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Abstract: The power industry is in the process of grid modernization with the introduction of
phasor measurement units (PMUs), advanced metering infrastructure (AMI), and other technologies.
Although these technologies enable more reliable and efficient operation, the risk of cyber threats has
increased, as evidenced by the recent blackouts in Ukraine and New York. One of these threats is
false data injection attacks (FDIAs). Most of the FDIA literature focuses on the vulnerability of DC
estimators and AC estimators to such attacks. This paper investigates FDIAs for PMU-based state
estimation, where the PMUs are comparable. Several states can be manipulated by compromising one
PMU through the channels of that PMU. A Phase Locking Value (PLV) technique was developed to
detect FDIAs. The proposed approach is tested on the IEEE 14-bus and the IEEE 30-bus test systems
under different scenarios using a Monte Carlo simulation where the PLV demonstrated an efficient
performance.

Keywords: cyber-physical security; false data injection attacks; state estimation; phase lock value;
phasor measurement units; smart grids

1. Introduction

In recent years, numerous cyber-attacks were launched against electric power systems,
which caused power outages, such as the Ukraine blackout on 23 December 2015 and
Manhattan, New York blackout on 13 July 2019 [1,2]. Cyber-attacks are aimed to either
damage the power grid or to manipulate the grid markets to gain a financial advantage.
Such attacks can lead to many wrong decisions to be taken by the control engineers of
the electric power grid. Therefore, it is important to investigate, study and analyze such
attacks and data manipulation through the techniques of state estimation (SE) to identify
those data that has been attacked and manipulated.

The SE is an essential part of the Supervisory Control and Data Acquisition (SCADA)
system, where the SCADA uses state estimators to find the actual states of the power
grid. These state estimates are then, utilized by the energy management system (EMS) to
perform different system operations, such as contingency analysis and optimal power flow.

Traditionally, state estimators obtain grid measurements from remote terminal units
(RTUs), which measure the voltage magnitudes, power injections, and power flows. These
measurements are used by the state estimator to obtain the voltage magnitudes and angles
for the buses in the grid [3].
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The recent advancements of smart meters, such as phasor measurement units (PMUs)
and advanced meter infrastructure (AMI), have enhanced the situational awareness and
enabled a more secure grid operation. However, these new technologies introduced new
vulnerabilities and raised the risk of cyber-threats, as shown in Figure 1. One of these risks
is data manipulation, where the adversaries manipulate the measured data to change the
system operating conditions, thereby, damaging the grid operations. Such cyber-attacks
are known as false data injection attacks (FDIAs).

The FDIA poses are a real threat due to its ability to bypass bad data detection (BDD),
thereby changing the system operations without being detected [4]. The BDD is used to
detect outliers by using residual-based methods [3]. However, FDIAs utilize the power
grid topology to mask the false data and bypass BDD [5].
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Figure 1. Cyber threats in a smart grid.

Most of the FDIA literature focuses on RTU measurements and the DC estimator
framework. Teixeira et al. [6] used random FDIAs to evaluate the performance of the
BDD in state estimators. Protecting a minimum subset of measurements to guard against
FDIAs was proposed by [7,8]. Wang et al. [9] proposed a systematic topology switch of the
network for detecting FDIAs.

FDIAs can also be used on AC-estimators, although it is harder to bypass the BDD
due to the nonlinearity of these estimators [10,11]. Masking FDIAs with Line outages was
investigated in [12], where the adversaries require limited knowledge of the grid topology.
Based on the signal processing technique, wavelet singular entropy (WSE) is employed for
the detection of any false data injection in the AC systems [13]. Wireless sensor networks
(WSNs), including cyber-physical systems (CPSs), were implemented for detection of the
distributed attacks of false data injection and jamming attacks [14]. Theoretical analysis
for an imperfect FDIA model based on a forecasting-aided method was introduced in [15].
The above-mentioned references are considered RTU-based FDIA in an AC system setting.

