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Abstract: It is difficult to achieve all-weather visual object tracking in an open environment only
utilizing single modality data input. Due to the complementarity of RGB and thermal infrared (TIR)
data in various complex environments, a more robust object tracking framework can be obtained
using video data of these two modalities. The fusion methods of RGB and TIR data are the core
elements to determine the performance of the RGB-T object tracking method, and the existing RGB-T
trackers have not solved this problem well. In order to solve the current low utilization of information
intra single modality in aggregation-based methods and between two modalities in alignment-based
methods, we used DiMP as the baseline tracker to design an RGB-T object tracking framework
channel exchanging DiMP (CEDiMP) based on channel exchanging. CEDiMP achieves dynamic
channel exchanging between sub-networks of different modes hardly adding any parameters during
the feature fusion process. The expression ability of the deep features generated by our data fusion
method based on channel exchanging is stronger. At the same time, in order to solve the poor
generalization ability of the existing RGB-T object tracking methods and the poor ability in the long-
term object tracking, more training of CEDiMP on the synthetic dataset LaSOT-RGBT is added. A
large number of experiments demonstrate the effectiveness of the proposed model. CEDiMP achieves
the best performance on two RGB-T object tracking benchmark datasets, GTOT and RGBT234, and
performs outstandingly in the generalization testing.

Keywords: channel exchanging; RGB-T object tracking methods; dual-modal data

1. Introduction

Although the object tracking method based on visible images has made much break-
through in solving target state transition and similar objects interference in recent years,
the performance of the tracker under specific environments decreases significantly, such
as low illumination, strong light, rain, haze, etc. The main reason is that the quality of
RGB images produced by the visible light camera is extremely poor [1] in the above en-
vironment. However, a thermal infrared camera can produce high-quality TIR images in
the above environment. Thermal infrared cameras are not sensitive to light conditions
and have a strong penetrating ability. They can capture infrared radiation of 0.75–13 µm
wavelength from objects above absolute zero temperature and form the single-channel
grayscale images of better quality [2]. We can clearly see the outline of people from the TIR
image in Figure 1 (right), while the outline of people in the RGB image (left) is extremely
fuzzy. We can clearly know the number of people from the TIR image in Figure 2 (right),
while the number of people in the RGB image (left) cannot be seen clearly at all.
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Figure 1. RGB image (left) and TIR image (right) under low illumination.

Figure 2. RGB image (left) and TIR image (right) under strong light conditions.

Although thermal infrared cameras can generate images of higher quality than RGB
images in specific environments, such as low illumination, strong light, rain, haze, etc., TIR
images have low resolution and would easily lose information, such as colors, target object
edges, and geometric textures. Thermal infrared cameras are sensitive to temperature, and
the effect of thermal infrared images is very poor especially when objects with similar
temperatures overlap, as shown in Figure 3. In the RGB image (left) in Figure 3, we can
clearly see that a tall woman in dark clothes is partially obscured by a short woman in
light clothes. However, in the TIR image (right), due to hot cross, we cannot recognize this
tall woman.

Figure 3. RGB image (left) and TIR image (right) when the trajectories of two people overlap.

1.1. Shortcomings of Existing RGB-T Trackers

With the lower cost of multi-spectral sensors, it has become easy to equip the system
with a dual-mode camera system including both thermal infrared and visible sensors. Thus,
researchers naturally think of designing an object tracking method fusing RGB and TIR data,
which is more beneficial to complete all-weather object tracking in an open environment.
The core factors that determine the performance of the RGB-T tracking method are whether
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the robust RGB and TIR features can be extracted and how to effectively utilize the feature
data of these two modalities. Currently, the data fusion methods of the excellent RGB-T
tracking methods on RGBT234 [2] and GTOT [3] almost adopt the depth feature aggregation
or alignment of the two modalities of RGB and TIR. Convergence based fusion tends to
underestimate intra-modal propagation. Alignment based fusion maintains intra-modal
propagation, but because it only utilizes training alignment loss to exchange weak messages,
it has always been unable to achieve effective inter-modal fusion [4].

At present, the most common benchmark datasets, GTOT and RGBT234, for evaluating
the performance of RGB-T tracking methods have not many video sequences, insufficient
scene types, and generally short video sequences. Such benchmark datasets are not enough
to accurately measure the true performance of the tracker. For example, mfDiMP [5], the
champion in the VOT-RGBT2019 challenge, only ranks third in EAO on the public dataset,
but is the best in EAO in the sequestered dataset, as shown in Table 1.

Table 1. The Top 5 EAO in the VOT-RGBT2019 Challenge.

RGB-T Tracker Name EAO on the Public Dataset
VOT-RGBT2019

EAO on the Sequestered
Dataset

Final Ranking in the
VOT-RGBT2019 Challenge

mfDiMP [5] 0.3879 0.2347 1
siamDW_T [6] 0.3925 0.2143 2

MANet [7] 0.3436 0.2041 3
JMMAC [8] 0.4826 0.2037 4
FSRPN [9] 0.3553 0.1873 5

From Table 1, we can know that the performance of even the best RGB-T tracking
framework has dropped significantly in the sequestered dataset. The generalization ability
of mfDiMP is relatively good, and this is the reason for its first rank. mfDiMP is not trained
on the common benchmark datasets GTOT and RGBT234 (the 60 video sequences of the
VOT-RGBT2019 public dataset are all selected from RGBT234) for RGB-T object tracking
like other frameworks, while it is trained on artificially synthetic dataset GOT10K-RGBT.
mfDiMP utilizes the RGB modality images in the GOT10K [10] dataset to generate the
aligned TIR images by using the image-to-image translation method. mfDiMP finally uses
synthetic dataset GOT10K-RGBT containing RGB and TIR dual-modality video sequences
to complete neural network training. Additionally, mfDiMP is a tracking framework based
on DiMP [11], which inherits the powerful target and background discrimination capabili-
ties of DiMP. mfDiMP can quickly capture the changes in the target and background than
the other four tracking frameworks, and it is also more suitable to track targets that have
not been seen during the training process. We find that mfDiMP directly concatenates the
depth features of RGB mode and TIR mode, and then uses 1 × 1 convolution to perform a
dimensionality reduction operation. Finally, the fused features are input into the IoU predic-
tor and model predictor. The hyperparameter-based feature aggregation method it utilizes
would reduce the model’s representation ability in unique characteristic of the original
modality, and this feature fusion method limits the improvement of its performance.

