
sensors

Article

Adaptive Quadruped Balance Control for Dynamic
Environments Using Maximum-Entropy
Reinforcement Learning

Haoran Sun , Tingting Fu, Yuanhuai Ling and Chaoming He *

����������
�������

Citation: Sun, H.; Fu, T.; Ling, Y.; He,

C. Adaptive Quadruped Balance

Control for Dynamic Environments

Using Maximum-Entropy

Reinforcement Learning. Sensors 2021,

21, 5907. https://doi.org/10.3390/

s21175907

Academic Editor: Jordi Palacín Roca

Received: 21 July 2021

Accepted: 30 August 2021

Published: 2 September 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

School of Mechanical Engineering, Southwest Jiaotong University, Chengdu 610031, China;
sunhaoran@my.swjtu.edu.cn (H.S.); futingting@my.swjtu.edu.cn (T.F.); lingyuanhuai@my.swjtu.edu.cn (Y.L.)
* Correspondence: hcm@swjtu.edu.cn

Abstract: External disturbance poses the primary threat to robot balance in dynamic environments.
This paper provides a learning-based control architecture for quadrupedal self-balancing, which is
adaptable to multiple unpredictable scenes of external continuous disturbance. Different from con-
ventional methods which construct analytical models which explicitly reason the balancing process,
our work utilized reinforcement learning and artificial neural network to avoid incomprehensible
mathematical modeling. The control policy is composed of a neural network and a Tanh Gaussian
policy, which implicitly establishes the fuzzy mapping from proprioceptive signals to action com-
mands. During the training process, the maximum-entropy method (soft actor-critic algorithm) is
employed to endow the policy with powerful exploration and generalization ability. The trained
policy is validated in both simulations and realistic experiments with a customized quadruped robot.
The results demonstrate that the policy can be easily transferred to the real world without elaborate
configurations. Moreover, although this policy is trained in merely one specific vibration condition,
it demonstrates robustness under conditions that were never encountered during training.

Keywords: quadruped robot; multi-contact balance control; reinforcement learning (RL); artificial
neural networks (ANN); soft actor-critic (SAC)

1. Introduction

Legged robots can be used as substitutes for human beings and animals for working
in harsh conditions. Although bionic structures and state-of-the-art hardware provide
legged robots with agility, the full implementation of these robots is hindered by a wide
range of potential factors that can destabilize robots in such scenarios. For instance, robots
can waggle on aerial or aquatic platforms because of wind and water waves, tremble
in post-earthquake rescue situations due to aftershocks, and become unbalanced during
planetary exploration from frequent dust storms. To counteract these external disturbances,
it is essential for robots to change their distribution of contact points to regulate their trunk
posture, thus ensuring good performance in these dynamic environments.

Various approaches have been proposed to achieve multi-contact balancing control
for legged robots. In an early exploration of balance in legged locomotion, a relatively
simple algorithm is proposed for a one-legged hopping machine based on a spring-loaded
inverted pendulum (SLIP) [1,2]. This algorithm decomposed the control of legged loco-
motion into three parts: a vertical height control part, a horizontal velocity part, and an
angular attitude control part. Initialized with the one-legged system, one of the most
well-known quadruped systems, Bigdog [3], performed well in self-adapting to external
forces. Xu et al. [4] combined a SLIP with compliant control in terms of posture, allowing
quadruped robots to reduce the effects of disturbances. In [4], inverse dynamics and Raib-
ert’s balance controller [5] were employed to predict the desired torque of joints. Stephens
and Atkeson [6] proposed a dynamic balance force controller to determine full-body joint

Sensors 2021, 21, 5907. https://doi.org/10.3390/s21175907 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0003-4669-9358
https://orcid.org/0000-0003-0192-8452
https://doi.org/10.3390/s21175907
https://doi.org/10.3390/s21175907
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21175907
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s21175907?type=check_update&version=1

Sensors 2021, 21, 5907 2 of 21

torques based on the desired motion of the center of mass (CoM) through inverse kinemat-
ics. This approach controls the motion of the CoM and the angular momentum of the robot
by computing suitable contact forces with a quadratic optimization problem. The mapping
of the contact forces to the joint torques is solved considering the multibody dynamics of
the system.