Over the last decade, the PMUs started emerging as a better option for grid monitoring
over the legacy RTUs, due to their precise measurements, ability to measure phasors and
high refresh rate [16]. As a result, several researchers have investigated PMUs vulnerability
to FDIAs. The ability to spoof the global positioning system (GPS) signal of PMUs was
assessed by [17,18] where several techniques were introduced. The Low Rank Matrix
(LRM) factorization method was introduced by [19], to identify false data injection attacks
on PMUs. It is shown that the proposed method was able to identify proper power system
operation states as well as detect the malicious attacks.
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However, later research on LRM [20] demonstrated that a more sophisticated attacker
that understands the temporal correlation of PMU data can exploit it to design unobservable
FDIA attacks that cannot be detected by the LRM detector. The authors of [21] proposed an
optimal placement approach where, by securing a minimum number of PMUs, FDIAs are
infeasible. Ding et al. [22] developed a probabilistic model for cyber-threats on PMUs and
used an optimal PMU placement to enhance the observability under such a threat.

The optimal placement of PMUs (OPP) using an integrated linear programming (ILP)
algorithm to prevent the FDIAs was presented by [23]. It was discovered that a weak power
grid can be transformed into a robust power grid by adding a few PMUs at vulnerable
locations.

By looking at the literature of FDIAs, most studies are considering RTU-based FDIAs.
These studies were performed in either a DC estimator or AC estimator setting. The
PMUs were typically used as redundant units to secure the RTU measurements against
FDIAs [21]. PMUs have also been used as a source of online data to forecast and develop
FDIAs detection techniques under an RTU-based estimator [24]. In [25], a detector for
FDIA attacks on hybrid estimators contingent upon the absence of outliers in PMU data.

As discussed earlier PMUs were considered as a backup or a secure platform against
FDIA, and the impact of compromising PMUs has not been considered before. In this
paper, the effect of attacking state estimators via PMUs data is considered. The strategy for
attacking via PMUs and its impact on the state estimators is investigated.

The paper also proposes a detection mechanism for the FDIAs based on a synchro-
nization metric named the phase lock value (PLV) [26]. The PLV was originally proposed
in the field of neuroscience to investigate the signals from two or more distinct brain
regions whether they are functionally connected or not [27,28], The PLV quantifies the
synchronicity present between two signals based on phase changes [29–31], where the
underlying assumption is that, for a certain time-period, if the phase changes of two signals
are consistent, they are said to be connected/synchronized, and PLV will result in a value
closer or equal to ‘one’.

Whereas, if phase changes do not show consistency, two signals are not connected
and for such PLV will have a value closer or equal to ‘zero’. With this background in
mind, PLV can be utilized to study unwanted randomness between signals/data. For
example, consider two connected signals resulting in a consistent phase change, but when
randomness is added to one of the signals, then the differences in phases are no longer
constant, and thus two signals are no longer connected to each other. On similar lines,
Patrick Celka [31] showed that different types of noise processes affect PLV differently and
the strength of noise enhances between-processes effects. However, common among noise
processes, it could be noticed that, with the introduction of noise, the PLV tends toward
zero implying that the underlying signals deviate from being synchronized.

This motivated us to utilize this concept in the identification of FDIA, and we hy-
pothesized that under normal circumstances, when there is no data manipulation, the
buses in the grid will have consistent phase changes between them, whereas, in the case of
manipulated data, the differences between phases will no longer be constant. The proposed
approach is tested on the IEEE 14-bus and the IEEE 30-bus test systems under different
conditions using Monte Carlo simulation.

The main contributions of this article can be summarized as follows:

• Most of the existing FDIAs assume DC model associated with RTUs. In RTU-based
attacks, the adversaries need to compromise several RTUs, where PMU-based attacks
compromising one PMU are sufficient for a successful attack. This paper addresses
PMU-based FDIAs.

• This presents an effective approach for detecting FDIA attacks using PLV.
• The proposed approach requires no training to build a model, and can be used online

to detect FDIAs.

The rest of the paper is organized as follows. Section 2 describes state estimation in
the presence of PMUs. Section 3 discusses the attack strategy for FDIA. Section 4 presents



Sensors 2021, 21, 5791 4 of 16

the proposed PLV detection mechanism. Section 5 presents the simulation results, and
Section 6 concludes the paper.

