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Abstract: With the recent advances in deep learning, wearable sensors have increasingly been used
in automated animal activity recognition. However, there are two major challenges in improving
recognition performance—multi-modal feature fusion and imbalanced data modeling. In this study,
to improve classification performance for equine activities while tackling these two challenges, we
developed a cross-modality interaction network (CMI-Net) involving a dual convolution neural
network architecture and a cross-modality interaction module (CMIM). The CMIM adaptively recali-
brated the temporal- and axis-wise features in each modality by leveraging multi-modal information
to achieve deep intermodality interaction. A class-balanced (CB) focal loss was adopted to supervise
the training of CMI-Net to alleviate the class imbalance problem. Motion data was acquired from six
neck-attached inertial measurement units from six horses. The CMI-Net was trained and verified
with leave-one-out cross-validation. The results demonstrated that our CMI-Net outperformed the
existing algorithms with high precision (79.74%), recall (79.57%), F1-score (79.02%), and accuracy
(93.37%). The adoption of CB focal loss improved the performance of CMI-Net, with increases of
2.76%, 4.16%, and 3.92% in precision, recall, and F1-score, respectively. In conclusion, CMI-Net and
CB focal loss effectively enhanced the equine activity classification performance using imbalanced
multi-modal sensor data.

Keywords: equine behavior; wearable sensor; deep learning; intermodality interaction; class-
balanced focal loss

1. Introduction

The behavior of horses provides rich insight into their mental and physical status and
is one of the most important indicators of their health, welfare, and subjective state [1].
However, behavioral monitoring for animals, to date, largely relies on manual observa-
tions, which are labor-intensive, time-consuming, and prone to subjective judgments of
individuals [1]. The use of sensors and machine learning is well-established in monitoring
gait change [2], and for lameness detection as part of the equine veterinary examination,
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increasing the accuracy of identification of subtle lameness, which is one of the most expen-
sive health issues in the equine industry [3,4]. Therefore it is of significant importance to
investigate and develop an automatic, objective, accurate, and quantifiable measurement
system for equine behaviors. Such a system will allow caretakers to identify variations
in the animal behavioral repertoire in real-time, decreasing the workloads in veterinary
clinics and improving the husbandry and management of animals [5,6].

Over recent decades, automated animal activity recognition has been studied widely
with the aid of various sensors (e.g., accelerometers, gyroscopes, and magnetometers) and
the use of machine learning techniques. For instance, a naïve Bayes (NB) classifier was
applied to recognize horse activities (e.g., eating, standing, and trotting) using triaxial
acceleration and obtained 90% classification accuracy [7]. Four classifiers including a
linear discriminant analysis (LDA), a quadratic discriminant analysis (QDA), a support
vector machine (SVM), and a decision tree (DT) were utilized to detect dog behaviors
(e.g., galloping, lying on chest, and sniffing) based on accelerometer and gyroscope data,
and the results revealed that the sensor placed on the back and collar yielded 91% and
75% accuracy at best, respectively [8]. A random forest (RF) algorithm was applied to
categorize cow activities using triaxial acceleration and gained high classification accuracy
with 91.4%, 99.8%, 88%, and 99.8% for feeding, lying, standing, and walking events,
respectively [9]. In horses, the use of receiver-operating characteristic curve analysis
classified standing, grazing, and ambulatory activities with a sensitivity of 94.7–97.7%
and a specificity of 94.7–96.8% [10]. However, to classify animal behaviors accurately
using these machine learning methods, feature extraction and method selection are often
conducted manually and separately, which requires expert domain knowledge and easily
induces feature engineering issues [11]. Moreover, handcrafted features often fail to capture
general and complex features, resulting in low generalization ability, i.e., these extracted
features perform well in recognizing the activities of some subjects but badly for others.

Along with the recent advances in internet technology and fast graphics processing
units, various deep learning approaches have been increasingly and successfully adopted
in animal activity recognition with wearable sensors. Classification models based on deep
learning achieve automatic feature learning through data driving and subsequent animal
activity recognition. For example, feed-forward neural networks (FNNs) and long short-
term memory (LSTM) models were applied to automatically recognize cattle behaviors
(e.g., feeding, lying, and ruminating) using data collected from inertial measurement
units (IMUs) [12,13]. Convolutional neural networks (CNNs), which accurately capture
local temporal dependency and scale invariance in signals, were developed in automated
equine activity classification based on triaxial accelerometer and gyroscope data [1,14,15].
FilterNet, presented based on CNN and LSTM architectures, was adopted to classify
important health-related canine behaviors (e.g., drinking, eating, and scratching) using a
collar-mounted accelerometer [16].

