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Abstract: In edge computing, scheduling heterogeneous workloads with diverse resource require-
ments is challenging. Besides limited resources, the servers may be overwhelmed with computational
tasks, resulting in lengthy task queues and congestion occasioned by unusual network traffic pat-
terns. Additionally, Internet of Things (IoT)/Edge applications have different characteristics coupled
with performance requirements, which become determinants if most edge applications can both
satisfy deadlines and each user’s QoS requirements. This study aims to address these restrictions by
proposing a mechanism that improves the cluster resource utilization and Quality of Service (QoS) in
an edge cloud cluster in terms of service time. Containerization can provide a way to improve the
performance of the IoT-Edge cloud by factoring in task dependencies and heterogeneous application
resource demands. In this paper, we propose STaSA, a service time aware scheduler for the edge
environment. The algorithm automatically assigns requests onto different processing nodes and then
schedules their execution under real-time constraints, thus minimizing the number of QoS violations.
The effectiveness of our scheduling model is demonstrated through implementation on KubeEdge, a
container orchestration platform based on Kubernetes. Experimental results show significantly fewer
violations in QoS during scheduling and improved performance compared to the state of the art.

Keywords: IoT-edge cloud; resource scheduling; quality of service (QoS); ant colony optimization
(ACO)

1. Introduction

Edge computing offers an extension to the central cloud, bringing cloud capabilities
close to the end users for edge application providers to deploy their services. In compari-
son with cloud computing, the advantages include lower data transmission latency, better
bandwidth utilization, and improved privacy of user data in the Edge-Cloud collaboration.
Previous research [1,2] has shown that the higher the proximity of the application or service
to the user, the better the Quality of Service (QoS) attainable by the user. A major limitation
in edge computing vis-à-vis traditional clouds is the limitation in resources. However, the
traditional cloud model suffers diminished network performance and inefficiency occa-
sioned by the processing and analysis of big data generated from remote edge devices. This
design results in increased pressure on the network created by the traffic pattern leading
to poor user QoS. Similarly, in the traditional cloud, services are usually implemented
with the same level of availability with less regard for service/application-specific char-
acteristics. In contrast, different Internet of Things (IoT)/Edge applications have various
characteristics and performance requirements [3–5]. Examples of these edge applications
include data analytics, augmented/virtual reality (AR/VR), autonomous driving, smart
manufacturing, etc.

Task scheduling in cloud computing works based on the current information of tasks
and resources in accordance with a certain strategy in order to establish an appropriate
mapping relationship of tasks to appropriate resources. From the perspective of edge
computing, the impact of scheduling heterogeneous workloads with diverse resource
requirements is challenging. Consider a scenario where multiple devices can connect to
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an edge server simultaneously within a given period. Consequently, the server may be
overwhelmed with computational tasks, resulting in lengthy task queues. This results
in congestion, occasioned by increased completion time for all queued jobs, even to the
point where the processing delay of jobs at the edge server exceeds that at the edge devices.
Furthermore, latency-critical jobs need to be scheduled as soon as they are submitted
to avoid any queuing delays, while for best-effort latency-tolerant jobs, they should be
allowed to occupy the node cluster when there are idle resources in order to improve
cluster utilization [6,7]. These implications become determinants if most edge applications
can both satisfy deadlines and each user’s QoS requirements [5].

Exploiting containerized technology to host applications can provide a way to im-
prove the performance of edge computing platforms [8]. Containers are a lightweight
application virtualization technology that provides a logical packing mechanism for ap-
plication abstraction that packages software and dependencies together. In addition to
providing a virtual runtime environment based on a single operating system (OS) kernel,
containers also support resource sharing across multiple users and tasks concurrently
rather than booting an entire OS for each application [9]. This permits agile application
deployment, orchestration environment consistency, OS portability, application-centric
management, and resource isolation for container-based applications. A high-level view of
a containerization framework with a custom scheduler [10] is displayed in Figure 1, which
is similar to our proposal from a deployment perspective. Multiple leading cloud com-
puting providers have also adopted containers for the deployment of services directly on
their edge platforms: Google Cloud IoT, Microsoft Azure IoT Edge, and Amazon AWS IoT
Greengrass [11,12]. Therefore, in this work, we enhance our work in [5] by implementing
a real test bed through adopting the KubeEdge orchestration platform that is based on
Kubernetes. The summary of our contributions are as follows:

• We propose a multi-objective model for pod scheduling. The model considers con-
straints in terms of resource capacity (CPU and memory) and optimizes the processing
time overhead, the scheduling cost on nodes, and the number of QoS violations in
terms of overall service time for instantiation and scheduling.

