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Abstract: Conventional clinical cognitive assessment has its limitations, as evidenced by the environ-
mental shortcomings of various neuropsychological tests conducted away from an older person’s
everyday environment. Recent research activities have focused on transferring screening tests to
computerized forms, as well as on developing short screening tests for screening large populations
for cognitive impairment. The purpose of this study was to present an exergaming platform, which
was widely trialed (116 participants) to collect in-game metrics (built-in game performance mea-
sures). The potential correlation between in-game metrics and cognition was investigated in-depth
by scrutinizing different in-game metrics. The predictive value of high-resolution monitoring games
was assessed by correlating it with classical neuropsychological tests; the area under the curve (AUC)
in the receiver operating characteristic (ROC) analysis was calculated to determine the sensitivity
and specificity of the method for detecting mild cognitive impairment (MCI). Classification accuracy
was calculated to be 73.53% when distinguishing between MCI and normal subjects, and 70.69%
when subjects with mild dementia were also involved. The results revealed evidence that careful
design of serious games, with respect to in-game metrics, could potentially contribute to the early
and unobtrusive detection of cognitive decline.

Keywords: assistive technologies; clinical decision-making; exergames; in-game metrics; serious
games

1. Introduction

Conventional clinical cognitive assessment is not part of the older adult’s everyday
life [1] and usually only takes place when the patient or family has concerns regarding
cognitive dysfunction [2]. Moreover, the clinical environment visit increases stress, which
may in turn affect negatively the assessment [3] or act as amotivation for the patient to
perform well on the tests [4] to avoid stigmatization. These factors contribute to questioning
the ecological validity of neurophysiological tests [5] and may lead to delayed detection,
or failure to detect cognitive decline, or even to false diagnosis among primary care
providers [3,6]. The need for fast and cheap screening tests [7] with good discriminant
capacity, even when distinguishing between various degrees of cognitive impairment [8],
has led recent research ventures to look for alternatives to the paper and pencil screening
tests that are more acceptable for older adults [9].

Game-like applications designed for a primary purpose other than pure entertain-
ment [10,11] and virtual reality (VR) [12], following Plato’s statement that “ . . . you can
discover more about a person in an hour of play than in a year of conversation . . . ”, are
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generating strong interest among the research community in the use of serious games (SGs)
as psychometric tools and indicators [13]. SGs for older adults are considered to have the
potential to provide more reliable information in terms of assessment compared to conven-
tional methods [13,14], since users (i.e., the persons playing the games) do not perceive the
SG as a stressful testing procedure [15]. SGs for older adults have recently been categorized
either as preventive and therapeutic or as assessment-oriented [16]. Cognitive measures in
game-like interfaces contribute to the early detection of neurological disease [17], while
exergames [18] (serious games focusing on engaging users in physical activity or exercise
through the games) are presented as promising tools for measuring and assessing physical
health unobtrusively [18,19].The latter focus mainly on fall risk assessment by correlating
typical in-game metrics of exergames, such as movement time and response time, with a
test battery of standardized assessment tests of fall risk [20].

Although SGs have been utilized for cognitive assessment for some time [21,22], ex-
ergames have only recently been introduced into this domain. Only recent studies exhibit
correlations between exergames’ performance features with cognitive assessment tests, and
between in-game metrics with neuropsychological tests, including MMSE [23–25]. SGs can
shape stealth assessment [26] when they are utilized as formative assessment tools (contin-
uously monitoring throughout the game intervention) [14], incorporating the assessment
process unobtrusively in the intervention process. Such a combination moves SGs beyond
focusing merely on intervention or screening, leading to a dual-role SG where intervention
per se is supported by continuous assessment. However, it is necessary to address the risk of
investing in technical features that could potentially affect the reliability of the game, thus
intertwining the purpose of enhancing a feature with that of its measurement [27].