Khorram and Moosavian [7] proposed a controller for quadruped robots to restore
the robot equilibrium in the standing phase when exerting external pushes. The method
developed a full-dynamics model, with constraints of the stability, friction and satura-
tion constraints to derive the desired forces/torques which can achieve body balance.
Din et al. [8,9] presented a control method that estimates the external forces applied to legs
to help quadruped robots maintain balance. In this method, a sliding-mode controller was
proposed to track a desired gait with high precision in fast varying external disturbances,
to calculate the optimized accelerations of the leg joints of the robot.

Another approach for realizing dynamic stabilization is whole-body control (WBC),
which casts the locomotion controller as an optimization problem. WBC methods, which ex-
ploit all degrees of freedom (DoFs) for legged robots, spread the desired motion tasks glob-
ally to all the joints [10] by incorporating full dynamics. Through a passive WBC approach,
Fahmi et al. [10] considered the full robot rigid body dynamics and achieved dynamic
locomotion while compliantly balancing the quadruped robot’s trunk. Henze et al. [11]
presented another WBC controller, which needed to solve an optimization problem for
distributing a CoM wrench to the end effectors while considering constraints for the
unilaterality, friction and position of the center of pressure.

Despite the fact that these approaches solved the balance control of legged robots to
some degree, these controllers which are based on analytical models have strong sensitivity
regarding parameters, and require considerable formulation derivation and tedious hand-
tuning in the design process. When implemented on physical robots, these methods also need
to address random noise and delays in data transmission due to hardware issues. In addition,
due to the high specificity, those models need to be redesigned if the size or structure of the
robot changes, and the analysis process must be repeated, which calls for additional design
delays. Moreover, the difficulty of designing the controller increases dramatically for robots
with complex structures, which requires extensive engineering expertise.

Since conventional controllers must infer ideal actions through analytical models
designed by prior knowledge on kinematics and dynamics, intuitive actions for human
beings and animals, even self-balancing and walking, are regarded as reasoning processes
for robots. In recent years, a more direct approach, known as the data-driven method, was
developed for achieving effective robotic control.

Data-driven methods, such as deep reinforcement learning (deep RL), have been
demonstrated as promising methods to overcome the limitations of prior model-based
approaches and develop effective motor skills for robots. Through deep RL, control policies
are represented as deep neural networks (DNNs), which exploit the strong fitting ability
of DNNs to avoid deriving dozens of kinematic and dynamic formulas. Moreover, the
parameters of DNNs are optimized automatically by interacting with the environment
iteratively through an RL framework, thus avoiding the hand-tuning necessary in most
conventional methods.

A number of works have implemented deep RL on robot training in simulations, thus
providing animated characters with remarkable motor skills [12–15]. Peng et al. [12] trained
control policies for multiple simulated robots to learn highly dynamic skills by imitating
reference motion capture clips. The motions produced by the training process were natural
and consistent with those captured in the original data. Tsounis et al. [14] trained a
two-layer perceptron to realize terrain-aware locomotion for quadruped robots, showing
high performance in the problem of legged locomotion on non-flat terrain. Hess et al. [15]
found that diverse environmental contexts can be helpful to learn complex behaviors when
training locomotion policies for several simulated bodies.