However, multi-modal data fusion has not been well handled when different sensors are
used simultaneously in existing studies. Multi-modal data with different characteristics are
often simply processed using common fusion strategies such as early fusion, feature fusion,
and result fusion [17]. The early fusion strategy used in previous studies [12,13], i.e., extracting
the same features without distinction of modalities, often caused interference between multi-
modal information due to their distribution gap [18]. The result fusion scheme was suboptimal
since rich modality information was gradually compressed and lost in separate processes,
ignoring the intermodality correlations. As a better choice, the feature fusion strategy fuses the
intermediate information of multiple modalities, which avoids the distribution gap problem
and achieves intermodality interaction simultaneously [19,20]. However, feature fusion is often
limited to linear fusion (e.g., simple concatenation and addition) and fails to explore deep
multi-modality interactions and achieve complementary-redundant information combinations
between multiple modalities [17].

In addition, the collected sensor datasets often present class imbalance problems
due to the inconsistent frequency and duration of each activity resulting from specific
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animal physiology. Deep learning methods trained on imbalanced datasets tend to be
biased toward majority classes and away from minority classes, which easily causes poor
modal generalization ability and high classification error rates for rare categories [21].
Commonly used methods on imbalanced datasets mainly involve two techniques, namely,
resampling and reweighting. Resampling attempts to sample the data to obtain an evenly
distributed dataset, e.g., oversampling and undersampling [22]. However, oversampling
and undersampling come with high potential risks of overfitting and information loss,
respectively [21]. Reweighting is more flexible and convenient by directly assigning a
weight for the loss function per training sample to alleviate the sensitivity of the model
to data distribution [23]. This method is further divided into class-level and sample-level
reweighting. The former, such as cost-sensitive (CS) loss [24] and class-balanced (CB)
loss [25], depends on the prior category frequency, while the latter, such as focal loss [26]
and adaptive class suppression (ACS) loss [27], relies on the network output confidences of
each instance. In addition, CB focal loss, combining a CB term with a modulating factor,
effectively focuses on difficult samples and considers the proportional impact of effective
numbers per class simultaneously [25].

To improve the recognition performance for equine activities while tackling the above-
mentioned challenges, we have developed a cross-modality interaction network (CMI-Net)
which achieved a good classification performance in our previous work [28], and a CB
focal loss [25] was adopted to supervise the training of CMI-Net. The CMI-Net consisted
of a dual CNN trunk architecture and a joint cross-modality interaction module (CMIM).
Specifically, the dual CNN trunk architecture extracted modality-specific features for ac-
celerometer and gyroscope data, respectively, and the CMIM based on attention mechanism
adaptively recalibrated the importance of the elements in the two modality-specific feature
maps by leveraging multi-modal knowledge. The attention mechanism has been widely
utilized in different tasks using multi-modal datasets such as RGB-D images [17,29]. It
has also been adopted to focus on important elements along with channels and spatial
dimensions of the same input feature [30,31]. The favorable performance presented in these
studies with the attention mechanism indicated the rationality of our proposed CMIM. In
our method, softmax cross-entropy (CE) loss was initially used to supervise the training
of CMI-Net. However, softmax CE loss suffered from inferior classification performance,
especially for monitory classes [23]. In contrast, CB focal loss, by adding a CB term to focal
loss, focuses more on minor-class samples and hard-classified samples and can alleviate
the class imbalance problem. Therefore, a CB focal loss [25] was also adopted. In this study,
the CMI-Net was trained based on an extensively labeled dataset [32] to automatically
recognize equine activities including eating, standing, trotting, galloping, walking-rider
(walking while carrying a rider), and walking-natural (walking with no rider). The leave-
one-out cross-validation (LOOCV) method was applied to test the generalization ability
of our model, and the results were then compared to the existing algorithms. The main
contributions of this paper can be summarized as follows:

• We proposed a CMI-Net involving a dual CNN trunk architecture and a joint CMIM to
improve equine activity recognition performance using accelerometer and gyroscope
data. The dual CNN trunk architecture comprised a residual-like convolution block
(Res-LCB) which effectively promoted the representation ability and robustness of
the model [33]. The CMIM based on attention mechanism enabled CMI-Net to cap-
ture complementary information and suppressed unrelated information (e.g., noise,
redundant signals, and potentially confusing signals) from multi-modal data.

