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Abstract: Healthy adults and neurological patients show unique mobility patterns over the course of
their lifespan and disease. Quantifying these mobility patterns could support diagnosing, tracking
disease progression and measuring response to treatment. This quantification can be done with
wearable technology, such as inertial measurement units (IMUs). Before IMUs can be used to
quantify mobility, algorithms need to be developed and validated with age and disease-specific
datasets. This study proposes a protocol for a dataset that can be used to develop and validate
IMU-based mobility algorithms for healthy adults (18–60 years), healthy older adults (>60 years),
and patients with Parkinson’s disease, multiple sclerosis, a symptomatic stroke and chronic low
back pain. All participants will be measured simultaneously with IMUs and a 3D optical motion
capture system while performing standardized mobility tasks and non-standardized activities of
daily living. Specific clinical scales and questionnaires will be collected. This study aims at building
the largest dataset for the development and validation of IMU-based mobility algorithms for healthy
adults and neurological patients. It is anticipated to provide this dataset for further research use and
collaboration, with the ultimate goal to bring IMU-based mobility algorithms as quickly as possible
into clinical trials and clinical routine.

Keywords: balance; chronic low back pain; gait; movement analysis; multiple sclerosis; Parkinson’s
disease; stroke; wearable sensors

1. Introduction

Healthy adults, as well as patients with neurological diseases, such as Parkinson’s
disease (PD), stroke and multiple sclerosis (MS), show unique mobility patterns over
the course of their life span and disease. These unique mobility patterns can be used
for diagnosis [1,2], tracking disease progression [3], measuring efficacy of treatment [4]
and detecting side effects of chronic medication intake [5]. In clinical routine, mobility
patterns are generally evaluated by healthcare professionals during a clinical or in-praxis
examination. Objective evaluation methods can provide additional and potentially more
ecologically valid measures. Wearable technology, more specifically inertial measurement
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units (IMUs) are highly suited for objective movement analysis and can even be used to
analyse mobility patterns outside the clinic and praxis, i.e., the usual environment [6,7].

Currently, results of such mobility analyses differ substantially between different IMU
devices [8,9]. This is most likely due to multiple reasons, including lack of standardization
of IMU position on the body and lack of (disease-) specific and thorough validation of the
algorithms used to extract and analyse raw data. Thus, before these IMUs are used in the
natural environment of the healthy adults and patients, clear information about the best
position of the IMUs to calculate mobility-related parameters should be gathered and a
thorough and specific validation of the used algorithms must be performed [6,10,11].

The accuracy of algorithms for the analysis of IMU-derived data is dependent on labo-
rious validation studies, which cannot be performed in every laboratory and specifically for
every single research question. In such validation studies, these IMU-derived algorithms
need to be compared to data extracted from reference tools for the assessment of mobility,
such as 3D optical motion capture systems. As mobility patterns differ across lifespan and
between different neurological diseases, this validation must be performed in different
age groups and in disease-specific datasets. To our best knowledge, there is currently no
representative dataset available that allows for such validation by providing multiple IMU
positions in a variety of neurological diseases. We propose here a study protocol to build
a full-body mobility dataset of healthy young and older participants and neurological
patients, including PD, MS, stroke and chronic low back pain (CLBP). All participants will
be measured simultaneously with 15 IMUs and 47 reflective markers that are tracked with
a 3D optical motion capture system. The assessment will include standardized mobility
tasks as well as non-standardized activities of daily living. Specific clinical scales will be
provided as anchors. The aim of the study is to build a dataset for the research community
that can be used to develop and validate IMU-based mobility algorithms for healthy adults
and neurological patients.

2. Materials and Methods
2.1. Ethics

This study is approved by the ethical committee of the Medical Faculty of Kiel Univer-
sity (D438/18) and is in accordance with the principles of the Declaration of Helsinki. All
participants will receive written and oral information about the measurements. The partici-
pants will have to provide written informed consent before the start of the measurements.
The study is registered in the German Clinical Trials Register (DRKS00022998).

2.2. Participants

This study will include healthy adults (18–60 years), healthy older adults (>60 years),
and patients with PD (according to the UK Brain Bank Criteria [12]), MS (according to
the McDonalds criteria [13]), patients with a recent (<4 weeks) symptomatic stroke and
patients with CLBP, whose patients characteristics are described elsewhere [14]. Healthy
adults will be recruited via flyers that will be placed in public facilities. Neurological
patients will be recruited from the neurology wards and outpatient clinics of the Univer-
sity Hospital Schleswig-Holstein (UKSH), Campus Kiel, Germany. Inclusion criteria are
18 years and older, and the ability to walk independently without walking aid. Exclusion
criteria are a Montreal Cognitive Assessment score <15 and other movement disorders that
affect mobility performance, as judged by the assessor.