2. State Estimation

State estimators use the measurements obtained for the RTUs or the PMUs to find the
voltage magnitudes and angles for the buses (x̂). If the grid is completely observable by
the PMUs, the state estimation becomes a linear process [3,32]. For the process to be linear,
the state and measurements vectors (x̂, z) in (1) are considered to be in the rectangular
form (real and imaginary). State estimators use the data from either RTUs or PMUs, then,
based on the acquired data, the state estimation process becomes linear or nonlinear. The
RTUs measure the voltage magnitudes, power flows, and power injections. The PMUs on
the other hand, measure the voltages of the buses and current flows in phasor form. The
measurement model can be described as follows

zp(t) = Hx̂(t) + v(t), (1)

where zp(t) is the measurement vector at time t; the t is dropped for convenience. H is the
transition matrix, x̂(t) is the state vector, and v is the measurement noise [3].

In PMU-based state estimation, the measurement vector zp is arranged in a rectangular

form to enable a linear estimation process, zp = [Vreal
i Vimag

i ..... Ireal
m Iimag

m ]T [3,32]. The same
arrangement is applied to the state vector x̂ as follows

x̂ = [Vreal
1 , Vimag

1 ......Vreal
n , Vimag

n ]T . (2)

By using this arrangement the transition matrix H becomes an m by 2n constant matrix
with two parts, where m and n are the number of measurements and buses, respectively. The
first part is the identity matrix I corresponding to the direct measurements of bus voltages
by the PMUs. The second part is a sub-matrix corresponding to the current measurements as
in (3). [

Imv×2n
Hαmi ,βmi×2n

]
. (3)

where, mv and mi are the number of voltage and current measurements respectively. hα

and hβ are the matrices of the branch admittance Yij decomposed such that hα produces
the real part of the branch current Iij, and hβ produces the imaginary part of the branch
current Iij. Therefore, hα and hβ for the current Iij can be expressed as follows

hαij = [0 . . . Gij −Gij 0 · · · −Bij−Bii Bij 0 . . . ]; (4)

hβij = [0 · · · −Bij+Bii Bij 0 . . . Gij Gij 0 . . . ]; (5)

By using the model described above the states x̂ can be determined using weighted
least squares as follows:

x̂ = (HT R−1H)−1HT R−1zp; (6)

where R is the covariance matrix of the noise.

3. Attack Model

This section describes FDIAs for RTU-based and PMU-based state estimators. Dif-
ferent notations will be used for both estimators, as they defer in terms of the type of
measurements and transition matrices. For the RTU-based attacks, zR and H will be used
to refer to the measurement and transition matrix. As for the PMU-based attacks, zp and H
will be used to refer to the measurement and transition matrix.
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3.1. RTU-Based Attack Models

In DC-estimators, the voltage magnitude of all the buses in the grid is assumed to be
equal to one p.u., and the angle difference between the buses is assumed to be less than
five degrees. Therefore, the measurement model for DC-estimators becomes

zR = HxDC + v; (7)

where zR and v are the measurement and noise vectors, respectively, with a size of m by
one. In DC-estimators, zR is an n by one vector whose elements are the power flow and
power injection described in (8). xDC is the vector of bus angles θ with a size equals to the
number of buses n. H is constructed to correspond to the following model:

Pij =
θi − θj

Reactance of line ij
;

Pi = ∑ Pij.
(8)

Under the DC-estimators paradigm, the adversaries try to manipulate the measure-
ment vector zR in (7) while avoiding detection by the BDD in (9). This manipulation should
be less than the tolerance (τ) of the residual to avoid detection. Therefore, the sparse attack
vector (a) in (10) should be a = c× h, where h ∈ H and c is the desired manipulation by
the adversaries. By using a the residual for the BDD remains the same as shown in (11).

‖zR − HxDC‖ ≤ τ (9)

zR,comp. = zR + a (10)

As seen in (11), by using such a vector the regular BDD can no longer detect the
FDIA [7–9]. However, the adversaries need to have partial knowledge of the grid topology
to use such a vector.

‖zR,comp. − Hxcomp.‖ = ‖zR + a− H(xDC + c)‖
= ‖zR + H × c− H × xDC − H × c)‖

= ‖zR − H × xDC)‖ ≤ τ.