We postulate herein that unobtrusive data gathering could be considered as an un-
tapped potential of exergames along with their intervention role. Built-in performance
measures could be efficient, cognition specific, cost-effective and time-saving [19] in dis-
tinguishing between cognitively healthy older adults and those with mild cognitive im-
pairment. Using long-term data from unobtrusive monitoring via computer games can
be exploited for the detection of deterioration trends in cognitive performance beyond
one shot screening tests/games with test–retest constraints. Moreover, the unobtrusive
detection of changes in the cognitive baseline through SGs may address the gaps in clinical
assessment [4]. The rationale behind this argument may lie in the fact that games motivate
the patient to participate for enjoyment, thereby eliminating the stress induced by clinical
assessment tests.

The platform has been used as a physical exercise intervention tool by older adults,
following the recommendations for physical activity and public health in older adults from
the American College of Sports Medicine and the American Heart Association [28].The
purpose of this study was to investigate the potential value of an exergaming platform,
with evidence-based findings [18], as an assessment tool as well as an exercise device,
without comparing it with SGs, which target only cognitive assessment. This platform
collects unobtrusive measurements during the activity; these are the so-called in-game
metrics. The potential predictive value of the in-game metrics was assessed by (i) corre-
lating them with classical cognitive screening tests, such as the MMSE and MOCA, and
(ii) estimating sensitivity and specificity in detecting MCI by measuring the area under the
curve in the receiver operating characteristic based on the clinical diagnosis of a dementia
expert neurologist.

2. Materials and Methods

FitForAll (FFA) [18] is an exercise-based, serious game blended (exergaming) platform,
initially relying on the Nintendo Wii Remote and Balance Board controllers in order to
detect the user’s motion, posture and gestures. It consists of carefully designed games
aimed at older adults’ physical exercise and the maintenance/advancement of a healthy
physical status and wellbeing. Focusing predominantly on appropriate physical training,
the physical exercise objectives rely on specific guidelines from the American College of
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Sports Medicine and American Heart Association [28]. The full game suite is composed
of aerobic, resistance, flexibility and balance computerized exercises administered in a
gamified way.

2.1. Intervention and Monitoring Games

The combination of games promoting physical exercise (aerobic, resistance, flexibility
and balance) in an ordered sequence instantiates a physical training “session” which may
stand on its own or be part of a whole intervention protocol. During the resistance and
flexibility exercises, the users follow the instructions provided on the screen while a picture
of positive valence is revealed gradually after each successful repetition. The balance
exercise games make use of a color code and virtual footprints on the screen, guiding the
user to specific movements. During aerobic exercises, the user’s avatar moves through a
city landscape to render the exercise enjoyable.

FFA also incorporates a set of high-resolution monitoring games (HRMG) that require
a combination of physical and light cognitive effort in order to be accomplished. The
required cognitive functions implicated in the games include simple and choice reaction,
concentration, perception, learning and memory, visuospatial coordination, visuomotor
tracking, divided attention, cognitive flexibility and processing speed.

The HRMG include five games: Ski Jump, Apple Tree, Arkanoid, Fishing and Mini
Golf. In Ski Jump, the users control the avatar’s jump by moving the center of mass to
a specific position. In the Apple Tree game, users control a basket picking apples from
a tree by moving their center of mass. Similarly, in the Arkanoid game users control the
horizontal position of a bar and attempt to hit a moving ball, while in the Fishing game
older adults control the vertical position of a boat while attempting to catch the horizontally
moving fishes. In Mini Golf, users move their center of mass on the balance board and
attempt to put a ball into a hole by overcoming different barriers.

2.2. Difficulty and Exertion Management

The FFA training protocol is divided into 4 difficulty levels [18] to accommodate the
participants’ fitness level improvements [28], following the recommendations for keeping
users in the “flow zone” which represents the feeling of complete and energized focus on an
activity with a high level of enjoyment and fulfilment [13]. Older adults start from the lower
difficulty level and are promoted to the appropriate level according to their performance
on a periodically administered Fullerton Fitness Test [29]. Fatigue management in SGs
is handled by the alternation of physically intense and less challenging game periods,
allowing players to relax and recover [30].