• An enhanced ant colony optimization (ACO)-inspired algorithm (STaSA) is proposed.
The algorithm combines multi-objective heuristic information (node utilization, service
time, and scheduling cost) based on a pheromone model to improve the request
scheduling probability for optimal placement.

• We design and implement a real-time test bed for our custom STaSA scheduler. The
effectiveness of our scheduling model is demonstrated through a deployment on the
KubeEdge orchestration platform, and we provide an analysis of the experimental results.

The rest of this paper is organized as follows. In Section 2, we provide an overview of
related research works. In Section 3, we formulate our problem, and Section 4 presents an
analysis of our model and algorithm solution. Section 5 involves analysis and discussion
of the results. This work is concluded in Section 6 by indicating the open issues for us to
build a desired collaborative scheduling system for edge computing.
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anism within a device–edge–cloud infrastructure framework [13] based on task character-
istics, optimization objectives, and system status. Task splitting and task interdependence 
are considered to determine local execution, partial offloading, and full offloading for 
given computing tasks. A pre-emptive fair share cluster scheduler is developed in [6], 
where the authors leverage containerization to enable pre-emptive and low-latency sched-
uling in clusters with heterogeneous workloads. Two pre-emption strategies are pro-
posed: immediate and graceful pre-emptions and the effectiveness and tradeoffs evalu-
ated. They investigate that if tasks from short jobs can pre-empt any long tasks, their 
scheduling can be made simple and fast while long jobs can run on any server in the clus-
ter to maintain high utilization. This approach only supports killed-based task pre-emp-
tion, which is not efficient for cluster resource utilization and job performance. 

Another study proposed a multi-objective scheduling method [14] that was con-
strained by users’ budget conditions for online workflow applications. Their strategy both 
minimizes the execution time of workflows and reduces the budget constraints of users. 
Ouyang et al. [15] propose a service placement scheduling model for cost-efficient mobile 
edge computing. Their aim is to minimize service latency and migration costs. The prob-
lem is formulated as a stochastic optimization problem that adopts the Lyapunov frame-
work to establish a solution. A weighted bipartite graph matching scheme [16] was used 
to develop a container scheduling model. In this approach, there must be direct parity 
between the number of tasks and the number of containers. In a scenario where containers 
outnumber tasks, the edge orchestrator kills the extra containers; for a converse scenario, 
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2. Related Works
2.1. Scheduling Strategies

The compute, storage, task execution status, and network state, among other things,
inform the edge scheduling policies. Chen et al. explore a collaborative scheduling mecha-
nism within a device–edge–cloud infrastructure framework [13] based on task characteris-
tics, optimization objectives, and system status. Task splitting and task interdependence
are considered to determine local execution, partial offloading, and full offloading for given
computing tasks. A pre-emptive fair share cluster scheduler is developed in [6], where
the authors leverage containerization to enable pre-emptive and low-latency scheduling
in clusters with heterogeneous workloads. Two pre-emption strategies are proposed: im-
mediate and graceful pre-emptions and the effectiveness and tradeoffs evaluated. They
investigate that if tasks from short jobs can pre-empt any long tasks, their scheduling can
be made simple and fast while long jobs can run on any server in the cluster to maintain
high utilization. This approach only supports killed-based task pre-emption, which is not
efficient for cluster resource utilization and job performance.