(11)

In AC-estimators, the voltage magnitudes are no longer assumed as in the DC-
estimator but estimated. The measurement vector z consists of voltage magnitudes, power
flows, and power injections. These measurements make the state estimation a nonlinear
process since (H) becomes a nonlinear function of the states (x) as in (12). Solving for
the states x is done iteratively, in a similar process to that of the power flow by using the
Jacobian matrix J and updating both the vector of the states x and J.

z = H(x) + v. (12)

The AC-estimators uses the normalized residual for BDD in (9). However, since the
states are not linearly dependent on H, the attack vector (a) needs to be a function of H to
avoid detection. The FDIA can be implemented by making a as follows

zcomp. = ztrue + a; (13)

where

a = h(xcomp.) + H(xtrue),
true subscript indicates true (uncompromised) state or measurement,
comp. subscript indicates compromised state or measurement.
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As a result, the attack vector compromises the states without being detected as in (14) [11].

‖zcomp. − H(xcomp.)‖ = ‖ztrue + a− H(xcomp)‖ =
‖ztrue + H(xcomp.)− H(xtrue)− H(xcomp.)− 2H(xtrue))‖

= ‖ztrue − Hx)‖ ≤ τ.

(14)

3.2. PMU-Based Attack Model

The previous section describes FDIAs for RTUs where several units need to be manip-
ulated for a successful attack. PMUs, on the other hand, have several channels where a
single PMU can measure the bus voltage and all adjacent bus currents in phasor form. This
feature enables linear state estimation. However, in the context of FDIAs compromising
one PMU is sufficient for launching successful attacks. As for RTU-based attacks, the
adversaries need to compromise/manipulate several RTUs. The measurement model for
the PMUs can be described as follows:

zp = Hx + v. (15)

To launch such attacks, the measurements vector zp in (15), which consists of the
bus voltages and current flows can be changed using the same approach described in
Section 3.1. By using the grid topology, the attack vector can be masked, thereby, bypassing
the BDD. The grid topology (H) can be estimated by monitoring the measurements of the
targeted PMUs, and there is no need for estimating the whole grid topology. Only local
topology (h ∈ H), is needed for launching successful FDIAs. The attack vector can be
constructed as follows

zcomp. = ztrue + a; (16)

where
a = c× [0 . . . h1h2 . . . hi 0 . . . 0]T ,
zcomp. = [ztrue1 ztrue2 . . . zcomp1 zcomp2 . . . zcompi ztruei+1 ...]T ,
hi is a subset of H.

By using this vector the residual in (17) remains unchanged.

‖zcomp. − Hxcomp.‖ = ‖ztrue + a− H(x + c)‖
= ‖ztrue + hc− Hx− hc‖ = ‖ztrue − hx)‖ ≤ τ.

(17)

Therefore, as long as the adversaries adhere to the vector in (16), the FDIA will be
successful. One common factor between RTU-based and PMU-based attacks is the reliance
on the network topology. This information can be obtained through disgruntled employees
or through monitoring the data stream. The differences between RTU-based and PMU-
based attacks are as follows: 1. RTUs are easier to compromise; however, the adversaries
need to compromise several RTUs depending on the network topology. As for the PMUs,
they are harder to compromise but compromising one PMU is sufficient. 2. In RTU-based
attacks, the aim is to change the bus angles, as the voltage magnitudes are assumed to be
constant. In the PMU-based attack, on the other hand, both the voltage magnitudes and
angles can be targeted.

4. Detection of FDIAs

This section presents the PLV approach for detecting FDIAs. Numerous studies in the
field of neuroscience have studied synchronization between two signals from distinct brain
regions, and the commonly used measure is PLV [26]. It measures the phase interaction
between complex signals using the following:

PLV(t) =| E(ejϕ12(t)) | (18)
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where ϕ(t) is the phase difference ϕ12(t) = θ1(t)− θ2(t), E[.] denotes the expected value,
and the PLV is estimated at time t. The phase θ1 and θ2 are the phases of the following
signals:

x1(t) = A1(t)ejθ1(t)

x2(t) = A2(t)ejθ2(t).
(19)

The PLV ranges [0 1] where 0 represents huge variability between phases or in other
words no synchrony, and 1 describes identical phases, i.e., synchrony. See Figures 2 and 3
for a visual description. Figure 2 is an example of correlated signals and corresponding PLV,
where: (i) phases of a single trial of two complex-value signals at t0, (ii) difference between
phases for multiple trials is presented, and (iii) resulting in complex PLV, whereas its magni-
tude, abs(), gives the resulting PLV. The same is repeated in Figure 3 to show the resulting
small PLV for uncorrelated signals. In this article, Equation (18) is utilized to develop an
analytical detection procedure of FDIA. Algorithm 1 describes the steps involved.