1.2. Our Innovation

Inspired by [4], we propose an RGB-T object tracking framework CEDiMP based on
channel exchanging. Our proposed method also uses DiMP as the baseline tracker, but we
use the channel exchanging method to fuse the data of RGB mode and TIR mode. Channel
exchanging is a multi-modal data fusion method with no parameter that can dynamically
exchange channels between different modes of sub-networks, which makes our feature
representation model possess powerful representation abilities in multi-modal common
features and single-modal unique features. We utilize the batch normalization (BN) [12]
scale factor (i.e., γ) as the importance measurement of each corresponding channel, and
replace the channel whose factor is close to zero with the value of another modality.
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This information exchanging is parameter-free and adaptive, because it is dynamically
controlled by the scaling factor determined by the training itself.

In summary, the main contributions of this paper are as follows:

i. We propose a novel RGB-T object tracking framework based on channel exchanging.
As far as we know, it is the first time that the channel exchanging method has
been used to fuse RGB and TIR data for the RGB-T object tracking framework.
The data fusion method based on channel exchanging is more efficient than the
previous methods.

ii. In order to improve the generalization performance and long-term tracking ability
of the RGB-T tracker, we utilize the trained image translation model for the first
time to generate the TIR dataset LaSOT-TIR based on the RGB long-term tracking
dataset LaSOT [13]. After training on LaSOT-RGBT, the generalization performance
and the ability of long-term tracking have significantly improved.

iii. Our proposed method not only achieves the best performance on GTOT and
RGBT234, but also outperforms existing methods in the evaluation test of se-
questered video sequences. Our advantage is especially prominent in the long-term
object tracking task.

2. Related Work

Initially, researchers only focused on the study of single-modal object tracking meth-
ods. With the deepening of research, considering the complementarity of RGB and TIR
modalities, tracking algorithms based on the fusion of RGB and TIR data have attracted
more and more attention. The cost of multi-spectral sensors has become lower and lower,
reducing the threshold of research in this area.

2.1. Single-Modal Tracking

RGB trackers. The RGB tracker is the most common single-modal tracker. RGB
trackers that perform well in accuracy and robustness currently are generally based on
appearance modeling. Correlation filtering [14–19] is a typical method of learning object
appearance model. The above-mentioned correlation filtering methods all solve the track-
ing problem by learning the appearance model of the target in the first frame. Considering
that object tracking can be regarded as a serialized detection problem, the target and
background are constantly changing during the tracking process. In order to improve
the discriminative ability of the tracker, the latest trackers based on correlation filtering
utilize online update to perform the target background classification [20–24]. In addition to
using correlation filtering methods, a similarity measure can also be used to locate target
objects. This method of using a similarity measure is generally based on the Siamese
network [25–29] for end-to-end learning. The Siamese network trackers mentioned above
are anchor-based Siamese trackers, except for SiamFC [25]. The anchor-based Siamese
tracker has made significant improvements in accuracy, but due to its lack of robustness,
further improvements in performance are limited. In order to further improve the ro-
bustness of the tracker based on the Siamese network, researchers have proposed the
Siamese network tracking framework based on the anchor-free idea [30–32] recently. Their
accuracy and robustness outperform trackers based on anchor-based ideas on multiple
benchmark datasets.

TIR trackers. In order to perform robust object tracking under extreme visual con-
ditions, such as darkness, strong light, rain and haze, some researchers have carried out
research on object tracking methods based on TIR data. Due to the scarcity of large-scale
benchmark datasets for the training and evaluation of TIR object tracking, most TIR object
tracking frameworks use manual features. In the VOT-TIR2017 challenge, the top three
algorithms [33–35] all use manual features. The multi-layer convolutional features for
thermal infrared tracking (MCFTS) proposed by Liu Qiao et al. [36] is one of the few
methods based on depth features. MCFTS first utilizes a pre-trained convolutional neural
network to extract multiple convolutional layer features of thermal infrared objects, and
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then constructs multiple weak trackers with corresponding convolutional layer features
using correlation filters. These weak trackers give a response map of the target location. Fi-
nally, MCFTS proposes an integrated method to merge these response maps into a stronger
response map. Additionally, MCFTS also proposes a simple and effective scale estimation
strategy to improve tracking accuracy. However, the performance of MCFTS is limited by
the depth features learned from RGB images for pre-training, and it is less effective in accu-
racy representing of thermal infrared tracking objects. In order to solve above problems,
Liu Qiao et al. have published a paper on AAAI 2020 [37]. This paper has proposed a TIR
feature model based on multi-task driven method. This model simultaneously learns the
discriminative features and fine-grained correlation features for thermal infrared data. This
method has achieved excellent performance on TIR tracking tasks.

