategies. After that, a low-pass filter is applied to the output in an
attempt to improve anomaly detection. In addition, a temporal factor is incorporated in
both phases.

DNN and traditional data-driven methods, regarding the extraction of fault features,
are compared in [107]. These features should represent, effectively, essential information
aiming to perform an intelligent diagnosis. The fault signals of bogies with big data were
processed using a DNN, and the corresponding results are compared with those from a
multi-hidden layer neural network, a single hidden layer neural network with a shallow
structure. The work concludes that DNN can improve identification accuracy and are
extremely useful in reducing defects into manually designing the features. A framework to
detect air leakage and predict its severity to determine action plans is presented in [22],
in which anomalies are detected to find air leakages from the logs of a compressor. The
method is based on a LR classifier to model different classes of compressor behavior for
the trains from a fleet. It also employs a clustering method to differentiate anomalies from
outliers. The author claims that most failures can be detected one to four weeks before the
occurrence and that their contextual anomaly detection method can avoid false alarms.
They made use of real datasets from Dutch Rail.

Most recently, an online detection model for train speed is proposed in [108], in
which an anomaly detection strategy and a Bayesian statistical model that represents train
behavior in speed changes are developed. A linear regression model is employed, taking
into account the time duration and travel distance from the departure station. In this study,
the OpenRails platform is used to simulate the operation of trains and generate data aiming
to evaluate the performance of the model. A learning method for the prediction of wheelsets
RUL and failure types, combining linear regression loss, LR loss, and L2/L1 regularization,
is proposed in [27]. The method is based on SVM for failure type classification and SVR for
RUL prediction.

4.4. Overview

Following the literature we reviewed in the previous sections, a summary is presented
in Table 3. Generally, it is possible to verify that a significant part of the references was
conducted by supervised learning. The exceptions are the works in [2,105], which make
use of semi-supervised and unsupervised learning, respectively. Moreover, there is an
almost exact division in task employment, i.e., half-used anomaly detection and other half
used prediction.

Excepting the works in [22], and ref. [27] that propose to perform both Failure
Prediction (FP) and RUL estimation, all the other works aimed to reach distinct goals. As
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can be observed from Table 3, only two papers addressed RUL estimates for some railway
assets while the rest proposed to predict some type of failure.

As we stated before, supervised learning is not a feasible solution in the context
of PdM for the railway industry because it makes predictions based on known training
examples. In addition, as the operation of this system is dynamic over-functioning time, we
can realize one first challenge of having a model that can be updated in real-time (online
learning) for the anomaly detection task. There are several challenges in robustly learning
the distribution for any time series without any supervision [109].

More than half of these works gave attention to the maintenance need of trains
behavior in the sense of cost reduction and accident avoidance. In the current context, this
attention will increase due to the new challenges involving new ways of measuring and
detecting the different parts of the train system in a multivariate analysis fashion. Another
important aspect is the data types used in the experiments. Most of them were real data
extracted from sensors/monitors, as stated in [87].

Table 3. Data-driven PdM for the railway industry.

Goal Learning
Task ML/DL Method Data Source Equipment/Process Ref.

Failure
Prediction
(FP)

Anomaly
Detection

Sequential
Pattern Mining

Real Data:
sensors on trains Trains [106]

AE, OCC!,
OCSVM!,
boxplotEns

Real Data:
sensors on trains

Pneumatic valves
of train doors [2]

Linear Regression Openrails
simulation platform Train speed [108]

Classification

SVM Real Data:
detectors on the railway Railway [97]

LR,
Bayes Classifier,
SVM, RF

Real Data:
log files and reports Railway turnouts [98]

RF Public Real Data Railway track
geometry [82]

ANN Software SIMPACK Trains [107]

RF, RNN,
K-means Real defect database Rail and geometry

defects [105]

DT, RF, Gradient
Boosting Trees

Real Data:
SAP/ERP Maintenance
Request Process (MRP)

Railway switches [99]

Remaining
Useful
Life
(RUL)