Algorithm 1: PLV-based FDIA detection
Input: complex data from PM,U including the attacked data
Initialize: t = 1, T = total samples, Win = 2, τP = 0 ;
while t < T do

calculate θn(t), where n goes to N, i.e., the total number of buses
while n ≤ N do

while m ≤ N do
compute ϕm,n(t) = θn(t)− θm(t) ;
estimate PLV for every t with window size of Win using ;
PLVm,n(t) =| E(ejϕm,n(t)) |;

Z(t) = 1
m×n Σm,n[PLVm,n(t)];

compute τP = 2σz(t);
create binary vector g(t) i.e.;
if Z(t) < τP then

g(t) = 0
else

g(t) = 1
To differentiate transients in g(t) due to load variation from attacked data, check;
if A0 > τP and A1 > τP then

g(t) = 0
else

g(t) = 1
return g(t);
Output g(t), 0 indicating indices of attacked data and 1 representing true data.;

The proposed algorithm makes certain assumptions for the detection of FDIA. It
includes: (i) at least the first three time-samples of input data are not attacked, (ii) since the
PLV is calculated at each time-sample with a window of size ‘2 time-samples’, the attacked
segments should be separated by a segment of three true data samples. Otherwise, if there
are one or two true data samples between two attacked segments, the proposed method
will consider them as attacked also.

Here, it is also important to highlight that we tested different window sizes for the
PLV calculation, and the best results were found for the window size = 2 samples as
shown in Figure 4. We used the ‘True Positive rate’ to show how variable window sizes
affect the predicted outcome. These assumptions are not substantial compared to the
requirements in existing studies, such as a large amount of non-attacked historical data to
train classifiers [8,9].
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Figure 2. Correlated signals and corresponding PLV. (i) phases of a single trial of two complex-value
signals at to, (ii) difference between phases for multiple trials is presented (iii) The resulting in
complex PLV for the correlated signals.

Figure 3. Uncorrelated signals and corresponding PLV. (i) phases of a single trial of two complex-
value signals at to, (ii) difference between phases for multiple trials is presented (iii) The resulting in
complex PLV for the uncorrelated signals.
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Figure 4. True positive rate by varying window sizes for the calculation of PLV.

Figure 5 shows an example of false data detection using the proposed method over a
simulated data of two buses from above mention the network topology: (a) instantaneous
phases θ1(t) for the first signal having sudden changes due to load variations, (b) instanta-
neous phases θ2(t) for the second signal that has attacked samples and changes in phases
due to load variation between attacked samples.

This is to show that the proposed method is capable of differentiating between attacked
samples and samples with phase changes due to load variations. (c) The absolute values of
PLV for each sample between (a) and (b) are shown along with the threshold τP, which is
calculated as 2× the standard deviation present in zp(t). (d) The predicted flag g(t) i.e.,
samples that are not attacked and samples that are attacked, estimated using proposed
method is provided (e) for ground truth, the Flag with true labeling of samples is presented.

g(t) =

{
0, if A0 > τP &A1 > τP

1, else
(20)

where A0 = Z(ti−1)−Z(ti) ; A1 = Z(ti+2)−Z(ti+1).
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Figure 5. Example of false data detection using PLV. (a,b) are instantaneous phases θ1(t), θ2(t) over
a time-length of 300 samples. (c) Phase lock value between two signals, spikes appear when there is a
change in phases of a given signal. (d) Based on the proposed method, false data injected in (b) are
predicted (Flag value ‘0’ highlights attacked samples). (e) A waveform representing the ground truth
is shown as a reference.

5. Simulation and Results

This section presents the PLV approach for detecting PMU-based FDIAs. The approach
is carried out on the IEEE 14-bus and the IEEE 30-bus test systems. The FDIAs are tested
on both systems using the approach mentioned in Section 3.2. The test systems and PMU
locations are shown in Figures 6 and 7. The PMU locations were chosen to achieve complete
observability under normal conditions [33–35], where each PMU measures the currents
of all adjacent buses and the voltage of the bus of the PMU. Zero injection buses are not
considered in PMU placement.