2.3. Clinical and Demographic Data

Demographic data, including age, gender, weight, height, foot size, handedness,
will be recorded. Furthermore, comorbidities of all participants will be assessed with the
Charlson Comorbidity Index [15]. The cognitive function will be assessed with the Montreal
Cognitive Assessment [16]. Generic health status will be assessed with the EQ-5D-5L [17].
Activities of daily-living will be assessed with the Lawton Instrumental Activities of Daily
Living Scale [18] and the German Funktionsfragenbogen Hannover [19]. Sarcopenia will be
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assessed with the SARC-F [20]. Pain will be assessed with the Visual Analogue Scale [21].
Vibratory sensation will be assessed with a tuning fork (Rydel-Seiffer) [22]. Fatigue will be
assessed with the Fatigue Severity Scale [23]. The perceived self-efficacy will be assessed
with the General Self-Efficacy Scale [24]. The motor function of all participants will be
assessed with the motor part of the Movement Disorders Society Sponsored Revision of
the Unified Parkinson’s Disease Rating Scale (MDS-UPDRS) [3].

2.4. Disease Specific Scales

From all the patient with a neurological disorder, the diagnosis, disease duration as
well as the medication (type, dose and frequency) that the patients take will be collected
from the medical record. Additionally, for the PD patients the Hoehn and Yahr stage [25],
for the MS patients the Expanded Disability Status Scale [26] and for the stroke patients the
NIH Stroke Scale will be assessed [27].

2.5. Equipment

Participants will be measured with IMUs (Noraxon USA Inc., myoMOTION, Scotts-
dale, AZ, USA), containing a triaxial accelerometer (+/− 16 g), triaxial gyroscope (+/−
2000 degrees/sec) and triaxial magnetometer (+/− 1.9 Gauss). A total of 15 IMUs will be
attached to different body segments (Figure 1a). IMUs are therefore fixed to the following
body segments: head, sternum, upper arms, fore arms, pelvis, thighs, shanks (proximal),
ankles and feet. The IMUs will be secured with elastic bands with a special hold for the
IMU attached to it. In case the participant has pockets in the shorts, a 16th IMU will be
placed in the pocket. The data from this 16th IMU could be used to develop and validate
algorithms for smartphones that are commonly worn in the pocket. The IMU data will be
collected with a sample frequency of 200 Hz.

As reference, a twelve-camera optical motion capture system (Qualisys AB, Göteborg,
Sweden) will be used to record full-body movements with 200 Hz. A total of 47 reflective
markers (19 mm) will be adhered to the body (Figure 1b) for all movement assessments. A
minimum of three markers can be found on the following body segments: head, sternum,
upper arms, fore arms, hands, lower back, thighs, shanks and feet. During static calibration
trials, 8 additional reflective markers (19 mm) will be placed on the body (elbows, knees
and ankles) to be able to estimate joint positions (the exact positions of all the reflective
markers are described in the Supplementary Material). The IMU data and the optical data
will be synchronized with help of a TTL signal.

Two reflex light barriers (Telemecanique, photo-electronic sensor XULM06031, Rueil-
Malmaison, France) standing 5 m apart will be used to measure the preferred over ground
gait speed.

The over ground walking will be performed on a walkway with a width of 1 m. The
start and end of the 5 m during which steady state gait is recorded will be marked by
cones with reflective markers (30 mm) on top of them. For the assessment of longer gait
bouts a treadmill (Woodway, Waukesha, WI, USA) of 2.10 by 0.70 m with a split belt option
will be used. Dual-task assessments during over ground walking will be performed on a
smartphone with a screen size of 4.5 inch (One Touch Pop 2, Alcatel, Hong Kong, China). A
simple reaction time test and a numerical Stroop test will be used as dual-task (developed
with https://www.neurobs.com/menu_presentation/menu_features/mobile, accessed on
10 February 2021).

The whole assessment of each participant will be videotaped by two cameras (GoPro
Inc., Hero Session, San Mateo, CA, USA). The videos will be synchronized with the IMUs
and optical data with help of a synchronization light that turned on and off at the start and
end of each measurement.

https://www.neurobs.com/menu_presentation/menu_features/mobile
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Figure 1. (a) Placement of inertial measurement units (IMUs) including the orientation. (b) Place-
ment of the reflective markers measured by the optical motion capture system. 