Another study proposed a multi-objective scheduling method [14] that was con-
strained by users’ budget conditions for online workflow applications. Their strategy both
minimizes the execution time of workflows and reduces the budget constraints of users.
Ouyang et al. [15] propose a service placement scheduling model for cost-efficient mobile
edge computing. Their aim is to minimize service latency and migration costs. The problem
is formulated as a stochastic optimization problem that adopts the Lyapunov framework to
establish a solution. A weighted bipartite graph matching scheme [16] was used to develop
a container scheduling model. In this approach, there must be direct parity between the
number of tasks and the number of containers. In a scenario where containers outnumber
tasks, the edge orchestrator kills the extra containers; for a converse scenario, hypothetical
containers are added to equal the number. With the development of the Internet of Things
(IoT), edge computing facilitates largely delay-sensitive and location-aware applications
considering the many types of IoT devices. However, the limited resources of edge com-
puting have inspired multiple efforts to enhance efficiency in task execution. Yin et al. [17]
study resource scheduling in smart manufacturing, where they propose a container-based
task-scheduling model and task-scheduling algorithms with a task-delay constraint. The
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fog computing system is taken as a hard real-time system, where an acceptable request
must be accomplished before the deadline specified by its terminal device. A failure infers
that the fog node has inadequate resources for request allocation, and the node should
reject the request and inform the terminal device to resubmit the new request within the
new deadline. However, the processing capability of an edge node is restricted; thus,
small tasks or processing requests with short delay will be prioritized to be processed on
the edge infrastructure. This prioritization is realized from the perspective of scheduling
conditions of resource allocations for delay-tolerant and delay-sensitive applications [7],
which adaptively allocates resources in a mobile cloud computing (MCC) system. Two
kinds of resource allocation strategies are adopted coordinately: immediate reservation
and advanced reservation to guarantee deadline constraints being satisfied and avoid too
much reservation resulting in MCC performance decline. A load-aware resource allocation
and task scheduling (LA-RATS) framework is proposed, aiming to significantly reduce the
cloudlet’s monetary cost and turnaround time for delay-tolerant applications and increase
the deadline satisfaction rate of delay-sensitive.

2.2. Kubernetes Related Schedulers

Nguyen et al. [18] present ElasticFog, a mechanism that exploits different scheduling
policies in the Kubernetes platform and enables real-time elastic resource provisioning for
containerized applications in fog computing. It dynamically assigns resources to each fog
node proportionate to network traffic to the application at each location. Consequently, the
authors aim to reduce network latency and avoid resource wastage/overprovisioning in
areas of low workload demand. Another Kubernetes-based scheduler KEIDS was proposed
in [19] for container management with considerations for carbon emissions, interference,
and energy consumption. The design aims to achieve effective resource management and
job synchronization with minimal interference among co-located containers on the same or
different nodes. A scheduling agent approach is explored by [20], where a decentralized
Kubernetes-oriented container scheduling model for edge clusters is described. Their
approach deploys a scheduling agent on multiple master nodes. Casquero et al. [21]
describe a custom scheduler for the Kubernetes orchestrator that distributes the decision
logic of the scheduler among edge nodes. Their scheduling agent is supposed to reduce
the workload at the control plane of the Kubernetes server. The node filtering and node
ranking functions usually executed by the server are undertaken by agents embedded in
the edge nodes. A multi-agent scheduling platform receives the node filtering information
from all nodes. Then, node ranking is fulfilled through negotiation among the agents in
the filtered edge nodes. Considered together, there are several challenges brought in by
the edge computing platform [22]: (1) utilization of the computing resources at both the
edge cloud and the distant cloud coordinately to fully exploit the system capabilities, and
(2) how to perform task scheduling for different classes of applications jointly considering
both computing resources and different user QoS requirements.

2.3. Scheduling Model

A scheduling policy is responsible for the order of processing requests within the
request queue. A common scheduling policy is the First Come First Served (FCFS) approach
that is usually adopted as a baseline scheduling strategy [23]. FCFS uses the time sequence
of arriving requests to determine the subsequent request to be executed alongside other
considerations. A modified version of this approach is presented in [24], where fairness is
used as a determinant in the scheduling of task requests. The rationale behind this approach
is to prevent over-commitment of resources to requests from a single user creating unfair
competition among multiple user requests. Another less frequently used approach is the
Earliest Deadline First (EDF) strategy. This strategy prioritizes requests with the smallest
remaining deadlines, which are then queued first and allocated resources before other
requests. A similar approach is explored in [25] that proposes a task scheduling algorithm
with deadline and cost constraints in cloud computing. The authors aim to address a
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multi-objective optimization problem, i.e., minimize both the total task completion time
and cost under deadline constraints. This work considered the Earliest Deadline First
scheme [23].