In the proposed approach, only the current data are processed to detect FDIAs. By
ignoring the voltage data, the computation efficacy is enhanced, without affecting the
accuracy of the detection. The adversaries need to use the attack vector a in (16), otherwise
the BDD in (17) will catch this manipulation as outlier data. Therefore, processing the
current data is sufficient as no successful attacks can be launched without compromising
this data.

Each PMU can generate up to 50 samples per second. In this paper, the PMUs are
assumed to be sending the data at a 30 Hz rate, and the state estimation is done every
second. This assumption means that the state estimator has a measurement matrix z of size
m by 30 available for evaluation.
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Figure 6. IEEE 14-bus with PMU locations.
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Figure 7. IEEE 30-bus with PMU locations.

5.1. Performance Metrics

The efficacy of the PLV approach is evaluated using performance metrics resulting
from the confusion matrix. As the confusion matrix demonstrates the efficiency of any
given method in predicting classes of test data where the ground truth is also known. The
confusion matrix is defined as shown in Table 1.

The derivatives from the confusion matrix, which provides quantitative analysis of
goodness of the proposed method, are:

Accuracy(Acc) =
TP + TN

TP + FN + FP + TN
(21)

Acc refers to the term that provides a ratio of correctly predicted samples to total samples.

Speci f icity(Spec) =
TN

TN + FP
(22)

Spec or true negative rate, provides the ratio of correctly identified negatives.

Sensitivity(Sen) =
TP

TP + FN
(23)

Sen or true positive rate, provides the ratio of correctly identified positives.

F1score =
2TP

2TP + FP + FN
(24)

where

TP normal samples identified correctly (true positive)
FP attacked samples identified incorrectly (false positive)
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TN attacked samples identified correctly (true negative)
FN normal samples identified incorrectly (false negative)

F1score is a harmonic mean of the recall and precision, where the recall is the same as
Sen, and the precision is the ratio of the number of true positive samples to the number of
true plus false positives.

Table 1. Confusion matrix.

Predicted Class
Actual Class

Positive Negative

Positive True Positive (TP) False Negative (FN)
Negative False Positive (FP) True Negative (TN)

5.2. Case Studies

Each PMU is assumed to measure the voltage of bus where the PMU is located, and
the currents of all adjacent buses. Each PMU is sending the measurements at a speed
of 30 samples per second. The meter errors of PMU measurements follow the normal
distribution with a zero mean and standard deviation of 10−3. The tests are performed on
the IEEE 14-bus and IEEE 30-bus test systems. The load of each test system is varied for all
scenarios and all Monte Carlo simulations.

• Scenario I: In this scenario, the PMU located at bus 7 is attacked by the adversaries,
and fifty Monte Carlo simulations are carried out. The attack vector a is kept constant
for all fifty cases, however, the instant and duration of the attack are random.

• Scenario II: In this scenario, the attacked PMU is random, and fifty Monte Carlo
simulations are carried out. The attack vector a is kept constant for all fifty cases,
however, the instant and duration of the attack are random.

• Scenario III: In this scenario, the attack vector a changes randomly for each Monte
Carlo simulation. The attacked PMU is chosen randomly, and the duration of the
attack is random.

The results for the IEEE 14-bus test system are shown in Table 2, where the PLV shows
consistent results regardless of the scenario complications. As mentioned earlier, each
scenario had a total of fifty Monte Carlo simulations, and the results for each case were
evaluated using the metrics in Section 5.1. Therefore, Table 2 shows the mean and the
standard deviation for all scenarios based on the Monte Carlo simulations. Table 3 shows a
sample of the results for Scenario III where different PMUs are attacked at random.

Table 2. The mean and standard deviation of the PLV performance for the IEEE-14 bus system.

Case
Metric Attack

Vector
Attacked

PMU
Acc

(mean ± std)
Spec

(mean ± std)
Sen

(mean ± std)
F1-Score

(mean ± std)

Scenario I: constant 7 99.973± 0.1155 99.996± 0.0165 99.976± 0.1155 0.999 ± 0.0090
Scenario II: constant random 99.992± 0.0022 99.992± 0.0022 100 ± 0.0000 0.999 ± 0.0011
Scenario III: variable random 99.972± 0.0045 99.973± 0.0047 99.999± 0.0000 0.998 ± 0.0023

Table 3. Scenario III: Sample results for the IEEE-14 bus system.

