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Abstract: Internet of Things (IoT) can help to pave the way to the circular economy and to a more
sustainable world by enabling the digitalization of many operations and processes, such as water
distribution, preventive maintenance, or smart manufacturing. Paradoxically, IoT technologies and
paradigms such as edge computing, although they have a huge potential for the digital transition
towards sustainability, they are not yet contributing to the sustainable development of the IoT sector
itself. In fact, such a sector has a significant carbon footprint due to the use of scarce raw materials and
its energy consumption in manufacturing, operating, and recycling processes. To tackle these issues,
the Green IoT (G-IoT) paradigm has emerged as a research area to reduce such carbon footprint;
however, its sustainable vision collides directly with the advent of Edge Artificial Intelligence (Edge
AI), which imposes the consumption of additional energy. This article deals with this problem by
exploring the different aspects that impact the design and development of Edge-AI G-IoT systems.
Moreover, it presents a practical Industry 5.0 use case that illustrates the different concepts analyzed
throughout the article. Specifically, the proposed scenario consists in an Industry 5.0 smart workshop
that looks for improving operator safety and operation tracking. Such an application case makes use
of a mist computing architecture composed of AI-enabled IoT nodes. After describing the application
case, it is evaluated its energy consumption and it is analyzed the impact on the carbon footprint
that it may have on different countries. Overall, this article provides guidelines that will help future
developers to face the challenges that will arise when creating the next generation of Edge-AI G-IoT
systems.

Keywords: Green IoT; IIoT; edge computing; AI; edge AI; sustainability; digital transition; digital
circular economy; Industry 5.0

1. Introduction

The current digital transformation offers substantial opportunities to industry for
building competitive and innovative business models and complex circular supply chains;
however, such a transformation also implies severe implications concerning sustainability,
since the Information and Communications Technology (ICT) industry has a significant
environmental footprint. In order to reach the milestones defined by the United Nations
Agenda for Sustainable Development [1] and to implement the visions of circular economy,
it is necessary to provide solutions in an efficient and sustainable way during their whole
life cycle. Such a sustainable digital transition towards a smart circular economy is enabled
by three key technologies: IoT, edge computing, and Artificial Intelligence (AI).

It is estimated that Internet of Things (IoT) and Industrial IoT (IIoT) technologies,
which enable ubiquitous connectivity between physical devices, can add, only in industrial
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applications, USD 14 trillion of economic value to the global economy by 2030 [2]. In
addition, the development of the classic view of the Internet of People (IoP) [3] and the
Internet Protocol (IP) led to a convergence of IoT technologies over the last two decades,
which paved the way for the so-called Internet of Everything (IoE) [4]. Such a concept is
rooted in the union of people, things, processes, and data to enrich people’s lives.

The explosion of IoT/IIoT technologies and their potential to pave the way to a more
sustainable world (in terms of full control of the entire life cycle of products), can also lead
to some pitfalls that represent a major risk in achieving the milestones defined by the UN
Agenda for Sustainable Development [1]. As part of the IoT Guidelines for Sustainability
that were addressed in 2018 by the World Economic Forum, a recommendation to adopt
a framework based on the UN Sustainable Development Goals (SDGs) [1] to evaluate
the potential impact and measure the results of the adoption of such recommendations
was put forward [2]; however, in 2010–2019, and considering Goal 12: Ensure sustainable
consumption and production [1], electronic waste grew by 38% and less than 20% has been
recycled. Paradoxically, although these technologies have a huge potential for the digital
transformation towards sustainability, they are not yet contributing to the sustainable
development of the ICT sector. Specifically, such a contribution is expected for the IoT
sector, which has been seen as the driving force for a sustainable digital transition. The
need for policies that effectively promote the sustainable development of new products
and services is crucial and can be seen as a societal challenge in the years to come.

The concept of Green IoT (G-IoT) [5,6] is defined in [7] as: “energy-efficient procedures
(hardware or software) adopted by IoT technologies either to facilitate the reduction in the greenhouse
effect of existing applications and services or to reduce the impact of the greenhouse effect of the
IoT ecosystem itself ”. In the former case, the use of IoT technologies may help to reduce
the greenhouse effect, whereas the latter focuses on the optimization of IoT greenhouse
footprints. Moreover, the entire life cycle of a G-IoT system should focus on green design,
green production, green utilization, and finally, green disposal/recycling, to have a neutral
or very small impact on the environment [7].

IoT devices have increasingly higher computational power, are more affordable and
more energy-efficient, which helps to sustain the progress of Moore’s law to bring a
sustainable IoT revolution in the global economy [8]; however, this vision directly collides
with the advent of the concept of Edge Intelligence (EI) or Edge Artificial Intelligence
(Edge-AI), where the processing of the IoT collected data is performed at the edge of the
network, which imposes additional challenges in terms of latency, cybersecurity, and more
specially, energy efficiency.

This article summarizes the most relevant emerging trends and research priorities for
the development of Edge-AI G-IoT systems in the context of sustainability and circular
economy. In particular, the following are the main contributions of the article:

• The essential concepts and background knowledge necessary for the development of
Edge-AI G-IoT systems are detailed.

• The most recent Edge-AI G-IoT communications architectures are described together
with their main subsystems to allow future researchers to design their own systems.

• The latest trends on the convergence of AI and edge computing are detailed. Moreover,
a cross-analysis is provided in order to determine the main issues that arise when
combining G-IoT and Edge-AI.

• The energy consumption of a practical Industry 5.0 application case is analyzed to
illustrate the theoretical concepts introduced in the article.

• The most relevant future challenges for the successful development of Edge-AI G-IoT
systems are outlined to provide a roadmap for future researchers.

The remainder of this article is structured as follows. Section 2 introduces the essential
concepts that will be used in the article. Section 3 analyzes the main aspects related to
the development of G-IoT systems, including their communications architecture and their
main subsystems. Section 4 analyzes the convergence of AI and edge computing to create
Edge-AI systems. Section 5 provides a cross-analysis to determine the key issues that arise



Sensors 2021, 21, 5745 3 of 36

when combining G-IoT and Edge-AI systems. Section 6 presents a practical Industry 5.0
application case and evaluates the energy consumption of a mist computing Edge-AI G-IoT
model. Section 7 outlines the main future challenges that stand in the way of leveraging
Edge-AI G-IoT systems. Finally, Section 8 is devoted to the conclusions.

2. Background
2.1. Digital Circular Economy
2.1.1. Circular Economy

Circular Economy (CE) promotes an enhanced socio-economic paradigm for sustain-
able development. It aims to fulfill current needs without jeopardizing the needs of future
generations under three dimensions: economic, social, and environmental. The European
Green Deal [9], Europe’s new agenda for sustainable growth, is an ambitious action plan
to move to a clean circular economy, to restore biodiversity, to reduce emissions by at
least 55% by 2030, and to become the world’s first climate neutral continent by 2050. The
EC strategy is well aligned with the United Nations (UN) 2030 Agenda for Sustainable
Development [10]. The 17 Sustainable Development Goals (SDGs) are at the heart of the
EU policymaking across all sectors.

CE reforms current linear “take-make-dispose” economic models based on unsus-
tainable mass production and consumption and proposes a new model that is restora-
tive by design (materials, components, platforms, resources, and products add as much
value as possible throughout their life cycle). Such a model also aligns the needs of
the different stakeholders through business models, government policies, and consumer
preferences [11]. At the end of their lifetime, much of these products and components are
regenerated and/or recycled.

The European Commission adopted a new Circular Economy Action Plan (CEAP) in
March 2020, as one of the main key elements of the European Green Deal [12]. Such an
action plan promotes initiatives along the entire life cycle of products, from design to the
end of their lifetime, encouraging sustainable consumption and waste reduction. According
to the World Economic Forum [13], achieving a CE transition will require unprecedented
collaboration, given that, in 2019, only 8.6% of the world was circular, although CE can
yield up to USD 4.5 trillion in economic benefits in 2030 [14].

2.1.2. Digital Circular Economy (DCE)

Data centers and digital infrastructures require substantial levels of energy. ICT
accounts for 5 to 9% of the total electricity demand with a potential increase to 20% by
2030 [15]. In addition, materials (e.g., physical resources, raw materials) linked to the
digital transformation are also a problem: the world produces over 50 million tons of
electronic and electrical waste (e-waste) annually and just 20% is formally recycled. Such
an amount of waste will reach 120 million tons annually by 2050 [16].

The challenge posed by the increase in digital technologies requires the application
of circular economy principles to the digital infrastructure. While currently, the focus of
the sector is mainly on meeting the needs in a sustainable way (e.g., energy efficiency and
cybersecurity), the supply of critical raw materials will be an issue in the coming years.
Moreover, the opportunities provided by the DCE to the digital transition should be also
explored (e.g., new business models, new markets, and reduced information asymmetry).

2.1.3. G-IoT and Edge-AI for Digital Circular Economy (DCE)

Digital technologies are a key enabler for the upscaling of the circular economy, as
they allow for creating and processing data required for new business models and complex
circular supply chains. In addition, they can close the information and transparency gaps
that currently slow down the scale-up of DCE.

There is a need for further integration of digital enabling technologies such as func-
tional electronics (e.g., nanoelectronics, flexible, organic and printed electronics or electronic
smart systems), blockchain [17], edge computing [18], UAVs [19], 5G/6G [20], big data, and
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AI [21] into existing circular business approaches to provide information and additional
services.