Sensors 2021, 21, 5907 3 of 21

In physical systems, some works have managed to realize the sim-real transfer of
trained policies [16–18]. Hwangbo et al. [16] deployed a DNN-based controller that
was trained by an RL algorithm called trust region policy optimization (TRPO), on the
quadruped system ANYmal, achieving multiple gaits on flat ground. This work con-
structed two neural networks—an “actuator net” and a “policy net”—to represent the
relationship between actions and torques and that between observations and actions to
bridge the reality gap. A similar control policy presented in [17] was also learned in a
physics simulator and then implemented on real robots. To narrow the reality gap, the
physics simulator was improved by developing an accurate actuator model and simulating
latency, and robust policies were learned by randomizing the physical environments as
well as adding perturbations. Lee et al. [18] trained a controller for legged locomotion
over challenge terrains by RL in simulations and indicated its robustness in real-world
conditions that were never encountered during training in simulation.

However, current research on RL in real-world legged robots has mainly focused
on performance under static environments, such as flat ground [16] and challenging
terrains [18], while dynamic environments are also a common condition for robots when
they are conducting tasks under earthquakes and storms. Unlike static environments,
dynamic environments always cause various disturbances for robots. A recent work [19]
observed that RL can be used to design the control algorithm for a quadruped robot
to maintain balance in an unstable environment. In [19], RL was used to optimize a
table-based deterministic policy in the finite discrete state and action spaces according
to kinematic equations, i.e., the optimal actions were selected from 8 alternative actions
through kinematic formulations when the quadruped system reached new states. Then an
artificial neural network (ANN) is trained using the obtained pairs of states and actions
through supervised learning to approximate the table-based policy, forming a continuous
policy. However, there are still some problems to be further discussed. Firstly, although RL
and ANN were employed, this method still highly relied on kinematic equations, which
led to similar complexity of conventional methods. Another problem is that the exploration
ability of RL was reduced due to the use of the deterministic policy and discrete spaces
of states and actions, which easily made the policy fall into local optimum. Thirdly, the
kinematic equations merely considered the angles of joints and torso, which led to the
absence of some vital physical factors (e.g., gravity, force, and velocities and torques of
actuators) in RL process, making the obtained policy less robust or even ineffective in
different conditions.

This paper proposes a convenient and adaptable approach to construct a self-balancing
controller for quadruped robots. Our method employs RL and ANN for policy design,
however, the design concept and process are thoroughly different from those in [19]. This
work aims at learning self-balancing control policy during interaction with a simulated
dynamic environment, and transferring the obtained policy to real robots, which abandons
the construction of kinematic equations to simplify the design process and enhance the
adaptivity of control policy. In this paper, the self-balancing task is regarded as a continuous
optimization problem, which consists well with it in the real world. As it is demonstrated
that a challenging suite of training scenarios can help the trained policy succeed in a
wide range of cases [14,18], we design an automatic changing disturbance curriculum to
appropriately enhance the level of difficulty. A parameterized stochastic policy based on
ANN is directly integrated into the RL process, other than using ANN to approximate a
table-based deterministic policy that has already been obtained by RL [19]. The diversity
of actions and exploration ability are ensured thanks to the employment of the changing
disturbance curriculum, continuous spaces, a stochastic policy and a maximum-entropy RL
framework. During the interaction between the robot and simulated environment, physical
factors, such as gravity, collision, force, acceleration, and velocities and torques of actuators,
are naturally considered, making the policy adaptive to a wide range of multiple vibration
frequencies and amplitudes.

Sensors 2021, 21, 5907 4 of 21

2. Materials and Methods

In order to endow the trained policy with strong transfer ability and robustness,
this work designed a highly challenging disturbance curriculum with several continuous
changing factors and random noise (see Figure 1B), and used the maximum entropy method
to deeply explore appropriate actions (see Figure 1A). The training process and deployment
architecture of the controller in the simulator are briefly shown in Figure 1. This section
will introduce the training curriculum and training algorithm in detail.

Sensors 2021, 21, x FOR PEER REVIEW 4 of 22

and torques of actuators, are naturally considered, making the policy adaptive to a wide
range of multiple vibration frequencies and amplitudes.

