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Abstract: Autism spectrum disorder (ASD) is a neurodegenerative disorder characterized by lingual
and social disabilities. The autism diagnostic observation schedule is the current gold standard
for ASD diagnosis. Developing objective computer aided technologies for ASD diagnosis with
the utilization of brain imaging modalities and machine learning is one of main tracks in current
studies to understand autism. Task-based fMRI demonstrates the functional activation in the brain
by measuring blood oxygen level-dependent (BOLD) variations in response to certain tasks. It
is believed to hold discriminant features for autism. A novel computer aided diagnosis (CAD)
framework is proposed to classify 50 ASD and 50 typically developed toddlers with the adoption
of CNN deep networks. The CAD system includes both local and global diagnosis in a response
to speech task. Spatial dimensionality reduction with region of interest selection and clustering
has been utilized. In addition, the proposed framework performs discriminant feature extraction
with continuous wavelet transform. Local diagnosis on cingulate gyri, superior temporal gyrus,
primary auditory cortex and angular gyrus achieves accuracies ranging between 71% and 80% with a
four-fold cross validation technique. The fused global diagnosis achieves an accuracy of 86% with
82% sensitivity, 92% specificity. A brain map indicating ASD severity level for each brain area is
created, which contributes to personalized diagnosis and treatment plans.

Keywords: autism; ASD; computer-aided diagnosis; deep learning; CNN; CWT

1. Introduction

Autism spectrum disorder (ASD) is a neurodevelopmental disorder that affects social
communication ability. ASD also causes language impairment and repetitive behaviors [1].
Individuals with ASD show different severity levels associated with each symptom [2].
The common ASD diagnostic standard utilizes history and expert clinical judgment together
with behavioral modules of the autism diagnostic observation schedule (ADOS) [3,4].
Autism is diagnosed with the arising noticeable symptoms which start at the age of three
to five years [5]. It is crucial to intervene and diagnose ASD early to allow for better
assessment and treatment.

ASD can be diagnosed at the age of 12 months old, especially with the emergence of
imaging diagnostic tools that employ brain imaging modalities such as structural (sMRI),
functional (fMRI), and diffusion (DTI) magnetic resonance imaging [6]. Combining these
scans to view the structure of the brain together with the brain functional activity during
rest and performance of certain tasks constitute an early biomarker for ASD [7].

Resting state and task-based fMRI are types of fMRI scans that are adopted to manifest
functional activity. Task-based fMRI measures evoked blood oxygen level-dependent
(BOLD) signals during the performance of different tasks [8] such as auditory tasks, lan-
guage tasks, visual processing tasks, motor tasks, and social tasks [9].
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To investigate autistic brain abnormal functional response to speech compared to typi-
cally developed (TD) peers, several studies were performed [10]. Studies in [11–13] played
an audio of a simple bedtime story and examined the sleep fMRI response. These studies
included 40 autistic toddlers and 40 TD toddlers with ages that range from 12 to 48 months.
Autistic toddlers showed abnormal laterality and hypoactivation in the left anterior por-
tion of the superior temporal cortex (aSTG). On the other hand, TD toddlers exhibited
the normal dominant activation of the left hemisphere aSTG. They also suggested early
intervention and treatment as they demonstrated that as the age increases, lateralization
abnormality increases.

Several studies up to 2013 that were reviewed in [14] concluded the involvement of
atypical lateralization with language impairment. Individuals with ASD exhibited attenua-
tion in the left hemisphere activation. Also, anomalous lateralization in the functional areas
responsible for prelinguistics and language, specifically the fronto-temporal regions, were
present. One of the reviewed studies [15] revealed atypical lateralization starts at an early
age. Lower lateralization was present in high risk ASD infants, while higher lateralization
was present in low risk peers. A review in [16] concluded similar results.

A meta-analysis of fMRI studies until 2013 was presented in [10]. Increased activation
in the right precentral gyrus and decreased left activation were revealed in ASD individuals
who performed language and auditory tasks, which contradicts the normal activation in
TD individuals. Moreover, fMRI scans in TD individuals showed higher activation in the
bilateral superior temporal gyri (STG) and left cingulate gyrus than ASD peers.

