
sensors

Article

Provisioning, Authentication and Secure Communications for
IoT Devices on FIWARE

Patrícia R. Sousa 1,2,∗ , Luís Magalhães 1, João S. Resende 1,2 , Rolando Martins 1,2 and Luís Antunes 1

����������
�������

Citation: Sousa, P.R.; Magalhães, L.;

Resende, J.S.; Martins, R.; Antunes, L.

Provisioning, Authentication and

Secure Communications for IoT

Devices on FIWARE. Sensors 2021, 21,

5898. https://doi.org/10.3390/

s21175898

Academic Editors: Jun Zhao, Feng Li,

Zeeshan Kaleem, Quoc-Viet Pham,

Huimei Han and Helin Yang

Received: 28 July 2021

Accepted: 30 August 2021

Published: 2 September 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Computer Science, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal;
up201606761@fc.up.pt (L.M.); jresende@dcc.fc.up.pt (J.S.R.); rmartins@dcc.fc.up.pt (R.M.);
lfa@dcc.fc.up.pt (L.A.)

2 Institute for Systems and Computer Engineering, Technology and Science (INESC-TEC),
4200-465 Porto, Portugal

* Correspondence: psousa@dcc.fc.up.pt

Abstract: The increasing pervasiveness of the Internet of Things is resulting in a steady increase of
cyberattacks in all of its facets. One of the most predominant attack vectors is related to its identity
management, as it grants the ability to impersonate and circumvent current trust mechanisms.
Given that identity is paramount to every security mechanism, such as authentication and access
control, any vulnerable identity management mechanism undermines any attempt to build secure
systems. While digital certificates are one of the most prevalent ways to establish identity and
perform authentication, their provision at scale remains open. This provisioning process is usually
an arduous task that encompasses device configuration, including identity and key provisioning.
Human configuration errors are often the source of many security and privacy issues, so this task
should be semi-autonomous to minimize erroneous configurations during this process. In this paper,
we propose an identity management (IdM) and authentication method called YubiAuthIoT. The
overall provisioning has an average runtime of 1137.8 ms ± 65.11 + δ. We integrate this method with
the FIWARE platform, as a way to provision and authenticate IoT devices.

Keywords: Internet of Things; FIWARE; authentication; secure communications; smart cities

1. Introduction

The Internet of Things (IoT) allows everyday objects (equipped with computational
and communicative capacity) to connect to the Internet. The “things” can exchange data
with each other and the Internet, making decisions automatically, even without human
interaction. The IoT applications require platforms to facilitate its development process,
including data transmission between heterogeneous devices with varying capabilities and
different communication protocols. The literature presents several middleware platforms
that serve as the underlying infrastructure for the development of IoT applications [1,2].

Smart cities use technology solutions to improve city services and residents’ living
experiences. Sensors, networks, and applications collect relevant data, such as traffic
congestion, energy usage, and air quality, to improve city services [3]. Cloud-based
IoT applications receive, analyze and manage data in real-time to help municipalities,
businesses, and citizens make decisions that improve the quality of life. The collection
of traffic data to change traffic lights automatically is an example of these smart cities
initiatives. Thus, some devices can collect traffic data, and when faced with congestion
scenarios, the city can automatically manage the green light for longer, causing the traffic
jam to decrease. Citizens also interact with smart city ecosystems using smartphones and
mobile devices. Pairing devices and data with cities’ physical infrastructure and services
can reduce costs and improve sustainability. Communities can improve energy distribution,
optimize garbage collection, reduce traffic congestion and even improve air quality with
the help of IoT.

Sensors 2021, 21, 5898. https://doi.org/10.3390/s21175898 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-0268-9134
https://orcid.org/0000-0003-0125-4240
https://orcid.org/0000-0002-1838-1417
https://doi.org/10.3390/s21175898
https://doi.org/10.3390/s21175898
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21175898
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s21175898?type=check_update&version=1


Sensors 2021, 21, 5898 2 of 24

The conception of IoT has founded the smart cities, which support the city operations
intelligently with minimal human interaction [4]. However, the realistic implementation
of smart cities is challenged on all costs of design and operation, heterogeneity among
devices, enormous data collection and analysis, information security, and sustainability.

In this context, the European Commission made available the FIWARE platform [5],
which is an open-source middleware developed to contribute to the creation of technologies
aimed at the Internet of the Future and capable of meeting a wide range of requirements
relevant for IoT platforms. There is a specific variant for IoT called FIWARE IoT stack. Its
purpose is to enable devices to send and receive data through specific APIs to send data
from the device to the cloud and receive commands. Other available API functions are
described in the official stack document [6].

On these smart city platforms, one of the most important characteristics to consider is
security and privacy [7–9]. With the growth of these technologies, there are more sensible
data exchanged between devices and users. Furthermore, there are many security problems
in smart cities [10,11] that can lead to catastrophic consequences. For example, suppose an
attacker has access to a traffic light. In that case, it can give wrong information (leading
to road accidents), or in a case more related to privacy, video surveillance systems can
be hacked, and unauthorized users can access confidential images, exposing personal
data. In terms of security, if these systems are hacked or fail, it can lead to catastrophic
consequences.

1.1. Problem Statement

The security of IoT devices is an essential part of building these connections and
interactions on platforms. Customers need to be confident that their data will not be shared
with unknown entities, or tampered with [12], or even that their devices do unwanted
operations. Authentication is an indispensable process, and generally, IoT platforms ask
the customer to go through a manual process of provisioning the IoT device through the
generation of shared keys that ensure the functioning and secure communication of the
device. Some devices are already ready to be provisioned with some custom platforms
semi-automatically, but not all of them can provide secure provisioning.

Most authentication solutions available on these platforms (FIWARE, for
example) [13,14], namely KeyRock or KeyStone, are more focused on user authentica-
tion. Devices can also authenticate, either with OAuth2 mechanisms or with shared key
mechanisms between devices. However, the OAuth2-based mechanism is more user-
friendly for human/users authentication, as the implementation requires traditional user-
name/password registration. Furthermore, impersonation attacks can be performed if an
attacker discovers the shared key and the device ID.

Furthermore, there is an obstacle towards the development of solutions based on the
Trusted Platform Module (TPM) to accomplish a chain of trust from hardware to software
components. Thus, past work [14] open up a future research challenge focused on a USB
security token-based mechanism as a possible solution. Given the aforementioned limita-
tions and challenges, can we devise a system with secure tokens to provide several benefits,
namely device identity, authentication, end-to-end communications, offline cryptographic
assets, and resistance to MiTM?

In this paper, we explore an authentication mechanism for IoT devices integrated on
FIWARE. The paper explores the lack of secure provisioning, authentication, and commu-
nication mechanisms between devices independent of FIWARE, but that can be integrated
into the platform so that devices that belong only to a trusted pool can be considered
secure. The motivation for this work is related to the need for device authentication and
identity, which must be considered a priority. In the context of smart cities, it is necessary
to ensure the definition of a device identity to eliminate impersonation attacks, preventing
one device from impersonating another and sending data with its identity.

Thus, it is also necessary to ensure that the communication between two devices is
encrypted and securely transported over the communication channel to guarantee that the



Sensors 2021, 21, 5898 3 of 24

data sent by a device is the same that arrives at the destination device (without tampering,
maintaining integrity). These mechanisms can eliminate the possibility of eavesdropping
on information by a malicious or passive party, maintaining privacy, and eliminating the
possibility of Man-in-the-Middle (MitM) attacks.

This document proposes an IoT device provisioning mechanism that provides identity,
authentication, and secure communications using a secure token to provision IoT devices
and their integration into the FIWARE platform. It is possible to have device pools, which
in addition to authenticating multiple devices, can also authenticate with each other (for
example, different entities or departments), allowing you to scale the solution to provision
and authenticate multiple devices without the need to authenticate across all of them
(1 to 1).

1.2. Contributions

• Device Identity: A solution that relies on the combination of a secure token (capable
of generating OTP and storage of a PKI) with cryptographic algorithms to provide
an identity to devices. Managers can authenticate the trusted devices in their pool,
giving them an identity;

• Devices’ Pools: After device provisioning, the system can provide a decentralized
architecture where the trusted devices can communicate end-to-end between each
other (if they are in the same or trusted pools). Different pools can be trusted between
each other if both managers agree on that (for this reason, we consider that the
scalability is better than other systems that need to authenticate all devices between
each other);

• Offline Cryptographic Assets: This system’s main advantage is the use of ephemeral
keys for clients and the manager’s offline cryptographic assets (with the usage of the
secure token), including storing the private key isolated from network access and kept
in a powered-down state. Even if the secure token is stolen or lost, it needs a PIN
(Personal Identification Number) to access the keys. As the secure token stores all the
cryptographic keys, it eliminates the hassle of having all of the cryptographic assets
on the managing device, which would lead to a single point of failure (SPOF).

• YubiAuthIoT Full Implementation: We have a fully working implementation of the
YubiAuthIoT method. Section 4 has the setup description as an independent au-
thentication method. We describe all the implementation processes, including the
configurations of the YubiKey cryptographic algorithm, local certificate authority, OTP
Server, and the discovery process. Then, we provide some performance results.

• FIWARE Integration and Full Implementation: Sections 5 and 6 describe the integra-
tion with the FIWARE, which involves many components that must be deployed to
achieve the desired functionality and security. We describe all the components that
compose the implementation with FIWARE, including the communication between
nodes, connection with AuthzForce for authorization policies, and connection with
Orion. We chose integration with FIWARE to test the integration, but the method
YubiAuthIoT can be integrated on any other platform, as the implementation is inde-
pendent (described in Section 4).