Figure 1. (a) Placement of inertial measurement units (IMUs) including the orientation. (b) Placement
of the reflective markers measured by the optical motion capture system.
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2.6. Protocol

During the assessment of patients, there will always be a staff member standing close
to the participant to support the patient in case of a loss of balance. Patients with PD will be
asked to perform the whole protocol part twice, both on and off dopaminergic medication.
An overview of the protocol is given in Figure 2.

Sensors 2021, 21, 5833 5 of 13 
 

 

The whole assessment of each participant will be videotaped by two cameras (GoPro 
Inc., Hero Session, San Mateo, CA, USA). The videos will be synchronized with the IMUs 
and optical data with help of a synchronization light that turned on and off at the start 
and end of each measurement. 

2.6. Protocol 
During the assessment of patients, there will always be a staff member standing close 

to the participant to support the patient in case of a loss of balance. Patients with PD will 
be asked to perform the whole protocol part twice, both on and off dopaminergic medi-
cation. An overview of the protocol is given in Figure 2. 

 
Figure 2. Overview of the protocol. The first three assessments will be performed in this fixed order, 
the remaining assessments will be performed in randomized order. An explanation of each assess-
ment is provided in the text. 

At the start, the preferred over ground speed will be measured with reflex light bar-
riers. Participants will start walking about 2 m before the first light barrier and will stop 
walking about 2 m after the second light barrier. The average gait speed of five trials will 
be calculated and used as walking speed on the treadmill. 

All trials listed below will be recorded with IMUs and the optical motion capture 
system. 

Each assessment starts with a calibration trial where participants stand in a neutral 
pose (feet at hip width and arms hanging along the body). This trial will be repeated every 
time an IMU or marker is displaced. This calibration trial can be used to define the ana-
tomical reference frame with respect to the technical reference frame for both the IMU and 
the optical motion capture system [28–30]. Next the MDS-UPDRS part III will be assessed. 
These trials will always be performed in this fixed order at the beginning of the measure-
ment. Hereafter, the standardized and non-standardized mobility assessments will be 
performed in randomized order. 

2.6.1. Standardized Mobility Assessments 
• Treadmill walking. All participants will wear a safety harness that is suspended from 

the ceiling while walking at the treadmill. At the start of the treadmill trial, the speed 

Figure 2. Overview of the protocol. The first three assessments will be performed in this fixed
order, the remaining assessments will be performed in randomized order. An explanation of each
assessment is provided in the text.

At the start, the preferred over ground speed will be measured with reflex light
barriers. Participants will start walking about 2 m before the first light barrier and will stop
walking about 2 m after the second light barrier. The average gait speed of five trials will
be calculated and used as walking speed on the treadmill.

All trials listed below will be recorded with IMUs and the optical motion capture system.
Each assessment starts with a calibration trial where participants stand in a neutral

pose (feet at hip width and arms hanging along the body). This trial will be repeated
every time an IMU or marker is displaced. This calibration trial can be used to define
the anatomical reference frame with respect to the technical reference frame for both the
IMU and the optical motion capture system [28–30]. Next the MDS-UPDRS part III will
be assessed. These trials will always be performed in this fixed order at the beginning of
the measurement. Hereafter, the standardized and non-standardized mobility assessments
will be performed in randomized order.

2.6.1. Standardized Mobility Assessments

• Treadmill walking. All participants will wear a safety harness that is suspended from
the ceiling while walking at the treadmill. At the start of the treadmill trial, the speed
of the treadmill will be gradually increased to a speed that is comfortable for the
participant. The participant will walk for 60 s at this speed. Thereafter, the speed of
the treadmill will be gradually adapted to the preferred over ground walking speed
which is measured at the start of the protocol. The participant will walk again 60 s at
this speed. A subset of the healthy young adults will participate in a split-belt protocol
which is described in the Supplementary Material

• Short physical performance battery (SPPB)
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# Side-by-side stand (“Please stand with your feet together for 10 s, try not to
move your feet”)

# Semi-tandem stand (“Please stand with the heel of one foot touching the big
toe of the other foot for 10 s, you can put either foot in front, try not to move
your feet”)

# Tandem stand (“Please stand with the heel of one foot in front while touching
the toes of your other foot, you can put either foot in front, try not to move
your feet”)

# m gait (“Please stand with the toes of both feet on the starting line and walk
over to the end of the walkway at your normal gait speed”)

# m gait (“Please stand again with the toes of both feet on the starting line and
walk over to the end of the walkway at your normal gait speed”)

# Repeated chair Stand (“Please stand up straight five times in a row as fast as
possible without using your arms”)

• Timed up and go (“Please stand up from the chair, walk at preferred speed towards
the cone, turn around it in the direction of your preference, walk back and sit down”)

• Five time sit to stand test (“Please stand up straight five times in a row at your
preferred speed without using your arms if possible”)

• “Choreography”: a series of movements related to the flexibility of the lower back (see
Supplementary Material). The choreography contains flexion, extension and rotational
movements of the back, as well as a combination of those movements (“Please perform
the movements that are shown one by one on the pictures”)

The following standardized walking assessments will take place on the 5 m walkway
(Figure 3). All participants will be asked to start two steps before the start of the walkway
and stop walking two steps after the end of the walkway.