Literature on task-based fMRI analysis for ASD concludes fundamental differences in
activation in ASD compared to TD individuals. These findings support the employment
of task-based fMRI for early ASD diagnosis [17]. Machine learning (ML) has made it
possible to develop intelligent and automated systems for several pattern recognition
applications. The emergence of noninvasive or minimally invasive medical screening
devices created massive informative data structures that allowed for the exploitation of
ML for automated diagnosis. A research in [18] proposed a pipeline based on task fMRI
scans for predicting treatment of social responsiveness scale outcome. They applied the
general linear model (GLM) for brain feature extraction. Feature selection techniques were
performed following feature extraction. For classification, they employed the random forest
(RF) classifier. Twenty ASD children (5.90± 1.07 years) were included in the study. A recent
study in [19] performed both local and global diagnosis for ASD toddlers. Brain areas
parcellated with the Brainnetome atlas (BNT) were analyzed with a stacked nonnegativity
constraint auto-encoder. The study included 30 ASD against 30 TD and classified between
two groups with an accuracy of 75.8%. Another recent study graded the severity of autism
into three groups [20,21]. GLM analysis for low individual level analysis, to extract features,
and high group level analysis, to infer statistical differences between groups and validation,
were applied. They utilized different approaches to extract features from GLM analyzed
whole brain areas. Among the several classifier architectures they tested, Random Forest
performed best with 78% accuracy. In [22], they enhanced their framework by performing
a two stage classifier, included more data (92 mild, 32 moderate, and 33 severely autistic)
and performed more validation techniques. Accuracies ranged between 70% and 83%.

ML and deep learning, which is a subset of ML that involves deep networks, have
played a very important rule in many neuroscience applications. Convolutional neural
network (CNN) is one of the most powerful DL network architectures. CNNs are deeply
adopted in Brain-Computer Interfaces (BCI) as well as classification of EEG signals [23–25].

Recently, CNNs have been widely utilized for ASD diagnosis and analysis with
fMRI [26]. Jinlong Hu et al. [27] adopted a multi-channel 2D CNN model to classify FMRI
dataset of 995 subjects in a motor experiment. They proved that CNNs achieve good
performance with high dimensional data, in comparison with other classifiers, mostly
when the dataset is large as in their case. A study in [28] investigated the employment
of spatial and temporal features of task-based fMRI. To capture the spatial information,
they developed a 3D convolutional neural networks on two-channel images of mean and
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standard deviation that were created by the sliding window, which captures the temporal
statistics. This framework achieved an 8.5% increase in the mean F-scores.

FMRI scans constitute 4D data of a brain 3D volume consisting of 1D time-dependent
BOLD signals. Several signal processing techniques can be optimized to analyze these
BOLD signals. Wavelet transform are considered one of the efficient time signal process-
ing techniques for resolving time-series. Applications of the wavelet transform include
compression, high resolution time, and frequency analysis and denoising [29]. It has also
been utilized for fMRI analysis as an alternative to conventional GLMs. PS Lessa et al. [30]
concluded that Wavelet correlation analysis achieves higher statistical power in comparison
to GLMs. Moreover, wavelet transforms contribute to the achievement of efficient brain
disorder diagnosis, such as ADHD, autism and Alzheimer diagnosis, when applied on
fMRI feature processing. In an approach to diagnose ADHD, García et al. [31] performed
continuous wavelet transform (CWT) to create scalograms of BOLD signals.

Most previous fMRI experiments were applied on adults [32,33], however, our pro-
posed study includes toddlers/infants from 12 to 40 months old. The aim of our study is to
develop an early autism computer aided local and global detection tool. Spatial dimension-
ality reduction with region of interest (ROI) selection and clustering have been performed
to reduce the 4D fMRI data to a reduced number of BOLD signals. In order to provide
a detailed frequency and scale representation, we have applied CWT on selected BOLD
signals. CWT creates scalogram images that are used as input images to multi-channel
2D-CNNs for each area. Finally, brain maps that indicate level of ASD severity for each
ROI is provided for each subject. The proposed framework works towards determining the
neuro-circuits with abnormalities as well as creating personalized diagnosis and treatment
plans that handles the specific case of each individual. Moreover, CWT achieved better
results compared to other feature extraction and generation techniques.