2.3. FitForAll In-Game Metrics

The majority of the games measure the correctly accomplished tasks or repetitions
within a specific time as a score. “Correctly” is defined in terms of the required movement
range—degrees, steps, etc. The HRMG metrics rely on the total completion time as well as
the number of missed or gathered points/targets, the degree of deviation from the optimal
path, the achieved goal and the number of attempts required for goal accomplishment
(Table 1). The specific coefficients for the score calculations were determined in collabora-
tion between a statistician and the physical exercise expert contributing to the design of
the games, to provide a smooth distribution of scores. Objective measurements were also
integrated by recording systolic/diastolic pressure and heart rate, especially after intensive
exercises (manually measured by the user). On the subjective metrics axis, older adults
were asked to communicate their perceived fatigue level through a graphic representation
of the Borg rating of perceived exertion scale [31].
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Table 1. Weighted metrics used for scoring. More than one game contributes to the score of each domain.

Games (Domain) Score Equation

Hiking and Cycling (Aerobic) Distance Travelled
Total Distance To Travel in a fixed time window

Strength exercises (Strength) #Correctly performed Iterations
#Total Iterations

Stretching exercises (Flexibility) #Correctly performed Iterations
#Total Iterations

Steps (Balance) #Correctly performed Iterations
#Total Iterations

Apple (HRMG) 0.8 ∗ FinishTime + 0.2 ∗ #ApplesGathered
#TotalApples

Arkanoid (HRMG) 0.4 ∗ #HitTargets
#TotalTargets + 0.6 ∗ #RemainingLives

#TotalLivesAtStart

Fishing (HRMG) #CaughtFish
#TotalFish

Golf (HRMG) 0.7 ∗ DistanceTravelled
OptimalPathwayDistance + 0.2 ∗ BallScored (True/False) + 0.1 ∗ TimeToScore

TotalTime

SkiJump (HRMG) DistanceTravelled
MaximumPossibleDistance

2.4. Study’s Features Based on FitForAll In-Game Metrics

Each game’s score, normalized on a 10-point scale, was calculated by the value of the
metrics monitored during each game, as presented in Table 1. The factors in the equations
in Table 1 were set based on expert opinion. According to these individual scores, an
aggregated score per exercise domain (aerobic, resistance, flexibility and HRMG) was
calculated for each session. The same approach was followed for vital signs and the Borg
scale, where the mean value of the measures was calculated per session. The Borg scale
rating of perceived exertion is a widely used and reliable indicator to monitor and guide
exercise intensity. The mean value, the slope and the intercept were calculated for each
session of each type of exercise at each level of difficulty, following the equation: y = ax + b
(a: slope, b: intercept). As a result, the mean, slope and intercept values for the total training
period and the 4 levels of difficulty were extracted and used as features for the analysis.
The slope value (first order derivative) for each training period at a specific difficulty level
represented performance change speed. A higher slope indicated better performance from
session to session (on average) within a training period at a specific difficulty level.

2.5. Intervention

The FFA platform was the Physical Training Component in the Long Lasting Memo-
ries (LLM) project funded by EU [32]. During the LLM trials, each user had to undergo
a 1 h physical training protocol consisting of sessions of 20 min aerobic and 10 min flexi-
bility exercises, 8–10 resistance exercises and 2 balance-targeted exercises (in compliance
with the recommendations for physical activity and public health in older adults from
the American College of Sports Medicine and the American Heart Association [28]), as
well as the HRMG. The intervention was organized in groups of 3–12 older adults under
formal carer supervision. Each carer supported the participants to navigate through the
screens to the next game and to use the right fitness equipment, as well as to measure their
blood pressure and heart rate when required. The latter occurred every ~10 min, especially
after intensive aerobic exercise, allowing a break of 2–3 min. Our previous study proved
the effectiveness of the intervention by demonstrating statistically significant improve-
ment in lower and upper body strength and flexibility, aerobic endurance and dynamic
balance [18]. Based on the carers’ observations, their workloads were diminished after
4–6 sessions. The adherence level (the proportion of sessions attended by FFA participants
with respect to the planned sessions) reached a level of 82% [18]. The trials were conducted
in an environmentally valid manner in numerous settings in Thessaloniki and Athens
(Greece), including day care centers of the Greek Association of Alzheimer’s Disease and
Related Disorders, municipal social care centers, other senior centers and local parish
community centers.