2. Materials and Methods
In order to endow the trained policy with strong transfer ability and robustness, this

work designed a highly challenging disturbance curriculum with several continuous
changing factors and random noise (see Figure 1B), and used the maximum entropy
method to deeply explore appropriate actions (see Figure 1A). The training process and
deployment architecture of the controller in the simulator are briefly shown in Figure 1.
This section will introduce the training curriculum and training algorithm in detail.

Figure 1. Overview of training and control architecture.

2.1. Policy Training Details
The balance control of legged robots is a problem of sequential decision making.

Moreover, what decision the controller makes to maintain balance in any state is not af-
fected by previous states and actions. Therefore, the balance process is Markovian, and
can be regarded as a continuous-time Markov decision process (MDP). MDP is con-
structed based on a pair of interactive objects, namely the agent and the environment. A
typical MDP can be described as a tuple (𝑆𝑆, 𝐴𝐴, 𝑃𝑃, 𝑟𝑟, 𝛾𝛾) in which 𝑆𝑆 represents the set of
states, 𝐴𝐴 the set of actions, 𝑃𝑃 the state transition probability matrix, 𝑟𝑟 the scalar reward
function and 𝛾𝛾 the scalar discount factor. At each time step t, the agent performs an action
𝑎𝑎𝑡𝑡 ∈ 𝐴𝐴 conditioned on a state 𝑠𝑠𝑡𝑡 ∈ 𝑆𝑆 according to a policy 𝜋𝜋(𝑎𝑎| 𝑠𝑠𝑡𝑡), then the state of the
environment changes to 𝑠𝑠𝑡𝑡+1 ∈ 𝑆𝑆 with a reward 𝑟𝑟 obtained. The accumulation of re-
wards 𝑟𝑟 over time is called return. Finally, the policy would be automatically updated
towards the maximum expected return, which can be represented as Equation (1).

Figure 1. Overview of training and control architecture.

2.1. Policy Training Details

The balance control of legged robots is a problem of sequential decision making.
Moreover, what decision the controller makes to maintain balance in any state is not
affected by previous states and actions. Therefore, the balance process is Markovian, and
can be regarded as a continuous-time Markov decision process (MDP). MDP is constructed
based on a pair of interactive objects, namely the agent and the environment. A typical
MDP can be described as a tuple (S, A, P, r, γ) in which S represents the set of states, A
the set of actions, P the state transition probability matrix, r the scalar reward function
and γ the scalar discount factor. At each time step t, the agent performs an action at ∈ A
conditioned on a state st ∈ S according to a policy π(a|st), then the state of the environment
changes to st+1 ∈ S with a reward r obtained. The accumulation of rewards r over time is
called return. Finally, the policy would be automatically updated towards the maximum
expected return, which can be represented as Equation (1).

π∗ = argmax
π

E(st ,at)∼ρπ

[
∑∞

k=t γkrt+k

]
(1)

Sensors 2021, 21, 5907 5 of 21

2.1.1. Observations and Actions

In this work, actions are composed of position commands for the eight joints in both
the simulation and real system, represented as at ∈ R8. The set of observations O ⊆ S
represents the observable states, which should be directly obtained or inferred from sensor
data in our method. With regard to the robot in our work, the observations ot ∈ O are
specified as follows: pj ∈ R8 are the angular joint positions, vj ∈ R8 the angular joint
velocities, tj ∈ R8 the joint torques, and qB ∈ R4 the quaternion representing the attitude
of the robot trunk. In training and validation processes, the approaches used to obtain
observations are slightly different and will be discussed later in this article. Since there
is always a gap between the simulation environment and the actual robot, to increase
robustness in the real environment, we add random noise with a maximum value of 5% to
the observations and actions.

2.1.2. Reward Function

The reward function is constructed according to the objective of this work for balancing
the robot in dynamic environments. In this study, the balance control objective is defined
as minimizing the tilt angle of the robot trunk under continuous external disturbance.