2. Materials
2.1. fMRI Data Collection

This study includes subjects from “Biomarkers of Autism at 12 Months: From Brain
Overgrowth to Genes” dataset. This dataset was collected between August 2007 and
June 2014 and is provided by the national database for autism research (NDAR: http:
//ndar.nih.gov (accessed on 22 May 2019)) [11,34,35]. The dataset included 639 subjects
that were tracked every 12 months roughly starting at 12 months and until they are
40 months old.

We have chosen some substantial criteria in selecting subjects for our study such that
included subjects must have ADOS toddler module, sMRI (T1) and (T2), and response to
speech task fMRI (T2*). Intensive validation on each report and scan has been conducted.
Visual validation is performed for all sMRI scans to exclude inaccurate or corrupted ones.
FMRI scans have been validated to have 154 volumes and visually validated to have
no clear artifacts. One hundred subjects (50 ASD 50 TD) with ages ranging between
12–40 months old, are included in this study. Information about each subject , such as IDs
and final diagnosis, as well as the extracted BOLD signals of this dataset are available in
Supplementary Materials 1 and 2, respectively.

2.2. Response to Speech Experiment

The experiment that was used while task-based fMRI scans were acquired is a response
to speech experiment. An audio record of a narrator telling a story was played during
natural sleep. The audio consists of three different types of records, simple forward speech,
complex forward speech, and backward speech. Such records alternate with silence periods
and are repeated during a 6 min and 20 s span.

3. Methods

In this study, local and global ASD diagnosis have been developed. Figure 1 demon-
strates the adopted framework. First, fMRI scans are preprocessed using FMRI expert anal-
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ysis tool (FEAT) [36] developed in fMRI’s software library (FSL) [37]. Brain parcellation is
based on Harvard-Oxford probabilistic atlas https://identifiers.org/neurovault.collection:
262. (accessed on 11 April 2019) The Detailed explanation of preprocessing steps is provided
in [20].

Figure 1. The proposed framework for local and global classification. First, 4D fMRI data are
preprocessed with FSL. Brain extraction and parcellation to Harvard-Oxford probabilistic atlas
are also performed. Second, spacial and temporal feature reduction and extraction techniques
are performed. Finally, local classification models on each ROI are developed to provide a global
classification decision.

3.1. Spatial Dimensionality Reduction

Applying neural networks on raw data without feature engineering is feasible when
the raw data are easily separable. However, identifying autism biomarkers in task fMRI
is a complex problem as autism follows a wide spectrum and is not easily separable.
Moreover, fMRI raw data is a high dimensional data of 4D. CNN performance decreases
when data dimensionality is high and input data size is small as in medical applications.
Hence, it is crucial to reduce dimensionality. A comparison of fMRI feature extraction
and reduction approaches have been presented in [38], proving higher ASD classification
results. The following steps have been proposed for feature reduction:

• ROI selection: Based on literature of the response to speech experiment for toddlers,
specific brain areas related to language circuits are activated. These areas include
cingulate gyri (CG), superior temporal gyrus (STG), primary auditory cortex (PAC)
and angular gyrus (AG) for both hemispheres. In this study, the most significantly
activated brain areas are selected.

• Clustering: Each brain includes several commonly activated voxels, which are con-
sidered redundant data. Therefore, grouping similar BOLD signals in each area and
extracting a single value for each group is efficient and can extensively enhance clas-
sification performance. Hence, each brain area’s BOLD signals have been clustered
with kmeans. Different number of clusters have been tested to achieve higher val-
idation accuracies.Two methods to represent the signals of each cluster have been
tested: averaging BOLD signals, or extracting the BOLD signal closest to the center of
that cluster.

The advantage of the previous reduction approaches is that the brain structure is
maintained. Each brain area is represented by a number of features. This technique allows
for local analysis and obtaining brain maps.