Specifically, G-IoT and Edge-AI have the potential to substantially leverage the adop-
tion of DCE concepts by organizations and society in general in two main ways. First, by
considering an open G-IoT architecture [11], where G-IoT devices have circularity enabling
features (e.g., end-to-end cybersecurity, privacy, interoperability, energy harvesting capa-
bilities). Second, by having a network of Edge-AI G-IoT connected devices that provide
fast smart services and real-time valuable information to the different stakeholders (e.g.,
designers, end users, suppliers, manufacturers, and investors). Thus, supply chain visibility
and transparency of the product, of the production system, and the whole business, are
ensured. Moreover, stakeholders can rely on real-time accurate information to make the
right decisions at the right time to use resources effectively, to improve the efficiency of the
processes, and to reduce waste. Furthermore, asset monitoring and predictive maintenance
can increase product lifetime. Figure 1 illustrates the previous concepts and provides an
overall view of the main areas impacted by the combined use of G-IoT and Edge-AI.

Edge-AI
G-IoT

Systems

IoT Node 
Development and 

Deployment

Data Storage
Communications

Protocols

Remote
Processing 

Communications
Hardware

Communications
Infrastructure

Development

Prototyping

Design

Testing

Manufacturing
Distribution

Operation

Maintenance

Recycling

Figure 1. Edge-AI G-IoT main areas and their digital circular life cycle.

2.2. Industry 5.0 and Society 5.0

The Industry 5.0 paradigm is still being characterized by industry and academia, but
the European Commission has already defined its foundations, due to the impact that such
a concept will have in the coming years for the European industry [22]. The proposed
concept seeks to correct some Industry 4.0 aspects that have not been properly addressed
or that have become controversial due to forgetting essential values such as social fairness
and sustainability. Thus, according to the European Commission, the foundations of
Industry 5.0 have to be completely aligned with societal goals and to aim higher than
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just considering jobs and economic growth. As a consequence, Industry 5.0 is focused on
sustainable manufacturing and industrial operator well-being [23].

It is important to note that Industry 5.0 has not been conceived as a complete in-
dustrial revolution, but as a complement to Industry 4.0 that contemplates aspects that
link emerging societal trends to industrial development [24]; therefore, the Industry 5.0
paradigm looks for the improvement of smart factory efficiency through technology, while
minimizing environmental and social impacts.

It is also worth pointing out that the vision of Industry 5.0 according to the European
Commission seems to be clearly inspired by a previous concept: Society 5.0. Such a concept
was first put forward by the Japanese government in 2015 [25] and later (in 2016) it was
fostered by Keidanren, one of the most relevant business federations of Japan [26]. Society
5.0 goes beyond industrial company digitalization and proposes a collaborative strategy
for the whole Japanese society, as it happened throughout history with the four previous
society revolutions: Society 1.0 and Society 2.0 are related to hunters and gatherers; Society
3.0 is associated with the industrial revolution that occurred at the end of the 18th century;
and Society 4.0 arose from the information-based economies related to the spread of the
Internet and on industrial digitalization. As a continuation to Society 4.0, Society 5.0 still
looks for expanding economic development, but, at the same time, it keeps in mind societal
and environmental concerns.

2.3. Technology Enablers

In order to reach the UN Sustainable Development Goals and to implement the visions
of the digital circular economy, Society 5.0, and Industry 5.0, it is necessary to provide
solutions to integrate the physical and virtual worlds in an efficient and sustainable way.
Thus, the next subsections describe the three key technology enablers that this article is
focused on and that need to be optimized to make our daily lives and industrial processes
greener.

2.3.1. IoT and IIoT

The term IoT refers to a network of physical devices (i.e., “things”) that can be con-
nected among themselves and with other services that are deployed over the Internet. Such
devices are usually composed of sensors, actuators, communications transceivers, and
computationally constrained processing units (e.g., microcontrollers). IoT devices have
multiple applications in fields such as appliance remote monitoring [27], home automa-
tion [28], or precision agriculture [29]. The adaptation of the IoT principles to industrial
environments is referred to as IIoT and allows for deploying many remotely monitored
and controlled sensors, actuators, and smart machinery in industrial scenarios [30–32].

2.3.2. Cloud and Edge Computing

Most current IoT applications are already deployed on cloud computing based sys-
tems since they allow for centralizing data storage, processing, and remote monitor-
ing/interaction; however, such centralized solutions have certain limitations. The cloud
itself is considered a common point of failure, since attacks, vulnerabilities, or maintenance
tasks can block it and, as a consequence, the whole system may stop working [33]. In
addition, it is important to note that the number of connected IoT devices is expected to
increase in the next years [34] and, consequently, the number of predicted communications
with the cloud may overload it if it is not scaled properly.

Due to the previous constraints, in recent years, new architectures have been proposed.
In the case of edge computing, it is aimed at offloading the cloud from tasks that can be
performed by devices placed at the edge of an IoT network, close to the end IoT nodes.
Thus, different variants of the edge computing paradigm have been put forward, such as
fog computing [35], proposed by Cisco to make use of low-power devices on the edge, or
cloudlets [36], which consist of high-end computers that perform heavy processing tasks
on the edge [37,38].
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2.3.3. AI

AI is a field that looks for adding intelligence to machines [39]. Such intelligence
can be demonstrated in the form of recommendation systems, human-speech recognition
solutions, or autonomous vehicles that are able to make decisions on their own. The
mentioned examples are able to collect information from the real world and then process it
in order to provide an output (i.e., a solution to a problem). In some cases, AI systems need
to learn previously how to solve a specific problem, so they need to be trained.

In the case of IoT systems, AI systems receive data from the deployed IoT nodes,
which usually collect them from their sensors. In traditional IoT architectures, such data
are transmitted to a remote cloud where they are processed by the AI system and a result
is generated, which usually involves making a decision that is communicated to the user
or to certain devices of the IoT network.

The problem is that real-time IoT systems frequently cannot rely on cloud-based
architectures, since latency prevents the system from responding timely. In such cases, the
use of Edge-AI provides a solution: edge computing devices are deployed near the IoT end
nodes, so lag can be decreased, and IoT node requests are offloaded from the cloud, thus
avoiding potential communications bottlenecks when scaling the system.

Although Edge-AI is a really useful technology for IoT systems, their combination
derives into systems that can consume a significant amount of energy, so Edge-AI IoT
systems need to be optimized in terms of power consumption. The next sections deal
with such a problem: first, the factors that impact the development of energy-efficient (i.e.,
green) IoT systems are studied and then the power consumption of Edge-AI systems is
analyzed.

3. Energy Efficiency for IoT: Developing Green IoT Systems
3.1. Communications Architectures for G-IoT Systems

Before analyzing how G-IoT systems try to minimize energy consumption, it is first
necessary to understand which components make up an IoT architecture. Thus, Figure 2
depicts a cloud-based architecture, currently the most popular IoT architecture, which is
built around the cloud computing paradigm. Such a cloud collects data from remote IoT
sensors and can send commands to IoT actuators. The cloud is also capable of interacting
with third-party services (usually hosted in servers or other cloud computing systems) and
with remote users, to whom it provides management software.

Cloud-based IoT systems have allowed the spread of IoT systems, but, since they are
commonly centralized, they suffer from known bottlenecks (e.g., Denial of Service (DoS)
attacks) and from relatively long response latency [33]. To tackle such issues, in recent years,
new IoT paradigms have been explored, such as edge, fog, or mist computing [35,40], which
offload the cloud from certain tasks to decrease the amount of node requests and to reduce
latency response. In the case of edge computing, it adds a new layer between the cloud
and the IoT devices (where the gateway is placed in Figure 2) to provide them with fast-
response services through edge devices such as cloudlets or fog computing gateways [41].
Fog computing gateways are computationally constrained devices (e.g., routers and Single-
Board Computers (SBCs)) that provide support for physically distributed, low-latency,
and Quality of Service (QoS) aware applications [35,37]. Cloudlets allow for providing
real-time rendering or compute-intensive services, which require deploying high-end PCs
in the local network [36]. Regarding mist computing devices, they perform tasks locally at
the IoT nodes and can collaborate with other IoT nodes to perform complex tasks without
relying on a remote cloud [37,40,42–44]. Thus, mist nodes reduce the need for exchanging
data to the higher layers of the architecture (thus saving battery power), but, in exchange,
they are responsible for carrying out multiple tasks locally.
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Figure 3 depicts an example of mist computing based architecture. In this figure,
for the sake of clarity, no edge computing layer is included, but it is standard to make
use of it in practical applications [42]. The two layers that are present are the cloud layer,
which works similarly to the previously described architectures, and the mist computing
layer, which is composed by mist nodes. Such nodes embed additional hardware to
perform the necessary local processing tasks. In addition, it is worth noting that mist
nodes often can communicate directly among themselves, thus avoiding the need for using
intermediate gateways.

IoT Node Layer

IoT Devices

Gateway

Smart Bulb Smart Irrigator Temperature Sensor

Remote Users

Other IoT 
Networks

Cloud

IoT Services

Internet

Third-Party Services

Management
Software

Figure 2. Cloud-based IoT architecture.
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Figure 3. Example of mist computing architecture.

After analyzing the previous architectures, it can be stated that, to create G-IoT
systems, it is necessary to consider the efficiency of the hardware and software of their
main components: the IoT nodes, the edge computing devices, and the cloud. The next
sections delve into such a topic, reviewing the most relevant contributions of the state of
the art.