Sensors 2021, 21, 5756 5 of 13

2.6. Participants

During the LLM trial period [18], 38 cognitively normal (CN), 64 mild cognitive
impairment (MCI) and 14 mild dementia (MD) users were involved in the Thessaloniki-
based trials (116 participants). Flyers, workshops, presentations by the team, professional
contacts in intervention and associated institutions, advertisement in the local newspapers
and word of mouth were all aspects of the recruitment strategy [32]. Inclusion criteria were
age ≥55 years with fluent language skills, no severe cognitive impairment, agreement of a
medical doctor and time commitment to study period. Exclusion criteria were participation
in another study during the same period, unrecovered neurological disorders (i.e., stroke,
traumatic brain injury, etc.), physical or psychological disorders preventing participation
in the intervention (i.e., inability to follow instructions), unstable medication within the
past 3 months, severe and uncorrectable vision loss or wearing a hearing aid for fewer than
3 months [32]. These older adults engaged with FFA for a minimum of 3–4 sessions per
week for a total period of 7–8 weeks. No financial incentive was provided to participants
and the training program was provided at no cost.

2.7. Neuropsychological Examination

A set of tests assessing cognitive status and other specific cognitive domains (atten-
tion, memory, executive and visuospatial functions, independent living, etc.) composed
the neuropsychological examination that contributed to the diagnostic procedure. All
these tests were administrated in their Greek versions: Mini Mental State Examination
MMSE [33], Montreal Cognitive Assessment, MoCA [34] and the Trail Making Test (TMT),
part B [35]. TMT was used to test cognitive processing and executive functioning. Given the
test–retest reliability limitation of MMSE and MOCA, the neuropsychological examination
took place 1–2 weeks before the intervention and 1–2 weeks after the intervention (pre–post
assessment). A detailed description of the neuropsychological examination may be found
in a study by our group [32].

2.8. Clinical Diagnosis of Participants

A dementia expert neurologist performed the diagnosis of each participant based
on clinical, neuropsychological examination and full laboratory and imaging tests. The
diagnosis of Alzheimer’s disease (AD) was given according to criteria outlined by the
DSM-IV and the National Institute of Neurological and Communicative Disorders and
Alzheimer’s disease and Related Disorders (NINCDS–ADRDA) [36]. Petersen’s criteria [37]
were used for the diagnosis of MCI. All participants went through the clinical diagnosis, as
it served as the basis for the classification analysis.

2.9. Data Analysis

Non-parametric Kruskal–Wallis was chosen for the statistical hypotheses among the
games’ scores with respect to the clinical diagnosis, since the majority of variables were
not normally distributed (Kolmogorov–Smirnov p < 0.05). Significance values were ad-
justed using the Bonferroni correction for multiple comparisons. Pearson correlations
were tested between neurophysiological assessment tests and HRMG scores as they nor-
mally distributed (Shapiro–Wilk p > 0.05). Finally, both feature selection and classification
performed in this study using the multilayer perceptron, a class of feedforward artificial
neural network consisting of, at least, three layers of nodes, were conducted through the
Waikato Environment for Knowledge Analysis (WEKA). In order to assess the predictive
value of the HRMG, the area under the curve (AUC) in the receiver operating characteristic
(ROC) analysis was calculated to determine the sensitivity and specificity of the method
for detecting MCI based on the clinical diagnosis of the dementia expert neurologist. The
ROC of the MMSE and MOCA were also calculated, for comparison purposes, by using
the corresponding cut-off scores for MCI.
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3. Results

Demographics, cognitive assessment scoring and game baseline scores for all groups
are presented in Table 2.

Table 2. Description of group demographics and assessment tests score per cognitive group (cognitive
groups according to the clinical diagnosis).