3.2. Continuous Wavelet Transform

CWT is a technique used to represent a signal by convolving wavelets, that vary
continuously in transition and scale, with the original signal. The result presents a power
spectrum of the signal as in Figure 2. The CWT of a signal x(t) at scale a (a > 0) and
translation b is calculated by:

Xw(a, b) =
1
|a|1/2

∞∫
−∞

x(t)ψ∗
(

t− b
a

)
dt (1)
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where ψ is the mother wavelet which is a continuous function in both the time domain and
the frequency domain and the ∗ represents operation of complex conjugate. The mother
wavelet is the source that generates daughter wavelets which are the translated and scaled
versions of the mother wavelet. After extracting BOLD signals from clusters, the CWT
is applied to produce scalograms that provide a detailed representation on these BOLD
signals. The scalogram images are then rescaled to 64× 64 and fed to multichannel 2D-
CNNs for each area. In task-based fMRI experiments, quantifying the change in the
BOLD signal across time is significantly important. As mentioned before, CWT scalograms
hold information about both frequency and time in an image, and therefore, satisfy this
requirement. Applying 2D CNN filters can extract trainable numerical weighted values
from these images, during the training phase. During testing phase, these values are
compared to classify each entry.

Figure 2. (A) A CWT scalogram example with 64 scales of a BOLD signal of 153 time points. (B) The
resized version of size: 64 × 64.

3.3. 2D CNN Classification

CNN is a deep learning architecture gaining prominence in the analysis of images,
including medical image data. CNN may be characterized by the dimensionality of their
convolutional kernels, which in practice is typically between one and four, inclusive. Higher
kernel dimensions incur a computational bottleneck, especially when paired with large
input sizes, e.g., a 4D CNN that processes fMRI volumetric time series. We have developed
a more tractable 2D CNN model four our framework. As a deep neural network, the CNN
comprises a number of layers, including convolutional layers based on the aforementioned
kernels, pooling layers for reducing the size of the activation map, and fully connected (FC)
layers for higher order feature representations.

We have extensively tested several model hyper-parameters, as explained in detail in
the experimental results. Our CNN model performs three successive passes of convolution
and size reduction as shown in Table 1 (which is developed by the model summary method
provided by Keras library). These are followed by FC layers (Dense), the final (output)
layer having a softmax activation function for purposes of classification. As explained
earlier, each brain area is represented with CWT power spectrum images. A separate
CNN classifier is developed and tuned for better performance for each brain area. Global
classification is obtained with majority voting by all areas, as shown in Figure 3.
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Table 1. CNN network summary.

Layer Output Shape Param #

2Dconv (None, 62, 62, 15) 1635
Max_pooling2D (None, 31, 31, 15) 0

2Dconv_1 (None, 29, 29, 15) 2040
Max_pooling2D_1 (None, 14, 14, 15) 0

2Dconv_2 (None, 12, 12, 15) 2040
max_pooling2D_2 (None, 6, 6, 15) 0

Flatten (None, 540) 0
Dense (None, 10) 5410

Dense_1 (None, 2) 22

Total parameters: 11,147 Trainable parameters: 11,147

Figure 3. The local and global classification pipeline. A multi-channel 2D CNN local model is
developed for each area, fed with corresponding CWT scalograms. The final global classification
decision is fused using majority voting approach.

4. Experimental Results

The incorporated dataset includes 100 subjects (50 ASD and 50 TD). Performance
evaluation has been conducted for local CNN model. The whole framework integration is
performed using python. The CNN classification model is implemented with Keras library.
Several parameters at each step on the proposed spatial dimensionality reduction and
classification pipeline are evaluated. The 4-fold average classification accuracy with random
shuffling is the score to be optimized. For clustering, 3 clusters provide discriminant
average BOLD signals for each area. In the CWT stage, 32, 64 and 128 number of scales
have been evaluated. best performance is obtained by 64 scales. Some wavelets have been
tested such as: Mexican Hat, Gaussian Derivative and Morlets. Best results are obtained
with Morlets.