• We devised a novel attention module, i.e., CMIM, to achieve deep intermodality inter-
action. The CMIM combined spatial information from two-stream feature maps using
basic CNN to produce two spatial attention maps with respect to their importance,
which could adaptively recalibrate temporal- and axis-wise features in each modality.
To the best of our knowledge, the attention mechanism was employed for the first
time in animal activity recognition based on multi-modal data yielded by multiple
wearable sensors.



Sensors 2021, 21, 5818 4 of 17

• We adopted a CB focal loss to supervise the training of CMI-Net to mitigate the
influence of imbalanced datasets on overall classification performance. The CB focal
loss can pay more attention not only to samples of minority classes, diminishing their
influence from being overwhelmed during optimization, but also to samples that are
hard to distinguish. As far as we know, this is the first time the CB focal loss has been
utilized in animal activity recognition based on imbalanced datasets.

• Experiments performed verified the effectiveness of our proposed CMI-Net and CB
focal loss. In particular, the experimental results demonstrated that our CMI-Net
outperformed the existing algorithms in equine activity recognition with the precision
of 79.74%, recall of 79.57%, F1-score of 79.02%, and accuracy of 93.37%, respectively.

2. Materials and Methods
2.1. Data Description

The dataset used in this study was a public dataset created by Kamminga et al. [32].
In this dataset, more than 1.2 million 2 s data samples were collected from 18 individual
equines using neck-attached IMUs. The sampling rate was set to 100 Hz for both the
triaxial accelerometer and gyroscope and 12 Hz for the triaxial magnetometer. The majority
of the samples were unlabeled, but data from six equines and six activities including
eating, standing, trotting, galloping, walking-rider, and walking-natural were labeled
extensively (87,621 2 s samples in total) and were used to classify equine activities in
previous studies [7,34]. In this study, data from the triaxial accelerometer and gyroscope
among the 87,621 samples were exploited separately, forming up to two tensors with a
size of 1 × 3 × 200 for each sample. As demonstrated in Figure 1, the activities of eating,
standing, trotting, galloping, walking-rider, and walking-natural occupied 18.32%, 5.84%,
28.62%, 4.50%, 38.94%, and 3.80% of the total sample number, respectively, producing a
maximum imbalance ratio of 10.25. In addition, the input sample of each axis per sensor
modality was normalized by removing the mean and scaling to unit variance, which can
be formulated as follows:

Si =
Si − µi

σi
, (1)

where Si denotes all samples of a particular axis per sensor modality (i.e., X-, Y-, and Z-axis
of the accelerometer, and X-, Y-, and Z-axis of the gyroscope), Si denotes all normalized
samples, and µi and σi denote mean and standard deviation values in each axis per sensor
modality, respectively.
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2.2. Cross-Modality Interaction Network

Our proposed CMI-Net, where accelerometer and gyroscope data were fed into two
CNN branches (represented by CNNacc and CNNgyr) separately, is shown in Figure 2a.
The dual CNN was constructed to extract modality-specific features and concatenate these
features before the final dense layer. To achieve deep interaction between the two-modality
data and capture the complementary information and suppress unrelated information
from them, a joint CMIM was designed and inserted in the upper layer. The details are
described below.
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Figure 2. The architecture of our proposed cross-modality interaction network (CMI-Net). (a) Our proposed CMI-Net.
The size of the feature maps is marked after every residual-like convolution block (Res-LCB) layer. Here, “A” and “G”
denote the modality-specific features for the accelerometer and gyroscope, respectively, and “A′” and “G′” denote the
refined features after modality interaction. “GAP” and “FC” are the global average-pooling layer and fully connected layer,
respectively. (b) Res-LCB and (c) cross-modality interaction module (CMIM).

2.2.1. Dual CNN Trunk Architecture

The CNNacc and CNNgyr contained four convolution blocks, three max-pooling layers,
one global average-pooling layer, and one fully connected layer, followed by concatenation
and one joint fully connected layer. Inspired by the residual unit in the deep residual
network that behaves like ensembles and has smaller magnitudes of responses [33], to
promote the representation ability and robustness of the model, we designed a Res-LCB, as
demonstrated in Figure 2b. The definition is given below.