1.3. Outline

The paper is structured as follows: Section 2 describes the related work solutions for
identity management and authentication across multiple IoT scenarios. Section 3 presents
the Identity Management and Authentication method that we created for securing the
communications end-to-end between IoT devices, describing the architecture. Section 4
shows the evaluation of the YubiAuthIoT method, namely the Setup, Implementation, and
performance results. Then, Section 5 shows the integration between our method (Yubi-
AuthIoT) with FIWARE, describing architectural and implementation details. Section 6
describes the YubiAuthIoT and FIWARE integration deployment, namely the setup and
implementation details. Section 7 describes the security analysis composed of a threat



Sensors 2021, 21, 5898 4 of 24

model and some attack scenarios. Finally, Section 8 gives an overview of the future research
challenges, and Section 9 has the conclusions of the work.

2. Related Work

Many applications provide identity, authentication, and authorization across multiple
contexts for IoT scenarios [15–23], and different authors present many taxonomies. Shub-
ham Agrawal et al. [24] claim that there are different authentication schemes, named:
OTP, Zero-Knowledge proof, Mutual Authentication, Public Key Cryptography, and
Digital Signature. On the other hand, VL Shivraj et al. [25] refer to a different catego-
rization: mutual authentication schemes, two-party authentication through a trusted
party with key exchange, session key-based authentication, group authentication, di-
rected path-based authentication scheme, OTP, and SecureID authentication schemes.
Nidal Aboudagga et al. [26] have presented a document with a taxonomy and research
issues in the authentication protocols for ad hoc networks.

PKI provides important core authentication technologies for IoT. PKI creates digital
certificates that map public keys to entities that securely store these certificates in a central
repository and revokes them if needed. Any device can verify the integrity and ownership
of a public key in this type of infrastructure. Previous studies [27] show that 42% of devices
will continue to use digital certificates for authentication and identification in the next two
years. The SSL/TLS [28] or Kerberos [29] are some examples of authentication systems
based on a PKI.

Regarding FIWARE, KeyRock [14] is the component responsible for Identity Manage-
ment. Using KeyRock (with other security components such as PEP Proxy and Authzforce)
enables users and devices to communicate with OAuth2-based authentication and au-
thorization. However, although IoT devices can authenticate with FIWARE with these
methods, it is not done for that purpose, as it uses the traditional username/password
registration. Even if this type of system is not the most advanced implementation in terms
of security and usability, it can still be a good mechanism because it integrates seamlessly
with the FIWARE architecture but is more user-oriented. KeyRock also requires a SQL
database to store the encrypted user credentials.

Luciano Barreto et al. [13] present an overview of some IoT cloud-focused device
authentication solutions and assert that current security technologies often do not fully
include the tools needed to handle such a scenario. The authors propose that even con-
sidering the KeyRock [14] and Keystone [30] solutions on FIWARE technology, there is an
obstacle towards the development of solutions based on Trusted Platform Module (TPM) to
accomplish a chain of trust from hardware to software components. Thus, the authors open
up a future research challenge focused on a USB security token as a possible solution-based
mechanism, which is the focus of our solution in this paper.

For this reason, it is interesting to consider other solutions for the authentication of
IoT devices in FIWARE.

Secure Provisioning for Achieving End-to-End Secure Communications [31] provides
a concept for provisioning IoT devices that adopts an architecture where another device
acts as a manager that represents a CA, allowing it to be switched on/off during the
provisioning phase to reduce SPOF problems. The solution combines One Time Password
(OTP) on a secure token and cryptographic algorithms on a hybrid authentication system.
In this solution, the certificates are signed on the manager device, having a SPOF because
it stores all the keys on the manager device. Therefore, the solution does not explore the
functionality of Public Key Cryptography Standards (PKCS)#11 on YubiKeys to create and
manipulate cryptographic tokens. Thus, we use a solution in this paper based on that, but
we use the YubiKey to perform all the cryptographic operations inside it, ensuring that the
private key never leaves the device to avoid the possibility of private key theft in a possible
network intrusion. Furthermore, we change the cipher algorithms. The authors use an
Elliptic Curve Integrated Encryption Scheme (ECIES) for authentication of the receiver.
Users can encrypt an ephemeral key using the data key and then send it, and if the other



Sensors 2021, 21, 5898 5 of 24

party can decrypt, users authenticate the recipient. However, in this case, both parties
established an ephemeral data key to encrypt an ephemeral authentication key. It would be
much easier to use the data key for authentication. For this reason, in this paper, we choose
the Elliptic Curve Digital Signature Algorithm (ECDSA) for signing and verification and
Elliptic Curve Diffie–Hellman Key Exchange (ECDH) for encryption.

3. IoT Devices IdM and Authentication

In this section, we will present a solution (YubiAuthIoT) based on the concept provided
by Patrícia R. Sousa et al. [31], but with some improvements that ensure device identity,
scalability, offline cryptographic assets, and resistance to MitM.

YubiAuthIoT presents a novel approach for provisioning IoT devices that combines
public-key cryptography algorithms with OTP inside a secure token. The secure token acts
as offline storage for private keys, allowing access to cryptographic operations to be kept
offline without access to the network, contrary to the original solution. Our solution uses a
manager device that acts as an OTP Server that can be switch off during the provisioning
phase to reduce a SPOF problem. This way, device identity is guaranteed by physical access
to this physical token.

3.1. Manager Setup Phase

The Certificate Authority (CA) subsystem is a combination of a secure token and a
manager device. The secure token plays an essential role in a certification system, sup-
porting the combination of OTP with PKCS#11 to create and manipulate cryptographic
tokens (The PKCS#11 standard/protocol is widely used by applications that use cryp-
tographic operations with non-exportable keys, as the protocol defines a standardized
specification for interaction with cryptographic hardware (Smartcards, Tokens and Hard-
ware Security Module (HSM)). It is an abstract layer to perform the separation of the keys
from the operations, allowing them to perform operations on cryptographic objects, such
as private keys, without requiring access to the objects.). In our system, we used a secure
token to perform all the cryptographic operations inside it, ensuring that the private key
never leaves the device to avoid the possibility of private key theft in a possible network
intrusion. This device must be reliable and controlled only by trusted people, such as the
network owner. All certificates signed by the device will be implicitly trusted. The systems
that manage Public Key Infrastructure (PKI) require a high-security degree and are on an
isolated machine.

As the secure token stores all the cryptographic keys, it eliminates the hassle of having
all of the cryptographic assets on the managing device, which would lead to a SPOF. On the
other hand, the device manager has an OTP server that allows authentication with a secure
token (“something you have”), proving that the device trying to authenticate has the secure
token. For this reason, anyone who has access to this secure token can authenticate with
the manager. The OTP server can be switched off when not in use, avoiding possible SPOF.

3.2. Device Authentication

The authentication between a new device and the manager is needed to add new
devices to the trusted device pool. We use a combination of public-key cryptography
algorithms with OTP to authenticate a new device. In practical terms, the network owner
inserts the secure token into the target device to add it to the trusted device pool. Figure 1
shows the whole process.

This section describes the cryptographic algorithm used in this proposal and then
provides a detailed description of the entire process of provisioning new devices.



Sensors 2021, 21, 5898 6 of 24

Figure 1. Setup and authentication.

3.2.1. Cryptographic Algorithms

As cryptographic algorithms, we choose ECDSA for signing and verification and
ECDH for encryption.

We choose Elliptic-Curve Cryptography (ECC) because it is better for low-resource
devices, as ECC requires fewer resources and provides the same security level as Rivest–
Shamir–Adleman (RSA) cryptography with a smaller key [32].

ECDH is a shared-secret derivation protocol that uses the elliptic curve form of the
Diffie–Hellman (DH) protocol. In this protocol, two parties can agree on a shared secret over
an insecure channel using the knowledge of their own “private key” and their partner’s
“public key” to generate a shared secret. Generally, the private keys are random numbers
used for the key negotiation and then discarded (ephemeral). According to the NIST SP
800-56A [33], there are three key agreement categories: static–static, static–ephemeral and
ephemeral–ephemeral. On the static–static scheme, there are no ephemeral keys on usage;
on static–ephemeral, it only generates one ephemeral key pair for one of the parties; and
finally, on ephemeral–ephemeral, each party generates an ephemeral key.

In general, a static key remains the same over a long period. However, an ephemeral
key has a very short lifetime and is recreated for each session. The “static–static” scheme
does not provide forward secrecy, which means that if an adversary finds either one of
the private keys, then the shared secret can be calculated (using the other party’s public
key), and all security is lost. The “ephemeral–ephemeral” scheme provides forward
secrecy, which means that past sessions are still secure even if an attacker finds one or both
private keys, as this scheme generates a new key pair for each key agreement. It is not
accurate stating the ECDH does not provide authentication while using ephemeral keys,
although it is required to authenticate the public key’s exchange. However, the protocol
can use ECDSA—the elliptic curve form of DSA, to solve the lack of authentication. DSA
authenticates digital content because a valid digital signature gives a recipient reason to
believe that the message was created by a known sender, such that the sender cannot deny



Sensors 2021, 21, 5898 7 of 24

having sent the message (authentication and non-repudiation) and that the message is
the same—without changes (integrity). This authentication includes the key agreement
parameters used to derive the master secret and includes the session key’s correctness.
In brief, it can authenticate the handshake of the TLS protocol so that it can provide
authentication for ECDH [34].

Finally, the “ephemeral–static” scheme does not provide forwarding secrecy because
if an adversary finds the static private key, the shared secret can be discovered, as it can be
calculated. To the best of our knowledge, there are no hardware tokens with ephemeral
keys. Our system does not require “forward secrecy” property for the manager because
the secure token keeps keys offline, and an attacker needs to have physical access to the
physical token and know the PIN to access the private key. For this reason, we chose the
“ephemeral–static” scheme.