3.2. Types of G-IoT Devices

The development and deployment of efficient G-IoT devices is conditioned by their
hardware and software. It is also important to note that the requirements of the G-IoT
devices differ significantly: G-IoT nodes do not have the same energy consumption needs
as edge devices (e.g., fog computing gateways, cloudlets, Mobile Edge Computing (MEC)
hardware) or the cloud. Nonetheless, all the involved hardware have in common the
fact that it is essential to select the main parts that allow for optimizing their energy effi-
ciency (the control and power subsystems), and the communications interfaces. Regarding
software, the control software, the implemented communications protocols, and the used
security algorithms are essential when minimizing energy consumption. The next sub-
sections analyze such hardware and software components in order to guide future G-IoT
developers.

3.3. Hardware of the Control and Power Subsystems

There are different approaches to maximize the energy efficiency of IoT deployments.
One of the most important is to find the right trade-off between the different capabilities
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of the control hardware and their energy consumption. Currently, the most popular
IoT nodes are based on microcontrollers. Such devices are usually cheap, have enough
processing power to perform control tasks, can be easily reprogrammed, and have low-
energy consumption. There are other more sophisticated alternatives, such as Digital
Signal Processors (DSPs), System-On-Chips (SOCs), Central Processing Units (CPUs), Field-
Programmable Gate Arrays (FPGAs), Complex Programmable Logic Devices (CPLDs),
Graphics Processing Units (GPUs), and Application-Specific Integrated Circuits (ASICs).

DSPs are usually power efficient, especially certain models designed specifically
for low power consumption (e.g., Texas Instruments TMS320C5000). Central Processing
Units (CPUs) (e.g., Intel Xeon) are general-purpose processing units that offer an adequate
trade-off between performance and power consumption, but they are usually optimized
for high-speed and parallel processing. With respect to SoCs, they integrate medium-to-
high performance microcontrollers and peripherals, so they consume more power than
traditional microcontrollers, but they are more appropriate for lightweight systems. In the
case of FPGAs, they offer very good performance for executing deterministic tasks, but its
programming is not as easy as with microcontrollers, and they require to power the used
logic continuously. There are also hybrid solutions that combine the benefits of FPGAs
and CPUs, known as Field-Programmable Systems-on-Chips (FPSoCs) [45]. In the case
of CPLDs, they can execute tasks faster than FPGAs, but their maximum allowed design
complexity is inferior to the one offered by FPGAs. GPUs were created to offload graphic
computation from the CPUs, but current products can include several thousands of cores
designed for the efficient execution of complex functions. Regarding ASICs, they offer even
higher performance than FPGAs and other embedded devices, since they are optimized
for power consumption, but their development cost is very high (usually in the order of
millions of dollars).

Besides choosing the right control hardware, it is necessary to optimize the power
subsystems. Most current IoT node deployments rely on batteries. Such batteries can store a
finite amount of energy, and they need to be replaced or recharged frequently. Maintenance
tasks are costly and cumbersome, especially in large deployments, industrial confined
spaces, or remote areas. In addition, such tasks are critical when developing power-hungry
applications. Battery replacement also leads to a heavy carbon footprint due to the use
of scarce raw materials, the battery manufacturing process, and the involved recycling
processes; therefore, there is a need for self-sustainable solutions such as environmental
energy harvesting. Such solutions exploit ubiquitous energy sources in the deployment
area without requiring external power sources and ease maintenance tasks. The most
common harvesting techniques are related to solar and kinetic energy sources. Examples
of different energy harvesting techniques are presented in [46–49].

3.4. Communications Subsystem

G-IoT devices can make use of different technologies for their communications in-
terfaces. The communications with the cloud are usually through the Internet or a wired
intranet, so this section focuses on the energy efficiency of the wireless communications
technologies used by G-IoT nodes and edge devices. Table 1 compares the characteristics
of some of the most relevant communications technologies according to their power con-
sumption, operating band, maximum range, expected data rate, their relevant features,
and main applications.
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Table 1. Main characteristics of the most relevant communications technologies for G-IoT nodes.

Technology Power Consumption Frequency Band Maximum
Range Data Rate Main Features Popular Applications

NFC Tags require no batteries,
no power 13.56 MHz <20 cm 424 kbit/s Low cost Ticketing and payments

Bluetooth 5 LE
1–20 mW, Low power and

rechargeable (days to
weeks)

2.4 GHz <400 m 1360 kbit/s Trade-off among
different PHY modes Beacons, wireless headsets

EnOcean
Very low consumption or

battery-less thanks to using
energy harvesting

868–915 MHz 300 m 120 kbit/s Up to 232 nodes Energy harvesting building
automation applications

HF RFID Tags require no batteries 3–30 MHz
(13.56 MHz)

a few
meters <640 kbit/s NLOS, low cost Smart Industry, payments,

asset tracking

LF RFID Tags require no batteries 30–300 KHz
(125 KHz) <10 cm <640 kbit/s NLOS, durability, low

cost
Smart Industry and

security access

UHF RFID Batteries last from days to
years 30 MHz–3 GHz tens of

meters <640 kbit/s NLOS, durability, low
cost

Smart Industry, asset
tracking and toll payment

UWB/IEEE
802.15.3a

Low power, rechargeable
(hours to days) 3.1 to 10.6 GHz < 10 m >110 Mbit/s Low interference Fine location,

short-distance streaming

Wi-Fi (IEEE
802.11b/g/n/ac)

High power consumption,
rechargeable (hours) 2.4–5 GHz <150 m up to 433 Mbit/s

(one stream)

High-speed, ubiquity,
easy to deploy and

access

Wireless LAN connectivity,
Internet access

Wi-Fi
HaLow/IEEE

802.11ah

Power consumption of
1 mW 868–915 MHz <1 km 100 Kbit/s per

channel

Low power, different
QoS levels

(8192 stations per AP)
IoT applications

ZigBee

Very low power
consumption, 100–500µW,

batteries last months to
years

868–915 MHz,
2.4 GHz <100 m Up to 250 kbit/s Up to 65,536 nodes Smart Home and industrial

applications

LoRa Long battery life, it lasts
>10 years 2.4 GHz kilometers 0.25−50 kbit/s High range, resistant

to interference
Smart cities, M2M

applications

SigFox

Battery lasts 10 years
sending 1 message,
<10 years sending

6 messages

868–902 MHz 50 km 100 kbit/s Global cellular
network M2M applications

G-IoT node communications need to provide a trade-off between features and energy
consumption. For example, Near-field Communication (NFC) [50] is able to deliver a
reading distance of up to 30 cm, but NFC tags usually do not need to make use of batteries
since they are powered by the readers through inductive coupling. NFC is a technol-
ogy derived from Radio Frequency Identification (RFID), which, despite certain security
constraints [51], in recent years, has experienced significant growth in home and industrial
scenarios [52,53] thanks to its very low power consumption. It must be noted that RFID
and NFC are essentially aimed at identifying items, but they can be used for performing
regular wireless communications among G-IoT nodes (e.g., for reading embedded sensors).
Nonetheless, there are technologies that have been devised to provide more complex in-
teractions. For instance, Bluetooth implementations such as Bluetooth Low Energy (BLE)
can provide wireless communications distances between 10 and 100 m [54] and very low
energy consumption thanks to the use of beacons [55], which are a sort of lightweight IoT
devices able to transmit packets at periodic time intervals.

The widely popular Wi-Fi (i.e., IEEE 802.11 standards) can also provide indoor and
outdoor coverage easily and inexpensively for IoT nodes; however, its energy consumption
is usually relatively high and proportional to the speed rate. Nonetheless, new IEEE 802.11
standards have been proposed in recent years so as to reduce energy consumption. For
instance, Wi-Fi Hallow offers low power consumption (comparable with Bluetooth) while
maintaining high data rates, and a wider coverage range.

In terms of green communications, the following are currently the most popular and
promising technologies:

• ZigBee [56]. It was conceived for deploying Wireless Sensor Networks (WSNs) that
are able to provide overall low energy consumption by being asleep most of the time,
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just waking up periodically. In addition, it is easy to scale ZigBee networks, since they
can create mesh networks to extend the IoT node communications range.

• LoRA (Long-Range Wide Area Network) and LoRAWAN [57]. These technolo-
gies have been devised to deploy Wide Area IoT networks while providing low
energy consumption.

• Ultrawideband (UWB). It is able to provide low-energy wide-bandwidth communica-
tions as well as centimeter-level positioning accuracy in short-range indoor applica-
tions. Mazhar et al. [58] evaluate different UWB positioning methods, algorithms, and
implementations. The authors conclude that some techniques (e.g., hybrid techniques
combining both Time-of-Arrival (TOA) and Angle-of-Arrival (AOA)), although more
complex, are able to offer additional advantages in terms of power consumption
and performance.

• Wi-Fi Hallow/IEEE 802.11ah. In contrast to Wi-Fi, it offers very low energy con-
sumption by adopting novel power-saving strategies to ensure an efficient use of
energy resources available in IoT nodes. It was specifically created to address the
needs of Machine-to-Machine (M2M) communications based on many devices (e.g.,
hundreds or thousands), long range, sporadic traffic needs, and substantial energy
constraints [59].

3.5. Green Control Software

There is a significant number of recent publications that propose different techniques
and protocols for network control and power saving. For instance, there are G-IoT protocols
for interference reduction, optimized scheduling (e.g., switching selectively inactive sensor
nodes and put them into deep sleep mode), resource allocation and access control, temporal
and spatial redundancy, cooperative techniques in the network, dynamic transmission
power adjustment, or energy harvesting [6].