Cognitively Normal (CN) MCI MD

#Participants 38 64 14
Females 30 54 11

Age (years) 67.1 ± 5.2 69.3 ± 6.4 77.7 ± 3.4
Education (years) 8.5 ± 2.6 7.6 ± 2.8 5.8 ± 4.3

MMSE 28.1 ± 1.2 26.5 ± 2.2 21.7 ± 1.5
MOCA 26.2 ± 2.4 22.43 ± 2.9 16.0 ± 2.3
TMT A 70.0 ± 32.3 86.9 ± 36.3 178.1 ± 90.4
TMT B 141.9 ± 64.1 189.7 ± 76.5 298.9 ± 80.1

Strength 7.6 ± 1.2 7.6 ± 0.9 6.5 ± 1.7
Aerobic 6.8 ± 1.6 6.4 ± 1.4 5.8 ± 1.7
HRMG 5.2 ± 1.2 4.7 ± 0.8 3.3 ± 0.7

Flexibility 8.7 ± 1.0 8.9 ± 0.4 8.3 ± 0.9
Heart Rate 74.0 ± 10.2 72.6 ± 9.8 72.0 ± 9.2
Borg Scale 6.9 ± 1.2 7.1 ± 1.2 7.2 ± 1.0

3.1. Statistically Significant Differences

Figure 1 presents the boxplots of the game scores that exhibited significant differences
between at least two of the three cognitive groups (* indicates which groups significantly
differ from each other). “Level” corresponds to the difficulty level (lower level numbers
indicate less difficulty). The Kruskal–Wallis omnibus comparisons revealed differences
between the three groups in Strength Mean level1 (p = 0.03, ε2 = 0.073), Aerobic Endurance
Mean Level3 (p = 0.04, ε2 = 0.054), Borg Scale Mean level3 (p = 0.007, ε2 = 0.081), Flexibility
Mean level3 (p = 0.003, ε2 = 0.141), HRMG Mean Total (p = 0.000, ε2 = 0.249), HRMG
Intercept Total (p = 0.002, ε2 = 0.113), HRMG Mean level1 (p = 0.000, ε2 = 0.165), HRMG
Mean level 2 (p = 0.001, ε2 = 0.149), HRMG Mean Level3 (p = 0.000, ε2 = 0.337), HRMG
Intercept level3 (p = 0.000, ε2 = 0.193), HRMG Mean level 4 (p = 0.000, ε2 = 0.240) and
HRMG Intercept level4 (p = 0.002, ε2 = 0.130). The Kruskal–Wallis pairwise comparisons
showed significant differences (p < 0.05) between CN and MD in the in-game metrics:
Strength Mean level1 (p = 0.025), Aerobic Endurance Mean level3 (p = 0.035) and Borg Scale
Mean level3 (p = 0.008) scores. Flexibility Mean level3 (p = 0.010) and the vast majority of
the HRMG scores presented significant differences not only between CN and MD (Mean
Total p < 0.001, Intercept Total p = 0.001, Mean level1 p < 0.001, Mean level2 p = 0.001, Mean
level3 p < 0.001, Intercept level3 p < 0.001, Mean level4 p < 0.001, Intercept level4 p = 0.002),
but also between MCI and MD (Mean Total p < 0.001, Intercept Total p = 0.013, Mean level1
p = 0.001, Mean level2 p = 0.006, Mean level3 p < 0.001, Intercept level3 p < 0.006, Mean
level4 p < 0.001, Intercept level4 p = 0.006). Finally, the scores of the HRMG at mean level3
(p = 0.004) and intercept level3 (p < 0.024) showed significant differences among all group
couple comparisons. No statistically significant differences were found for the slope values
among any of the three cognitive groups.
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comparisons, namely, CN–MCI, CN–MD and MCI–MD. Independent samples of Kruskal–Wallis were used throughout.
HRMG stands for the High-Resolution Monitoring Games, Borg scale is the rating of perceived exertion, strength, aerobic
and flexibility represent the scores of the corresponding physical exercises. (* indicates which groups significantly differ
from each other).