3.2.2. Middleware’s Authentication Process

The authentication process is depicted in Figure 1 and shows its four distinct phases.
After the manager sets up the OTP Server, the manager is ready to receive new

authentications from IoT devices (1). A new device can send its ephemeral public key to
the manager to initiate the conversation (2). As the key is ephemeral, the device needs to
authenticate itself with the manager. To achieve this goal, it uses the manager’s public key
(stored on the secure token) and its ephemeral private key (correspondent to the ephemeral
public key sent on the first step) to derive the ECDH shared key. Then, the device sends
a Certificate Signing Request (CSR) generated with the ECDSA private key and an OTP
generated with the secure token to the manager, both encrypted with the derived shared
key (3). The server also derives an ECDH shared key with its private key and the device’s
ephemeral public key received on the previous step. The manager can then decrypt the
device’s communication that contains the OTP and CSR. If the OTP is considered valid by
the OTP Server, he knows that the client is in the physical presence of the physical token. If
this is the case, the manager signs the CSR, generating a signed x509 certificate, and sends
it back to the client (4). It attests that the new device is now on the device’s trusted pool.
These certificates establish trust among the client devices (without the intervention of the
manager device).

The security token has a PIN to protect the signing action to ensure that no one, except
the owner, uses that token to sign.

After this process, the shared key must be discarded (deleted) from the devices.

3.3. Decentralized Secure End-to-End Communications

After the discovery process, devices need to authenticate among themselves without
intervention from the manager. For the mutual trust, both devices must exchange the
manager’s signed certificates. When the device IoTDevice_1.pool1 wants to communicate
with others, such as IoTDevice_2.pool1, they need to exchange their certificates to prove to
each other that they are trusted.

As all the clients keep the manager’s public keys, the signatures of their certificates
can be verified mutually. Then, both clients exchange ephemeral keys signed with ECDSA.
With access to the certificate signed by the manager, they can extract the public key and
verify the signature of the ephemeral public keys to prove that it is the same person who
has them (and, therefore, is authenticated). After exchanging their public keys, each client
can derive an ECDH shared secret to communicate (with their private key and the other’s
public key).

The security of the transmission of the .crt is implicitly given by the possession of the
private key that only the owner has access to, so the authentication is guaranteed (even
if someone eavesdrop on the channel and stole the .crt, they do not have the private key
associated to it).



Sensors 2021, 21, 5898 8 of 24

3.4. Merge Two Trusted Devices Pools

One of the options of this system is the possibility of authenticating pools between
them. This option has the advantage of authenticating devices from different pools (for
example, in the context of smart cities, between different departments) so that the devices
do not need to authenticate between all (1-to-1). For that, if two managers want to merge
their pools, they need to authenticate with each other - step 1 in the Figure 2. After this,
both pools have their devices authenticated with each other. This option ensures that
authentication between devices is the responsibility of managers.

Then, each device updates its list of trusted devices with the certificates of the devices
of the other trusted pool - step 2 in the Figure 2. Thus, all devices can verify which
devices are trusted. Likewise, and in the presence of a misbehaving device, it is possible to
revoke its certificate, and therefore, revoke the trust between devices. Here, the Certificate
Revocation List (CRL), which stores the information about the provisioning devices that
currently have their certificate revoked, is updated. Only the manager can revoke devices
of the pool managed by it. This list is shared between pools when there is authentication
between them.

Figure 2 represents the merge process between two pools. Authentication between
managers is done through the same process described in Section 3.2. Then, the information
(updated trusted certificates) is shared between all devices in the different pools.

Figure 2. Merge two trusted pools.

4. YubiAuthIoT Evaluation

This section describes the setup phase and the implementation details regarding the
YubiKey cryptographic algorithms configuration, the local certificate authority setup, the
discovery process, and the setup of the OTP Server. Then, finally, we describe different
results regarding the provisioning phase, mainly the sending and encryption execution
time of the OTP verification and public key.

4.1. Setup

For implementing a Proof-of-Concept of YubiAuthIoT solution, we use three Rasp-
berry PI 3 (RP3) Model B+ and a YubiKey NEO. We use Raspberry PI because they are
commonly used in IoT, like in some smart cities deployments [7,35–38]. In these deploy-
ments, Raspberry PIs are used as processing units in Data Collection Units (DCU), together
with sensors and a control board to interface the processing unit and the sensors.

The devices connect to an UniFi AC Pro AP to mimic a WiFi deployment. The YubiKey
NEO represents the secure token. One RP3 works as the manager (that acts as a router)
and the other two as clients, with all the RP3 having the Raspbian operating system.



Sensors 2021, 21, 5898 9 of 24

As the OTP Server can represent a SPOF, we created it as a service that can be switched
off when not used to avoid the possibility of centralized attacks.

We assume that the RP3 connects by power and does not use extra batteries, such as
power banks. For measuring the energy consumption, we use a direct plug-in power meter
from efergy.

4.2. Implementation

This section describes the implementation of YubiKey Cryptographic Algorithms
Configuration, Local Certificate Authority, Discovery Process, and OTP Server.

4.2.1. YubiKey Cryptographic Algorithms Configuration

Regarding the YubiKey cryptographic algorithms configuration, a YubiKey allows
us to generate OTP and supports Personal Identity Verification (PIV) [39] card interface.
PIV enables RSA or ECC sign/decrypt operations using a private key stored on a secure
token, such as smart cards, through the PKCS#11 engine. PKCS#11 bridges the gap between
OpenSSL and YubiKey. A PIV-enabled YubiKey contains different slots capable of holding
an X.509 certificate and the accompanying private key.

For the authentication process, we use Python 3.2, OpenSSL, the OpenSSL PKCS#11
engine from OpenSC, the p11tool from GnuTLS, and the Yubico PIV tool for interacting with
the PIV application on a YubiKey. With these tools, we can build a CA generated inside the
YubiKey through the PKCS#11 support.

This work uses a YubiKey for the OTP generation and stores the private keys for
signing and encryption. We focus on two YubiKeys’ slots, mainly: 9c (for digital signatures)
and 9d (key management). In a nutshell, we will use slot 9c for certificate signing purposes,
and we are going to use slot 9d for encryption for confidentiality purposes, therefore,
to decrypt content using the private key stored on YubiKey. Both slots require a PIN to
perform operations with the private key. On the 9c slot, we create a 256-bit ECC key pair to
use a 256-bit ECDSA. On the 9d slot, we also create a 256-bit ECC key pair for encryption
and decryption. If the slot holds the EC key, we will perform ECDH and return the shared
secret.

4.2.2. Local Certificate Authority

For setting up the certificate authority, it is necessary to have some files located in
a folder to store the certificates generated, and there are some main files and folders for
that. The certificates are stored in a certs/ directory and are listed in the index.txt file. The
first field describes the certificate status, i.e., V for valid certificates and R for revoked
certificates, the second is the issuing date, the third has the certificate serial, and finally, the
last one contains the certificate name (Organization and Common Name). The manager
device stores all this information.

4.2.3. Discovery Process

After successful authentication, the device now belongs to a new domain. Then,
we need to ensure that other services or entities can discover the new device inside the
network.

We chose to use Zeroconf [40] to support the entire discovery process within our
solution. It is a commonly used technology with wide commercial adoption by companies,
such as Apple, which uses mDNS to locate any connected speakers, Apple TV, and others.

So, on this configuration, the domain of devices is changed from IoTDevice_1 (for
example) to IoTDevice_1.pool1 (Example on Figure 1). When advertised on the network,
the additional nodes can recognize them from the same domain. In the beginning, only
the manager has their hostname along with the domain (pool1, chosen for this paper).
However, all the trusted authentication devices must have the same domain when there
are more authenticated devices. At this stage, devices can make a peer discovery to find
devices with the same domain.



Sensors 2021, 21, 5898 10 of 24

4.2.4. OTP Server

For the OTP Server, we used an implementation of the YubiKey server based on
Validation Protocol Version 2.0 from Yubico [41] and YubiKey-server repo from GitHub [42].

Basically, on this implementation, the server runs locally without the need for connect-
ing to official servers. It stores all information inside an SQLite database.

We can enroll new keys on the system with the public key and the AES secret key.
Then, it is possible to validate the OTP based on a query HTTP to the server. The response
is composed of the OTP and Status (OK, REPLAYED_OTP or INVALID).

So, after the enrollment of the manager’s YubiKey, it is possible to authenticate with
the manager with the YubiKey.

Devices attempting to authenticate run a standby service to read a public key from the
stdin of the YubiKey (to encrypt the communications) and to perform the communication
with the manager to send the OTP.

4.3. Results

During the device provisioning, there are some exchanges between the manager and
the device being authenticated (Figure 1).

We do not measure the time required to create the sockets, but rather the time of
sending the encrypted and decrypted data and, respectively, the process of encryption and
decryption.

We collected ten-time samples from the provisioning phase for the manager and
the device.

From the manager interactions, we have a mean runtime of 615.1 ms ± 9.01, while in
the client interactions, we have a mean runtime of 522.7 ms ± 56.1. The overall provisioning
has an average runtime of 1137.8 ms ± 65.11 + δ, where δ is the time required to insert the
PIN when performing the cryptographic operations.

We calculate the verification’s runtime with time.time() on the authentication’s Python
implementation, which returns the system date and time.

In terms of energy consumed, the RP3 switch on spends only 2.2 Wh without services
running. When we did encryption and decryption, the energy spent was not significant,
having just varied 0.4 Wh up and down.