Power-efficient network routing is also a hot topic. For instance, Xie et al. [60] re-
viewed recent works on energy-efficient routing and propose a novel method for relay node
placement. Other authors focused on solutions for service-aware clustering [61]. Another
interesting work can be found in [62], where the authors present an energy-efficient IoT
architecture able to predict the adequate sleep interval of sensors. The experimental results
show significant energy savings for sensor nodes and improved resource utilization of
cloud resources. Nonetheless, this solution is not valid for applications with real-time
requirements or that require constant availability. Finally, recent approaches such as [63]
proposed solutions that combine distributed energy harvesting-enabled mobile edge com-
puting offloading systems with on-demand computing resource allocation and battery
energy level management.

3.6. Energy Efficient Security Mechanisms

A number of attacks can be performed to break the confidentiality, integrity, and
availability of IoT/IIoT networks (e.g., jamming, malicious code injection, Denial of Service
(DoS) attacks, Man-in-the-Middle (MitM) attacks, and side-channel attacks) [64]. In order
to have protection for such attacks, secure deployment of G-IoT networks should involve
three main elements: architecture, hardware, and the security mechanisms across the
different devices.

The resource-constrained nature of IoT devices, specially IoT nodes, imposes limita-
tions on the inclusion of complex protocols to encrypt and secure communications [65].
This is particularly challenging when implementing cryptosystems that require substan-
tial computational resources. Hash functions, symmetric cryptography, and public-key
cryptosystems (i.e., asymmetric cryptographic systems such as Rivest–Shamir–Adleman
(RSA) [66], Elliptic Curve Cryptography (ECC) [67,68], or Diffie–Hellman (DH) [69]) are
among the most used cryptosystems.

Public-key cryptosystems are essential for authenticating transactions and are part
of Internet standards such as Transport Layer Security (TLS) (TLS v1.3 [70]), currently the
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most-extended solution for securing TCP/IP communications. Regarding cipher suites
recommended for TLS, Rivest–Shamir–Adleman (RSA) and Elliptic Curve Diffie–Hellman
Ephemeral (ECDHE) are the most popular ones.

The execution of cryptographic algorithms must be fast and energy efficient, but still
provide adequate security levels. Such a trade-off has attracted scientific attention, which
is currently an active area of research [71], especially since recent advances in computation
have made it easy to break certain schemes (e.g., 1024-bit RSA is broken [72]); however,
there are few articles in the literature that address the impact of security mechanisms on
energy consumption for G-IoT systems. For instance, in [42], the authors compare the
energy consumption of different cryptographic schemes, showing that, at the same security
level, some schemes are clearly more efficient in terms of energy and data throughput than
others when executed on certain IoT devices.

Moreover, hardware acceleration can be used for keeping energy consumption and
throughput values at a reasonable level when executing public-key cryptography algo-
rithms [73]. Furthermore, the use of specific hardware can also speed up the execution of
cryptographic algorithms such as hash algorithms [74] or block ciphers [75].

3.7. G-IoT Carbon Footprint

The concept of carbon footprint (or carbon dioxide emissions coefficient) measures the
amount of greenhouse gases (including CO2) caused by human or non-human activities. In
the case of the development and use of a technology, it involves a carbon footprint related
to its life cycle: from the design stage to the recycling of products. This is especially critical
for IoT, since a large number of connected devices is expected in the coming years (up to
30.9 billion in 2025 [76]), which will consume a significant amount of electricity and, as a
consequence, a high volume of carbon dioxide will be emitted into the environment. G-IoT
has emerged as an attractive research area whose objective is to study how to minimize the
environmental impact related to the deployment of IoT networks in smart homes, factories,
or smart cities [77].

The following are some of the challenges that must be faced in order to reduce IoT
network carbon footprint and environmental impact [78,79]:

• Hardware power consumption. The used IoT hardware is the basis for the IoT network,
so its energy consumption should be as energy efficient as possible while preserving
its functionality and required computing power.

• IoT node software energy consumption. Software needs to be optimized together with
the hardware, so developers need to introduce energy-aware constraints during the
development of G-IoT solutions. Such optimizations are especially critical for certain
digital signal processing tasks such as compression, feature extraction, or machine
learning training [80].

• IoT protocol energy efficiency. The IoT relies on protocols that enable communicating
between the multiple nodes and routing devices involved in an IoT network. As a
consequence, such protocols need to be energy efficient in terms of software implemen-
tation and should consider the minimization of the usage of communication interfaces.
For instance, Peer-to-Peer (P2P) protocols are well-known for being intensive in terms
of the number of communications they manage, although some research has been
dedicated to reducing their energy consumption [81–85].

• RF spectrum management optimization. The increasing number of deployed IoT
nodes will derive into the congestion of the RF spectrum, so its management will need
to be further optimized to minimize node energy consumption [77].

• Datacenter sustainability. As the demand for IoT devices grows, ever-increasing
amounts of energy are needed to power the datacenters where remote cloud services
are provided. This issue is especially critical for corporations such as Google or Mi-
crosoft, which rely on huge data centers and, in fact, the U.S. Environmental Protection
Agency (EPA) already warned about this problem in 2007 [86]. As a consequence of
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such a warning, carbon footprint estimations were performed in order to determine
the emissions related to the construction and operation of a datacenter [87].

• Data storage energy usage. In cloud-centric architectures, most of the data are stored
in a server or in a farm of servers in a remote datacenter, but some of the latest
architectures decentralize data storage to prevent single-point-of-failure issues and
avoid high operation costs. Thus, for such decentralized architectures, G-IoT requires
minimizing node energy consumption and communications. This is not so easy,
since devices are physically scattered, and they usually make use of heterogeneous
platforms whose energy optimization may differ significantly.

• Use of green power sources. IoT networks can become greener by making use of
renewable power sources from wind, solar, or thermal energy. IoT nodes can also
make use of energy-harvesting techniques to minimize their dependence on batteries
or extend their battery life [46–49]. Moreover, battery manufacturing and end-of-life
processes have their own carbon footprint and impact the environment with their
toxicity. Furthermore, IoT architectures can be in part powered through decentralized
green smart grids, which can collaborate among them to distribute the generated
energy [78].

• Green task offloading. Traditional centralized architectures have tended to offload
the computing and storage resources of IoT devices to a remote cloud, which requires
additional power consumption and network communications that are proportional to
the tasks to be performed and to the latency of the network. In contrast, architectures
such as the ones described in Section 3.1, can selectively choose which tasks to offload
to the cloud. Thus, most of the node requests are processed in the edge of the network,
which reduces latency and network resource consumption due to the decrease in the
number of involved gateways and routers [88]. Nonetheless, G-IoT designers must be
aware of the energy implications of decentralized systems [89].

4. AI and Edge Computing Convergence

As previously mentioned in Section 2.3.3, AI can be broadly defined as a science
capable of simulating human cognition to incorporate human intelligence into machines.
Machine Learning (ML) can be seen as a specific subset of AI, as a technique for training
algorithms that focuses on empowering computer systems with the ability to learn from
data, perform accurate predictions, and therefore, make decisions. The training stage in ML
involves the collection of huge amounts of data (train set) to train an algorithm that allows
the machine to learn from the processed information. Then, after training, the algorithm
is used for inference in new data [90]. Deep Learning (DL) is a subset of ML that can
be seen as the natural evolution of ML. DL algorithms are inspired by the human brain
cognitive processing patterns (i.e., by its ability for pattern identification and classification),
using DL algorithms that are trained to perform the same tasks in computer systems. By
analogy, the human brain typically attempts to interpret a new pattern by labeling it and
performing subsequent categorization [91]. Once new information is received, the brain
attempts to compare it to a known reference before reasoning, which is conceptually what
DL algorithms perform (e.g., Artificial Neural Networks (ANNs) algorithms aim to emulate
the way the human brain works). In [91], Samek et al. identified two major differences
between ML and DL:

1. DL can automatically identify and select the features that will be used in the clas-
sification stage. In contrast, ML requires the features to be provided manually (i.e.,
unsupervised vs. supervised learning).

2. DL requires high-end hardware and large training data sets to deliver accurate
results, as opposed to ML, which can operate in low-end hardware with smaller
data sets in the training stage (i.e., ML is typically adopted in resource contained
embedded hardware).
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The use of such AI techniques is highly dependent, not only on the hardware spec-
ifications and the available computational power, but also on the adopted inference ap-
proach [92].

4.1. AI-Enabled IoT Hardware

AI-enabled IoT devices are paving the way to implement new and increasingly com-
plex cyber–physical systems (CPS) in distinct application domains [93–95]. The increasing
complexity of such devices is typically specified based on SWaP requirements (i.e., re-
duced Size, Weight, and Power) [96]. When considering the IoT/IIoT ecosystems, changes
in SWaP requirements, and also in unit cost, may impact the overall performance and
functionality of the end devices, since the number of devices tends to increase at a steady
pace, the cost per unit becomes more and more relevant. Note that the number of devices
deployed is expected to increase massively in the coming years, with many of these devices
operating as sensors and/or actuators, which will demand increasing processing power
enabling effective edge AI deployment. On the other hand, portability is also relevant,
and therefore, power will often come from an external battery or an energy harvesting
subsystem, which imposes several challenges in the design of AI-enabled IoT devices. For
example, in [97], a study regarding low-power ML architectures has been put forward
and results have shown that sub-mW power consumption can potentially be deployed in
“always-ON” AI-enabled IoT nodes.

4.1.1. Common Edge-AI Device Architectures

The G-IoT hardware previously described in Section 3.2 has evolved in recent years as
illustrated in Figure 4 in order to provide AI-enable functionality. Thus, basic IoT hardware
(represented at the top of Figure 4), typically uses a traditional computing approach
that combines an embedded processor (CPU) or a microcontroller (MCU) with on-board
memory, sensor/actuator interfacing—digital (e.g., SPI, I2C, 1-Wire) and analog (ADCs,
DACs) inputs/outputs—and basic connectivity (e.g., Wi-Fi, Bluetooth).