2.2. Modality Fusion Tracking

Because the fusion of RGB and TIR data more easily achieves all-weather object track-
ing in the open environment, the researches on RGB-T object tracking methods become
more and more popular. From the perspective of data fusion, the RGB-T object tracking
framework can be roughly divided into traditional methods [38,39], sparse representa-
tion (SR)-based [40–44], graph-based [45–47], correlation filter-based [48–51], and deep
learning-based approaches. Earlier studies used manual features to perform the appearance
modeling of the target object. These manual features are often invalid when the target scale
or lighting conditions change drastically, or the target object move quickly. It is difficult
to further improve the robustness of the RGB-T object tracking method using manual
features for target representation. Since 2016, the group of Li Chenglong has produced
relatively large-scale RGB-T object tracking benchmark datasets GTOT [3], RGBT210 [45],
and the latest RGBT234 [2]. With the emergence of these datasets, some excellent RGB-T
object tracking methods based on depth features have gradually shown their superior
performance [52–56]. The performance improvement of these methods is due to the pow-
erful feature expression ability of deep features. However, these methods are limited by
the datasets used for neural network training [2,3,45], which have problems including
insufficient scale, generally short video sequences, insufficient scenes, and generally poor
generalization performance. Table 2 can more intuitively express the similarities and
differences of current mainstream RGB-T tracking methods.

Table 2. Examples of recent published research on RGB-T trackers.

References Years Journal/Conference Category

[38] 2007 IEEE Conference on Computer Vision and Pattern Recognition Traditional method
[39] 2011 IEEE International Conference on Information Fusion Traditional method

[40] 2018 Conference on Image and Graphics Technologies and
Applications Sparse representation (SR)-based

[41] 2017 IEEE Transactions on Systems, Man, and Cybernetics: Systems Sparse representation (SR)-based
[42] 2018 In Proceedings of the European Conference on Computer Vision Sparse representation (SR)-based
[43] 2011 IEEE International Conference on Information Fusion Sparse representation (SR)-based
[44] 2012 Science China Information Sciences Sparse representation (SR)-based

[45] 2017 In Proceedings of the ACM international conference on
Multimedia Graph-based

[46] 2019 IEEE Transactions on Circuits and Systems for Video Technology Graph-based
[47] 2018 Signal Processing: Image Communication Graph-based

[48] 2019 Neuro computing Correlation Filter
(CF)-based

[49] 2018 In Pattern Recognition and Computer Vision Correlation Filter
(CF)-based

[50] 2019 Infrared Physics & Technology Correlation Filter
(CF)-based

[51] 2019 Mathematical Problems in Engineering Correlation Filter
(CF)-based

[52] 2020 IEEE Conference on Computer Vision and Pattern Recognition Deep Learning
(DL)-based
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Table 2. Cont.

References Years Journal/Conference Category

[53] 2020 European Conference on Computer Vision Deep Learning
(DL)-based

[54] 2020 Sensors Deep Learning
(DL)-based

[55] 2019 IEEE International Conference on Image Processing Deep Learning
(DL)-based

[56] 2019 ACM international conference on Multimedia Deep Learning
(DL)-based

3. Methods

In order to improve the efficiency of the data fusion of RGB and TIR modalities and
further improve the performance of the RGB-T tracker, we propose the RGB-T object track-
ing framework CEDiMP based on channel exchanging. Both CEDiMP and mfDiMP [5] use
DiMP [11] as the baseline tracker, but unlike mfDiMP, CEDiMP does not utilize aggregation
in feature fusion. In order to improve the long-term object tracking ability and general-
ization ability of CEDiMP, we have also trained on our synthetic dataset LaSOT-RGBT, in
addition to training on the synthetic dataset GOT10K-RGBT.

3.1. RGB and TIR Feature Fusion Based on Channel Exchanging

The well-known single-target tracking framework SiamRPN++ [28] has proved with
the experiments that although the depth feature can have 256 channels or more, only
a few channels have high response during the tracking process. This indicates that the
depth features are often sparse, and the concatenation of features from two modalities by
mfDiMP makes the depth features sparser. Sparse features will significantly reduce the
feature expression ability of the appearance model. Inspired by [4], we perform channel
exchanging of the RGB and TIR modalities. Specifically, we utilize the scale factor of batch
normalization (BN) [12] (i.e., γ) to measure the importance of each corresponding channel.
If the scale factor corresponding to a specific channel of the current modality is close to
zero, then we replace the value of the current channel with the value of the corresponding
channel of another modality.

BN layer is widely used in deep learning, which can eliminate covariate drift and
improve generalization ability. We define xv,l as the feature maps of the l-th layer of the
RGB branch, and xv,l,c represents the c-th channel. xt,l is the feature maps of the l-th layer of
the TIR branch, and xt,l,c represents the c-th channel. BN layer normalizes xv,l and xt,l , and
then performs affine transformation to obtain Equation (1) and Equation (2), respectively:

x′v,l,c = γv,l,c
xv,l,c − µv,l,c√

σ2
v,l,c + ε

+ βv,l,c (1)

x′t,l,c = γt,l,c
xt,l,c − µt,l,c√

σ2
t,l,c + ε

+ βt,l,c (2)

where µv,l,c and σv,l,c, respectively, represent all the activated mean and standard deviation
of the current mini-batch data of the RGB branch at all pixel positions (H and W). µt,l,c and
σt,l,c, respectively, represent all the activated mean and standard deviation of the current
mini-batch data of the TIR branch at all pixel positions (H and W). γv,l,c and βv,l,c are the
trainable scale factor and offset in the RGB branch, respectively, γt,l,c and βt,l,c are the
trainable scale factor and offset in the TIR branch; ε is a small constant that can avoid
the division by zero. The input of the (l+1)-th layer of RGB and TIR is x′v,l,c and x′t,l,c,
respectively, which is the output of the l-th layer.
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In Equations (1) and (2), γv,l,c and γt,l,c evaluate the correlation between the input
and output of the l-th layer during the training process of the RGB and TIR branches,
respectively. If γv,l,c approaches 0, the gradient of the loss rate of xv,l,c will also approach 0.
The relationship between xt,l,c and γt,l,c is the same. Whether it is xv,l,c or xt,l,c, as long as
the value approaches 0, it will lose its effect in the final prediction. In other words, channel
c becomes a redundant channel. To this end, we set a threshold θ. If γv,l,c < θ and γt,l,c > θ,
the feature of channel c in the TIR branch is used to replace the feature of channel c in the
RGB branch, as shown in Equation (3). If γt,l,c < θ and γv,l,c > θ, the feature of channel c
in the RGB branch is used to replace the feature of channel c in the TIR branch, as shown in
Equation (4).