The energy consumed by the device manager when the YubiKey-server is running
and on the OTP validation process was 2.2 Wh, not varying more than 0.1 Wh up.

At the setup time, the manager makes the provisioning of their devices. Measuring
the concurrent requests to the server is not our focus because it is an unusual situation.
However, for the communications and the OTP validator, it is important to analyze the
scalability. As far as communications are concerned, the scalability is proportional to that
provided by the ECDH-ECDSA communication scheme.

Regarding the validation server, we present the scalability results given by the Locust
tool [43]—a scalable performance testing tool. We test with 500 users (peak concurrency) at
a spawn rate (users started/second) of 0.5. We get an average response time of 4.55 ms,
where the minimum response time was 0.84 ms and maximum response time was 59.40 ms
for an average content size of 147 and 83.86 requests per second.

Figures 3 and 4 show that the median does not change significantly with the increase
in clients.

Figure 3. Number of users tested for the validation server.



Sensors 2021, 21, 5898 11 of 24

Figure 4. Response times (ms) per number of users.

5. Integration of YubiAuthIoT and FIWARE

FIWARE is a platform (or framework) that contains several open-source components
that can be used together or individually and has third-party components to implement
intelligent designs. FIWARE technologies aim to combine the Internet of Things with
Context Information Management and Big Data services in the cloud to facilitate the pro-
cessing, analysis, and visualization of this information. FIWARE can be used to implement
well-designed Smart Cities, Smart Agriculture, and Smart Industry solutions.

FIWARE also has built-in components that allow connection to IoT devices, real-time
event data processing, and Big Data analysis and incorporation of advanced Web User
Interface features, such as Augmented Reality, 3D visualization, among others.

FIWARE has a set of APIs and software components for the rapid development of
applications in contexts such as the Internet of Things (IoT); real-time data capture; context
data management; data and big data analysis—requirements aligned with the basic needs
for the development of applications for smart cities. It has two main objectives: to create
the foundations for an open technology standard (FIWARE) and to create an open and
technology-oriented innovation ecosystem. APIs are implemented through components
called Generic Enablers (Generic Enablers, or GEs, are software tools offered by FIWARE)
(GEs). FIWARE enablers [44] can be used to create an IoT platform, and FIWARE IoT Stack
is based on them. There are different FIWARE components, and we can highlight them:
IoTAgents (IoTA), Context Broker (Orion), and some Security Components, such as IdM,
Policy Enforcement Point (PEP), and Access Control (AC).

The main component of FIWARE is the Orion Context Broker that provides the
solution to manage, update and access context information. Using Orion Context Broker, it
is possible to establish the link to other sets of complementary elements of the FIWARE
(Figure 5): Interface with IoT, robots and third party systems; context and management
data from APIs, publishing and monetization; and processing, analysis, and visualization
of information from context.

Figure 5. FIWARE Orion Context Broker representation.

Context Broker (Orion) allows us to model and gain access to context information
independently of the source. Orion Context Broker is an implementation of the Pub-
lish/Subscribe Context Broker GE, providing an NGSI interface developed as part of the
FIWARE platform. Orion allows managing the lifecycle of context information, including



Sensors 2021, 21, 5898 12 of 24

updates, queries, registration, and subscriptions. Context information consists of enti-
ties (e.g., a car) and their attributes (e.g., the speed or location of the car). Thus, Orion
Context Broker can be connected to various IoT Devices, called Entities, which monitor
environmental parameters such as Temperature, Brightness, and Acoustic Noise.

This section describes the integration between the YubiAuthIoT mechanism discussed
in this paper and the FIWARE platform. Additionally, we provide a use case of both
components on a smart city scenario, stating all the details that allow the establishment
of secure and authentic communication channels between IoT devices and a smart city
platform powered by FIWARE.

5.1. FIWARE Identity Management

The main components on the security of FIWARE [45] are IdM, Policy Decision Point
(PDP), and Policy Enforcement Point (PEP) (Figure 6).

Figure 6. Simplified representation of the standard authentication FIWARE deployment.

FIWARE Orion, the default implementation of the context broker GE, does not provide
“native” authentication by default nor authorization mechanisms to enforce access control
policies. Instead, it integrates with other FIWARE components such as FIWARE’s PEP
Proxy [46] GEs, which provide the authentication and authorization capabilities to Orion.

Two PEP GE implementations can work with Orion Context Broker, namely Wilma [47]
and Steelskin [48]. A PEP’s job is to be a proxy between the requests to Orion and the
Orion itself, forwarding the communication to Orion if that matches the policies in place.
Otherwise, the communications are discarded and return a forbidden error. A PEP does
not have an Identity Management (IdM) for authentication management, policy creation,
or decision capabilities. For a PEP to fulfill its role on the FIWARE architecture, it needs
to connect with two additional FIWARE components: an IdM GE like KeyRock and a
PDP GE such as AuthzForce [49]. The IdM is usually a server responsible for registering
and authenticating users, being authentication performed via OAuth2 using access tokens
placed on the communication HTTP headers. KeyRock provides a REST API and a web-
based identity management interface to create users, roles, and permissions. The policy
management, part of the authorization component of a security manager, is performed by
the PDP GE, which provides mechanisms to create domains and policies, update them if
needed, and also provides policy decision mechanisms, on which the user access request
is validated according to the active policies returning an “Allow” or “Deny” decision.
FIWARE’s Authzforce—the default implementation of the PDP GE, uses the eXtensible
Access Control Markup Language (XACML) to build the policies and domains needed,
and every policy decision request must be encoded in the same XACML format.

When all the components are available, the PEP GE checks the user authentication
near the IdM GE, and if the authentication token is valid, this verification succeeds. After
the successful verification of the authenticity of the user, PEP gathers information about
the request, such as the entity ID that the user is trying to access, the HTTP method, and



Sensors 2021, 21, 5898 13 of 24

the request body, and sends it to the PDP, which returns a “Allow” or “Deny” decision. If
either IdM or PDP returns an error or a deny result, the communication is not forwarded
to Orion, protecting it from unauthorized access to information.

5.2. YubiAuthIoT and FIWARE

Without YubiAuthIoT, Figure 6 provides a simplified representation of the standard
FIWARE deployment for authenticating devices.

YubiAuthIoT seats on FIWARE architecture as an IdM, as it provides proofs of authen-
tication and a secure channel provider. However, due to incompatibilities, it cannot be
combined with existing PEP implementations. To integrate with FIWARE, we needed to
develop an additional component that replaces the PEP on the FIWARE architecture, acting
as a proxy between the requests to Orion and Orion itself. This new component aims to
decrypt the incoming messages (as an IoTAgent), check the certificates for authentication,
gather information about the request, make a policy decision request to a PDP, and if the
result is favorable forward the message to Orion, completing its functions. This component
is called Endpoint (Figure 7).

Note that YubiAuthIoT can be integrated into other systems than FIWARE. Here,
we integrate with the Orion component to provide authentication and authorization,
controlling requests and responses. However, YubiAuthIoT is independent and works as a
provisioning method to authenticate devices, to provide end-to-end secure communications
between trusted devices, totally independent from FIWARE.

Some cities have centralized services where users can access information about the city-
state, such as weather information or real-time traffic. FIWARE Orion sits on a centralized
infrastructure where it receives and distributes information. To adapt to a smart city
infrastructure, we decided to make our PKI-based infrastructure tree-like, using a central
city manager as our root CA and generating smaller sub-managers (subCAs) to manage
an unlimited number of IoT devices. It is useful to remember that YubiAuthIoT does not
require the manager nodes always on, so SPOF attacks are severely mitigated. Additionally,
having multiple sub-managers, each one can manage a subset of devices, increasing the
system’s reliability and usefulness. In a smart city, sub-managers can be companies or users
with devices deployed to send data to the city and each other. Figure 7 aims to provide the
general integration between the components that join YubiAuthIoT and FIWARE together,
and Figure 8 shows the communication between the components in more detail.

Figure 7. FIWARE integration (Orion Connection).

As shown in Figure 7, the YubiAuthIoT component is responsible for making the
authentication and encryption of communications between the IoT devices and the end-
point (controlled by the city manager). The endpoint is our custom PEP that uses the
authentication information from YubiAuthIoT and information about the request to query
the PDP (Authzforce) to decide the forwarding of messages to Orion. If the PDP result is
favorable, the message is forwarded to Orion.



Sensors 2021, 21, 5898 14 of 24

Figure 8. FIWARE authentication with connection to YubiAuthIoT.

Figure 8 represents the flows between the different components. Before any communi-
cation can be forwarded to Orion, the Endpoint device must be provisioned to ensure the
authenticity of the endpoints when a IoT device wants to communicate with it. The City
Manager (rootCA) is the device that provisions the Endpoint devices (can be more than one).
The next device to be provisioned is the user/company manager (sub-CA) responsible for
managing and authenticating their IoT devices’ subset. Then, the user/company manager
provisions the IoT devices. It is important to note that every provision process occurs as
detailed previously in Section 3. At this point, it is important to talk about trust anchors.
The trust anchors are the certificates that are used on certification verification as the basis
of trust. If the certification chain of a certificate contains some certificate that belongs to
the trust anchors of a device, the certificate authenticity verification will succeed, and the
certificate is trusted; otherwise, the certificate is untrusted. In the current implementation
of YubiAuthIoTs tree-like PKI, the trust anchors of a node are all the parent nodes’ certifi-
cates until reaching the root on the PKI tree. Figure 9 shows the trust anchors placed on
a smart city provisioning use case. The certificate chain is created by adding the device
certificate on top of the parent certification chain. The certification chain of the rootCA is its
certificate. Developing the certification chains and trust anchors give advantages regarding
the communication with all the nodes on the PKI tree, including nodes belonging to other
users/company managers and nodes belonging to the city. The FIWARE components
described in this figure are placed internally within the smart city infrastructure and are
only accessible by endpoint nodes and the city manager (rootCA), not being connected to
the PKI tree generated with YubiAuthIoT. Restrictions to unmanaged device provisioning
to the city, devices that have no user/company manager(sub-CA) associated can be easily
provided as the physical security token is needed for the provisioning to succeed.