AI-enabled IoT device architectures (depicted in the middle of Figure 4), use a near-
memory computing approach based on a multicore CPU or FPGA, and typically includes
external sensors and actuators, and extended connectivity options such as NB-IoT, Lo-
RaWAN, or 5G/6G support.

Lastly, an AI-specific IoT device also includes cognitive capabilities and typically uses
an in-memory computing approach, which may be supported by a dedicated AI SoC,
specifically included to execute learning algorithms (this architecture is depicted at the
bottom of Figure 4). IoT devices are getting increasingly powerful and computationally
efficient as new SoCs with integrated AI chips become available. For example, the usage of
FPGAs in AI-enabled IoT devices allows high-speed inference, parallel execution, and the
implementation of application-specific computational architectures without the need for
expensive ASICs; however, the total power consumption may be a problem when using
FPGAs in power-sensitive applications [96].
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Figure 4. Basic, AI-enabled and AI-specific IoT device architectures.

4.1.2. Embedded AI SoC Architectures

Embedded AI SoCs are used in specific IoT architectures [98], allowing for the exe-
cution of ML algorithms directly on the end device, and therefore detecting patterns and
trends in data, and enabling the transmission of low-bandwidth data streams with contex-
tual information to enhance decision-making and empower prognosis throughout the use
in-device prediction models and ML, as it is represented at the bottom in Figure 4. In [96],
Mauro et al. achieved high performance in power saving for both logic and SRAM design,
using Binary Neural Networks (BNNs). BNNs enable the deployment of deep models on
resource-constrained devices [99], because they may be trained to produce outcomes com-
parable to full-precision alternatives while maintaining a smaller footprint, a more scalable
structure, and better error resilience. Such characteristics enable the implementation of com-
pletely programmable SoC IoT end-devices capable of performing hardware-accelerated
and software-defined algorithms at ultra-low power, reaching 22.8 Inference/s/mW while
using 674 µW [98].

4.1.3. AI-Enabled IoT Hardware Selection Criteria

Running an AI model at an AI-enable IoT device presents four main advantages when
compared with the classical cloud-based approach:

1. Reliable Connectivity: data can be gathered and processed on the same device instead
of relying on a network connection to transmit data to the cloud, which reduces the
probability of network connection problems.

2. Reduced Latency: when processing is performed locally, all communications-related la-
tencies are avoided, resulting in an overall latency that converges to the inference latency.
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3. Increased Security and Privacy: reducing the need for communicating between the
IoT edge device and the cloud means reducing the risk that data will be compromised,
lost, stolen, or leaked.

4. Bandwidth Efficiency: reducing the communications between IoT edge devices and
the cloud, also reduces bandwidth needs and the overall communications cost.

Table 2 compiles several AI-enabled IoT hardware boards that are able to run ML libraries,
such as Tensorflow Lite [100]. TensorFlow Lite is an open-source ML library specifically
designed for resource-constrained IoT devices, that typically use MCU-based architectures.

Table 2. AI-enabled IoT hardware compatible with TensorFlow Lite.

Board Processor Power Connectivity Architecture Type Cryptographic Engine Cost

Arduino Nano 33

BLE Sense
[101]

ARM Cortex-M0

32-bit@64 MHz
52 µA/MHz BLE AI-enabled Yes €27

SparkFun Edge [102]
ARM Cortex-M4F

32-bit@48/96 MHz
6 µA/MHz BLE 5 AI-enabled Yes €15

Adafruit EdgeBadge [103]
ATSAMD51J19A

32-bit@120 MHz
65 µA/MHz BLE/WiFi AI-enabled Yes €35

ESP32-DevKitC [104]
Xtensa dual-core

32-bit@160/240 MHz
2 mA/MHz BLE/WiFi AI-enabled Yes €10

ESPEYE-DevKit [105]
Xtensa dual-core

32-bit@160/240 MHz
2 mA/MHz BLE/WiFi AI-enabled Yes €50

STM32 Nucleo-144 [106]

ARM Cortex-M4

Nucleo-L4R5ZI

32-bit@160/120 MHz

43 µA/MHz Ethernet AI-enabled No €100

4.2. Edge Intelligence or Edge-AI

Typically, in cloud-centric architectures, IoT devices can transfer data to the cloud
using an Internet gateway. In this architecture, the raw data produced by IoT devices are
pushed to a centralized server without processing; however, since IoT devices are becoming
more efficient and powerful, new possibilities arise at the network edge, enabling real-time
intelligent processing with minimal latency. Edge Intelligence (EI) or Edge-AI are the
common names given to this approach, and its performance is often expressed in terms of
model accuracy and overall latency [107].

A common IoT device (also known as a “dumb” device) tends to generate large
quantities of raw and low-quality data, which may have no operational relevance. In
most cases, data are noisy, intermittent, or change slowly, being useless in specific periods.
Moreover, the management and transmission of these useless data streams consume
vital power and tend to be bandwidth-intensive. On the other hand, the inclusion of
in-device/edge intelligence results in the reduction in the data dimension by turning
data into relevant information, lowering power consumption, latency, and the overall
bandwidth needs. Intelligence at the edge of the network enables the distribution of the
computational cost among edge devices. In this computational approach, data can be
classified and aggregated before its transmission up to the cloud. By using this approach,
only information with historical value is archived, which can be later used for tuning
prediction models and optimizing the cloud-based processing.
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4.2.1. Model Inference Architectures

The three major Edge-AI computing paradigms are [108]:

(i) On-device computation: it relies on AI techniques (e.g., Deep Neural Networks
(DNNs)) that are executed on the end device.

(ii) Edge-based computation: it computes on edge devices the information collected from
end devices.

(iii) Joint computation: it allows for processing data on the cloud during training and
inference stages.

Given the limited resources that are typically available in most IoT devices, bringing
AI to the edge can be challenging. Reducing model inference time has been implemented
successfully at the cost of decreasing the overall model inference accuracy. According to
Merenda et al. [109], to effectively run an AI model (after the compression stage) in an
embedded IoT device, the hardware selection must be carefully performed.

4.2.2. Edge-AI Levels

Besides the well-known Cloud Intelligence (CI), which consists in training and in-
ferencing the DNN models fully in the cloud, EI, as described in [110], can be classified
into the six levels depicted in Figure 5. The quantity of data sent up to the cloud tends
to decrease as the level of EI increases, resulting in lower communications bandwidth
and lower transmission delay; however, this comes at the cost of increased computational
latency and energy consumption at the network’s edge (including IoT nodes), implying
that the EI level is application-dependent and must be carefully chosen based on several
criteria: latency, energy efficiency, and privacy and communications bandwidth cost.

Inference and training are the two main computing stages in an NN. Depending on the
Edge-AI level (as illustrated in Figure 5), the computational power is typically distributed
between the IoT node or the edge layer, which requires increased computational power. In
recent years, AI-specific hardware accelerators have enhanced high-performance inference
computation at the edge of the network, namely in embedded and resource-constrained
devices. For example, in [111], Karras et al. present an FPGA-based SoC architecture to
accelerate the execution of ML algorithms at the edge. The system presents a high degree
of flexibility and supports the dynamic deployment of ML algorithms, which demonstrate
an efficient and competitive performance of the proposed hardware to accelerate AI-based
inference at the edge. Another example is presented in [112] by Kim et al., where they
propose a co-scheduling method to accelerate the convolution layer operations of CNN
inferences at the edge by exploiting parallelism in the CNN output channels. The developed
FPGA-based prototype presented a global performance improvement of up to 200%, and
an energy reduction between 14.9% and 49.7%. Finally, in [113], the authors introduce
NeuroPipe, a hardware management method that enables energy-efficient acceleration
of DNNs on edge devices. The system incorporates a dedicated hardware accelerator
for neural processing. The proposed method enables the embedded CPU to operate
at lower frequencies and voltages, and to execute faster inferences for the same energy
consumption. The provided results show a reduction in energy consumption of 11.4% for
the same performance.
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4.2.3. Embedded ML

Conventional IoT devices are ubiquitous and low-cost, but natively resource-constrained,
which limits their usage in ML tasks; however, data generated at the edge are increasingly
being used to support applications that run ML models. Until now, edge ML has been
predominantly focused on mobile inference, but recently several embedded ML solutions
have been developed to operate in ultra-low-power devices, typically characterized by
its hard resource constraints [97]. Recently, a new field of ML, known as Tiny ML, was
put forward to enable inference at the edge endpoints. ML inference at the edge can
optimize the overall computational resource needs, increases privacy within applications,
and enhances system responsiveness. TinyML, which has been coined due to its ML infer-
ence power consumption of under a milliWatt, overcomes the power limitations of such
devices, enabling low-power and low-cost distributed machine intelligence. TinyML is
an open-source ML framework specifically designed for resource-constrained embedded
devices. It is fully compatible with several low-cost, globally accessible hardware platforms
and was designed to streamline the development of embedded ML applications [114].