x′v,l,c =

 γv,l,c
xv,l,c−µv,l,c√

σ2
v,l,c+ε

+ βv,l,c, i f γv,l,c > θ;

γt,l,c
xt,l,c−µt,l,c√

σ2
t,l,c+ε

+ βt,l,c else i f γt,l,c > θ;
(3)

x′t,l,c =

 γt,l,c
xt,l,c−µt,l,c√

σ2
v,l,c+ε

+ βt,l,c, i f γt,l,c > θ;

γv,l,c
xv,l,c−µv,l,c√

σ2
v,l,c+ε

+ βv,l,c else i f γv,l,c > θ;
(4)

We apply Equations (3) and (4) to the RGB and TIR modalities, respectively, then put
them into the nonlinear activation layer, and perform the convolution of the next layer.
The gradient is separated from the replaced channel and propagates back through the new
channel. In the implementation process, we apply the sparsity constraint of the scale factor
to two disjoint regions of different modalities. The specific channel exchanging process is
shown in Figure 4.

Figure 4. RGB and TIR dual-modal channel exchanging framework.

3.2. Network Architecture of the RGB-T Tracker Based on DiMP

Due to the excellent performance of DiMP [11] in terms of target discrimination ability
and optimization speed, our proposed CEDiMP utilizes DiMP as the baseline tracker.
DiMP is composed of two branches: the target classification branch is used to distinguish
between the target and the background; the bounding box estimation branch is used to
predict the accurate target bounding box. In the target classification branch, the depth
features extracted from the training dataset and the testing dataset by the feature extractor
F are transformed into specific classification features. Then, the feature map generated
from the training dataset is input into the model predictor D (the predictor is composed of
an initialization module and a loop optimization module). Effective weight initialization
and fast gradient backpropagation make DiMP’s ability of discriminating targets and
backgrounds significantly higher than ATOM [22]. The bounding box estimation branch of
DiMP, like ATOM, is based on IoU-Net [57], utilizing the overlap-maximization strategy
for accurate bounding box estimation.

The training set and testing set of CEDiMP consists of RGB and TIR data. As shown
in Figure 5, the images from each modality are input into the corresponding feature
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extraction network. The depth characteristics of RGB and TIR modalities are merged
by channel exchanging. CE (channel exchanging) is a novel data fusion method. It is a
parameter-free multi-modal data fusion method that can dynamically exchange channels
between sub-networks of different modes. CE can achieve the feature representation model
which has powerful multi-modal common features and single-modal unique features. In
order to complete the precise location of the target, the depth features of RGB and TIR
modalities after channel exchanging are adjusted to the features suitable for overlap rate
maximization estimation through IoU_v component and IoU_t component. In order to
achieve robust classification of targets and backgrounds, the depth features of RGB and
TIR modalities after channel exchange are adjusted to features suitable for classification
through Cls_v component and Cls_t component. In this way, it can provide a more
expressive representation for IoU (intersection-over-union) prediction, and it can provide
more distinctive features for the model predictor. The adjusted features are input to the IoU
predictor (IoU_v predictor and IoU_t predictor) and the model predictor (model predictor
V and model predictor T), respectively. Different from the existing RGB-T object tracking
method, our proposed CEDiMP, respectively, supervises the training of the two branches,
RGB and TIR. The classification and the bounding box estimation results of the RGB branch
are shown in the upper part of Figure 5; the classification and the bounding box estimation
results of the TIR branch are shown in the lower part of Figure 5.

Figure 5. The framework of CEDiMP.

3.3. The Training and Optimization of the Target Classification Sub-Network

Model predictor optimization. We define training set as Mtrain_total , which contains
two subsets, RGB subset Mtrain_v and TIR subset Mtrain_t. Strain_v and Strain_t are generated
by convolutional neural network feature extraction and channel exchanging operation

on the input image, Strain_v =
{

x(i)v , c(i)v

}n

i=1
, Strain_t =

{
x(i)t , c(i)t

}n

i=1
. x(i)v ∈ X and

x(i)t ∈ X are the classification features. The RGB feature extraction network and the TIR
feature extraction network first complete the feature extraction process, respectively; then,
the channel exchanging operation is performed; and finally, the extracted features are
transformed into specific classification features x(i)v ∈ X , x(i)t ∈ X . c(i)v ∈ R2 and c(i)t ∈ R2

are the center coordinates of the RGB and TIR samples, respectively. In order for the model
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predictors of the RGB branch and the TIR branch to obtain the optimized filters fv and ft,
respectively, we initially utilize the original the least square loss, as shown in Equations (5)
and (6).