It is also possible to have user/company managers that are not connected to the smart
city, making them the rootCA of their own devices, but when the manager connects to the
city, it becomes an intermediate CA. With this, the user’s devices’ certificates will have the
city in the certification chain and are authenticated to communicate with the endpoints
for Orion. Figure 9 represents the devices’ provisioning process using YubiAuthIoT’s
provisioning process. The construction of the trust anchors and certification chain is
also shown.



Sensors 2021, 21, 5898 15 of 24

Figure 9. Smart cities use case.

After the provisioning between the manager and the endpoint in the provisioning
phase, the manager sets up user domain and policies for the authorization grants on access
to Orion. The policies are defined on the AuthzForce component that controls the access to
Orion. We have two authorization policies: Each manager added to the city (intermediate
CA) will force the creation of a domain whose name is the name of the manager’s pool
(Manager.pool1 manages pool1), and each device that has the manager referred to above
as an intermediate CA can only insert/edit/delete data within the same pool, and cannot
edit data from other pools, meaning that editing data from other users is not possible.
Then, the endpoint verifies the request information and certificate to grant or deny the
access permission. As the policies installed in AuthzForce only allow the device to operate
on entities within the same domain, attacks caused by other users are mitigated. The
device can only communicate to the endpoint if the user who provisioned that device has
provisioned in the city (the city is the root CA, the user is sub-CA). Otherwise, certificate
verification fails on the endpoint device, and communication is canceled.

It is important to note that all the communication between devices within YubiAuthIoT
is done using confidential, integral, and authentic channels with AES and digital signatures,
using ephemeral symmetric keys and the certificates generated on the provisioning phase.

In brief, the different steps of this setup are described in Figure 10, and are the follow-
ing:

1. The user requests authentication with the city manager;
2. The city manager creates user domain policies;
3. Users can authenticate new devices on their pools. As the users are authenticated

with the city, their devices are intrinsically authenticated with the city too;
4. An authenticated device tries to communicate data with Orion, sending the request

to the endpoint of the city;
5. The endpoint receives the request and checks the authorization on AuthzForce com-

ponent;
6. The AuthzForce answers with the authorization granted, and the endpoint forwards

the device’s request to Orion.

Figure 10 also shows that it is possible to generate a device pool not connected to
the city. These device pools are isolated and cannot access city services nor communicate



Sensors 2021, 21, 5898 16 of 24

with other nodes. To access city services, the pool needed to be appended to the city using
manager provisioning. It is possible to communicate directly between nodes on other pools
when both pools are appended to the PKI (both managers authenticate between them).

Figure 10. Setup integration with FIWARE.

6. Smart Cities FIWARE Deployment

This section describes the integration between YubiAuthIoT and the FIWARE plat-
form. We describe the configuration that mimics a smart city environment with devices
representing managers and sensors in this integration.

6.1. Setup

The current implementation was tested by having four distinct devices under the
same network and two YubiKeys, using the following configuration:

• Device #1:
Device Info: OrangePi PC arm32 running armbian
Components: CityBootstrapper, OTP Server (that can only verify the first Yubikey),
authzforce-ce-server
IP: 192.168.1.250
USSN: Manager.city
/etc/hosts: Unaltered

• Device #2:
Device Info: Acer Nitro 5 amd64 running Ubuntu 20.10
Components: EndpointBootstrapper, orion backend
IP: 192.168.1.8
USSN: Endpoint1.city
/etc/hosts: 192.168.1.250 Manager.city

• Device #3:
Device Info: Raspberry Pi 4 arm64 running Ubuntu Server 20.10
Components: UserBootstrapper, OTP Server (that can only verify the second Yubikey)
IP: 192.168.1.240
USSN: Manager.pool1
/etc/hosts: 192.168.1.250 Manager.city

• Device #4:



Sensors 2021, 21, 5898 17 of 24

Device Info: OrangePi Zero arm32 running armbian
Components: DeviceBootstrapper
IP: 192.168.1.150
USSN: iotDevice.pool1
/etc/hosts: 192.168.1.240 Manager.pool1, 192.168.1.8 Endpoint1.city

The hosts file needed to be changed for the USSN names to be converted into IP
addresses to facilitate the node discovery. The OTP Server is a service coupled with a
manager device that verifies the received OTP’s authenticity.

6.2. Implementation

A smart city deployment involves a series of components that must be deployed to
achieve the desired functionality and security. Together with the launching of FIWARE
Orion and FIWARE Authzforce, the following components must be launched:

• auth.bootstrappers.EndpointBootstrapper A client that connects to Orion and Authz-
Force instance and can receive, check authorization, and answer Orion requests;

• auth.bootstrappers.CityBootstrapper Builds the city root, this element is responsible
for appending to its tree Endpoints and Users;

• auth.bootstrappers.UserBootstrapper A manager that creates its device pool and then
appends its pool to the city, enabling communication between both pools without
losing administrative properties on the pool created (This manager can register new
nodes independently of the other manager);

• auth.bootstrappers.DeviceBootstrapper Represents the construction of a normal de-
vice that belongs to a user that generates data (i.e., Android device capturing data
from GPS).

The FIWARE components, together with the Endpoints and the City Manager, must
be part of an intranet isolated from the outside world to protect unauthorized access
to FIWARE Orion and FIWARE Authzforce. Endpoints and the City Manager are the
only bridge from the outside world to the intranet, and their job is to provide secure and
authenticated access to the intranet infrastructure.

The connection to Authzforce and Orion is done using HTTPS to ensure that requests
for these services made by Endpoints or City Manager are reaching the desired compo-
nent and that the confidentiality and integrity of communication with these components
are guaranteed.

Now we will discuss the implementation of the several components, especially for
the deployment of FIWARE and YubiAuthIoT at its core. Regarding the communication,
we used GRPC instead of regular HTTP with JSON because GRPC reduces the amount
of data transmitted over the network thanks to its proto buffers. JSON produces large,
human-readable outputs, while proto buffers produce a compact binary output. GRPC
requires the set of proto files (files ended with .proto) to be defined; a proto file contains the
format of the messages sent and received by the node. In this implementation, every node
that uses YubiAuthIoT to be provisioned and communicate as the same set of proto files
produces consistency even when dealing with different operative systems or programming
languages. We tested the implementation of the DeviceBootstrapper and UserBootstrapper
on low power devices like Raspberry Pi’s and also high mobility devices, such as Android
smartphones.

6.2.1. Communication between Nodes

After the provisioning process, when an IoT device wishes to communicate to Orion,
it needs to communicate with a city endpoint device using a confidential, authentic and in-
tegral communication channel. However, before the communication occurs, the IoT device
needs to encode the HTTP request that Orion supports into something with the desired for-
mat to be sent through a GRPC enabled communication channel. One solution is to encode
the entire HTTP request into a byte array. However, this solution consumes unnecessary



Sensors 2021, 21, 5898 18 of 24

network resources, and it is possible to improve it to fit into a smaller footprint by removing
HTTP request headers and protocol demands, as in “GET/v2/entity. . . HTTP/1.1” can
be compressed by removing the “HTTP/1.1” part of the header, removing unnecessary
headers. Thus, computational stresses on the IoT resulting from encryption and digital sig-
nature procedures and the consumption of network resources are lower because a smaller
packet is sent.

The communication between devices can be subdivided into authentication and
secure channel formation protocols. When the authentication ends, both devices have
guarantees about the identity of the communicating peers caused by the presence of
certificates signed by some entity that both devices trust, together with digital signatures
of messages also enforcing the origin of the received contents. It reduces the possibility of
MitM attacks attempting to capture/alter/destroy messages mid-communication to defeat
the authentication protocol.

6.2.2. Connection with AuthzForce

After successful provisioning on the city network, IoT devices can send a request to
FIWARE Orion. The request must be authenticated, and an authorization process must act
before the message is forwarded to Orion.

Endpoint seats in our architecture as PEP, acting as a proxy between the IoT device
and Orion. The PEP is responsible for integrating with the Identity Management and Policy
Decision services to allow or deny the referral to Orion.

First, the IoT device must communicate with the Endpoint using the protocol described
above. The communication protocol will generate an authentic, confidential, and integral
channel that the IoT device can use to send requests that will be forwarded to Orion by
the Endpoint. Upon receiving a request, the Endpoint will use the information of the
IoT device certificate to check the identity of the IoT device and obtain the pool where
the IoT device is provisioned. Having that information and together with the metadata
of the Orion request sent through the YubiAuthIoT enabled secure channel (metadata
includes the HTTP method, HTTP headers, and the HTTP message body), it sends that
information over HTTP in the XACML format that matches the policy set for that pool.
The policies for that pool are generated when the pool manager gets provisioned into
the city infrastructure using the provisioning protocol discussed above. In the current
implementation, the XACML policy created only allows IoT devices inside the same pool
to create/update/delete entities on that pool; otherwise, an IoT device from another pool
will be unauthorized to access data from other pools. The defined XACML policy also
introduces rules to the subscription of entities. An IoT device can only be subscribed to
updates on entities that belong to the same pool. An IoT device can produce several entities
and perform multiple subscriptions. When the Authzforce component receives a request
to verify the access to an entity by an IoT on a certain domain, it first gets all the active
policies for that domain and then, using the information on the received XACML body,
obtains the policy results. Policy decisions can be set to return “Allow” if all the policy
decisions are “Allow” or to return “Allow” when only some of the policies return “Allow”
but, in the current implementation, we choose to return “Allow” when all active policies
return “Allow”.