3. System Model

This section describes the problem model and the optimization objectives. The mod-
eling of container scheduling through an optimization approach facilitates the problem
to be solved mathematically. The parameters of the models and their descriptions are
summarized in Table 1. We aim to schedule heterogeneous workloads with diverse re-
source requirements and QoS constraints. We consider a cluster of n nodes with p pods.
Users request a set of functions F with different compute capacity requirements. We do
not consider bandwidth requirements as the cluster is locally hosted on a rack server
and therefore negates the need to factor internode and inter-container communication
considerations. A binary variable x f ,i,t ∈ {0, 1} i = 1, 2, . . . , p | p ∈ P is introduced for
the variable for instantiation of function f as pod i at time t as shown mathematically in
Equation (1). Another binary variable yij, associating pod i to node j at time t, is also
introduced through Equation (2). The sum of all active (running but not scheduled) pods
at time t is ϕt.

ϕt = ∑
f∈F

∑
i∈P

∑
t∈T

x f ,i,t (1)

p

∑
i=1

n

∑
j=1

yij = ϕt (2)

Table 1. Parameter notations.

Parameters Description

N Set of nodes j = 1, 2, . . . , n | n ∈ N

P Set of pods i = 1, 2, . . . , p | p ∈ P

F Set of functions

R Set of resources

rj,t
cpu Total CPU capacity of node j at time t

rj,t
mem Total memory capacity of node j at time t

v f ,t
cpu CPU requirements of function f at time t

v f ,t
mem Memory requirements of function f at time t

r̂j,t
cpu CPU capacity of node j at time t

r̂j,t
mem Memory capacity of node j at time t

δcpu, δmem Default CPU and memory capacities, respectively

x f ,i,t Binary variable for instantiation of function f as pod i at time t

yij Binary variable associating pod i to node j

Ut
j The utilization of node j at time t

Cnode Deployment cost of any pod i on any node j

timej The processing time of a pod i on node j

Di f Critical deadline for executing a pod i of function f

L Objective function
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We consider the following capacity constraints on the scheduling decisions:

p

∑
i=1

v f ,t
cpu·yij ≤ rj,t

cpu (3)

p

∑
i=1

v f ,t
mem·yij ≤ rj,t

mem (4)

Equations (3) and (4) ensure that the CPU and memory capacity requirements re-
quested by the service pods for allocation do not exceed the total node capacity. The
quantities rj,t

cpu and rj,t
mem represent the total CPU and memory capacities of node j at time

t, respectively. We are able to derive the number of unused resources for a given node j
using Equations (5) and (6) at time t, where r̂j,t

cpu and r̂j,t
mem are the available node CPU and

memory capacities, respectively.

r̂j,t
cpu = rj,t

cpu −
[

p

∑
i=1

(yij·v
f ,t
cpu) + δcpu

]
(5)

r̂j,t
mem = rj,t

mem −
[

p

∑
i=1

(yij·v
f ,t
mem) + δmem

]
(6)

We define the utilization Ut
j of node j at time t as the weighted relationship between

CPU utilization and memory utilization, as indicated by Equation (7), with weight ϕ1.
Equation (8) indicates the CPU utilization ucpu, as a ratio of the available node capacity to
the total node capacity and likewise for the memory relationship, umem.

Ut
j = ϕ1 × ucpu + (1− ϕ1)× umem (7)

where ucpu =
r̂j,t

cpu

rj,t
cpu

; umem =
r̂j,t

mem

rj,t
mem

(8)

The cost is an important metric to evaluate the effectiveness of our approach. It is
defined in the following Equations (9) and (10). In this formulation, en is a fixed value
assigned to the node upon deployment.