L( fv) =
1

Strain_v
∑

(xv ,cv)εStrain_v

||r(xv ∗ fv, cv)||2 + ||λ fv||2 (5)

L( ft) =
1

Strain_t
∑

(xt ,ct)εStrain_t

||r(xt ∗ ft, ct)||2 + ||λ ft||2 (6)

where ∗ represents the convolution operation, and λ is the regularization factor. The
function r in Equation (5) is used to calculate the residual difference between the predicted
target confidence score in the RGB branch and the true target center coordinates; the
function r in Equation (6) is used to calculate the residual difference between predicted
target confidence score in the TIR branch and the true target center coordinates. During the
training process, we have found that simply taking the difference would force the model
to regress to the corrected confidence value for all negative samples. This makes learning
focus on negative data samples instead of obtaining the best discrimination ability. In the
object tracking task, the numbers of positive and negative samples are unbalanced. In
order to solve the imbalance problem of the numbers of positive and negative samples, we
use hinge-like loss (l) in the calculation of r. When solving the optimal solution of fv and
ft, we do not use the common stochastic gradient descent method, instead utilizing the
steepest descent method referenced from DiMP. Adopting the steepest descent method can
obtain powerful filters fv and ft after several iterations.

Offline training. Different from the existing RGB-T object tracking framework, in or-
der to make the target discrimination branch more robust, both the RGB and TIR branches
of CEDiMP utilize multiple frames in the video sequence to form the training set and the
testing set. The RGB branch randomly selects a subsequence of length T from the RGB
sequence. The former part of the subsequence forms the training set Mtrain_v, and the
later part forms the testing set Mtest_v. The training set Mtrain_t and testing set Mtest_t of
the TIR branch are generated with the same strategy as the RGB branch. After the offline
training starts, the RGB branch and the TIR branch perform the same operations. The
paired (Mtrainv , Mtest_v) would generate corresponding (Strainv , Stestv) after feature extrac-
tion and channel exchanging; similarly, the paired (Mtraint , Mtestt) generates corresponding
(Straint , Stestt) after feature extraction and channel exchanging. Strain_v and Strain_t provide
training data for the model predictor in order to obtain fv and ft with strong discrimination
ability. Testing samples in the RGB and TIR modalities Stest_v and Stest_t are used to evaluate
the filters fv and ft, and the final target classification loss is calculated by the mean square
error of all testing samples. Equations (7) and (8) show the classification loss used in the
offline training of the RGB and TIR modalities, respectively.

Lcls_v =
1

Niter

Niter

∑
j=0

∑
((xv ,cv))εStest_v

∣∣∣∣∣∣l(xv ∗ fv
(j), zc_v

)∣∣∣∣∣∣2 (7)

Lcls_t =
1

Niter

Niter

∑
j=0

∑
((xt ,ct))εStest_t

∣∣∣∣∣∣l(xt ∗ ft
(j), zc_t

)∣∣∣∣∣∣2 (8)

Niter is the number of planned optimization iterations, l() is hinge-like loss, the
regression label zc_v represents the Gaussian function centered on the RGB target c, and the
regression label zc_t represents the Gaussian function centered on the TIR target c. Note that
we not only evaluate the final target model f , but also evaluate the average loss of estimated
f (j) obtained by the optimizer in each iteration j. Introducing intermediate supervision
into the target prediction module is beneficial for the convergence of the training process.
In addition, our goal is not to train a specific number of recursions, but to freely set the
number of required recursions.
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3.4. Bounding Box Estimation Branch

We take advantage of the overlap maximization strategy to perform accurate bounding
box estimation. Given the appearance of the reference object, the bounding box estimation
branch is trained to predict the IoU overlap between the target and previous set of candidate
boxes on the testing image. The calculated vector is used to modulate the features in testing
images, and then it is utilized for IoU prediction. Different from the existing RGB-T
object tracking method, we simultaneously supervise the RGB and TIR modalities during
network training and maximize the IoU between the predicted bounding box and the true
value of each modality, respectively. The calculation methods of IoU between the single
predicted bounding box and the true value of the RGB and the TIR modalities are shown in
Equation (9) and Equation (10), respectively:

IoU(Bv) = g(w(xv0, Bv0)·z(xv, Bv)) (9)

IoU(Bt) = g(w(xt0, Bt0)·z(xt, Bt)) (10)

xv0, Bv0 come from the first frame of Mtrain_v, and xv, Bv are obtained by randomly
sampling an image frame in Mtest_v. xt0, Bt0. come from the first frame of Mtrain_t, and xt, Bt
are obtained by randomly sampling an image frame in Mtest_t. w is the modulation vector,
z is the feature representation of the single image frame processed by the PrPool [57] layer
in the testing set, and g is the IoU predictor with three fully connected layers. The target
information is integrated into the IoU prediction by computing a modulation vector from
the reference appearance of the target. The bounding box estimation loss of the RGB and
TIR modalities, Lbb_v and Lbb_t, are the squared errors between the predicted IoU overlap
and the true value of all samples in Mtest_v and Mtest_t, respectively.

3.5. Final Loss Function

In order to achieve a balance between accuracy and robustness of the object tracking
task in both RGB and TIR modalities, we perform supervision in both RGB and TIR
modalities during the offline training process, instead of compromising between the two
modalities as in the existing RGB-T object tracking methods. The total loss of the RGB
modality is the value of Ltot_v, as shown in Equation (11). The total loss of the TIR modality
is the value of Ltot_t, as shown in Equation (12). ϕv and ϕt are hyperparameters set to
increase the impact of the classification loss on the total loss. The loss function of the
CEDiMP framework is the sum of the loss in the RGB and TIR modalities, as shown in
Equation (13).