Xl+1 = RELU
(

Conv1×1(Xl)⊕ Conv1×3(Xl)
)

, (2)

where Xl and Xl+1 denote feature maps in the l and l + 1 layers, respectively, Conv1×1(•) and
Conv1×3(•) represent 1 × 1 and 1 × 3 convolution operations, respectively, ⊕ denotes the
elementwise addition, and RELU (•) denotes the rectified linear unit activation function [35].
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2.2.2. Cross-Modality Interaction Module

Inspired by the multi-modal transfer module that recalibrates channel-wise features
of each modality based on multi-modal information [36] and the convolutional block
attention module that focuses on the spatial information of the feature maps [30], we
devised a CMIM based on an attention mechanism to adaptively recalibrate temporal- and
axis-wise features in each modality by utilizing multi-modal information. The detailed
CMIM is illustrated in Figure 2c.

Let A ∈ RC×H×W and G ∈ RC×H×W represent the features at a given layer of CNNacc
and CNNgyr, respectively. Here, C, H, and W denote the channel number and spatial
dimensions of features. Specifically, H and W correspond to the axial and temporal
signals, respectively. The CMIM receives A and G as input features. We first applied
average-pooling operations along channels of the input features, generating two spatial
maps. These two maps were then concatenated and mapped into a joint representation
Z ∈ RC′×H×W . The operation was shown as follows:

Z = RELU
(

Conv1×3([Avgpool(A), Avgpool(G)])
)

, (3)

where C′ denotes the channel number of feature Z, Avgpool (•) denotes the average-pooling
operation, and [•] denotes the concatenation operation. Furthermore, two spatial attention
maps AA ∈ R1×H×W and AG ∈ R1×H×W were generated through two independent
convolution layers with a sigmoid function σ(•) using the joint representation Z:

AA = σ
(

Conv1×3(Z)
)

, AG = σ
(

Conv1×3(Z)
)

, (4)

AA and AG were then used to recalibrate the input features, generating two final
refined features, i.e., A′ ∈ RC×H×W and G′ ∈ RC×H×W :

A′ = A⊗ AA ⊕ A, G′ = G⊗ AG ⊕ G, (5)

where ⊗ denotes the elementwise multiplication. Specifically, each convolution operation
under this study was followed by a batch normalization operation. The increases in channel
numbers and decreases in spatial dimensions were implemented through Res-LCB and
max-pooling operations, respectively.

2.3. Optimization

As the most widely utilized loss in the multiclass classification task, softmax CE loss
was applied to optimize the parameters of CMI-Net. The formulation of softmax CE loss
was defined as

LCE(z) = −∑C
i=1 yilog(pi) (6)

with pi =
ezi

∑C
j=1 ezj

, (7)

where C and z = [z1, . . . , zC] are the total number of classes and the predicted logits of
the network, respectively. In addition, yi . . . {0, 1}, 1 ≤ i ≤ C is the one-hot ground-
truth label. However, the models based on softmax CE loss often suffer from inferior
classification performance, especially for monitory classes, due to the imbalanced data
distribution [23]. Therefore, we further introduced an effective loss function to supervise
the training of CMI-Net and alleviate the class imbalance problem, namely, CB focal loss.

CB focal loss, which added the CB term to the focal loss function, focused more on
not only samples of minority classes, diminishing their influence from being overwhelmed
during optimization, but also samples that were hard to distinguish. The CB term was
related to the inverse effective number of samples per class, and focal loss added a modu-
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lating factor to the sigmoid CE loss to reduce the relative loss for well-classified samples
and focused more on difficult samples. The CB focal loss was presented as

LCBFL(z) =
1

Eny

LFL(z) = −
1− β

1− βny ∑C
i=1

(
1− pt

i
)γlog

(
pt

i
)

(8)

with pt
i =

1

1 + e−zt
i
, (9)

zt
i =

{
zi, i f i = y.
−zi, otherwise.

, (10)

where ny and Eny represent the actual number and the effective number of the ground-
truth label y, respectively. The hyperparameter β ∈ [0, 1) controlled how fast Eny grows
as ny increases, and γ ≥ 0 smoothly adjusted the rate at which easy samples were down-
weighted [26]. The value of β was set to 0.9999, and the search space of the hyperparameter
γ was set to {0.5, 1.0, 2.0} [25] in this study. In particular, CB loss and focal loss rebalanced
the loss function based on class-level and sample-level reweighting, respectively. Thus,
we also utilized class-level reweighted losses, including cost-sensitive cross-entropy loss
(CS_CE loss) [24], class-balanced cross-entropy loss (CB_CE loss) [25], and sample-level
reweighted losses, including focal loss [26] and adaptive class suppression loss (ACS
loss) [27], to validate the effectiveness of the CB focal loss.