• Straight walking

# Slow speed (“Please walk half of your normal walking speed”; Figure 3a)
# Preferred speed (“Please walk at your normal walking speed”)
# Fast speed (“Please walk as fast as possible, without running or falling”)

• Sideways walking (“Please walk sideways, do not cross your legs during this walk”)
• Backwards walking (“Please walk backwards at a speed that is comfortable for you”)
• Obstacles: an obstacle with a height of 10 cm, and one with a height of 20 cm will be placed

at the three meter point with reflective markers on the top of each side (Figure 3b), and
a forward walk will be performed once for each obstacle (“Please walk at your normal
walking speed and step over the obstacle”)

• Slalom: cones will be placed every meter in the middle of the walkway. Each cone
will have a reflective marker on top (“Please walk at your normal speed around the
cones, do not step over them”; Figure 3d) Single and dual-tasking: It is know that
the complexity of the dual-task influences the dual-task costs [31,32], therefore two
tasks with different complexity will be performed. The first task will be a simple
reaction time test where participants will have to tap on the screen as fast as possible
after a black square appears on the screen. There are six time intervals ranging from
1000 to 2000 ms (increased in steps of 200 ms), which determines the time it will take
for the black square to appear on the screen. Each time interval occurs four times
and the order of the 24 options is randomized. The reaction time will be recorded.
A more complex reaction time test that is more often used to measure the dual-task
performance is the Stroop test [33–35]. The Stroop test also measures the cognitive
inhibition [35,36]. In this study a numerical Stroop test will be performed. During this
test two numbers will appear on the screen and the participants have to tap on the
number that is highest in value.
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• Within this test there are three conditions; (1) Neutral, the font size of both numbers is
equal; (2) Congruent, the number highest in value has a larger font size; (3) Incongru-
ent, the number highest in value has a smaller font size (Figure 4). In total 24 responses
will be required, eight of each condition. The order in which the 24 options occur in
the test is randomized. The reaction time as well as the accuracy will be recorded.
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# Simple reaction time task on a smartphone while standing (“Please tap on the
screen as fast as possible after a black square appears on the screen”)

# Numerical Stroop task on a smartphone while standing (“On the screen will
appear each time two numbers, please tap on the largest number in value, not
the largest number in size”)

# Walking up and down the 5 m walkway for 30 s, turning direction was not
instructed (“Please walk up and down the walkway at your normal speed and
stay within the area marked by the cones”; Figure 3d)

# Walking up and down the 5 m walkway and performing the simple reaction
time test on the smartphone (“Please perform the simple reaction time test
again as instructed before and walk up and down the walkway at your normal
speed at the same moment”)

# Walking up and down the 5 m walkway and performing the Numerical Stroop
test on the smartphone (“Please perform the numerical Stroop test again as
instructed before and walk up and down the walkway at your normal speed at
the same moment”)
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2.6.2. Non-Standardized Activities of Daily Living Assessment

The non-standardized mobility assessment consists of common daily activities that
will be performed by the participants. The daily activities that will be performed are listed
below. The order of the activities will not be fixed and will be decided by the researcher in
the flow of this assessment:

• Setting a table (plates, cutlery, glasses)
• Eating and drinking (including opening a bottle and pouring a drink)
• Cleaning a table
• Lifting/replacing objects from different heights
• Ironing and folding a T-shirt
• Tooth brushing
• Multiple chair rises
• Sitting and reading out loud
• Sitting and talking
• Opening a cabinet and taking objects out of it

2.7. Database and Data Availability

The demographics and clinical data will be stored in a research electronic data capture (RED-
Cap) database hosted at Kiel University [37]. This data will be shared upon reasonable request.