Ltot_v = ϕvLbb_v + Lcls_v (11)

Ltot_t = ϕtLbb_t + Lcls_t (12)

Ltot = Ltot_v + Ltot_t (13)

3.6. LaSOT-RGBT

From Table 1, we can see that the performance of the current RGB-T object tracking
frameworks on unknown datasets decreases significantly, which shows that the RGB-T
object tracking frameworks generally have poor generalization ability. In addition, we have
found that, although mfDiMP only ranked third in EAO on the public dataset in the VOT-
RGBT2019 challenge, the EAO of mfDiMP on the sequestered dataset ranked first. After
analysis, it is found that the top five trackers all use depth features. However, mfDiMP
is the only tracker that has performed the neural network training on the large-scale
synthetic dataset GOT10K-RGBT. This demonstrates that only training on the small-scale
RGB-T datasets RGBT234 and GTOT cannot make the tracker obtain strong generalization
capabilities. When the testing videos contain the conditions that target reappears after
disappearing from the field of view, the target state transits, and so on, all the RGB-T
trackers in Table 1 would fail. This indicates that the current methods cannot cope with the
typical challenges of long-term object tracking tasks. In order to improve the generalization
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ability and long-term object tracking ability of the RGB-T tracker, we first generate the
dataset of the TIR modality LaSOT-TIR with the trained image translation model based on
the long-term object tracking dataset of RGB modality LaSOT. Through the above steps, we
have obtained the synthetic dataset LaSOT-RGBT, which can be used for RGB-T long-term
tracking. Compared with mfDiMP, our proposed CEDiMP framework is also trained on
LaSOT-RGBT. With extra training on the large long-term object tracking dataset, CEDiMP
not only has the ability to deal with challenges such as the reappearance of the target
after disappearing from the field of view and the transition of target state, but also further
improves the generalization ability.

4. Experiments

In order to verify the effectiveness of our proposed method, we have conducted many
representative experiments. All experiments have been performed on a PC equipped with
NVIDIA TITAN X GPU and i7-9600K CPU. We have implemented CEDiMP on PyTorch.

4.1. Implementation Details
4.1.1. Backbone Network

The backbone network of the CEDiMP tracking framework is ResNet50 [58], but only
the first 4 blocks are used. In order to make the feature representation model of the tracker
obtain the powerful representation capabilities of multi-modal common features and
single-modal unique features, we perform channel exchanging operations in the backbone
network of the RGB and TIR modalities when completing feature extraction tasks. The
output features of Block3 and Block4 are used to estimate the bounding box, but only the
output features of Block4 are utilized to classify the target and background.

4.1.2. Offline Training

In the offline training process, GOT10K-RGBT and LaSOT-RGBT are used for train-
ing. GOT10K-RGBT and LaSOT-RGBT contain 8335 and 1120 pairs of video sequences
aligned with visible light and thermal infrared, respectively. The final loss function of of-
fline training is shown in formula 13. The RGB branch inputs three image pairs each
time, i.e., Mtrainv = 3, Mtestv = 3; the TIR branch performs the same operation, i.e.,
Mtraint = 3, Mtestt = 3. In order to speed up the convergence of the neural network during
the training process, we have utilized the DiMP pre-trained model. The parameters of
the RGB branch and the TIR branch are fine-tuned, respectively, during training. Since
the pre-trained model is generated based on the RGB modality, the learning rate of the
TIR branch of CEDiMP is greater than that of the RGB branch (in this paper, lrt = 10lrv,
where lrv is the learning rate of the RGB branch, and lrt is the learning rate of the TIR
branch), so that the two modalities can learn the optimal results at the same time. The
initial learning rate of the RGB branch is lrv = 10−3, and the initial learning rate of the TIR
branch is lrt = 10−2. The entire training process contains 50 epochs, and the learning rate
drops by 0.1 every 10 epochs. To increase the speed of CEDiMP, we have to sacrifice some
accuracy, so we set Niter to be 4.

4.1.3. Online Tracking

During online tracking, the RGB and TIR branches are given the first frame with
annotations, respectively. We use the data augmentation strategy to construct two initial
sets Strain_v and Strain_t containing 15 samples, respectively. Strain_v and Strain_t are input
into the model predictor V and the model predictor T, respectively, and the purpose is to
obtain filters with strong discrimination ability fv and ft after several iterations. For the
first frame of the RGB and TIR modalities, we all utilize the deepest descending recursion
four times after initialization of the module. The sizes of Strain_v and Strain_t are always
30, but the samples inside are constantly updated. In the tracking process, the samples
whose confidence meet the requirements would be added to Strain_v and Strain_t, and the
original samples in Strain_v and Strain_t would also be abandoned at the same time. During
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the tracking process, we make sure that fv and ft have a strong discrimination ability by
performing recursions of the optimization program twice every 20 frames or performing
one recursion when the interference peak is detected. The bounding box estimation
branches of the two modalities perform the same operation as ATOM.

4.2. Comparison to State-of-the-Art Trackers

In order to validate the effectiveness of the proposed RGB-T object tracking framework
based on channel exchanging data fusion, we make a detailed comparison with other
excellent trackers on two RGB-T object tracking benchmark datasets. GTOT [3] has 15.8K
frames, including 50 RGB-T videos aligned spatially and temporally and seven labeled
attributes. RGBT234 [2] has 234K frames, 234 aligned RGB-T videos, and 12 labeled
attributes. When compared with other methods, two common metrics, precision (PR) and
success rate (SR), are utilized to evaluate the performance of the tracker. Since CEDiMP can
separately supervise the RGB branch and the TIR branch, two precision results, including
PRv (the precision of the RGB branch) and PRt (the precision of the TIR branch), and
two success rate results, including SRv (success rate of RGB branch) and SRt (success rate
of TIR branch), would be generated. For a fair comparison with other methods, we set
PR = (PRv + PRt)/2 and SR = (SRv + SRt)/2.

4.2.1. Evaluation on GTOT Dataset

We have compared CEDiMP with six state-of-the-art trackers on GTOT. Since the
targets in the GTOT dataset are always small, we set the threshold of PR to be five pixels. It
can be seen from Figure 6 that the proposed CEDiMP achieves the runner-up performance
in PR, only lower than the first ranked DAFNet [59] by 0.56%, and higher than the third
place SGT [45] by 4.11%. However, CEDiMP achieves the best performance in SR, which
is 2.67% higher than the second place DAFNet and 7.98% higher than the third place
LTDA [60].