2.4. Evaluation Metrics

The comprehensive performance of the equine activity classification model was indi-
cated by the following four evaluation metrics, which are defined in Equations (11)–(14).
Each indicator value was multiplied by 100 as the result to reflect the difference in indicator
values more clearly.

Precision =
TP

TP + FP
, (11)

Recall =
TP

TP + FN
, (12)

F1− Score =
2TP

2TP + FP + FN
, (13)

Accuracy =
TP + TN

TP + TN + FP + FN
, (14)

where TP, FP, TN, and FN are the number of true positives, false positives, true negatives,
and false negatives, respectively. In particular, the overall precision, recall, and F1-score
were calculated by using a macro-average [37].

2.5. Implementation Details

To attain subject-dependent results, the LOOCV method was used, in which four
subjects were chosen for training, one for validation, and one for testing each time and
rotated in a circular manner. During training, the loss function was added by an L2
regularization term with a weight decay of 0.1 to avoid overfitting. An Adam optimizer
with an initial learning rate of 1 × 10−4 was employed, and the learning rate decreased by
0.1 times every 20 epochs. The number of epochs and batch size were set to 100 and 256,
respectively. The best model with the highest validation accuracy was saved and verified
using test data. To evaluate the classification performance of our CMI-Net, we compared it
against various existing methods, including three machine learning methods (i.e., NB, DT,
and SVM) and two deep learning methods used in equine activity recognition (i.e., CNN
and ConvNet7) [14,15], based on the same public dataset. Specifically, the hand-crafted
features used in machine learning were the same as those used by Kamminga et al. [7].
To further explore the performance of our CMIM, we ran the network without CMIM
and with it inserted after the 1st, 2nd, and 3rd max-pooling layers to obtain four different
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variants, i.e., Variant0, Variant1, Variant2, and Variant3, respectively. The softmax CE loss
was used as the loss function for all variants. All experiments were executed using the
PyTorch framework on an NVIDIA Tesla V100 GPU. The developed source code will be
available at https://github.com/Max-1234-hub/CMI-Net from 1 September 2021.

3. Results and Discussion

Overall, experiments conducted on the public dataset demonstrated that our proposed
CMI-Net outperformed the existing algorithms. Ablation studies were then carried out to
verify the effectiveness of CMIM and that applying the CMIM in the upper layer of CMI-
Net could obtain better performance. Different loss functions were adopted to validate that
CB focal loss performed better than any class-level or sample-level reweighted loss used
alone, and it effectively improved the overall precision, recall, and F1-score, although the
overall accuracy decreased due to the imbalanced dataset used. Furthermore, recognition
performance analysis was presented to help us probe the predicted performance on each
activity using our CMI-Net with CB focal loss. The details are described as follows.

3.1. Comparison with Existing Methods

The comparison results of our CMI-Net with three machine learning methods (i.e., NB,
DT, and SVM) and two deep learning methods (i.e., CNN and ConvNet7) [14,15] are illus-
trated in Table 1. The results revealed that the CMI-Net with softmax CE loss outperformed
the machine learning algorithms with higher precision, recall, F1-score, and accuracy of
79.74%, 79.57%, 79.02%, and 93.37%, respectively. The reason for this superior performance
was the convolution and pooling operations in CNN, which could achieve automated
feature learning and aggregate more complex and general patterns without any domain
knowledge [38]. The other CNN-based method [15] obtained inferior precision of 72.07%
and accuracy of 82.94% compared to DT and SVM. This result is consistent with the “No
Free Lunch” theorem [39] because this CNN-based method [15] was developed using
leg-mounted sensor data. In addition, our CMI-Net with softmax CE loss performed better
than ConvNet7 [14], which obtained lower precision, recall, F1-score, and accuracy of
79.03%, 77.79%, 77.90%, and 91.27%, respectively. This was attributed to the ability of our
architecture to effectively capture the complementary information and inhibit unrelated
information of multi-modal data through deep multi-modality interaction. In addition,
CMI-Net with CB focal loss (γ = 0.5) enabled the values of precision, recall, and F1-score to
increase by 2.76%, 4.16%, and 3.92%, respectively, compared with CMI-Net with softmax
CE loss. This revealed that the adoption of CB focal loss effectively improved the overall
classification performance.