Cnode =
1

1− ucpu +
1

1− umem (9)

Ctotal = en

p

∑
i=1

n

∑
j=1

yij·Cnode (10)

To ensure that the performance of the scheduled jobs is not jeopardized by meeting the
respective job deadlines across the allowed time frame, we introduce a value Di f that sets a
critical deadline for executing a pod i of function f. Another variable timej is also introduced
to represent the processing time of a pod i on node j. The mathematical representation is
denoted below in Equation (11).

p

∑
i=1

n

∑
j=1

yij × timej ≤ Di f (11)

EDF prioritizes requests with the smallest remaining [23] (i.e., earliest) deadlines.
The scheduling scheme prioritizes pods with lower remaining time relative to the critical
deadline for scheduling. Further, the scheme is biased towards nodes that have a lower
processing capacity, i.e., more resources to schedule these pods p. The process is conducted
incrementally from the perspective of the pods in the scheduling queue until all the node
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cores are busy. To achieve our objective function L, we adopt a linear weighting method. In
the function as presented in Equation (12), θ1 is the weight factor of utilization, θ2 is the
weight factor of time, and θ3 is the weight factor of the cost.

L = θ1Ut
j + θ2timej + θ3Ctotal (12)

4. STaSA Algorithm Implementation

The above-defined problem is a typical NP-hard problem, and we address this by
means of a heuristic algorithm in order to obtain a near-optimal solution.
Papadimitriou et al. [26] describe a Combinatorial Optimization (CO) problem Z = (Ω, g),
as an optimization problem in which is given a finite set of solutions Ω (also called search
space) and an objective function g: Ω → R + that assigns a positive cost value to each
of the solutions. The goal is either to find a solution of minimum cost value or a good
enough solution in a reasonable amount of time. Ant colony optimization (ACO) is a
swarm optimization technique adopted to approximate discrete optimization solutions to
hard combinatorial optimization (CO) problems. The approach has been applied to many
classical problems such as the TSP, scheduling problems, and recently in cell placement
problems and communication networks designs. The inspiring source of ACO algorithms
are real ant colonies based on observations of the ants’ foraging behavior. The fundamental
characteristic is the indirect communication between the ants via chemical pheromone
trails, which enables them to find the shortest path between their nest and food sources.
It is a probability-based approach usually adopted for discrete optimization problems,
e.g., determining the shortest path in a graph theory [27]. In the search for food, an ant
excretes pheromones along a path, which fellow ants use to guide them based on the
pheromone concentration. The potency of the pheromone trail is proportional to the quality
and quantity of the food the specific ant found, and consequently, with a higher probability,
all the remaining colony members will converge along the path of the highest pheromone
concentration. This pheromone model consists of a vector of model parameters T called
pheromone trail parameters. The pheromone trail parameters τi ∈ T, which are usually
associated with components of solutions, have values τi, called pheromone values. The
pheromone model, based on probability, is used to generate solutions by aggregating them
from a finite set of solution components. During execution, ACO algorithms update the
pheromone values using previously generated solutions. For a given population of ants
and an array of possible paths, each ant determines its path according to the concentration
of pheromone trail in each path from the available paths. Generally, the ACO approach has
two key points of iteration in the search for a solution: candidate solutions are constructed
using a pheromone model, that is, a parametrized probability distribution over the solution
space; and the candidate solutions are used to modify the pheromone values in a way that
is biased future sampling toward high-quality solutions.

There are several works that use ACO to solve problems for scheduling containers and
virtual machines. A variant of ACO is used in [28] to implement schedulers for a software
container system. Hafez et al. [29] deploy a modified ACO algorithm with the objective of
improving response time and throughput. Other works with either baseline or modified
versions of ACO [30,31]. Table 2 is a summary of the state-of-the-art ACO-related research
studies as shown below.
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Table 2. Comparison summary of ACO-related research studies.

Ref Objective Heuristic
Used

Comparison
Algorithm

Performance
Metrics Difference Platform Application

Environment

[31]

Improve resource
utilization in terms
of CPU cores and
memory for VMs

and PMs
Minimize number

of instantiated VMs
and PMs

ACO-BF Max-fit
Best-fit

Memory
utilization

CPU
utilization

Service time
not considered

Cost not
considered

Docker Cloud

[28]
Maximize

application
performance

ACO Greedy

Resource
reservation
Workload

performance

Cost not
considered

Few containers
deployed

Docker Edge

[30]