Figure 6. Comparison results with the current state-of-the-art methods on GTOT.

4.2.2. Evaluation on REGT234 Dataset

Overall performance. When performing comparative experiments on RGBT234, we
set the threshold of PR to be 20 pixels. After compared with other six state-of-the-art
trackers, it is found that the proposed CEDiMP achieves the best performance in both PR
and SR. The PR of our model is 1.51% higher than the second place DAFNet and 3.99%
higher than the third place MANet [7]. The SR of our model is 3.13% higher than the
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second place DAFNet and 4.08% higher than the third place MANet. The details are shown
in Figure 7.

Figure 7. Comparison results with the current state-of-the-art methods on GRBT234.

Attribute-based performance. Excitingly, the creators of RGBT234 have annotated
attributes for each video sequence in order to complete attribute-sensitive performance
analysis. RGBT234 annotates the sequence with 12 attributes, which represent 12 challeng-
ing aspects in visual tracking. In order to evaluate the specific performance of CEDiMP
in 12 challenges of the object tracking task, we compare the proposed model with the
most advanced RGB-T trackers. The specific results are shown in Table 3. The comparison
results indicate that the overall performance of CEDiMP is the optimal, especially solving
challenges such as occlusion, low illumination, image blur, and quick movement. In order
to demonstrate the excellent performance of CEDiMP on these challenges more intuitively,
we have selected the dog11 and call video sequences in RGBT234 to perform a qualitative
comparison, as shown in Figures 8 and 9.

Table 3. PR/SR scores (%) based on attributes. The best, second, and third performances are shown
in red, green, and blue, respectively.

CMR [42] DAPNet [61] SGT [45] DAFNet [59] CEDiMP (Ours)

NO 89.5/61.6 90.0/64.4 87.7/55.5 90.0/63.6 88.1/65.9
PO 77.7/53.5 82.1/57.4 77.9/51.3 85.9/58.8 87.1/60.5
HO 56.3/37.7 66.0/45.7 59.2/39.4 68.6/45.9 69.8/46.1
LI 74.2/49.8 77.5/53.0 70.5/46.2 81.2/54.2 82.5/55.1
LR 68.7/42.0 75.0/51.0 75.1/47.6 81.8/53.8 78.8/53.2
TC 67.5/44.1 76.8/54.3 76.0/47.0 81.1/58.3 81.4/55.0

DEF 66.7/47.2 71.7/51.8 68.5/47.4 74.1/51.5 73.1/52.9
FM 61.3/38.2 67.0/44.3 67.7/40.2 74.0/46.5 75.4/48.2
SV 71.0/49.3 78.0/54.2 69.2/43.4 79.1/54.4 78.2/55.8
MB 60.0/42.7 65.3/46.7 64.7/43.6 70.8/50.0 72.1/50.6
CM 62.9/44.7 66.8/47.4 66.7/45.2 72.3/50.6 72.5/52.1
BC 63.1/39.7 71.7/48.4 65.8/41.8 79.1/49.3 80.1/51.2

ALL 71.1/48.6 76.6/53.7 72.0/47.2 79.6/54.4 80.8/56.1
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Figure 8. Qualitative comparison results on dog11 image sequences in RGBT234.

Figure 9. Qualitative comparison results on call image sequences in RGBT234.

Although the proposed model achieves better performance on GTOT and RGBT234,
we hope that the performance of CEDiMP can degrades less than other methods on datasets
similar to the sequestered dataset in the VOT-RGBT2019 challenge, because sequestered
datasets can evaluate the performance of an RGB-T tracker more objectively in an open
environment. The numbers of video sequences in GTOT and RGBT234 are not enough, the
scene type is much unitary, and the video sequences are generally short. Such benchmark
dataset is not convincing enough to accurately measure the real performance of the tracker
in an open environment.

Since we cannot obtain the sequestered dataset of the VOT-RGBT2019 challenge, we
have downloaded a video of RGB modality with serious interference of similar objects
from the Internet. The comparison results on this video are shown in Figure 10. We can
see that CMR and DAPNet have drifted to the interference object at the 65th frame, while
CEDiMP and DAFNet can track the target object correctly. However, since the 278th frame,
all the trackers have drifted to the interference object except for the proposed CEDiMP.

In order to evaluate the performance of CEDiMP on TIR single-modal sequestered
video, we have selected a video sequence containing the challenge of the reappearance
of the target object after leaving the field of view from the recent public TIR single object
tracking benchmark dataset LSOTB-TIR [61] in order to perform a comparison testing. The
tracking object, the deer, left the field of view twice before the 588th. As shown in Figure 11,
although CEDiMP, DAFNet, CMR, and DAPNet can still track the object at the 11th frame,
CMR and DAPNet drift to other deer at the 83rd frame. As the deer gradually leaves the
field of view, DAFNet has drifted to other deer at the 245th frame. Although DAFNet has
captured the target again at the 292nd frame, we can infer from the subsequent tracking
results of the 419th frame and the 588th frame that this would be an accidental result.
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Figure 10. Qualitative comparison results of single RGB modality.

Figure 11. Qualitative comparison results of single TIR modality.