Table 1. Classification performance comparison with existing methods. The best two results for each metric are highlighted
in bold.

Methods Precision (%) Recall (%) F1-Score (%) Accuracy (%)

Machine learning
Naïve Bayes 70.90 72.41 69.42 76.60
Decision tree 75.67 73.90 74.35 88.83

Support vector machine 73.92 71.30 72.19 89.65

Deep learning
CNN [15] 72.07 76.91 73.42 82.94

ConvNet7 [14] 79.03 77.79 77.90 91.27

Our methods #

CMI-Net + softmax CE loss 79.74 79.57 79.02 93.37
CMI-Net + CB focal loss (γ = 0.5) * 82.50 83.73 82.94 90.68

# CMI-Net: cross-modality interaction network; CE: cross-entropy; CB: class-balanced; * the γ of value is 0.5, which could refer to Table 3.

https://github.com/Max-1234-hub/CMI-Net
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3.2. Ablation Study
3.2.1. Evaluation of CMIM

To explore the effectiveness of CMIM and the impact of its position in the network on
classification performance, the results corresponding to four different variants are shown
in Table 2. Our proposed CMI-Net with softmax CE loss showed superior performance
to Variant0 (i.e., the network without CMIM), indicating the effective performance of our
interaction module. Variant1, Variant2, and Variant3 (i.e., networks with CMIM inserted
after 1st, 2nd, and 3rd max-pooling layer, respectively) did not perform better in terms of
precision and recall compared with Variant0, which obtained precision and recall values of
79.02% and 77.09%, respectively. This might be explained by the fact that modality-specific
features learned in the shallow layer were simple and contained noise, which interfered
with the process by which CMIM learned complex intermodality correlations, leading to
poor predictions [40]. In addition, our architecture obtained the best performance since
it applied the CMIM after a deeper layer, which enabled the network to discover more
discriminative patterns and suppress irrelevant variations more effectively [41].

Table 2. Performance comparison of our CMI-Net with its variants. The best results for each metric
are highlighted in bold.

Methods & Precision (%) Recall (%) F1-Score (%) Accuracy (%)

Variant0 # 79.02 77.09 76.88 91.76
Variant1 * 78.18 77.07 77.40 92.17
Variant2 * 77.50 78.44 77.91 92.92
Variant3 * 78.36 76.94 77.02 92.62

CMI-Net + softmax CE loss 79.74 79.57 79.02 93.37
& denotes all networks presented in this table were trained using softmax CE loss; # denotes the network without
a cross-modality interaction module (CMIM); * denotes the network where the CMIM was inserted after the 1st,
2nd, and 3rd max-pooling layers, respectively.

The results above have proven that the inclusion of the CMIM in the network provided
quantifiable improvements in identification performance. This was also reflected in the
qualitative visualization of the embeddings and the corresponding clusters in Figure 3,
with the help of t-distributed stochastic neighbor-embedding (t-SNE), a technique for
visualizing high-dimensional data by giving each data point a location in a two- or three-
dimensional map [42]. Figure 3 shows the two-dimensional embedded features from the
part test dataset after the fully connected layers of both CNN branches under the network
without and with CMIM by using the t-SNE technique with an init of ‘pca’ and perplexity
of 30. Comparing the left and right columns in Figure 3, it can be observed that more
compact clusters were generated under the network with CMIM by reducing the intraclass
distance and enlarging the interclass distance. The core technical point was that the joint
interaction module enabled adaptive amplification of salient features and suppression
of unrelated features based on information from two-modality data. To further provide
insights into its contribution, we presented two spatial attention maps for features extracted
from the triaxial accelerometer and triaxial gyroscope data (Figure 4). As illustrated in
Figure 4, the value per pixel represented the contribution degree corresponding to each
temporal period and each axis, and it was adaptively recalibrated through intermodality
interaction. Therefore, both quantitative and qualitative findings reinforced the suitability
of our proposed CMI-Net to tasks using two-modality sensor data.

3.2.2. Evaluation of CB Focal Loss

To study the effect of CB focal loss on the optimization of CMI-Net, we show the
quantitative performance in Table 3 and explore the sensitivity of its hyperparameter γ.
CMI-Net with CB focal loss (γ = 0.5) achieved the best precision of 82.50%, recall of 83.73%,
and F1-score of 82.94%. This indicated that CB focal loss was beneficial to the improvement
of classification performance when the modulation strength was controlled appropriately,
whereas negative effects occurred if the value of γ was too large or too small.
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Table 3. Performance comparison between softmax CE loss and CB focal loss with different γ. The
best results for each metric are highlighted in bold.