Reduce the network
transmission

overhead among
microservices

Load balancing in
the physical nodes

ACO_
MCMS

GA_MOCA
Multiopt

Cluster
Resource load

Network
transmission

overhead

Consider
bandwidth
overhead

Docker Cloud

[29]
Improve response

time and
throughput

MACO FCFS

CPU
utilization

Energy
consumption

Consider
energy

consumption
QoS not
factored

Docker Cloud

Our ap-
proach

Improve resource
utilization in terms

of CPU and
memory

Minimize the
response time for
scheduled pods
Minimize cost of
pod placement

STaSA ACO
FCFS

Resource
utilization
Percentage

QoS violations
Response time

QoS
considered

Cost
considered

Service time
considered

KubeEdge Edge

5. Initializing Pheromones

The objective of this section is to maximize node utilization, minimize the cost, and
optimize the service time. This can be determined by conducting a search for optimal pod
placement on available nodes. Choosing the node for the next pod can be determined
through the pheromone probability relationship pk

j , shown in Equation (13), which repre-
sents the probability that an ant will select the placement of a pod i on node j; here τj(t) is
the node j pheromone value at time t, timej is the service time of node j, and Ctotal is the cost
value of node j. The exponents α, β, and γ are positive parameters whose values determine
the relation between pheromone information and heuristic information (timej, Ctotal), while
k represents the size of the ant colony, i.e., number of ants.

pk
j =

[
τj(t)

]α[timej
]β
[Ctotal ]

γ

∑N [τl(t)]
α[timel ]

β[Ctotal_l ]
γ

(13)

The initial pheromone value on the path between the pod i and the node j is calculated
as Equation (14), with t = 0 taken as the base case for future updates.

τij(t) = Ut
j :
∣∣∣ t = 0 (14)
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When an ant matches the corresponding node for all pods, an update is performed on
the mapping path of the scheduling scheme locally. This is conducted by Equation (15) as
follows:

τij(t + 1) = (1− ρ)τij(t) + ∆τij (15)

The amount of pheromone released by an ant due to the quality of the placement is
represented as ∆τij in Equation (16). Here, A represents the size of the ant colony, while ρ
is the pheromone volatilization factor, indicative of the degree of volatilization per unit
time, while (1− ρ) shows the degree of residual pheromone.

∆τij =
A

∑
k=1

∆τk
ij (16)

The greater the volatilization factor, the faster the pheromone volatilizing and the
smaller the effects of the previous search solution on the present one. The amount of
pheromone released by an ant due to the quality of the placement is represented as ∆τij in
Equation (16). ∆τk

ij is the amount of pheromone left behind during pod-to-node mapping
and is related to the objective function as shown in Equation (17), with Q as a heuristic
constant. L represents the fitness of the scheduling of pod i on node j. If ant k went along a
path ij, it would contribute to the increment of the pheromone on the path. This equation
shows that the better solution has a lower evaluation value, and more pheromones on the
corresponding path.

∆τk
ij =

Q
L

(17)

6. Fundamentals of KubeEdge

KubeEdge [32] is an open-source system that provides orchestration and management
functions for containerized applications to edge clusters. It is a Cloud Native Computing
Foundation (CNCF) sandbox project, designed to extend the Kubernetes ecosystem from
cloud to edge. It avails core infrastructure support for networking, application deployment,
and metadata synchronization between the cloud and edge. Furthermore, it posits to offer
a complete end-to-end edge computing solution anchored on Kubernetes with separate
cloud and edge core modules, both of which are open-source. KubeEdge, through the
Eclipse Mosquitto message broker, supports the MQTT protocol, which makes it suitable
for IoT/resource-constrained device communication. KubeEdge aims to address challenges
of large memory footprints occasioned by IoT big data, improve cloud-to-edge network
reliability, context-aware offloading, and overall efficiency and scalability. It has multiple
components but of interest to our work are two components: Edged and Edge controller.
The former is responsible for the pod management, and as an edge node module that
manages pod lifecycle, it functions to deploy containerized workloads or applications at
the edge node. Those workloads could perform any operation from simple telemetry data
manipulation to analytics or ML inference. The Edge controller is the bridge between
the Kubernetes API server and edge core. It avails several functions, including both a
downstream (K8s API server to edgecore) and an upstream controller. More specifically,
these include synchronization of events (node, pod, and configmap), resource status, and
subscribe messages. Based on this, we design our scheduler as a plug-in between the K8s
Api server and the cloudcore, as shown in Figure 2.
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7. STaTA Scheduler