A grid search method to determine classification parameters has been applied: num-
ber of filter (5, 10, 15), CNN kernal sizes (3, 5, 7), epchs (5:70 in order of 5), batch sizes (1,
32, 64, 100) learning rates (0.1, 0.001, 0.0001), optimizers (‘SGD’, ‘Adagrad’, ‘RMSprop’,
‘Adadelta’, ‘Adamax’, ‘Adam’, ‘Nadam’), network activations (‘softplus’, ‘softmax’, ‘soft-
sign’, ‘tanh’, ‘relu’, ‘sigmoid’, ‘linear’, ‘hard_sigmoid’), and finally, kernal weight ini-
tializers (‘uniform’, ‘normal’, ‘lecun_uniform’, ‘zero’, ‘glorot_uniform’, ‘glorot_normal’,
‘he_uniform’, ‘he_normal’). The parameters that achieved best results are represented
in Table 2. 15 kernels, each with the size of 3 × 3, achieve better results. According to
these parameters, the output shape and parameter columns in Table 1 are determined.
The number of parameters is the number of trainable network weights at each stage. Only
the convolutional and Dense layers contain trainable weights. The maxpooling layers
(with size 2 × 2) only calculate the maximum without including a bias parameter. More
explanation about how the model layer sizes are determined is provided in [39].
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Table 2. CNN and CWT parameters.

Kernels Kernel
Size

Learning
Rate

Batch
Size Optimizer Network

Activation
Kernel
Initializer Wavelet Scales Time Course

Normalization

15 3 0.01 32 Adamax Relu Lecun_uniform Morlet 64 Percent signal
change

4.1. Local Classification

Each local CNN classifier is fed with CWT scalogram images extracted from both
hemisphere and the inferior and posterior division, if present. Hence, each classifier has
different number of extracted signals for it’s input. Table 3 demonstrates the classification
accuracy, sensitivity, specificity, and area under the curve (AUC) for the STG, CG, AG, and
PAC areas. The AUC is an effective measure of sensitivity and specificity for assessing
inherent validity of the proposed system. Higher AUC means that the proposed system
is accurate in differentiating ASD with TD subjects. This implies both sensitivity and
specificity are maximum and errors (false positive and false negative) are minimum.

The confusion matrix of each area is demonstrated in Figure 4. As can be noted,
high percentages are concentrated in the diagonal of each matrix (True positive and True
negative) and ranges around the corresponding total accuracy. Therefore, each matrix is
balanced. Moreover, receiver operating characteristic (ROC) curves are plotted in Figure 5.
After developing local 2D-CNN models, brain maps for each subject are created to represent
the level of autism severity for each brain area.

Figure 4. The confusion matrix for each ROI local classifier represented in percentage (number) for
each row.
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Figure 5. ROC curves and AUC for STG, CG, AG, and PAC selected areas.

Table 3. Accuracy, sensitivity, specificity, AUC of selected ROIs.

Classifier Accuracy Sensitivity Specificity AUC

STG 0.742 0.74 0.77 0.76
AG 0.80 0.78 0.83 0.77
CG 0.72 0.74 0.71 0.67

PAC 0.71 0.72 0.77 0.71

4.2. Global Classification

The global classification accuracy is obtained by fusing the decision from each local
classifier with majority voting. The achieved accuracy is 86% (sensitivity 82%, specificity
92%). The confusion matrix is demonstrated in Figure 6. Same notes can be concluded from
the confusion matrix. We have also tested a global 2D-CNN classifier that is trained with
the scalogram images of all areas at once. This step is performed as a validation step and
to highlight the advantage of classification that is based on local classifiers . The obtained
accuracy is 82%. Figure 7 plots the ROC of the classifier.

The accuracy is close to the global accuracy of 86% which proves the stability of the
system. The inferred reason for less accuracy can be related to the fact that higher number
of input features (and hence higher number of parameters) introduced in the CNN network
achieves lower accuracy. Therefore in this validation model, the increased number of
channels increases the number of parameters and hence, leads to lower performance.

Figure 6. The confusion matrix for the global classifier represented in percentage (number) for
each row.
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Figure 7. ROC curve and AUC for the global classifier.