Therefore, the reward function in the RL training process is established as Equation (2).

r = 1− ‖ob − ob
′‖2 − k · ‖pb − pb

′‖2 (2)

where k is a ratio factor, ob and ob
′ are the Euler angles of robot trunk relative to the world

coordinate system before and after executing commanded action at, and pb and pb
′ are the

absolute positions of the robot trunk before and after that.
Since the termination condition is that the training episode ends when the robot

falls (see details in Section 2.2), the most basic objective becomes to try not to fall after
each action. In Equation (2), the constant 1 is added, which means the agent would get
a score if the fall does not occur after executing commanded action. In addition, for the
consideration of safety and energy consumption, position change ‖pb − pb

′‖2 is introduced
as a penalty term to reduce unnecessary movement of the robot, with coefficient k to adjust
the importance of this sub-objective. Here, k is set to 0.01.

2.1.3. Policy Network

The balance control policy presented in this work is a combination of Tanh Gaussian
policy and an artificial neural network (ANN) with two hidden layers, with 256 units each
and rectified linear unit (ReLU) activation functions, as shown in Figure 2.

Observations are passed into the input layer which consists of 28 neuros, and the
output layer produces 8 pairs of the mean µj and the logarithm of variance log σj to
generate action commands according to Tanh Gaussian policy, which can be described as
Equation (3). The introduction of the Tanh function compresses aj

t to make it in a bounded
range, since the actions of legs are limited by the robot’s structure. In Equation (3), ϕ is a
coefficient to scale the codomain of Tanh to the range that the motors are able to reach.

aj
t = ϕ · tanhxj where xj ∼ N

(
µj, σj

)
(3)

2.1.4. Maximum-Entropy RL Policy Training Algorithm

Since sets O and A are continuous spaces that coincide well with those in the real
world, the control process can be formalized as an infinite MDP. We use a parameterized
stochastic policy πθ(a|ot), which is a distribution over actions at ∈ A conditioned on
observations ot ∈ O that represents the set of observable states for the agent (e.g., data
from built-in sensors of robots in our work). The optimal policy π∗ can be learned by
automatically updating the parameter vectors θ ∈ Rn of policy πθ(a|ot) when robots
interact with the environment.

Sensors 2021, 21, 5907 6 of 21
Sensors 2021, 21, x FOR PEER REVIEW 6 of 22

Figure 2. ANN-based Tanh Gaussian policy.

Observations are passed into the input layer which consists of 28 neuros, and the
output layer produces 8 pairs of the mean 𝜇𝜇𝑗𝑗 and the logarithm of variance log𝜎𝜎𝑗𝑗 to gen-
erate action commands according to Tanh Gaussian policy, which can be described as
Equation (3). The introduction of the Tanh function compresses 𝑎𝑎𝑡𝑡

𝑗𝑗 to make it in a
bounded range, since the actions of legs are limited by the robot’s structure. In Equation
(3), 𝜑𝜑 is a coefficient to scale the codomain of Tanh to the range that the motors are able
to reach.

𝑎𝑎𝑡𝑡
𝑗𝑗 = 𝜑𝜑 ⋅ tanh𝑥𝑥𝑗𝑗 where 𝑥𝑥𝑗𝑗~𝑁𝑁�𝜇𝜇𝑗𝑗, 𝜎𝜎𝑗𝑗� (3)

2.1.4. Maximum-Entropy RL Policy Training Algorithm
Since sets 𝑂𝑂 and 𝐴𝐴 are continuous spaces that coincide well with those in the real

world, the control process can be formalized as an infinite MDP. We use a parameterized
stochastic policy 𝜋𝜋𝜃𝜃(𝑎𝑎| 𝑜𝑜𝑡𝑡), which is a distribution over actions 𝑎𝑎𝑡𝑡 ∈ 𝐴𝐴 conditioned on ob-
servations 𝑜𝑜𝑡𝑡 ∈ 𝑂𝑂 that represents the set of observable states for the agent (e.g., data from
built-in sensors of robots in our work). The optimal policy 𝜋𝜋∗ can be learned by automat-
ically updating the parameter vectors 𝜃𝜃 ∈ ℝ𝑛𝑛 of policy 𝜋𝜋𝜃𝜃(𝑎𝑎| 𝑜𝑜𝑡𝑡) when robots interact
with the environment.