Loss Functions Precision (%) Recall (%) F1-Score (%) Accuracy (%)

Softmax CE Loss (baseline) 79.74 79.57 79.02 93.37

CB focal loss (γ = 0.1) 81.31 83.60 81.97 89.57
CB focal loss (γ = 0.5) 82.50 83.73 82.94 90.68
CB focal loss (γ = 1) 80.42 82.03 81.05 89.89
CB focal loss (γ = 2) 78.92 78.48 77.97 91.05

To provide further insight into the influence of CB focal loss (γ = 0.5) on the classifica-
tion performance, we present the classification results of each activity under CMI-Net with
CB focal loss and softmax CE loss, respectively, in Figure 5. It shows that precision, recall,
and F1-score of the walking-natural were significantly improved, while other activities
varied slightly when using CB focal loss. This explained that the overall classification
performance increased mainly due to the increase in walking-natural, as it focused more
on difficult samples and samples of minority classes. However, the overall accuracy of
CMI-Net with CB focal loss decreased by 2.69% (Table 3), which was related to the different
variations of recall values in different activities and the current imbalanced dataset. In
particular, the overall accuracy could also be presented as the weighted average of the
recall value for each activity according to the sampling frequency of each activity. As
shown in Figure 5, the recall increases were 35.92% for walking-natural, 1.17% for standing,
and 0.91% for galloping, and the recall decreases were 8.41% for walking-rider, 4.26% for
eating, and 0.36% for trotting when using CB focal loss. It can be observed that all activities
with increased recall belonged to the minority class, while the remaining activities with
decreased recall belonged to the majority class, resulting in a decrease in overall accuracy.
Thus, it is necessary to collect a more balanced dataset in the future.
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In addition, experiments under different loss functions were conducted to verify
the effectiveness of the CB focal loss, as illustrated in Table 4. The contrasting losses
mainly included CS_CE loss, CB_CE loss, focal loss, and ACS loss, as mentioned in
the “Optimization” section. We found that CB focal loss combining CB loss and focal
loss performed better than any of them used alone, which indicated that adding the CB
term to the focal loss function improved the overall classification performance on the
imbalanced dataset. In addition, the precision, recall, and F1-score of CS_CE loss and CB
focal loss increased by different degrees, while both accuracies decreased compared with
softmax CE loss. Specifically, the accuracy was only 83.79%, although the recall reached
the highest value of 85.11%. This was because the recall of walking-rider was only 72.49%,
although that of walking-natural was 69.16% (Figure 6). This result further verified that
decreased accuracy occurred when using balancing techniques on the imbalanced dataset.
In addition, we found that the recall of majority classes decreased while that of minority
classes increased when using CS_CE loss and CB focal loss (Figure 6). This result revealed
that both losses effectively focused on the samples of minority classes during training, but
it is inevitable that more samples in majority classes were misclassified as minority classes
so that overall accuracy would decrease.

Table 4. Classification performance comparison with different loss functions. The best two results for
each metric are highlighted in bold.

Loss Functions # Precision (%) Recall (%) F1-Score (%) Accuracy (%)

Softmax CE loss 79.74 79.57 79.02 93.37

Class-level
CS_CE loss [24] 80.47 85.11 79.91 83.79
CB_CE loss [25] 75.35 75.70 75.47 90.61

Sample-level
Focal loss [26] 78.84 77.99 78.25 93.30
ACS loss [27] 77.03 76.54 76.60 92.05

CB focal loss (γ = 0.5) 82.50 83.73 82.94 90.68
# CS_CE: cost-sensitive cross-entropy; CB_CE: class-balanced cross-entropy; ACS: adaptive class suppression.
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3.3. Classification Performance Analysis