The proposed framework achieves higher accuracies compared to other previous work
performed on task-based fMRI scans of the same experiment, as presented in Table 4. A
direct comparison between our research and other literature of other tasks would not be
objective as other researches incorporate different data sets and task-based fMRI experi-
ments. As a comparison with our previous approaches in [19,20,38], we can note that the
accuracy of the proposed classification that is based on local classifiers is higher. The reason
is believed to be the better learning of CNN local networks that have lower number of
parameters. Majority voting reflects the advantage of building the decision based on the
most affected brain areas, rather than all included areas.

Table 4. A comparison of the proposed CAD system with other GLM-based methods.

Method Data Source No. of Subjects Modeling of BOLD Classifier Validation Accuracy

[38] NDAR 100 (50 ASD, 50 TD) DWT 2D CNN 4-fold 78%
[19] NDAR 60 (30 ASD, 30 TD) GLM SNCAE 4-fold 76%
[20] NDAR 39 (13 Mild, 13 Moderate, 13 Severe) GLM RF 10-fold 72%

proposed NDAR 100 (50 ASD, 50 TD) CWT multi-channel 2D CNN 4-fold 86%

4.3. Brain Maps

According to literature, not every brain area is affected by the same degree for each
individual. Therefore, we obtain individual brain maps that explain the level of autism
for each area. After the implementation and training of local classifiers, each subject’s
local brain area data is tested for each corresponding trained network. The resulted
probabilities are represented in a brain map as demonstrated in Figure 8. As an example,
the probabilities obtained for the first individual are: (STG: 0.037, AG: 0.36, CG: 0.31,
PAC: 0.072). According to majority voting, the four areas has high probabilities for autism
(p > 0.5), hence, this individual is TD. For the other individual, the obtained probabilities
are: (STG: 0.77, AG: 0.97, CG: 0.61, PAC: 0.99). According to majority voting, the four areas
has low probabilities for autism (p <= 0.5), hence, this individual is TD. Some individuals
might have autistic areas and non autistic ones, as mentioned before. An example for the
probability distribution (STG: 0.43, AG: 0.8, CG: 0.61, PAC: 0.99). Three areas are autistic
(p > 0.5) and one area is non autistic (p < 0.5). Therefore, this subject is classified as autistic.

Figure 8 also demonstrates a 3D view. The viewing tool is FSLeyes through FSL.
As can be noted, the grade of autism are higher (red colors) of ASD subjects, with variable
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grade on each area. The grade of autism for TD subjects is lower (yellow colors) with
different grades.

Figure 8. Coronal, sagital and axial 2D views and a 3D view of both ASD and TD example. Brain
areas for the ASD individual are more severely distributed (red highlights) than TD peer (more
yellow highlight distribution).

5. Conclusions and Future Work

In this paper, a novel CNN Deep learning based ASD local and global diagnosis
system is introduced. The proposed system utilized task-based fMRI to achieve this goal.
According to the response to speech experiment, hypoactivation of the bilateral superior
temporal gyrus, bilateral primary auditory cortex, cingulate gyrus and angular gyrus are
exhibited in ASD toddlers. Whereas, TD peers exhibited typical lateralized activation.
Based on these results, local spatial and temporal features are extracted from each ROI
separately. CWT is performed to extract scalogram images, from the extracted BOLD
signals from spatially reduced clusters, that hold frequency specifications. A local CNN
classifier is utilized for each area. Experimental results are reported for all activated brain
areas. Accuracies range between 71% and 80%. Global classification is obtained from local
results. Achieved accuracy is 86% (with 82% sensitivity and 92% specificity). Finally, local
individual brain maps are created for each subject that indicate level of ASD severity.

Future work will include the application of the same approaches on rest-state fMRI
of same dataset. Hence, a detailed report for each subject will be obtained for connected
brain networks during rest and activated brain areas during task activities. Global decision
will be more accurate and will consider all functional aspects of the brain. Researchers are
encouraged to collect more data from different geographical sites. A protocol for generic
experimental design is recommended to enable researchers to validate their work with
other datasets. More validation steps will be performed, leading to a robust ASD diagnosis
system. In addition, our future work will include genomic data (which is available in
the collected data set used in this paper) to correlate affected brain areas with specific
genome sequences to help in early ASD detection. Finally, local classification results will
be investigated to identify malfunctioned neuro-circuits involved with ASD.
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