6.2.3. Connection with Orion

Having a favorable result from the Authzforce policy decision, the next step is for the
Endpoint to forward the communication to FIWARE Orion. The received request must be
decoded and used to generate a valid HTTP request, placing the method, URL, and body
in the correct place on the HTTP request. The next step is to send the request to Orion and
wait for a response. Upon receiving a response, it is encoded and compressed using the
methods described above, where unnecessary headers and HTTP response components
are removed to reduce the network resource consumption. The compressed and encoded
response is then encrypted using AES with the shared symmetric key K produced on the



Sensors 2021, 21, 5898 19 of 24

authentication protocol of the communication, the encrypted result is signed with the
Endpoint ECDSA private key, and the signed result is sent to the IoT device, completing
the communication.

7. Security Analysis

In this section, we define a security analysis composed of two main components: a
threat model that help other researchers to understand the threats associated with out
implementations and the respective mitigation, from the defender’s perspective. Then, we
define the attack-scenarios from an attacker’s perspective.

7.1. Threat Model

This section identifies the system (assets) and potential threats against the proposed
system from the defender’s perspective.

7.1.1. Physical Devices

The only SPOF in the manager is the OTP Server. However, this service can be
switched off whenever it is not necessary to provision new devices. The manager device
acts as a central validation point in the devices provisioning phase.

The manager device must be considered safe and reliable, and it must be guaranteed
that the device will not be broken or stolen because it is the device that will authenticate
the new sensors that enter the network.

If an attacker stoles the security token, it is possible to revoke the OTP Server’s secure
token. Furthermore, it is possible to set an expiration time. The private key never leaves
the YubiKey and can only be used by the owner that knows the PIN. Even if the YubiKey is
lost or stolen, the PIN has three attempts, and, if failed, it requests a PIN Unlock Key (PUK)
that also has three attempts. If all fails, the user must reset the YubiKey, which erases all
the content from the YubiKey. For this reason, owners’ should also make a backup of the
information contained on the YubiKey.

On the other hand, using a secure token helps protect against hacking, as physical
access to the secure token is required to generate OTP.

7.1.2. Configurations for Mitigation of Attacks

In the secure token, the PIN has three attempts, and, if failed, it requests a PUK that
also has three attempts. If all fails, the user must reset the YubiKey, which erases all the
content from the YubiKey. For this reason, owners’ should also make a backup of the
information contained on the YubiKey.

7.1.3. Device Surveillance and Revocation

When a device enters a pool, there is no more surveillance if the node is malicious or
misbehaving. For this reason, the owner must make that process manually by inspecting
possible misbehaving of nodes and revoke it if necessary.

7.2. Attack Scenarios

This section presents some attacks that are usually issues related to IoT solutions.
We want to classify the protocol security based on a set of theorems, adapting those used
by Afifi et al. [23] or Sousa, Patrícia R., et al. [50] to prove that an authentication protocol
is secure.

There are some pre-defined protections in the proposed system, such as the use of a
secure token that helps in protection against hackers, as it requires physical access to the
secure token to generate the OTP.

7.2.1. Security against Tag Impersonation Attacks

The secure token generates OTPs and stores the public key of the manager to be
transmitted to trusted devices, which prevents the manager from being impersonated



Sensors 2021, 21, 5898 20 of 24

because even if the attacker can change its name, the attacker needs to have their data
(authenticated OTP and its public key) in the secure token, which becomes impractical.
The use of a secure token helps protect against hackers, as physical access to the secure
token is necessary to generate the OTP.

7.2.2. Security against Replay Attacks

A replay attack occurs when an attacker copies a message stream between two parties
and repeats the flow of one or more parties. The secure token (for example, YubiKey) uses
a set of volatile and non-volatile counters that guarantee that an OTP can no longer be used
after being validated once [51].

7.2.3. Man-in-the-Middle

MitM is an attack in which data exchanged between two parties is intercepted, logged
in, or possibly altered by an attacker without the victim’s noticing. This type of attack can
be a passive or active attack.

This system uses a secure token to generate the OTP and store the public key of the
manager. An attacker cannot override the legitimate public key with an attacker’s public
key because it is transmitted by the secure token (that generates the OTP that needs to be
valid when verified by the OTP Server). Furthermore, internal nodes in the network need
to be authenticated to enter into the trusted device pool. If CA is the third party that is
compromised, the signed certificate is likely to be useless, as no one will trust it. If a MitM
captures the CSR, it cannot do anything with it, as the only available key is the public key.

7.2.4. Resistance to SPOF

A SPOF represents a central location in a computer system, which, if attacked or
fails, causes the system to fail. For example, in PKI implementations, the certification
authority represents a SPOF, as once it is compromised, all peers are also compromised. A
SPOF is better for hackers because if hackers compromise that point, they compromise the
whole system.

The use of certificates on YubiKeys aimed to not expose private keys on centralized
online devices. In other words, having a solution where keys that authenticate devices are
stored and can make the cryptographic operations offline limits the exposure of those keys
to malicious users.

Concerning databases, each one represents a SPOF. However, as there are several
devices/managers in different departments, the system limits the centralization. Even in
the home context, each home has its data, unlike a central database server.

When the system is in the provisioning phase, it has a SPOF in the manager that is
authenticating the devices. This system employs a hybrid model to mitigate this problem,
where the manager must be online only when needed and can be switched off when there
are no new peers to connect to the network. In this situation, the system proposed in this
paper is a decentralized model of communication between different things.

8. Future Research Challenges

This section describes future research challenges that can complement this work.
In the current implementation, the manager’s identity is associated with the manager
device’s identity, which means that the manager does not have a (human) identity. How-
ever, it might be interesting to authenticate these users with eIDAS and associate their
authenticated devices with their human identity. The advantage of having the manager
authenticated with its (government) identity is that users are guaranteed to be trusted
peers that will not change the identity characteristics of the device. Álvaro Alonso et al. [52]
propose a model that enables the connection of FIWARE OAuth 2.0-based services with the
electronic IDentity (eID) authentication provided by eIDAS (eIDAS (electronic IDentifica-
tion, Authentication and trust Services) is an EU regulation on electronic identification and
trust services for electronic transactions in the European Single Market.) reference. With



Sensors 2021, 21, 5898 21 of 24

this, services already connected with an OAuth 2.0 identity provider can be automatically
connected with eIDAS nodes for providing eID authentication to European citizens.

To empower the data minimization, the Idemix [53] concept can be integrated to
have partial identities for devices, as in some cases, it may not always be necessary to
send all the details of the identity, but instead, a proof that has something. Through
protocols and cryptographic mechanisms, the schemes implemented by each model allow
the presentation of credential authentication through credentials and proofs of attributes,
preserving anonymity.

As a limitation that we have shown in the threat model is the lack of surveillance of
network nodes after being provisioned, it is necessary that, in addition to the revocation
that is already possible, automation of node surveillance can be implemented in the future,
for example, possibly through a reputation system [54]. This solution can also help to
mitigate SPOF in the manager. This reputation system has the agreement and participation
of all nodes, where there would be compensation in case of good behavior and positive
interactions of approval of nodes in the network, but also a penalty system (which would be
even stronger than the system of compensation) that would deduct points from malicious
nodes and potentially put them outside the network or in a sort of quarantine.

Furthermore, for devices misbehaving, it is interesting to consider technologies such as
Certificate Transparency [55,56], which is an ecosystem that makes the issuance of website
certificates transparent and verifiable. Google Trillian [57] is an example that helps to detect
misbehavior of CAs by enforcing that all certificates are in a verifiable log.

Alternatives to zeroconf and mDNS for network discovery can also be implemented
and developed. Despite limitations such as IoT not having a screen, an IP could be shown—
in a QR-code, for example—on a target device that can be read or inserted into the controller,
and thus we can overcome the problems of discovery technologies.

9. Conclusions

With this solution, we have several benefits on authentication of IoT devices: device
identity, scalability, offline cryptographic assets, revocation and dissemination, and resis-
tance to MiTM. It is possible to have device pools, which in addition to authenticating
multiple devices, can authenticate with other device pools (for example, different entities
or departments), allowing us to scale the solution to provision and authenticate multiple
devices.

YubiAuthIoT allows a more decentralized provisioning and device management,
recurring to subCAs and pools, reducing the need for a discrete IdM service to manage
devices. YubiAuthIoT provides a more efficient and more resilient authentication and
communication than the default in the FIWARE platform, which is based on HTTPS
over HTTP/1.1 with JSON bodies, where the authentication is provided by access tokens
requested by each device/user and provided by the centralized IdM service. The usage
of certificates introduces the same capabilities as access tokens while not requiring an
IdM centralized service to be deployed, which creates the possibility of SPOF attacks
that, since the IdM is the core component of token generation and verification, break the
systems entirely.

Having the private keys and the associated public-key certificate on a hardware token
reduces the possibility of attacks that attempt to extract the private key from the device.
In other words, having a solution where the keys that authenticate the devices are offline
limits the exposure of these keys to malicious users. The usage of OTPs produced by the
same hardware token enables the manager devices to have guarantees that the correct
device owns the hardware token.

Often, the reluctance to use these types of solutions is based on smart cards, which
require external readers and computer libraries. However, this work uses a secure token
that only requires a USB port, and given the study by authors Kiran Jot Singh and Divneet
Singh Kapoor [58], there are USB ports on most devices used in IoT.