3.2. Correlation between Metrics and Cognitive Assessments

Since the HRMG scores were normally distributed (Shapiro–Wilk p > 0.05), Pearson
correlations were calculated to test for a linear relationship between HRMG and MMSE,
MOCA and TMT A and B (c.f. Figure 2). The correlation between HRMG scores and MMSE
and MoCA was moderate (Pearson correlation coefficient 0.505, p < 0.005 and Pearson
correlation coefficient 0.463, p < 0.005 respectively). Similarly, the analyses for correlation
between HRMG scores and TMT A and B scores showed modest strength and negative
correlations (Pearson correlation coefficient −0.376, p < 0.005 and Pearson correlation
coefficient −0.387, p < 0.005 respectively). The Trail Making Test unit, which is time based,
justified the negative correlation, since higher scores indicated poorer cognitive function.
No statistically significant linear relationship was found between the slope values and any
of the cognitive assessment tests.
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3.3. Classification of Healthy and Non-Healthy According to In-Game Metrics

The feature selection for the classification procedure was based on the CfsSubsetEval
attribute evaluator, which evaluates the worth of a subset of attributes by assessing the
individual predictive ability of each feature. A subset highly correlated with the class
features, having at the same time low intercorrelation, was preferred. The BestFirst search
method searched for attribute subsets by greedy hill climbing augmented with a backtrack-
ing facility, both of which were implemented by the WEKA tool. Three clinical diagnosis
classes, namely, CN, MCI and MD were considered for the classification procedure. The
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evaluator ranked Age, HRMG MeanTotal, HRMG InterceptTotal, HRMG MeanLevel1,
HRMG MeanLevel3, HRMG MeanLevel4 and HeartRateSlopelevel3 as major features. The
multilayer feedforward neural network, an interconnection of perceptrons in which data
and calculations flow in a single direction from the input data to the outputs, achieved
a classification of 70.69% among CN, MCI and MD. The classification was performed
by means of a tenfold cross validation. The overall accuracy was 70.69%. The detailed
accuracy for each cognitive status, along with the sensitivity and specificity and the area
under the curve (AUC), is presented in Table 3.

Table 3. Detailed accuracy for each cognitive clinical diagnosis when classifying among normal, MCI
and MD (116 total instances).

Cognition TP Rate FP Rate Sensitivity Specificity ROC Area

Cognitively Normal 0.684 0.179 68.4% 82.1% 0.785
MCI 0.734 0.308 73.4% 69.2% 0.734
MD 0.643 0.039 64.3% 96.1% 0.875

3.4. Discriminative Validity of HRMG of Cognitively Normal and MCI

The outcomes of the ROC analysis, measuring the abilities of HRMG, MMSE and MOCA
to discriminate MCI (N = 64) from cognitively normal (N = 38) older adults, are presented in
Figure 3. The HRMG algorithm classified correctly 24/38 cognitively normal and 54/64 MCI
subjects. An overall 73.53% classification accuracy was achieved with a maximum AUC of
0.774. Respectively, the AUC for MMSE and MOCA were 0.724 and 0.860.
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MCI (n = 64) versus cognitively normal group (n = 38).

4. Discussion

The study presented in this paper was the first step towards providing evidence
through large scale pilots [18] regarding the association of cognitive status with perfor-
mance in older adults (SG metrics) during exergames. According to the results in this paper,
in-game metrics of FFA could classify CN, MCI and MD with an accuracy of 70.69%. The
sample size in conjunction with the rigorous intervention program (~2 months), justifies
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generalization of the potential contribution of exergaming interventions to unobtrusive
monitoring of cognitive status through time.

The current study revealed that some game features seemed to discriminate between
CN and MD, while the majority also discriminated between MCI and MD. However, only
HRMG features at difficulty level 3 discriminated between CN and MCI. This could be
attributed to the fact that, as observed by the pilots’ facilitators, this level was neither trivial
nor intensive for the average older adult, keeping them in the “flow zone”. In general,
the participants considered physical exercise through exergames as light exercise (Borg
Scale rating), while the average heart rate (~70 bpm) was close to the target heart rate zone
(50–85% of maximum heart rate, 75–127 bpm) [38].