Figure 3 shows a high-level architecture of our proposed scheduler. The key charac-
teristic of our design is the implementation of a QoS scheduler that adopts the threshold
approach [33] to ensure service scheduling and allocation of resources to pods does not
violate the predefined QoS values on cost and execution time based on Equation (11). The
workflow is as follows: The set of tasks are submitted to the scheduler, where the heuristic
algorithm runtime is initiated in order to get the scheduled queue, i.e., which node for each
task. The QoS controller runs the algorithm, and the scheduler then sends the schedule
order to the cloudcore based on the queue. The selected edge node receives the schedule
order for each task and then initiates the pod. We introduce Algorithm 1, a heuristic algo-
rithm called STaSA (Service–Time-Aware Scheduling Algorithm for multi-node KubeEdge
cluster) based on an enhanced version of the ACO.

The introduced heuristic algorithm is based on an enhanced version of the ACO.
STaSA starts by calculating the total resources available in the instantiated nodes. If the
number of available resources is below the number of resources requested by the set of
pods p, a new subset of nodes is instantiated then instantiated based on Equation (7) that
prioritizes the node utilization. STaSA begins by calculating the initial pheromone value τij
and the placement cost matrix using Equations (9) and (12), respectively. With every loop
and based on probability value Equation (11), each ant finds a placement for the set of pods
p on nodes N. The maximum probability threshold method is applied for the selection of
node j, where a random number ε [0,1] is generated and an aggregate probability value
derived. The aggregate sum of probabilities is then arranged in ascending order, and the
cumulative probability equal to or greater than the generated random number is selected.
The pheromone trail is updated after each loop. Algorithm 1, terminates when either
the maximum number of iterations is reached or by reaching the local minimum, i.e., the
best placement.
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Algorithm 1. STaSA

Input: p; Max_Loop; Ants_N; Q; β, γ, ρ; ϕ1; timej; v f ,t
mem, v f ,t

cpu en.

Output: Placement of pod i on node j

1: Initialize parameters {Max_Loop, Ants_N, Q, α, β, γ, ρ }
2: If (v f ,t

cpu + v f ,t
mem > R) then

Instantiate new set of nodes using Equation (7)
//include check capacity condition of nodes states
3: End if
4: Initialize the pheromone trail using Equation (13)
5: Initialize the placement cost using Equation (9)
6: For nloop from 1 to Max_Loop do
7: Random shuffle input pod queue
8: For ant_k from 1 to Ants_N do
9: For i from 1 to p do
10: Calculate the time value based on (12)
11: Calculate the probability of placement of pod i on each node j using
12: Equation (13)

//ant_k chooses node j for pod i according to the highest probability
Add the selected node j to the schedule table as a placement of pod i for ant_k

13: End for
14: Calculate the cost of pod i for ant_k using Equation (10)
15: End for
16: Update the pheromone trail using Equation (15)
17: End for
18: Repeat until the maximum number of iterations is reached or best placement found
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8. Evaluation

We implemented our scheduler algorithm in the Python programing language. A
cluster is set up, including a set of several nodes with KubeEdge version 1.4. The master
node is configured with 8 CPU cores and 8 GB of RAM, and worker nodes, run with
4 CPU cores and 4 GB of RAM, more specifically deployed on Intel Xeon e5 2640, 2.6 GHz,
64 GB RAM, and 32 logical cores server. The test-bed configuration is shown below in
Table 3. We evaluate the scheduling quality of STaSA in two ways: (i) compare with the
previously implemented ACO baseline scheduler, FCFS algorithm (described in Section 3)
using production workloads, and (ii) study critical evaluation metrics and use these to
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compare the quality. For evaluation, we use memory utilization, CPU utilization, service
time, and cost metrics as comparison parameters. For comparison, we benchmark with
ACO and FCFS algorithms. We estimate the cost of each approach based on the billing
model of existing cloud providers [34]. We assume a per-second billing of USD 0.011 for
each worker node based on Microsoft Azure’s general purpose B2S instance type, with any
partial use being rounded up to the nearest second. The workload consists of tables that
describe the submitted task requirements, machine configurations, and task resource usage.
The scheduling table contains information such as time, pod ID, and task ID. Additionally,
the table includes normalized data, such as resource requests for CPU cores and RAM. We
conducted several trials as part of our experiment with the input values shown in Table 4.