Regression

online-SVR Real Data:
detectors on trains Train axle bearings [85]

RF, QRF, DT,
KNN, SVR, PCR

Real Data:
detectors on trains

Wheels and trucks
(bogies) [25]

SVR, SVM Real Data:
North America Railroad Train wheelsets [27]

LR Real Data:
Dutch Railways VIRM

Air leakage in brak-
ing pipes of trains [22]

5. Evaluation Metrics in PdM!

In this section, we provide a review of the metrics used for performance evaluation
of the PdM practices, specifically in the railway industry. Reviews for the measurement
of the performance of anomaly detection methods and prognostic systems can be found
in [110,111]. The most common performance evaluation metrics in the context of PdM are
reported in Table 4 and described next.
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Table 4. Evaluation Metrics used in PdM.

Metric Ref.

Accuracy [5,82,98,99,105,107]
PR [27,82,106,112]
Confusion Probability Matrix [72,99]
RMSE [22,25,26,28,39,74,105,113]
MAE [26,74,113]
MAPE [25,27,28,74,85,113]
AUC-ROC [98,114]
rFAR and rIPR [2]

5.1. Failure Prediction

The metrics proposed for the performance evaluation of Failure prediction methods
mainly measure the number of failures predicted accurately and/or the number of wrong
predicted failures. Accuracy is a natural metric through which the number of true predicted
failures and true predicted non-failures over a total number of events is measured. The
performance of the DNN developed for fault prediction in bogies in [107] was evaluated
through the Accuracy metric. It also has been used to evaluate the performance of the
fusion algorithms based on neural networks proposed in [5] for mechanical fault diag-
nosis. Accuracy, misclassification rate, and f-score were also used in [99] to evaluate the
performance of classification technique for maintenance prediction of railway switches

The other principal evaluation metric is PR score, in which the percentage of truly
identified failures over the number of predicted failures (true or false) is calculated (preci-
sion) and is compared to the percentage of the failures identified truly overall the failures
(recall) [112]. PR score was used to evaluate the sensors data pattern mining approach
developed in [106] and to evaluate the performance of fault prediction of railway track
geometry developed in [82].

PR score has also been used to evaluate the failure prediction developed in [98] for
data of maintenance bookkeeping and system logging. The authors also made use of
AUC-ROC [114] to evaluate prediction performance and error analysis.

The performance of the integrated inspection and maintenance scheduling operations
proposed in [105] for train geometry defects predictions were evaluated using MAE and
RMSE metrics. RMSE was also used in [22] to evaluate a logistic regression classifier and a
density-based clustering method proposed for anomaly detection. Moreover, the failure
prediction method proposed in [39] based on operational log data was evaluated through
Accuracy and precision were the metrics approached, in addition to RMSE, the median
absolute deviation, and MTBF, a metric from the reliability domain.

In [2], authors adapted two metrics, namely: rFAR and rIPR, to deal with outlier
detection, benefiting from the early failure detection. The rFAR reduces the number of
false alarms, appearing just before the correct identification of a failure. In rIPR reduce the
number of impostors for appearing after the correct identification of a failure.

5.2. Remaining Useful Life

MAE, MAPE, MSE, and RMSE are among the most common performance metrics
used to evaluate RUL prediction methods. MAPE and MSE were used to evaluate the RF
based methodology was developed in [25] to predict RUL of both trucks and wheels of a
rail-car. The MAPE was also used for performance evaluation of RUL prediction proposed
in [27], in which the authors also used PR for the classification result, and RUL estimation
of bearings proposed in [85].

The MAE and MAPE were used to evaluate an approach for RUL estimation on two
datasets was proposed and evaluated in [74], and an algorithm based on ARIMA and SVM
proposed in [26] for RUL estimation. MAPE and RMSE were also used in [28] to evaluate a
mapping function using RF regression model for predicting RUL of equipment under the
scenario that labeled data are only available for the source domain.
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The other performance metric includes confusion probability in [72] for an LSTM
classifier proposed to perform prognostics and Accuracy in [113] for an approach for RUL
estimation on two datasets was proposed and evaluated in [74].