TinyML technologies and applications target battery-operated devices, including
hardware, algorithms, and software for on-device inference and data analytics at the edge.
In [115], MLCommons, an open engineering consortium, presented a recent benchmark
(MLPerf™ Tiny Inference v0.5). This inference benchmark suite targets ML use cases
on embedded devices by measuring how rapidly a trained NN can process new data in
ultra-low-power devices. Embedded ML is a new field in which AI-based sensor data
analytics is carried out near to where the data are collected in real time. The benchmark
presented in [115] focuses on a number of use cases that rely on tiny NNs (i.e., models
lower than 100 kB) to analyze sensor data such as audio and video to provide intelligence
at the edge of the network. The benchmark consists of four ML tasks that include the use
of microphone and camera sensors in different embedded devices:
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1. Visual Wake Words (VWW): classification task for binary images that detects the pres-
ence of a person. For instance, an application use case is in-home security monitoring.

2. Image Classification (IC): small image classification benchmark with 10 classes, with
several use cases in smart video recognition applications.

3. Keyword Spotting (KWS): uses a neural network to detect keywords from a spectro-
gram, with several use cases in consumer end devices, such as virtual assistants.

4. Anomaly Detection (AD): uses a neural network to identify anomalies in machine
operating sounds, and has several application cases in industrial manufacturing (e.g.,
predictive maintenance, asset tracking, and monitoring).

This benchmark aims to measure performance for ML in embedded systems, which
operate at a microwatt level and include cameras, wearables, smart sensors, and other IoT
devices that demand a certain level of intelligence. Thus, the objective of the benchmark
is to measure the performance of such constrained systems in order to achieve higher
efficiency over time. The results have been reported based on the embedded ML approach
and its hardware and software. Table 3 compares the benchmark results for distinct
embedded hardware when running a trained model by measuring the processing latency
in milliseconds (i.e., how fast systems can process inputs to produce a valid result) and the
respective consumed energy in µJ [116].

4.3. Edge-AI Computational Cost

Computation needs for AI are growing rapidly. Recent numbers show that large AI
training runs are doubling every 3.5 month and, since 2012, the computational needs have
increased by more than 300,000 times [117]. In recent years, a lot of effort has been put into
increasing AI accuracy and, especially with DL, accuracy has increased at a steady pace.
This increase in accuracy has been very important in making AI a reality in real-world
applications; however, to run such high accuracy models, more and more computational
resources need to be considered. In the short and medium term, AI will face major
challenges that put its sustainability and ecological footprint into perspective. Due to the
explosion of its use in several application domains, increased pressure on computational
resources is already happening, not only to train but also to run these models, which are
increasingly more accurate but also, computationally heavier.

Due to this novel and more sustainable practices regarding AI implementation and
deployment are yet to come. In [118], Schwartz et al. introduced the concepts of Red and
Green AI, as a way to clarify and distinguish the two major currents AI approaches.

Red AI is known for relying on large models and datasets, as its performance is
typically evaluated through accuracy, which is usually obtained through the use of massive
processing power. In this context, the relation between model performance and model
complexity is known to be logarithmic (i.e., an exponentially bigger model is required for a
linear improvement in performance [119]). Furthermore, the quantity of training data and
the number of tuning experiments, present the same exponential growth [118]. In each of
these cases, a small performance improvement comes at an increased computational cost.

Green AI, on the other hand, focuses on achieving results without increasing or,
preferably, lowering computational costs. Unlike Red AI, which results in rapidly increasing
computing costs and, as a result, a rising carbon footprint, Green AI has the opposite
effect [118]. In Green AI, efficiency is usually prioritized over accuracy when evaluating
performance. As a result, Green AI focuses on model efficiency, which includes the amount
of effort necessary to create a given result using AI, the amount of work required to train a
model, and, if appropriate, the total of all tuning experiments. Efficiency may be assessed
using a variety of metrics, including carbon emissions, power consumption, real-time
elapsed time, number of parameters, and so on.
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Table 3. MLPerf™ Tiny Inference v0.5 benchmark results. Data from [115].

ID Submitter Device Processor Software

Results

Task #1 - VWW #2 - IC #3 - KS #4 - AD

Data Visual Wake
Words Dataset CIFAR-10 Google Speech

Commands
ToyADMOS

(ToyCar)

Model MobileNetV1
(0.25x) ResNet-V1 DSCNN FC

AutoEncoder

Accuracy 80%
(Top 1)

85%
(Top 1)

90%
(Top 1)

0.85
(AUC)

Units Latency
(ms)

Energy
(uJ)

Latency
(ms)

Energy
(uJ)

Latency
(ms)

Energy
(uJ)

Latency
(ms)

Energy
(uJ)

0.5-464 Harvard
(Reference) Nucleo-L4R5ZI Arm Cortex

M4 w/ FPU
Tensorflow Lite
for Microcontrollers 603.14 24,320.84 704.23 29,207.01 181.92 7373.70 10.40 416.31

0.5-465 Peng Cheng
Laboratory PCL Scepu02 RV32IMAC

with FPU

TensorFlowLite
for Microcontrollers
2.3.1 (modified)

846.74 - 1239.16 - 325.63 - 13.65 -

0.5-466 Latent AI RPi 4 Broadcom
BCM2711 LEIP Framework 3.75 - 1.31 - 0.39 - 0.17 -

0.5-467 Latent AI RPi 4 Broadcom
BCM2711 LEIP Framework 2.60 - 1.07 - 0.42 - 0.19 -
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4.4. Measuring Edge-AI Energy Consumption and Carbon Footprint

The overall cost of using AI can be obtained by considering the resources involved in
all processing stages, which include energy consumption and CO2 emissions.

4.4.1. Energy Consumption

In [120], Pinto et al. define energy consumption as an accumulation of power dissipa-
tion over time:

Energy Consumption = P × t (1)

Note that Energy Consumption is measured in joules and Power (P) is measured in
watts. The relationship between these two quantities can be easily interpreted through an
example: if a software program takes 5 s to execute and dissipates 5 watts, it consumes
25 joules of energy. In the case of software energy consumption, attention must be paid not
only to the software under execution, but also to the hardware that executes the software,
the environmental context of execution, and its duration.

4.4.2. CO2 Emissions

In [121], Strubell et al. presented a study that focused on the estimation of the financial
and environmental cost of training a variety of recently successful NN models. To estimate
CO2 emissions (CO2e), they proposed a simple method based on the multiplication of the
energy consumption with the average produced CO2. After measuring the CO2e for several
models using different hardware, they concluded that the CO2 required for training one
model can range from 12 kg up to 284 t. Note that this CO2e footprint is highly significant
when compared with the world average CO2 emissions per capita, whose estimate was
4.56 t in 2016 [122]. Moreover, they evaluated the cost of training these models in the cloud,
which raised from USD 41 up to USD 3,201,722, respectively.

4.5. Measuring Edge-AI Performance

Although this article focuses on Edge-AI sustainability, there are other factors that
should be considered during the evaluation of the performance of an Edge-AI system.
Specifically, four main metrics are often used for the performance evaluation of AI algo-
rithms [123]: accuracy, memory bandwidth, energy efficiency, and execution time.

4.5.1. Accuracy

Classification accuracy is the simplest performance metric and is commonly used with
balanced datasets (i.e., the number of samples per class is balanced). Accuracy is defined
as the number of correct predictions, divided by the total number of predictions, and is
implemented by comparing the annotated ground truth data with the predicted results:

Accuracy =
tp + tn

tp + tn + f p + f n
(2)

where tp represents the true positives, tn the true negatives, f p are the false positives, and
f n the false negatives. Note that, if unbalanced data are considered (i.e., the number of
samples per class is not balanced), a new accuracy metric, known as balanced accuracy,
should be computed. The balanced accuracy is computed by normalizing tp and tn by the
number of positive and negative samples, respectively, then perform their sum, and divide
by two, as indicated in Equation (3):

Balanced accuracy =
TP + TN

2
(3)

where TP represents the normalized true positives and TN the normalized true negatives;
however, a fair performance evaluation between algorithms should not only rely on the
accuracy, as Red AI tends to favor.
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4.5.2. Memory Bandwidth

In [124], Jouppi et al. compare the performance of several processors used by Google
cloud-based systems on inference tasks when running various types of NNs. The anal-
ysis uses a roofline model, where the performance of the algorithms is plotted based on
the computational performance (operations per second) versus the operational intensity
(number of operations per byte of data). Typically, in cloud-based architectures, the overall
performance is limited by the memory bandwidth, and as the operational intensity tends to
increase, the performance is limited by the computational capacity of the computer system
architecture. Recent hardware architectures, notably SoC architectures, are focused on
increasing the memory bandwidth to address the continuously growing demand of AI [98].

4.5.3. Energy Efficiency

A simple metric that can be used to measure the software energy efficiency is presented
in [123] and is shown in Equation (4). In Edge-AI, the useful work performed can be defined
as the number of model inferences. As a result, Energy Efficiency can be measured as the
number of inferences per Joule.

Energy Efficiency =
Useful Work Performed

Energy Consumption
=

Number of Inferences
Energy Consumption

(4)

4.5.4. Execution Time

This metric represents the execution time of a specific task in the ML process to
obtain a valid result, which may include, model training or model inference [123], and
are measured in seconds, being typically referred as the “training time” and “inference
time”, respectively.