A variety of RL algorithms can be applied to such a policy optimization problem.
However, there are two common deficiencies of model-free RL methods in practice: high
sampling complexity and fragile convergence. The former is a problem encountered in
on-policy algorithms exemplified by TRPO [20] and proximal policy optimization (PPO)
[21]. In each iteration, on-policy algorithms need to re-collect enough samples under the
temporal policy and completely discard the previous sampling data, which requires a
large sample amount and complexity to ensure convergence. The latter is a problem that
obstructs the application of off-policy algorithms exemplified by deep deterministic pol-
icy gradient (DDPG) [22] and distributed distributional deep deterministic policy gradient
(D4PG) [23]. Although these algorithms reuse samples from previous iterations via replay
buffers and enhance the sample efficiency, they have poor convergence and unstable per-
formance in continuous states and action spaces and are sensitive to hyperparameters.

Figure 2. ANN-based Tanh Gaussian policy.

A variety of RL algorithms can be applied to such a policy optimization problem.
However, there are two common deficiencies of model-free RL methods in practice: high
sampling complexity and fragile convergence. The former is a problem encountered in on-
policy algorithms exemplified by TRPO [20] and proximal policy optimization (PPO) [21].
In each iteration, on-policy algorithms need to re-collect enough samples under the tem-
poral policy and completely discard the previous sampling data, which requires a large
sample amount and complexity to ensure convergence. The latter is a problem that ob-
structs the application of off-policy algorithms exemplified by deep deterministic policy
gradient (DDPG) [22] and distributed distributional deep deterministic policy gradient
(D4PG) [23]. Although these algorithms reuse samples from previous iterations via re-
play buffers and enhance the sample efficiency, they have poor convergence and unstable
performance in continuous states and action spaces and are sensitive to hyperparameters.

To alleviate these two problems, Haarnoja et al. [24] presented the soft actor–critic
(SAC) algorithm which introduced the maximum entropy model to improve the random-
ness of actions. Equation (4) is the optimization objective of the SAC algorithm. It can be
inferred from Equation (4) that, while maximizing the sum of cumulative rewards, the en-
tropy term H(π(·|st)) deconcentrates the distribution of generated actions simultaneously,
enhancing exploration ability and avoiding the dilemma of greedy sampling. Moreover,
because a larger action space is learned, it is easier to make adjustments in the face of
changing environments, which greatly improves the generalization ability and robustness,
thus being utilized as the policy training algorithm for this work.

π∗ = argmax
π

E(st ,at)∼ρπ

[
∑∞

k=t γkrt+k + αH(π(·|st))
]

(4)

2.2. Automatic Disturbance Curriculum

To efficiently train the control policy in a reasonable time, and to avoid damage to the
physical robot caused by random actions in the exploration process, the control policy is
trained only in the simulated environment, thus we need a physical simulation platform
that is both accurate and fast. PyBullet [25] is a physics engine mainly used in real-time
collision detection and multi-physics simulations, which is utilized by many researchers
for robotic learning. A number of reinforcement learning projects, especially mobile robots,
are conducted based on this engine.