To verify the performance of CEDiMP on RGB and TIR dual-mode sequestered video,
we have selected a difficult video from the testing set in the first Anti-UAV Challenge to
complete the comparison experiment. In this video, the camera teleports for many times, the
resolution of images is low, and the target object often disappears in single-modal images.
In order to validate whether the feature fusion based on channel exchanging is better than
that based on aggregation, we have deliberately completed the qualitative comparison
with mfDiMP. It can be seen from Figure 12 that DAFNet achieves excellent performance
on GTOT and RGBT234 but performs the worst in this performance comparison. The target
is not tracked correctly at the 354th frame and the 503rd frame, which indicates that the
generalization performance of DAFNet is poor. Both mfDiMP and CEDiMP have tracked
the target correctly at the 70th frame and the 503rd frame, but mfDiMP has drifted to the
background at the 354th frame.

4.3. Ablation Study

To evaluate the impact of multi-modal data fusion input on object tracking, the
effectiveness of the proposed CE module, and the benefit on the improvement of the
tracker’s performance with extra training on LaSOT-RGBT, we have conducted the ablation
study on the RGBT234 benchmark dataset, which is widely used when evaluating the
performance of the RGB-T tracker.
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Figure 12. Qualitative comparison results of RGB and TIR modalities.

Single/dual-modal data. Although RGB cameras can obtain images of high reso-
lution, gain rich image texture and color features, they cannot perform well in specific
environments such as low illumination, strong light, rain, and haze. TIR cameras can obtain
images with higher quality under low illumination, strong light, rain, and haze, but TIR
images are temperature-sensitive, have low resolution, and easily lose information, such
as colors, target edges, and geometric textures. There have been many challenges in the
object tracking task in the all-weather, open environment. Thus, we guess that it is difficult
for the tracker to achieve the best performance only with the single modal input of RGB
or TIR data. The experiment results in Figure 13 demonstrate our ideas. CEDiMP with
dual-modal input has achieved better performance than any tracker with single-modal
input in both PR and SR (CEDiMP+RGB represents that only RGB images are input, and
CEDiMP+T represents that only TIR images are input).

Figure 13. Single/dual-modal experiments results.

Prune experiments. In order to verify the effectiveness of the proposed CE module in
RGB-T object tracking, we have removed the CE module in CEDiMP and have performed
the comparison experiments. It can be seen from Figure 14 that the CE module has the
significant impact on improving the performance of the tracker. Without the CE module,
the PR of the model would reduce by 13.17%, and the SR of the model would reduce by
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10.65%. From Figure 15, we can find that the difference between the model performance
in PR and SR on RGBT234 is not obvious regardless of whether CEDiMP is trained on
LaSOT-RGBT additionally.
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5. Discussion

The results of GTOT and RGBT234 demonstrate that the proposed CEDiMP achieves
the best performance, but the advantages are not obvious. However, the qualitative
comparison results on sequestered videos indicate that CEDiMP has obvious advantages.
The effect of the baseline tracker of the RGB-T tracker is of vital importance and cannot be
ignored, as shown in Figure 10. If the discrimination ability of the baseline tracker is not
strong enough, the tracker will easily drift to interference objects that have high similarity
with the target, no matter how the data are fused. CEDiMP utilizes DiMP as the baseline
tracker, and the most prominent characteristic of DiMP is that it can ensure the optimal
discriminative ability of the discriminator all the time with the efficient online learning
method. This is the main reason for the obvious advantages of CEDiMP in Figure 10. The
video sequences in Figure 11 contain the typical long-term object tracking challenge, and
the target leaves the field of view twice before the 588th frame. From the performance of
each tracker in Figure 11, we can find that, except for the baseline of the tracker, the training
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of the tracker on the long-term object tracking dataset LaSOT-RGBT is helpful to solve the
challenges in the long-term object tracking task. However, if the evaluation data samples
only contain the video sequences with a short frame length and do not contain the video
sequences with the long-term object tracking challenges, training on LaSOT-RGBT would
not significantly improve the performance. Figure 15 shows the results of the ablation
experiments on the RGBT234 benchmark dataset. The above reasons are the reasons that
the training on LaSOT-RGBT cannot significantly improve the performance of the tracker.

The quality of RGB and TIR data fusion directly determines the performance of
the RGB-T tracker. Figures 8, 9 and 12 can demonstrate the advantages of fusing RGB
and TIR data by channel exchanging. Channel exchanging is a multi-modal data fusion
method with no parameter that can dynamically exchange channels between different
modes of sub-networks, which makes our feature representation model have powerful
representation ability in multi-modal common features and single-modal unique features.
As shown in Figure 12, we directly compare CEDiMP and mfDiMP with the same baseline
tracker. The main reason that mfDiMP drifts to the background at the 354th frame is
that the data fusion method is not efficient enough. mfDiMP directly concatenates the
depth features of the RGB mode and the TIR mode and utilizes 1 × 1 convolution to
reduce the dimensionality. Then, the fused features are input into the IoU predictor and
model predictor. The hyperparameter-based feature aggregation method would reduce the
model’s representation ability in the unique features of the original modality. This feature
fusion method limits the improvement of its performance.

6. Conclusions

In this paper, we propose an RGB-T tracker CEDiMP based on bimodal data fusion
by channel exchanging. Our method completes dynamic channel exchanging between
sub-networks of different modes without adding any parameters during feature fusion.
Since we use DiMP as the baseline tracker, CEDiMP is very powerful in distinguishing
targets and backgrounds. Considering that most RGB-T trackers have poor generalization
abilities currently, we firstly utilize the trained image translation model to generate TIR
modality dataset LaSOT-TIR based on the RGB modality long-term object tracking dataset
LaSOT. Then, we obtain the synthetic dataset LaSOT-RGBT, which can be used for RGB-T
long-term tracking. The extra training of CEDiMP on LaSOT-RGBT improves the ability of
solving the typical challenges of long-term object tracking and significantly improves the
generalization ability of the model. Our tracker not only achieves the best performance on
GTOT and RGBT234, but also significantly outperforms other trackers in some qualitative
tests of sequestered videos.
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