5. Cross-Analysis of G-IoT and Edge-AI: Key Findings

Although Edge-AI G-IoT system deployment in real-world applications has already
started, the research and development are still undergoing, and some issues compromise
its wider acceptance, of which we highlight: trustworthiness (e.g., algorithm transparency,
traceability, privacy, and data integrity); capacity (e.g., communications bandwidth and
coverage, hardware constraints such as power and computational power, security in
edge distributed architectures); heterogeneity (e.g., dealing with distinct data sources
and formats as well as adapting with a variety of operational, technical, and human
requirements); and scale (e.g., inadequate volume of publicly available data, high-quality
data required to effectively simulate the physical world’s complexity). In addition, the
cross-analysis of the G-IoT and Edge-AI literature allows for obtaining the following key
findings that can be useful for future developers and researchers:

• Communications between G-IoT nodes and Edge-AI devices are essential, so develop-
ers should consider the challenges related to the use of energy efficient transceivers
and fast-response architectures. Thus, researchers need to contemplate aspects such
as the use of low-power communications technologies (e.g., ZigBee, LoRa, UWB, and
Wi-Fi Hallow), the management of the RF spectrum or the design of distributed AI
training, learning algorithms, and architectures that achieve low-latency inference
(either distributed or decentralized [107]).

• Although the most straightforward way to implement Edge-AI systems is to deploy
the entire model on edge devices, which eliminates the need for any communica-
tions overhead, when the model size is large or the computational requirements
are very high, this approach is unfeasible and it is necessary to include additional
techniques that involve the cooperation among nodes to accomplish the different AI
training and inference tasks (e.g., federated learning techniques [107]). Such tech-
niques should minimize the network traffic load and communications overhead in
resource-constrained devices.
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• Edge-AI G-IoT systems should consider that the different nodes of the architecture
(e.g., mist nodes, edge computing devices, and cloudlets) have heterogeneous capabili-
ties in terms of communications, computation, storage, and power; therefore, the tasks
to be performed should be distributed in a smart way among the available devices
according to their capabilities.

• Besides heterogeneity, developers should take into account that G-IoT node hardware
constrains the performance of the developed Edge-AI systems. Such hardware must
be far more powerful than traditional IoT nodes and provide a suitable trade-off
between performance and power consumption. In addition, such hardware should be
customized to the selected Edge-AI G-IoT architecture and application.

• Currently, most G-IoT systems rely on traditional cloud computing architectures,
which do not meet some of the needs of Edge-AI G-IoT applications in terms of
high availability, low latency, high network bandwidth, and low power consumption.
Moreover, current cloud-based approaches may be compromised by cyberattacks;
therefore, new architectures such as the ones based on fog, mist, and edge computing
should be considered to increase the robustness against cyberattacks and to allow
for choosing which AI tasks to offload to the cloud, if any, while reducing network
resource consumption.

• Green power sources and energy-harvesting capabilities for Edge-AI G-IoT systems
still need to be studied further. Although batteries are typically used to meet power
requirements, future developers should analyze the use of renewable power sources or
energy-harvesting mechanisms to minimize energy consumption. In addition, the use
of decentralized green smart grids for Edge-AI G-IoT architectures can be considered.

• High-security mechanisms are usually not efficient in terms of energy consumption,
so it is important to analyze their performance and carry out practical energy mea-
surements for the developed Edge-AI G-IoT systems.

• Developers should consider using energy efficiency metrics for the developed AI
solutions. For instance, in [123] the authors propose four key indicators for an objective
assessment of AI models (i.e., accuracy, memory bandwidth, energy efficiency, and
execution time). The trade-off between such metrics will depend on the environment
where the model will be employed (e.g., "increased safety" scenarios impose low
execution time).

6. Application Case: Developing a Smart Workshop
6.1. Workshop Characterization and Edge-AI System Main Goals

To illustrate the concepts described in the previous sections, it was selected a practical
Industry 5.0 use case in a real-world scenario. Specifically, the selected Industry 5.0 scenario
consists in an industrial workshop that looks for improving operator safety through IIoT
sensors/actuators and Edge-AI. The chosen scenario is based on the previous work of the
authors [125–127], which participated in a Joint Research Unit together with one of the
largest shipbuilders in the world (Navantia). The specific scenario is the pipe workshop
that such a company owns in its shipyard in Ferrol (Spain). The workshop manufactures
pipes as follows:

1. First, raw pipes are stored in the Reception Area (shown in Figure 6a). Thus, they
are collected by the workers as they are needed. If the pipes are delivered with
dirt or grease, then, before being stored in the Reception Area, they are cleaned in
the Cleaning Area (in Figure 6b). Operators need to keep away from the Cleaning
Area unless authorized because of the presence of dangerous chemical products (e.g.,
chloridric acid, caustic soda) and water that is pressurized and hot.
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(a) Reception Area. (b) Cleaning Area.
Figure 6. Relevant areas of the workshop.

2. Second, every pipe is first cut in the Cutting Area according to the required dimen-
sions. Really powerful (and dangerous) mechanical and plasma saws (shown in
Figure 7a,b) are used in the Cutting Area. It is important to note that pipes are moved
from the Reception Area to the Cutting Area (or from one area to any other area) by
stacking them on pallets, which are carried by big gantries installed in the ceiling of
the workshop (several pallets can be seen on the foreground of Figure 7b).

(a) Mechanical saws in the Cutting Area. (b) Plasma saw in the Cutting Area.
Figure 7. Saws of the Cutting Area.

3. Third, pipes are bent in the Bending Area. There are three large bending machines in
such an area. Operators need to always keep a safe distance and safety glasses when
operating a bending machine.

4. Fourth, pipes are cleaned and moved to the Manufacturing Area, where accessories
are added. For instance, operators may need to weld a valve to a pipe. Welding
requires taking specific safety measures and only the authorized operators can access
the welding area when someone is working.

5. Finally, pipes are stacked into pallets, packed, and then stored in two different areas
of the workshop (shown in Figure 8a,b).

(a) Outbound storage area. (b) Another outbound storage area.
Figure 8. Main storage areas.

Figure 9 depicts the main areas of the workshop floor map and shows the position
of the IIoT cameras that monitor the presence of the workers. In addition, the dashed
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semicircles indicate the estimation of the field of view of such cameras. Specifically, Figure 9
shows 18 distinct areas of the factory floor that are equipped with cameras for continuous
monitoring (24 h a day, 7 days a week) of a complete manufacturing process. Note that,
in this specific application case, images should be neither transmitted nor recorded in
the cloud, not only due to bandwidth and connectivity limitations, but also due to the
impositions of the General Regulation on Data Protection (GDPR) in force.

Figure 9. Floor map of the smart workshop.

The objective of the proposed solution is to harness “visual wake words” in order to
detect the presence of the workers with the help of cameras and then lock or unlock the
deployed industrial devices and machinery, and automate the available security mecha-
nisms. For instance, industrial robot arms or cutting machines can harm a worker during
their operation when safety distance is not respected. Thus, the system takes advantage of
the proposed mist AI-enabled architecture (described next in Section 6.2) to achieve two
specific application goals:

• Increased Safety: automatically detect humans in the proximity of machinery that
is operating. After detection, a sound warning should be physically generated in
the surrounding zone. After triggering the sound warning, if the detection persists
and the estimated distance between the operating machine and the human does not
increase, a shutdown command should be sent to the operating machine.

• Operation Tracking: automatically detect and track human operators and moving
machinery. The tracking information is then used for the continuous improvement of
manufacturing processes.

Besides the mentioned goals, it is important to note that the proposed system impacts
different circular economy aspects:

• Smarter use of resources: the detection of the presence of operators allows for deter-
mining when machinery should be working and when it should be shut down.

• Reduction of total annual greenhouse gas emissions: the smarter use of resources
decreases energy consumption and, as a consequence, carbon footprint.

• Enhanced process safety: human proximity detection allows for protecting against
possible incidents or accidents with the deployed industrial devices and machinery.

6.2. System Architecture

The architecture proposed for the application case is shown in Figure 10. As it can be
observed, there are two main layers:

• Mist Computing Layer: it is composed of AI-enabled IIoT nodes that run AI algorithms
locally. Thus, after the AI training stage, nodes avoid exchanging image data through
the network with edge computing devices or with the cloud, benefiting from:

– Lower latency. Since most of the processing is carried out locally, the mist
computing device can respond faster.
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– Communications problems in complex environments can be decreased. Local
processing avoids continuous communications with local edge devices or remote
clouds. Thus, potential communications problems are reduced, which is really
important in industrial scenarios that require wireless communications [126].

– Fewer privacy issues. Camera images do not need to be sent to other devices
through the network, so potential attacks to such devices or man-in-the-middle
attacks can be prevented and thus avoid image leakages.

– Improved local communications with other nodes. Mist devices can implement
additional logic to communicate directly with other mist devices and machines,
so responses and data exchanges are faster, and less traffic is generated due to
not needing to make use of intermediate devices such as edge computing servers
or the cloud.

Despite the benefits of using mist AI-enabled nodes, it is important to note that IIoT
nodes, since they integrate cameras/sensors and the control hardware, are more
expensive and complex (i.e., there are more hardware parts that can fail).

• Cloud: it behaves like in the edge computing based architecture. As a consequence, it
deals with the requests of the mist devices that cannot be handled locally.

Figure 10. Mist-computing-based communications architecture.

6.3. Energy Consumption of the Mist AI-Enabled Model

In this application case, latency is a critical factor, and a low fault-tolerance policy
needs to be implemented. To achieve the “Increase Safety” goal, the use of object detection
models with low inference latencies is mandatory. In this case, the human movement
dynamics are typically low, since, running on the factory floor is typically not allowed.
Moreover, with respect to the “Operations Tracking” goal, the inference latency is not
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critical, since it does not affect the obtained results, due to the deterministic nature of the
inference latency.