Sensors 2021, 21, 5907 7 of 21

The quadruped system used in our work, Stanford Doggo, is an open-source quasi-direct-
drive robot comprising an unactuated base and four-leg linkages actuated by 8 motors [26]. A
physical model of Stanford Doggo is constructed in the PyBullet environment, as shown in
Figure 3A. The trunk of the robot is simplified into a polyhedron of uniform mass, without
modeling the internal motor cables and electronic components, through which the inertial
properties are estimated by the physics engine. PyBullet provides massive functions for robot
simulation, so that the observations (i.e., pj, vj, tj and qB) of the animated Doggo can be
obtained directly through embedded application programming interfaces.

Sensors 2021, 21, x FOR PEER REVIEW 7 of 22

To alleviate these two problems, Haarnoja et al. [24] presented the soft actor–critic
(SAC) algorithm which introduced the maximum entropy model to improve the random-
ness of actions. Equation (4) is the optimization objective of the SAC algorithm. It can be
inferred from Equation (4) that, while maximizing the sum of cumulative rewards, the
entropy term 𝐻𝐻�𝜋𝜋(∙ |𝑠𝑠𝑡𝑡)� deconcentrates the distribution of generated actions simultane-
ously, enhancing exploration ability and avoiding the dilemma of greedy sampling. More-
over, because a larger action space is learned, it is easier to make adjustments in the face
of changing environments, which greatly improves the generalization ability and robust-
ness, thus being utilized as the policy training algorithm for this work.

𝜋𝜋∗ = argmax
𝜋𝜋

𝔼𝔼(𝑠𝑠𝑡𝑡,𝑎𝑎𝑡𝑡)~𝜌𝜌𝜋𝜋 �� 𝛾𝛾𝑘𝑘𝑟𝑟𝑡𝑡+𝑘𝑘
∞

𝑘𝑘=𝑡𝑡
+ 𝛼𝛼𝐻𝐻�𝜋𝜋(∙ |𝑠𝑠𝑡𝑡)�� (4)

2.2. Automatic Disturbance Curriculum
To efficiently train the control policy in a reasonable time, and to avoid damage to

the physical robot caused by random actions in the exploration process, the control policy
is trained only in the simulated environment, thus we need a physical simulation platform
that is both accurate and fast. PyBullet [25] is a physics engine mainly used in real-time
collision detection and multi-physics simulations, which is utilized by many researchers
for robotic learning. A number of reinforcement learning projects, especially mobile ro-
bots, are conducted based on this engine.

The quadruped system used in our work, Stanford Doggo, is an open-source quasi-
direct-drive robot comprising an unactuated base and four-leg linkages actuated by 8 mo-
tors [26]. A physical model of Stanford Doggo is constructed in the PyBullet environment,
as shown in Figure 3A. The trunk of the robot is simplified into a polyhedron of uniform
mass, without modeling the internal motor cables and electronic components, through
which the inertial properties are estimated by the physics engine. PyBullet provides mas-
sive functions for robot simulation, so that the observations (i.e., 𝑝𝑝𝑗𝑗, 𝑣𝑣𝑗𝑗, 𝑡𝑡𝑗𝑗 and 𝑞𝑞𝐵𝐵) of the
animated Doggo can be obtained directly through embedded application programming
interfaces.

Figure 3. Experimental setup in simulation and real world. Figure 3. Experimental setup in simulation and real world.

In terms of the structure of the bench, three actuated prismatic joints are connected to
a platform through three spherical hinges, as shown in Figure 3B. During the training and
verification process, we change the speed and phase interval of the three prismatic joint
actuators to make the platform generate a 3-DoF vibration (displacement along the Z-axis
and rotation around the X- and Y-axes). In all experiments of this study, communication
between the robot and the bench is not established; that is, the disturbance generated by
the bench is unpredictable for the robot, and the robot can only perceive its own postures
through a gyro on the trunk and joint encoders.

The automatic disturbance curriculum is based on the aforementioned robot and test
bench. In disturbance curriculum, the velocities of the three prismatic joints of the bench are
set to change with time as sine curves at customized phase intervals, that is, the positions
vary as cosine curves. The parametrization of disturbance makes the dynamic environment
more diverse in each period and convenient to reproduce to evaluate the performance of
our policy. At the same time, the acceleration and velocity of the platform and the force
exerted on the robot are changing all the time, increasing the factors of disturbance, thus
forming a challenging environment for the self-balancing controller.