Sensors 2021, 21, 5898 22 of 24

In the absence of a USB, it is possible to adapt this system with NFC as the Yubikey
features this technology. Of course, this type of provisioning requires modifying the
software at manufacturing time, but it is a security-by-default mechanism necessary to
employ in IoT devices. Then, it is also necessary to provision and authenticates the devices
to each other before being used. With the secure token, it is possible to provision a device
to an existing network in production mode.

Additionally, YubiAuthIoT can be easily integrated with components like FIWARE IoT
agents, providing authenticity and secure channels, not reducing the usability of already
defined FIWARE components.

Author Contributions: Conceptualization, P.R.S., J.S.R., R.M. and L.A.; software, P.R.S. and L.M.;
validation, P.R.S., J.S.R. and L.M.; supervision, R.M. and L.A.; writing—original draft preparation,
All authors. All authors have read and agreed to the published version of the manuscript.

Funding: This work is financed by National Funds through the Portuguese funding agency, FCT—
Fundação para a Ciência e a Tecnologia, within project UIDB/50014/2020 and SFRH/BD/135696/2018.
It got support from Project “City Catalyst—Catalisador para cidades sustentáveis”, ref. POCI-01-
0247-FEDER-046112, financed by Fundo Europeu de Desenvolvimento Regional (FEDER),through
COMPETE 2020 and Portugal 2020. It also got support from EU H2020-SUICT-03-2018 Project No.
830929 CyberSec4Europe (cybersec4europe.eu) and Project “Safe Cities”, ref. POCI-01-0247-FEDER-
041435, financed by Fundo Europeu de Desenvolvimento Regional (FEDER),through COMPETE
2020 and Portugal 2020.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Mineraud, J.; Mazhelis, O.; Su, X.; Tarkoma, S. A gap analysis of Internet-of-Things platforms. Comput. Commun. 2016, 89, 5–16.

[CrossRef]
2. Ngu, A.H.; Gutierrez, M.; Metsis, V.; Nepal, S.; Sheng, Q.Z. IoT middleware: A survey on issues and enabling technologies. IEEE

Internet Things J. 2016, 4, 1–20. [CrossRef]
3. Rathore, M.M.; Paul, A.; Hong, W.H.; Seo, H.; Awan, I.; Saeed, S. Exploiting IoT and big data analytics: Defining smart digital city

using real-time urban data. Sustain. Cities Soc. 2018, 40, 600–610. [CrossRef]
4. Silva, B.N.; Khan, M.; Han, K. Towards sustainable smart cities: A review of trends, architectures, components, and open

challenges in smart cities. Sustain. Cities Soc. 2018, 38, 697–713. [CrossRef]
5. Raura, G.; Fonseca C., E.R.; Yoo, S.G. Smart Battery Charge: A Fiware Open Source Platform and Microcontroller Based IOT

Application. In International Conference on Applied Technologies; Springer: Berlin/Heidelberg, Germany, 2019; pp. 270–281.
6. FIWARE IoT Stack. Available online: https://fiware-iot-stack.readthedocs.io/en/latest/ (accessed on 9 April 2021).
7. Cvar, N.; Trilar, J.; Kos, A.; Volk, M.; Stojmenova Duh, E. The Use of IoT Technology in Smart Cities and Smart Villages:

Similarities, Differences, and Future Prospects. Sensors 2020, 20, 3897. [CrossRef]
8. Puliafito, A.; Tricomi, G.; Zafeiropoulos, A.; Papavassiliou, S. Smart Cities of the Future as Cyber Physical Systems: Challenges

and Enabling Technologies. Sensors 2021, 21, 3349. [CrossRef]
9. Gupta, S.K.; Vanjale, S.; Rasal, S.; Vanjale, M. Securing IoT Devices in Smart City Environments. In Proceedings of the 2020

International Conference on Emerging Smart Computing and Informatics (ESCI), Pune, India, 12–14 March 2020; pp. 119–123.
10. Braun, T.; Fung, B.C.; Iqbal, F.; Shah, B. Security and privacy challenges in smart cities. Sustain. Cities Soc. 2018, 39, 499–507.

[CrossRef]
11. Andrade, R.O.; Yoo, S.G.; Tello-Oquendo, L.; Ortiz-Garcés, I. A Comprehensive Study of the IoT Cybersecurity in Smart Cities.

IEEE Access 2020, 8, 228922–228941. [CrossRef]
12. Badii, C.; Bellini, P.; Difino, A.; Nesi, P. Smart city IoT platform respecting GDPR privacy and security aspects. IEEE Access 2020,

8, 23601–23623. [CrossRef]
13. Barreto, L.; Celesti, A.; Villari, M.; Fazio, M.; Puliafito, A. Identity management in iot clouds: A fiware case of study. In

Proceedings of the 2015 IEEE Conference on Communications and Network Security (CNS), Florence, Italy, 28–30 September
2015; pp. 680–684.

14. Identity Manager—Keyrock. Available online: https://github.com/ging/fiware-idm (accessed on 1 September 2021).
15. Nguyen, K.T.; Laurent, M.; Oualha, N. Survey on secure communication protocols for the Internet of Things. Ad Hoc Netw. 2015,

32, 17–31. [CrossRef]
16. Ferrag, M.A.; Maglaras, L.A.; Janicke, H.; Jiang, J.; Shu, L. Authentication protocols for internet of things: A comprehensive

survey. Secur. Commun. Netw. 2017, 2017, 6562953. [CrossRef]

http://doi.org/10.1016/j.comcom.2016.03.015
http://dx.doi.org/10.1109/JIOT.2016.2615180
http://dx.doi.org/10.1016/j.scs.2017.12.022
http://dx.doi.org/10.1016/j.scs.2018.01.053
https://fiware-iot-stack.readthedocs.io/en/latest/
http://dx.doi.org/10.3390/s20143897
http://dx.doi.org/10.3390/s21103349
http://dx.doi.org/10.1016/j.scs.2018.02.039
http://dx.doi.org/10.1109/ACCESS.2020.3046442
http://dx.doi.org/10.1109/ACCESS.2020.2968741
https://github.com/ging/fiware-idm
http://dx.doi.org/10.1016/j.adhoc.2015.01.006
http://dx.doi.org/10.1155/2017/6562953


Sensors 2021, 21, 5898 23 of 24

17. Albalawi, A.; Almrshed, A.; Badhib, A.; Alshehri, S. A Survey on Authentication Techniques for the Internet of Things.
In Proceedings of the 2019 International Conference on Computer and Information Sciences (ICCIS), Sakaka, Saudi Arabia,
3–4 April 2019; pp. 1–5.

18. Saadeh, M.; Sleit, A.; Qatawneh, M.; Almobaideen, W. Authentication techniques for the internet of things: A survey. In
Proceedings of the 2016 cybersecurity and cyberforensics conference (CCC), Amman, Jordan, 2–4 August 2016; pp. 28–34.

19. El-hajj, M.; Chamoun, M.; Fadlallah, A.; Serhrouchni, A. Taxonomy of authentication techniques in Internet of Things (IoT). In
Proceedings of the 2017 IEEE 15th Student Conference on Research and Development (SCOReD), Wilayah Persekutuan Putrajaya,
Malaysia, 13–14 December 2017; pp. 67–71.

20. Granjal, J.; Monteiro, E.; Silva, J.S. Security for the internet of things: a survey of existing protocols and open research issues.
IEEE Commun. Surv. Tutor. 2015, 17, 1294–1312. [CrossRef]

21. Hammi, M.T.; Hammi, B.; Bellot, P.; Serhrouchni, A. Bubbles of Trust: A decentralized blockchain-based authentication system
for IoT. Comput. Secur. 2018, 78, 126–142. [CrossRef]

22. He, D.; Zeadally, S. An Analysis of RFID Authentication Schemes for Internet of Things in Healthcare Environment Using Elliptic
Curve Cryptography. IEEE Internet Things J. 2014, 2, 72-83. [CrossRef]

23. Afifi, M.H.; Zhou, L.; Chakrabartty, S.; Ren, J. Dynamic authentication protocol using self-powered timers for passive Internet of
Things. IEEE Internet Things J. 2017, 5, 2927–2935. [CrossRef]

24. Agrawal, S.; Ahlawat, P. A Survey on the Authentication Techniques in Internet of Things. In Proceedings of the 2020 IEEE
International Students’ Conference on Electrical, Electronics and Computer Science (SCEECS), Bhopal, India, 22–23 February
2020; pp. 1–5.

25. Shivraj, V.; Rajan, M.; Singh, M.; Balamuralidhar, P. One time password authentication scheme based on elliptic curves for
Internet of Things (IoT). In Proceedings of the 2015 5th National Symposium on Information Technology: Towards New Smart
World (NSITNSW), Riyadh, Saudi Arabia, 17–19 February 2015; pp. 1–6.

26. Aboudagga, N.; Refaei, M.T.; Eltoweissy, M.; DaSilva, L.A.; Quisquater, J.J. Authentication Protocols for Ad Hoc Networks:
Taxonomy and Research Issues. In Proceedings of the 1st ACM International Workshop on Quality of Service &Amp; Security in Wireless
and Mobile Networks (Q2SWinet ’05); ACM: New York, NY, USA, 2005; pp. 96–104. [CrossRef]

27. 2018 Global PKI Trends Study. 2018. Available online: https://bit.ly/3780EW0 (accessed on 11 December 2020).
28. Rescorla, E. SSL and TLS: Designing and Building Secure Systems; Addison-Wesley Reading; Addison-Wesley Longman Publishing

Co., Inc.: Boston, MA, USA, 2001; Volume 1.
29. Neuman, B.C.; Ts’o, T. Kerberos: An authentication service for computer networks. IEEE Commun. Mag. 1994, 32, 33–38.