To estimate the energy cost of the overall system, it was considered the data presented
in Table 3 for an STM32 Nucleo-L4R5ZI processor running TensorFlow Lite with a Mobinet-
V1 model (Task #1-Visual Wake Words) to simulate the “Increase Safety” task and a Resnet-
V1 model (Task #2-Image Classification) for simulating the “Operations Tracking” task. The
former is a classification task for binary images that detect the presence of a person with an
inference latency of 603.14 ms and energy consumption of 24,320.84µJ per inference (1 joule
= 2.77777778 × 10−7 kWh). The latter is an image classification benchmark with 10 classes
for smart video recognition applications with an inference latency of 704.23 ms and energy
consumption of 29,207.84µJ per inference. At this stage, it is important to notice that only
inference is being considered, since no information is available regarding the training stage,
namely the consumed energy.

First, the number of inferences can be estimated for a year and one camera, and
then the overall power consumption can be extrapolated to all cameras, based on the
previous assumptions:

NVWW =
365 × 24 × 3600 s

603.14 ms
= 52,286,368 inferences/year (5)

EVWW = NVWW × 24,320.84 µJ = 12,716,483.9 J = 0.353 kWh/device (6)

NIC =
365 × 24 × 3600 s

704.23 ms
= 44,780,824 inferences/year (7)

EIC = NIC × 29,207.84 µJ = 1,307,951.2 J = 0.363 kWh/device (8)

where Nx represents the number of inferences per year for model x (VWW or IC) and Ex
represents the total equivalent energy consumed in one year per device. In this particular
case, the energy refers only to the one consumed by the inference task. Given that, in this
study, we are only focused on the additional power consumption of the inference stage,
the power consumed by all functional hardware blocks has not been included.

Equation (6) indicates that each camera, when running the VWW model, consumes
approximately 0.353 kWh in a year. When running the IC model for the same period
(Equation (8)), each camera consumes approximately 0.363 kWh; therefore, by extrapolat-
ing for the 18 cameras, we achieve a total consumption (in one year) of 6.354 kWh and
6.534 kWh, for the VWW and IC models, respectively. This power consumption is on the
Green-AI magnitude scale, and the yearly inference cost of all the 18 cameras can easily be
maintained by a conventional renewable energy source, such as a photovoltaic panel.

6.4. Carbon Footprint

Carbon footprint can be estimated by using the formula in Equation (9) [128]:

CO2e(g) = Ex(KWh)× IN(g/KWh) (9)

where CO2e is the number of grams of emitted CO2, Ex (x equal to VWW or IC) is the
consumed energy (in KWh) and IN is the carbon intensity (in grams of emitted CO2 per
KWh). This latter parameter can be obtained through the data published publicly by many
countries or by organizations such as the European Union, but it is easier to obtain it from
Electricity Maps [129], an open-source project that collects such data automatically and
plots them through a user-friendly interface. Such a website also indicates the energy
sources used by each country (an example of such sources for France, Portugal, Spain,
California, and the province of Alberta is shown in Figure 11). The data were obtained for
25 July 2021 and, as it can be observed, energy sources differ significantly from one country
to another:



Sensors 2021, 21, 5745 28 of 36

• France (data source: Réseau de Transport d’Electricité (RTE)): it has almost got rid
of CO2-intensive energy sources thanks to generating most of its electricity through
nuclear power. Nonetheless, on 25 July 2021, when the data in Figure 11 were collected,
only roughly 31% of France’s energy came from renewable sources.

• Portugal (data source: European Network of Transmission System Operators for
Electricity (ENTSOE)): its most relevant energy source is natural gas, but, when the
data were gathered, approximately 43% of its energy came from renewable sources
and none from nuclear power.

• Spain (data source: ENTSOE): like Portugal, it has a dependency on natural gas, but,
thanks to a powerful solar energy sector, it generates roughly 53% of its energy from
renewable sources. In addition, almost 24% of the Spanish energy comes from nuclear
power, so a total of 77% of the energy is generated from low-carbon technologies.

• California (data source: California Independent System Operator (CAISO)): in spite of
being a state of the U.S., it was selected due to its crucial role in IT and cloud-based
services. Nearly 42% of its energy on 25 July 2021 was generated through low-carbon
technologies, but almost 58% came from natural gas.

• Alberta (data source: Alberta Electric System Operator (AESO)): it was included as
an example of a rich area with a key role in the oil and natural gas production in
North America. As it can be observed in Figure 11, most of its energy (almost 84%) is
generated by natural gas and coal, which results in the generation of a large amount
of CO2 emissions.

Figure 11. Energy sources for France, Portugal, Spain, California, and Alberta (25 July 2021).

Figure 12 shows the estimated CO2 emissions for the energy consumption estimated
in the previous section. As it can be easily guessed, emissions increase with the number of
deployed mist AI-enabled devices; however, such growth changes dramatically from one
country to another depending on the energy source: while near-zero emission countries like
France are barely impacted by the increase in the number of deployed devices, a province
like Alberta emits more than 17 times more CO2 for 1000 deployed devices.
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Figure 12. Estimated CO2 emissions for different number of deployed devices for different countries.

It is also possible to obtain the monetary cost of running the mist AI-enabled devices
(as an example, the average prices for April 2021 for each territory were considered), which
is depicted in Figure 13. As it can be seen in the figure, the cost of running the system in
Alberta would be cheaper but will result in more CO2 emissions. In contrast, the countries
with the largest shares of renewable energy sources (Spain and Portugal) are the ones
with the most expensive electricity. Nonetheless, please note that such a link between
the use of renewable energies and cost is impacted by other external factors (e.g., taxes,
environmental policy, and energy trading).

Figure 13. Electricity cost for different number of deployed devices and for different countries.

7. Future Challenges of Edge-AI G-IoT Systems

Despite the promising foreseen future of Edge-AI G-IoT systems, it is possible to
highlight some open challenges that must be faced by future researchers:

• Additional mechanisms are needed to offer protection against network, physical,
software, and encryption attacks. In addition, it is critical to have protection against
adversarial attacks during on-device learning [130].

• Future communications networks. 5G/6G are intended to deliver low-latency com-
munications and large capacity; therefore, moving the processing tasks to the network
edge will demand higher edge computing power, which puts G-IoT and Edge-AI
convergence as fundamental technology enablers for the next 6G mobile infrastructure.
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Moreover, the rapid proliferation of new products and devices and their native connec-
tivity (at a global level) will force the convergence of not only G-IoT and Edge-AI, but
also 5G/6G communication technologies, the latter being a fundamental prerequisite
for future deployments. Indeed, future communications services should also provide
better dependability and increased flexibility to effectively cope with a continuously
changing environment.

• Edge-AI G-IoT Infrastructure. The IoT market is currently fragmented, so it is nec-
essary to provide a comprehensive standardized framework that can handle all the
requirements of Edge-AI G-IoT systems.

• Decentralized storage. Cloud architectures store data in remote data centers and
digital infrastructures that require substantial levels of energy. Luckily, recent archi-
tectures for Edge-AI G-IoT systems are able to decentralize data storage to prevent
cyberattacks and avoid high operating costs; however, to achieve energy optimizations
for such decentralized architectures, sophisticated P2P protocols are needed.

• G-IoT supply chain visibility and transparency. To increase the adoption of the
DCE and limit the environmental impact of a huge number of connected devices,
further integration of value chains and digital enabling technologies (e.g., functional
electronics, UAVs, blockchain) is needed. End-to-end trustworthy G-IoT supply chains
that produce, utilize, and recycle efficiently are required.

• Development of Edge-AI G-IoT applications for Industry 5.0. The applications to
be developed should be first analyzed in terms of its critical requirements (e.g., la-
tency, fault tolerance) together with the appropriate communications architecture,
while considering its alignment with social fairness, sustainability, and environmental
impact. In addition, hardware should be customized to the selected Edge-AI G-IoT
architecture and the specific application.

• Complete energy consumption assessment. For the sake of fairness, researchers should
consider the energy consumption of all the components and subsystems involved
in an Edge-AI G-IoT system (e.g., communications hardware, remote processing,
communications protocols, communications infrastructure, G-IoT nodes, and data
storage), which may be difficult in some practical scenarios and when using global
networks.

• Digital circular life cycle of Edge-AI G-IoT systems. In order to assess the impact of
circular economy based applications, all the different stages of the digital circular life
cycle (i.e., design, development, prototyping, testing, manufacturing, distribution,
operation, maintenance, and recycling stages) should be contemplated.

• CO2 emission minimization for large-scale deployments. Future developers will need
to consider that CO2 emissions increase with the number of deployed Edge-AI IoT
devices. In addition, such growth changes dramatically from one country to another
depending on the available energy source.

• Corporate governance, corporate strategy, and culture. Organization willingness
to explore new business strategies and long-term investments will be critical in the
adoption of Edge-AI G-IoT systems, as a collaborative approach is required to involve
all the stakeholders and establish new ways for creating value while reducing the
carbon footprint. New business models will emerge (e.g., Edge-AI as a service, such
as NVIDIA Clara [131]).

8. Conclusions

This article reviewed the essential concepts related to the development of Edge-AI
G-IoT systems and their carbon footprint. In particular, the most relevant Edge-AI G-IoT
communications architectures were analyzed together with their main subsystems. In
addition, the most recent trends on the convergence of AI and edge computing were ana-
lyzed and a cross-analysis on the fusion of Edge-AI and G-IoT was provided. Furthermore,
an Industry 5.0 application case was described and evaluated in order to illustrate the
theoretical concepts described throughout the article. The obtained results show how CO2
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emissions increase depending on the number of deployed Edge-AI G-IoT devices and on
how greener is the energy generated by a country. Finally, the main open challenges for the
development of the next generation of Edge-AI G-IoT systems were enumerated to guide
future researchers.
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