In Figure 7, we show the precision and recall confusion matrix aggregating the clas-
sification results under 6-fold cross-validation when using CMI-Net with CB focal loss
(γ = 0.5). Both precision and recall values of all activities had more than 90% accuracy
(i.e., the precision and recall for eating were 92.86% and 90.89%, for galloping were 91.41%
and 92.89%, for standing were 95.18% and 95.11%, for trotting were 97.34% and 97.46%, and
for walking-rider were 93.49% and 90.01%, respectively), except for the walking-natural
activity, which only obtained low precision and recall (Figure 7). This low classification
precision and recall occurred for two main reasons. The first reason was class imbal-
ance. Walking-natural as the minority class in the dataset only occupied 3.8%, which was
much less than the 38.94% occupation of majority class walking-rider, which easily caused
the model to be biased toward the majority classes and resulted in poor minority class
recognition performance. The second reason was severe confusion with other activities,
especially eating and walking-rider activities. As shown in Figure 7, 18.64% and 56.14%
of the samples predicted to be class walking-natural had ground truth classes eating and
walking-rider, respectively. In addition, 20.38% and 43.13% of the samples with ground
truth class walking-natural were misclassified as class eating and walking-rider, respec-
tively. This was because, during eating, the horse was slowly walking so that some samples
of eating might contain walking activity [32]. The movement patterns of walking-natural
and walking-rider were very similar, which interfered with the learning ability of the
network for these two behavioral characteristics (Figure 8). It also revealed that there
was no major variability in equine walking patterns in the presence or absence of a rider.
This was consistent with a previous study that found no major changes in equine limb
kinematics, although the extension of the thoracolumbar region increased during walking
with a rider compared with non-ridden walking [43]. In addition, there was confusion
between galloping and trotting activities with misclassification of 6.93% of galloping as
trotting. This might be related to the misinterpretation by the annotator during labeling, as
it was not always clear when the activity transitions occurred [32]. Additionally, a sample
rate of 100Hz may limit the distinction in the transition between trotting and cantering
or galloping.
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3.4. Limitations and Future Works

The first limitation of our proposed method is that our model was trained on a
public dataset that contained only six labeled activities, i.e., eating, standing, trotting,
galloping, walking-rider, and walking-natural. Indeed, there are some other activities such
as head shaking, scratch biting, rubbing, and rolling, all of which, although infrequent, are
physiologically critical to equine health and welfare, and should have been labeled and
included in the dataset. Due to the missing of these infrequent activities in the dataset,
inevitably, as a typical open-set recognition problem [44], these unlabeled activities that
occur in real behavior monitoring scenarios will be easily misclassified as the six defined
activities, resulting in loss of some key information. Thus, as a next step to further improve
classification performance for equine activities, we will investigate some feasible techniques
such as classification-reconstruction learning and weightless neural networks [44–46] to
enable our activity classifiers to not only accurately classify the defined classes appearing
in training but also effectively deal with unlabeled ones generated in practice.

The second limitation is that the algorithms we developed and adopted in this study
were based on supervised learning, which relied on a large number of annotated samples.
Data annotation is a labor-intensive and time-consuming task, and well-annotated data is
often limited as reflected by the fact that we can only find one public dataset for equine
activities. With regard to the found dataset [32], in fact, there are still vast amounts of
unlabeled samples that can be used to alleviate the overfitting problem and improve
the generalization ability of models. Thus, how we can best use the unlabeled samples
becomes a key. To this point, our work can be further expanded toward the direction of
semi-supervised learning to sufficiently exploit these unlabeled data. For instance, we may
first train models on the existing and well-labeled data and then apply the trained models
to conduct predictions for unlabeled data. The one-hot predictions can serve as pseudo
labels for those high-confidence samples, which, along with the original labels, can then be
further used to train the model iteratively until the unlabeled data no longer changes.

4. Conclusions

In this study, we developed a CMI-Net involving a dual CNN trunk architecture and a
joint CMIM to improve equine activity classification performance. The CMI-Net effectively
captured complementary information and suppressed unrelated information from multiple
modalities. Specifically, the dual CNN architecture extracted modality-specific features,
and the CMIM recalibrated temporal- and axis-wise features in each modality by utilizing
multi-modal knowledge and achieved deep intermodality interaction. To alleviate the
class imbalance problem, a CB focal loss was leveraged for the first time to supervise the
training of CMI-Net, which focused more on the difficult samples and samples of minority
classes during optimization. The results revealed that our CMI-Net with softmax CE loss
outperformed the existing methods, and the adoption of CB focal loss effectively improved
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the precision, recall, and F1-score while slightly decreasing the accuracy. In addition,
ablation studies demonstrated that applying the CMIM in the upper layer of CMI-Net
could obtain better performance since high-level features contained more general patterns.
CB focal loss also performed better than any class-level or sample-level reweighted losses
used alone. In short, the favorable classification performance indicated the effectiveness of
our proposed CMI-Net and CB focal loss.
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