[CrossRef]
30. Martinelli, S.; Nash, H.; Topol, B. Identity, Authentication, and Access Management in Openstack: Implementing and Deploying Keystone;

O’Reilly Media, Inc.: Newton, MA, USA, 2015.
31. Sousa, P.R.; Resende, J.S.; Martins, R.; Antunes, L. Secure Provisioning for Achieving End-to-End Secure Communications. In

International Conference on Ad-Hoc Networks and Wireless; Springer: Berlin/Heidelberg, Germany, 2019; pp. 498–507.
32. Gueron, S.; Krasnov, V. Fast prime field elliptic-curve cryptography with 256-bit primes. J. Cryptogr. Eng. 2015, 5, 141–151.

[CrossRef]
33. Barker, E.; Johnson, D.; Smid, M. NIST special publication 800-56A: Recommendation for pair-wise key establishment schemes

using discrete logarithm cryptography (revised). Comput. Secur. Natl. Inst. Stand. Technol. (NIST) 2007. [CrossRef]
34. Blake, I.F.; Seroussi, G.; Smart, N.P. Advances in Elliptic Curve Cryptography; Cambridge University Press: Cambridge, UK, 2005;

Volume 317.
35. Santos, P.M.; Rodrigues, J.G.; Cruz, S.B.; Lourenço, T.; d’Orey, P.M.; Luis, Y.; Rocha, C.; Sousa, S.; Crisóstomo, S.; Queirós, C.; et al.

PortoLivingLab: An IoT-based sensing platform for smart cities. IEEE Internet Things J. 2018, 5, 523–532. [CrossRef]
36. Fortes, S.; Santoyo-Ramón, J.A.; Palacios, D.; Baena, E.; Mora-García, R.; Medina, M.; Mora, P.; Barco, R. The campus as a smart

city: University of Málaga environmental, learning, and research approaches. Sensors 2019, 19, 1349. [CrossRef]
37. Badii, C.; Bellini, P.; Difino, A.; Nesi, P. Sii-Mobility: An IoT/IoE architecture to enhance smart city mobility and transportation

services. Sensors 2019, 19, 1. [CrossRef]
38. Sheth, M.; Trivedi, A.; Suchak, K.; Parmar, K.; Jetpariya, D. Inventive Fire Detection utilizing Raspberry Pi for New Age Home of

Smart Cities. In Proceedings of the 2020 Third International Conference on Smart Systems and Inventive Technology (ICSSIT),
Tirunelveli, India, 20–22 August 2020; pp. 724–728.

39. Dray, J.F. NIST Special Publication 800-73 Interfaces for Personal Identity. Ph.D. Thesis, National Institute of Standards and
Technology, Gaithersburg, MD, USA, 2005.

40. Cheshire, S. Zero Configuration Networking (Zeroconf). 2007. Available online: http://www.zeroconf.org (accessed on
1 September 2021).

41. Validation Protocol Version 2.0. Available online: https://developers.yubico.com/yubikey-val/Validation_Protocol_V2.0.html
(accessed on 18 August 2021).

42. Go Implementation of Yubikey Server. Available online: https://github.com/stumpyfr/yubikey-server (accessed on
18 August 2021).

43. Locust—An Open Source Load Testing Tool. Available online: https://locust.io/ (accessed on 19 August 2021).

http://dx.doi.org/10.1109/COMST.2015.2388550
http://dx.doi.org/10.1016/j.cose.2018.06.004
http://dx.doi.org/10.1109/JIOT.2014.2360121
http://dx.doi.org/10.1109/JIOT.2017.2757918
http://dx.doi.org/10.1145/1089761.1089777
https://bit.ly/3780EW0
http://dx.doi.org/10.1109/35.312841
http://dx.doi.org/10.1007/s13389-014-0090-x
http://dx.doi.org/10.6028/NIST.SP.800-56Ar2
http://dx.doi.org/10.1109/JIOT.2018.2791522
http://dx.doi.org/10.3390/s19061349
http://dx.doi.org/10.3390/s19010001
http://www.zeroconf.org
https://developers.yubico.com/yubikey-val/Validation_Protocol_V2.0.html
https://github.com/stumpyfr/yubikey-server
https://locust.io/


Sensors 2021, 21, 5898 24 of 24

44. Corista, P.; Giao, J.; Sarraipa, J.; Garcia Perales, O.; Almeida, R.; Moalla, N. Enablers Framework: Developing Applications Using
FIWARE. In Enterprise Interoperability: Smart Services and Business Impact of Enterprise Interoperability; 2018; pp. 83–89. Available
online: https://onlinelibrary.wiley.com/doi/10.1002/9781119564034.ch10 (accessed on 19 August 2021).

45. Salhofer, P.; Buchsbaum, J.; Janusch, M. Building a fiware smart city platform. In Proceedings of the 52nd Hawaii International
Conference on System Sciences, HICSS 2019, Grand Wailea, Maui, HI, USA, 8–11 January 2019.

46. FIWARE PEP Proxy. Available online: http://fiware-pepproxy.readthedocs.io/en/latest/userguide/ (accessed on 9 April 2021).
47. FIWARE PEP Proxy—Wilma. Available online: http://catalogue.fiware.org/enablers/pep-proxy-wilma (accessed on

9 April 2021).
48. TID’s Implementation of the FIWARE PEP GE. Available online: https://github.com/telefonicaid/fiware-pep-steelskin (accessed

on 9 April 2021).
49. AuthzForce (Community Edition). Available online: https://authzforce.ow2.org (accessed on 26 July 2021).
50. Sousa, P.R.; Cirne, A.; Resende, J.S.; Martins, R.; Antunes, L. pTASC: Trustable autonomous secure communications. In

Proceedings of the 20th International Conference on Distributed Computing and Networking, Bangalore, India, 4–7 January 2019;
pp. 193–202.

51. One Time Password Authentication Preston Wiley, CISSP. 2018. Available online: https://www.cerias.purdue.edu/site/secpros_
wiki/2eee74069478f06fa7c536ae6fa901b2/ (accessed on 13 November 2018).

52. Alonso, A.; Pozo, A.; Choque, J.; Bueno, G.; Salvachúa, J.; Diez, L.; Marín, J.; Alonso, P.L.C. An identity framework for providing
access to FIWARE OAuth 2.0-based services according to the eIDAS European regulation. IEEE Access 2019, 7, 88435–88449.
[CrossRef]

53. Camenisch, J.; Van Herreweghen, E. Design and implementation of the idemix anonymous credential system. In Proceedings of
the 9th ACM Conference on Computer and Communications Security, Washington, DC, USA, 18–22 November 2002; pp. 21–30.

54. Nwebonyi, F.N.; Martins, R.; Correia, M.E. Reputation based approach for improved fairness and robustness in P2P protocols.
Peer-to-Peer Netw. Appl. 2019, 12, 951–968. [CrossRef]

55. Eskandarian, S.; Messeri, E.; Bonneau, J.; Boneh, D. Certificate transparency with privacy. arXiv 2017, arXiv:1703.02209.
56. Laurie, B. Certificate transparency. Commun. ACM 2014, 57, 40–46. [CrossRef]
57. A Transparent, Highly Scalable and Cryptographically Verifiable Data Store. Available online: https://github.com/google/trillian

(accessed on 26 July 2021).
58. Singh, K.J.; Kapoor, D.S. Create Your Own Internet of Things: A survey of IoT platforms. IEEE Consum. Electron. Mag. 2017,

6, 57–68. [CrossRef]

https://onlinelibrary.wiley.com/doi/10.1002/9781119564034.ch10
 http://fiware-pepproxy.readthedocs.io/en/latest/user guide/
http://catalogue.fiware.org/enablers/pep-proxy-wilma
https://github.com/telefonicaid/fiware-pep-steelskin
https://authzforce.ow2.org
https://www.cerias.purdue.edu/site/secpros_wiki/2eee74069478f06fa7c536ae6fa901b2/
https://www.cerias.purdue.edu/site/secpros_wiki/2eee74069478f06fa7c536ae6fa901b2/
http://dx.doi.org/10.1109/ACCESS.2019.2926556
http://dx.doi.org/10.1007/s12083-018-0701-x
http://dx.doi.org/10.1145/2659897
https://github.com/google/trillian
http://dx.doi.org/10.1109/MCE.2016.2640718

	Introduction
	Problem Statement
	Contributions
	Outline

	Related Work
	IoT Devices IdM and Authentication
	Manager Setup Phase
	Device Authentication
	Cryptographic Algorithms
	Middleware's Authentication Process

	Decentralized Secure End-to-End Communications
	Merge Two Trusted Devices Pools

	YubiAuthIoT Evaluation
	Setup
	Implementation
	YubiKey Cryptographic Algorithms Configuration
	Local Certificate Authority
	Discovery Process
	OTP Server

	Results

	Integration of YubiAuthIoT and FIWARE
	FIWARE Identity Management
	YubiAuthIoT and FIWARE

	Smart Cities FIWARE Deployment
	Setup
	Implementation
	Communication between Nodes
	Connection with AuthzForce
	Connection with Orion


	Security Analysis
	Threat Model
	Physical Devices
	Configurations for Mitigation of Attacks
	Device Surveillance and Revocation

	Attack Scenarios
	Security against Tag Impersonation Attacks
	Security against Replay Attacks
	Man-in-the-Middle
	Resistance to SPOF


	Future Research Challenges
	Conclusions
	References