Table 3. Test-bed settings.

Entry Configuration

Physical Servers (4) Master Node (1): RAM: 8 GB; CPU: 8 cores
Worker Nodes (3): RAM: 4 GB; CPU: 4 cores

Container OS KubeEdge

Table 4. Input values.

Parameters Description Value

Pods Number of pods 40
Ants_N Number of ants 8

Q Heuristic constant 1
α Heuristic constant 0.1
β Heuristic constant 2
γ Heuristic constant 0.3
ρ Pheromone evaporation rate 0.2
ϕ1 Weight factor 0.5

v f ,t
cpu CPU requirements of function f [100–1000] ms

v f ,t
mem Memory requirements of function f [100–1000] MB
en Node price per second $0.11

9. Experimental Results

In our implementation environment, we investigate the three aspects of utilization,
service time, and cost. Consequently, three algorithms have been compared, and the results
are shown in Figures 4–8. CPU utilization is investigated in Figure 6, where it is shown that
STaSA outperforms the other two algorithms. As can be seen by the increase in the number
of pod instances, the utilization value is slightly above average for all the algorithms but
improves in STaSA as the ants are able to find the nearest optimal solution mapping for
the pods to nodes. This indicates the minimum fitness value has been reached. ACO also
shows good performance, but FCFS with imbalanced processing performs badly when
computing slower tasks. Additionally, considering that all the workers operate in parallel,
STaSA can keep the CPUs busy due to a fast upload resulting in higher resource utilization.

Memory utilizations among different nodes in a cluster system are highly unbalanced
in practice where page faults, i.e., memory misses, might occur in some heavily loaded
nodes. This is demonstrated well in Figure 5. When the number of requests is low, the
utilization rate for all the algorithms is relatively lower. However, with increasing pod
requests, STaSA is able to attain a higher utilization and slightly outperforms ACO. Their
solutions converge at a point when the pods are between 30 and 35, but STaSA is able to
minimize page faults and produces better results.
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As can be seen from Figure 6, when the number of pods is low, the pod service of the
three algorithms is relatively minimal. With the increase in the number of pod instances,
the service time of STaSA and ACO is significantly better than FCFS. This is due to STaSA
and ACO being able to converge faster and offer a better performance solution for the
combinatorial optimization problem. Simultaneously, we observe that the service time of
STaSA is slightly better than baseline ACO.

Figure 7 shows the total costs of the workload for the three algorithms. We can see that
when the difference in cost between STaSA and ACO is relatively small compared to FCFS.
This observation can be explained from the perspective of the relationship between cost and
utilization factors. Additionally, our approach adjusts the corresponding pheromone value
that is considered in the objective function. This results in a better solution with the cost as
a constraint. The service time of the three algorithms is used as a basis to observe the QoS
performance. We monitor the algorithms under the same QoS requirement to determine
their efficiency. A function instance is considered unavailable or busy while processing a
request, and if there are no other available instances of that function, then the scheduler is
unable to schedule and run another request for the same function until an instance becomes
available. Those are considered unscheduled pods. We can observe in Figure 8 that STaSA
outperforms the other two algorithms throughout. It demonstrates very low violations,
which means that it has a higher success rate compared to the other two.
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10. Conclusions

In this study, we proposed a dynamic pod scheduling model to solve the task schedul-
ing problem at the edge. This approach considered user QoS requirements as a primary
goal in the solution. Containers were adopted to provide the computational resources to
the application requests. Based on application and container characteristics, we modeled
the pod scheduling process and proposed a novel pod scheduling algorithm, STaSA, that
is based on a modified ant colony optimization model. The multi-objective goal seeks to
maximize node utilization, minimize the cost, and optimize the service time. The con-
straints included resource capacity (CPU and memory) and total service time. Experiments
conducted showed that STaSA outperformed two other methods, namely ACO and FCFS.
However, to simplify the service model, we ignored the network transmission, which
should be considered in a larger deployment scenario setup. Furthermore, task dependen-
cies and application partitioning for efficient computation are not considered as identifying
the resource-intensive components in workloads is a complex issue.
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