Case Number Attacked PMU Acc % Spec % Sen % F1-Score

7 7 99.96806 99.96453 99.67929 0.99839
19 9 99.97685 99.97429 99.76812 0.99884
41 6 99.98101 99.97894 99.80815 0.99904
2 2 99.9686 ≈100 99.96864 0.99984

For the IEEE 30-bus test system, Scenario III: is used to test the validity of the PLV
approach. In addition to the increased number of measurements due to the increased
number of buses and number of PMUs as shown in Figure 7, the system presents interesting
cases where PMUs are located at radial buses, such as bus 10. Therefore, if this particular
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PMU is attacked, the adversaries will manipulate two signals, which are non-redundant.
However, the proposed approach achieved good results as shown in Tables 4 and 5.

The receiver operating characteristic (ROC) shown in Figure 8, indicates the effective-
ness of the PLV as a detection tool for FDIAs. Even in cases where there is a low redundancy
the PLV performance is effective—for instance, the case of attacking the PMU of bus 10
where there is one current measurement and one voltage measurement. The window size
for the PLV in the above results is two as this is the most effective size. Figure 9 shows
the ROC for different window sizes, which indicates that the performance deteriorates as
the window size becomes larger. Moreover, the even number window size performances
are better than the odd ones. Incidentally, this performance and window size relationship
benefits the computation burden as smaller window sizes lead to lesser processing times.

Table 4. Scenario III: Sample results for the IEEE-30 bus system.

Case Number Attacked PMU Acc % Spec % Sen % F1-Score

1 1 99.98333 100 99.98177 0.99991
2 12 99.97685 100 99.97453 0.99987
3 2 99.98143 100 99.97958 0.99989
4 8 99.98380 100 99.98219 0.99991
5 10 99.97917 100 99.97705 0.99988
6 19 99.97731 100 99.80815 0.99988
7 24 99.98148 100 99.97970 0.99989
8 27 99.98333 100 99.98163 0.99991
9 11 99.98287 100 99.98106 0.99991

Table 5. The mean and standard deviation of the PLV performance for the IEEE-30 bus system.

Case
Metric Attack

Vector
Attacked

PMU
Acc

(mean ± std)
Spec

(mean± std)
Sen

(mean ± std)
F1-Score

(mean ± std)

Scenario III: variable random 99.9814± 0.0029 100 ± 0.000 99.9795± 0.0032 0.9897± 0.00160
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Figure 8. Performance for IEEE-14 system, Scenario III and case number 19 (randomly chosen): ROC
curve of the proposed method along with reference ROC curve representing 50% sensitivity and
50% specificity.
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Figure 9. Receiver operating characteristic curve of PLV for different window sizes.

6. Conclusions

In this paper, we introduced PMU-based FDIAs where compromising one PMU is
sufficient to launch successful attacks and bypass BDD. The paper also introduces a new
approach for detecting FDIA where PLV is used to measure the correlation between the
measured signals and detect abnormalities. The proposed approach requires no training to
build a model and can be used online along with existing BDD. The PLV approach as a
detection mechanism was tested on the IEEE 14-bus and IEEE 30-bus test systems using a
Monte Carlo simulation with several scenarios where PLV was proven to be an efficient
detection tool for FDIAs.

The PLV was used on the current data to decrease the computation burden, and the
results demonstrated that using current data was sufficient. In cases where the adversaries
change the voltage data without manipulating the current data, the BDD will flag such
values as outliers. In the proposed approach, a window size of two was shown to be the
best choice as the accuracy of the PLV drops significantly with the larger window sizes.The
load change was considered as part of normal operations as such changes are expected
during the day. In the PLV approach, the load conditions were varied randomly, and the
intensity of the attacks varied to test the robustness of the PLV approach.

As the goal of the adversaries is to change some elements in the state vector by launch-
ing FDIAs, which can be done in steady state measurement data The type of measurements
and state estimator plays a significant role in launching and detecting FDIAs. One of the
future directions is to investigate FDIAs in hybrid estimators where there is a mix of RTU
and PMU measurements and the lack of synchronization between RTUs and PMUs adds
complexity to the problem.
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