Statistical analysis revealed significant positive moderate correlation between HRMGs
and MMSE and MOCA, as well as modest correlation compared to TMT A and TMT B.
Previous works in the field, exhibiting lower levels of correlation between game metrics
and MMSE, utilized virtual environments while participants walked on a treadmill, at-
tempting to accomplish daily tasks [23]. However, such exercises were not performed
by the participants on a daily basis; therefore, they were considered more as screening
methods rather than daily intervention and assessment tools. Similar studies focusing
only on the cognitive assessment axis and not on interventions in the physical domain [24]
exhibit very promising results in identifying MCI patients. The accuracy levels achieved
by the classifier, as well as the sensitivity, specificity and AUC when distinguishing MCI
subjects from cognitively normal individuals, were comparable to MMSE and MOCA.
This must be considered in the light of applying the algorithm to subjects with borderline
cognitive decline performance. These results are consistent with the concerns of Vemuri
et al. [39] who identified the need for real clinical value for participants whose cognitive
health is not clearly defined.

In the light of the absence of an effective/gold standard treatment for dementia, early
administration of any available treatment/interventions may be more effective [32] as they
may slow cognitive decline [3], thereby improving the quality of the patient’s life [21]. Con-
sequently, a noninvasive, and ideally unobtrusive, low-cost tool that could contribute to
early diagnosis and enable regular screening would be a significant ally against cognitive
decline and dementia. Furthermore, both the interventional and assessment functions of
serious games as presented by FitForAll in this study could potentially be used by older
adults themselves without supervision in their home environment. This may have positive
effects in two ways. Firstly, they could provide an appropriate ecologically valid environment
where diagnostic processes in the form of exergaming could be completely unobtrusive and
therefore more valid. Secondly, insurance and public healthcare system costs would be much
reduced [13]. However, the key requirement for the effectiveness of SGs, either as intervention
or monitoring tools, is engagement with the game. The current study demonstrated high
levels of engagement for a period of 7–8 weeks, but available frameworks [40] that could
be applied to increase the engagement levels towards measuring performance over a longer
period should be taken into consideration during design.

The challenge presented by the large quantity of data gathered by a computer game,
beyond the obvious metrics of score and completion percentage [41], is to find ways
to access, analyze and understand this wealth of data [42]. Ideally, the game’s data,
produced by stealth assessment, could be incorporated into diagnostic systems; better
yet, games could be developed as integral components of treatments and interventions,
thereby updating the contemporary arsenal of trial/intervention outcome measures. It
is believed that once the usefulness of such data is realized, the next logical step would
be the maximization of the value of these data by applying data mining and analytics
methodologies [42,43].

Limitations

Despite these important findings, some limitations of this work need to be outlined.
FitForAll was primarily designed as an intervention tool, and secondly as an assessment
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tool. Therefore, in-game metrics were not exploited to the extent warranted. Although
the results were promising and constituted evidence that exergames could contribute
to the early detection of cognitive decline, further research and wider pilots in terms of
participants and duration would give a clearer view of the outcomes and would evaluate its
reproducibility. Although MMSE and MOCA are screening tests, they were used herein for
comparison with a continuous assessment tool, due to the mere lack of clinical assessment
tests for continuous assessment of cognitive status. Their test–retest reliability did not
allow for a higher granularity analysis of performance changes based on the participants’
cognitive abilities over time. Further, Breton et al. [44] have demonstrated that MMSE
performs poorly in the detection of MCI, and has been discouraged as a comparison for
new tests for MCI diagnosis. The different sample sizes of the groups may have affected
the ability to detect differences between groups. In summary, we stress that this work was
not intended to show the merit of FitForAll in the form it was presented in the paper, but
rather to show the potential value of in-game metrics in carefully designed serious games.
Our paper attempted to provide evidence for the value of the untapped assessment aspects
of serious games such as FitForAll.

5. Conclusions

Our scope was to provide evidence that in-game metrics of SGs can have additional
value. This piece of work reported on the implementation of stealth assessment in ex-
ergames targeting older adults. The results reveal evidence that careful design with respect
to in-game metrics could potentially contribute to the early and unobtrusive detection of
cognitive decline. Moreover, in line with the trend of researchers’ acceptance of SGs as
new treatment options [13], additional research efforts should focus on providing sufficient
evidence for the potential clinical value of SGs in terms of assessment [45]. Given the
increasing number of studies published in the last few years demonstrating games as a
complementary asset to classic and neuropsychological clinical tests, the importance of
our findings and their potential to empower contemporary public health informatics and
digital health is notable.
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