The IMU and optical data will be stored on a server of Kiel University that is only
accessible by the research team. These data will also be made available online. The data of
the first five healthy young adults and five older adults that have been measured already
are available as “.mat” files (https://github.com/neurogeriatricskiel/Validation-dataset,
accessed on 24 August 2021). More information about the data files can be found in the
Supplementary Material. The videos that will be recorded will be stored on a separate
server of the University Hospital of Kiel and will only be accessible to a small part of the
research team. The videos will not be shared since they contain identifying information.

https://github.com/neurogeriatricskiel/Validation-dataset
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3. Discussion

This study will collect full-body mobility data from healthy young, older adults,
and patients with PD, MS, stroke and CLBP. Each participant group will contain at least
20 participants with a maximum of 200 participants in total. All participants will be
simultaneously measured with IMUs and optical motion capture. To our knowledge, this
will be the first mobility dataset with full-body IMU and optical motion capture of healthy
adults and multiple neurological patient groups of such size. The dataset can be used to
develop and validate IMU-based algorithms for people with and without neurological
diseases. With validated algorithms it will become possible to analyse mobility patterns
both in the clinic and in the natural environment [6]. This objective information could
help with diagnosing [1,2], tracking disease progression [3] and measuring the response to
treatment [4,5].

Other studies with full-body IMU and optical motion capture included only young
healthy participants [38–40]. Moreover, the participants performed a limited number
of tasks that were not always mobility-related. Studies with full-body IMUs measuring
either mobility-related tasks in older adults or symptoms in PD patients did not measure
simultaneously with optical motion capture [41–43]. Other mobility related-studies that
validated IMU-based algorithms against optical motion capture only measured the lower
body simultaneously with both systems [44,45]. The upper body can however also provide
relevant information regarding mobility [4,46].

The data that will be collected within this study will contain full-body IMU and
optical motion capture data from a range of mobility-related tasks performed by both
healthy participants and multiple neurological patient groups. Therefore, new and valuable
information will be added to already existing datasets.

A large amount of standardized mobility assessments will be performed. There will
be short (5 m) walking trials with different types of walking (straight, backwards, slalom,
obstacle, sideways, dual-tasking). This will make it possible to test the accuracy of algo-
rithms during straight walking and more complex walking assessments, which are likely
to influence gait patterns [47–49]. To analyse the performance of algorithms during longer
walks, there will be treadmill data collected. The split-belt treadmill walking data (speed
reduction of 25% on one side [50]) can be used to analyse how well an algorithm deals
with gait asymmetry. The SPPB, timed up and go and five chair rise test are well known
assessment tools that are frequently performed in the clinic [51–53]. More information from
these tests can be extracted by adding one or a few IMUs [54,55]. The non-standardized as-
sessment part with activities of daily living can be used to develop and validate algorithms
for the analysis of the performance in the natural environment of the patients. The different
movements performed throughout all the assessments and the IMUs on different body
parts make it also possible to define which IMU position is the most accurate to quantify a
certain movement.

With the data from the different groups, disease-specific mobility patterns can be
extracted and compared between diseases. These disease-specific mobility patterns could
help to correctly diagnose patients [1,2]. It will also be possible to analyse how these
mobility patterns change during the courses of the diseases, since the PD and MS groups
will include patients with different disease stages [56]. All PD patients that consent in
conducting assessments during ON and OFF dopaminergic medication states, will be
measured in both conditions. This data will help assessing the effect of novel mobility
algorithms and parameters to measure effect of treatment [4].

With the data from the different assessments it will be possible to analyse mobility in
different circumstances. With the dual-task assessments it will, for example, be possible to
measure how much the mobility deteriorates with an easy and a more complex dual-task.
The walk with a low and a high obstacle will provide information about the obstacle
negotiation performance, which could indicate whether the individual has an increased
risk of falling [57,58]. Moreover, the clinical scores and questionnaires can be related to the
mobility performance during the different assessments [59,60].
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This study will have some limitations. The laboratory where the assessments will be
performed is relatively small. Therefore, only 5 m of steady state walking can be captured
on the over ground walkway and the distances covered during the non-standardized
activities of daily living will also not exceed the 5 m. The measurements will last about
three hours because of the many assessments that will be performed. It is possible that not
every participant will be able to perform all assessments due to fatigue or loss of motivation,
and that only a subset of the data can therefore be collected for those participants.

4. Conclusions

This study aims at building the largest currently available database for future devel-
opment and validation of IMU-based mobility algorithms. It will include representative
numbers of healthy adults over a large age range, as well as patients with diverse neurolog-
ical diseases. The combined analysis of demographic and clinical data with full-body IMU
and optical motion capture data should stimulate highly efficient research in this area, to
eventually catalyse the implementation of accurate mobility parameters in clinical routine
and assessment panels of clinical trials.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/s21175833/s1, Table S1: Information about the placement of the reflective markers and
the corresponding name in the data files Figure S1: Placement of the reflective markers and the
corresponding name in the data files.
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