6. Conclusions and Future Directions

In this survey, we reviewed the main works developed ML/DL algorithms for PdM in
the railway industry. Some questions were initially outlined, but during the review, we also
got an overview of new trends and challenges that can be faced by academia and industry.

Although the data-driven PdM are gaining more research attention, specifically in the past
few years, the number of works specifically designed for the railway industry is quite limited.
Initially, we were interested in the works including the vehicles, e.g., the general functioning of
wagons. However, the limited number of works led us to consider a broader context.

Considering the research trends reviewed in the previous section, we can observe
some significant gaps to be researched in future works. As noted, only a few works have
faced the problem of using data as time series. Sensors typically gather data in the time-
series format. Thus, we can envision this scenario as a task of anomaly detection in time
series. Anomaly detection is the problem characterized by identifying specific patterns or
events in data that are pretty different from the rest. Anomalies can arise in the data for
many reasons, and one of the most common examples is malicious activities, as in the case
of credit card fraud.

In manufacturing systems, reducing downtime is critical, and anomaly detection
enables PdM for downtime reduction. Recent works have addressed anomaly detection for
PdM supported by learning strategies on sequential data [2,39,106,115–118]. In the last few
years, several papers were published approaching Anomaly Detection with Time-Series
data applied to the most different domains, including industry, public water, and energy
systems, among many others [1,109,112,114,118–140].

Dealing with models high volume of time-series in real-time to perform anomaly
prediction is the major challenge. Moreover, currently used metrics are not feasible in
this context, and it will be indispensable to look for new alternatives that can efficiently
evaluate models.

The other essential line of action is to look for different DL algorithms and archi-
tectures like RNN, GAN, TL and RL. Recent works have proposed approaches based on
DL to resolve the problem of anomaly detection in time-series [28,125,127,139,141,142].
Nevertheless, new proposals in this research line will be necessary.

The last challenge would be to achieve the desired synergy between ML/DL methods
and RCA by gaining automatic reasoning power to explain causality, which these methods
by themselves are unable to perform.
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The following abbreviations are used in this manuscript:
AE Auto-Encoder
AE Auto-Encoder
AI Artificial Intelligence
ANN Artificial Neural Network
ARMA Auto-regressive Moving Average
ARIMA Auto-Regressive Integrated Moving Average
AUC-ROC Area Under Curve/Receiver Operating Characteristic
BN Bayesian Network
CNN Convolutional Neural Network
DBN Deep Belief Network
DBM Deep Boltzmann Machines
DCNN Deep Convolutional Neural Network
DL Deep Learning
DRL Deep Reinforcement Learning
DNN Deep Neural Networks
DT Decision Tree
DWT Discrete Wavelet Transformation
GAN Generative Adversarial Network
GBT Gradient Boosted Tree
GRU Gated Recurrent Units
IoT Internet of Things
KNN K-Nearest Neighbour
LSTM Long Short-Term Memory Network
LR Logistic Regression
MAE Mean Absolute Error
MAPE Mean Absolute Percentage Error
MCMC Markov Chain Monte Carlo
MDP Markov Decision Process
ML Machine Learning
MLP Multi-Layer Perceptron
MSE Mean Squared Error
MTBF Mean Time Between Failure
MTTF Mean Time To Failure
NN Neural Network
PCR Principal Component Regression
PhM Prognostic and Health Management
PdM Predictive Maintenance
PR Precision-Recall
QRF Quantile Regression Forests
ResCNN Residual Convolutional Neural Network
RBM Restricted Boltzmann Machines
RCA Root Cause Analysis
RL Reinforcement Learning
RF Random Forest
rFAR reduced False Alarm Rate
rIPR reduced Impostor Pass Rate
RMSE Root Mean Squared Error
RNN Recurrent Neural Network
RUL Remaining Useful Life
SCM Structural Causal Models
SST Synchro-Squeezing Transform
SVM Support Vector Machine
SVR Support Vector Regression
TL Transfer Learning
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