As shown in Figure 1B, we define parameters δ and ε to briefly describe the vibration
scenarios. δ is the velocity at which the phase changes (e.g., angular velocity of motors that
actuated ball screws for real bench), and ε is phase intervals among three joint motors of
the test bench. To monitor the tilt angle of the test bench and the quadruped robot, θz is
defined to describe the angle between the Z-axis of the robot/bench coordinate frame and
that of the global coordinate frame. θz is obtained through a spatial rotation and projection,

Sensors 2021, 21, 5907 8 of 21

which can be seen in Equations (5) to (8), where α, β and γ are the three components of the
Euler angle of the robot trunk.

R =

 cos β· cos γ cos β· sin γ − sin β
− cos α· sin γ + sin α· sin β· cos γ cos α· cos γ + sin α· sin β· sin γ sin α· cos β
sin α· sin γ + cos α· sin β· cos γ − sin α· cos γ + cos α· sin β· sin γ cos α· cos β

 (5)

z0 =
[

0 0 1
]T (6)

z1 = R× z0 (7)

θz = arccos
(

z0 · z1

‖z0‖2 × ‖z1‖2

)
(8)

As an example, Figure 4 shows the variation in several indicators when δ = 160
◦
/s

and ε = 45
◦
, 90

◦
and 120

◦
. Rows 1 to 3 show the time-domain variations of the tilt angle

θz of the test bench, the Euler angles of the test bench, and the displacements of the three
prismatic joints, respectively. Due to the definition of θz, the value of θz,PF remains constant
when the Z-axis of the test bench rotates on a conical surface around the Z-axis of the world
coordinate system, while the disturbance generated by test bench continues, which can be
inferred from rows 1 and 2 in Figure 4.

Sensors 2021, 21, x FOR PEER REVIEW 9 of 22

Figure 4. The variation in the tilt angle and Euler angle of the bench, and the displacement of the prismatic joints.

During the training process, the phase interval ε is set to 90°, while the velocity δ
is 100 °/s. Actuated prismatic joints of the bench receive a position command about direc-
tion and amplitude at each time step, and the disturbance frequency can be adjusted via
the time interval at which the commands are sent. Once the robot overturns in the dy-
namic environment, the ongoing training episode terminates and the next episode begins
after auto-resetting. To determine whether the robot falls down, we set a termination cri-
terion 𝜃𝜃𝑧𝑧,𝑅𝑅𝑅𝑅𝑏𝑏𝑅𝑅𝑡𝑡 ⩾ 𝜋𝜋/2 for each training episode.

The policy in this work is trained for 3000 epochs, and each epoch is divided into two
parts: exploration (1000 steps) and evaluation (3000 steps). The exploration and evaluation
processes provide a large number of samples for policy updates, and the SAC framework
updates the policy based on these samples at the end of each epoch. On our computer
with an E5-2430v3 CPU and a GTX 1080 GPU, the training lasts for 49.98 h, of which only
approximately 9.67 h are used for calculation; the rest of the time is used for rendering
and sample generation.

3. Verification Environment
The self-balancing control policy is formed after the training process. The trained

policy is deployed in simulated and real robots for validating under multiple conditions
for the balance control tasks. In the simulator, the training environment can still be reused
for validating, while under real conditions, our method is implemented on a customized
physical Stanford Doggo, as shown in Figure 3A. Stanford Doggo achieves high perfor-
mance of motor position control at low cost through the combination of eight MN5212
brushless motors (T-motor, Nanchang, China), eight AS5047P magnetic rotary position
sensors (ams AG, Premstätten, Austria) and four open-source motor drive boards
ODrive V3.5 48V (ODrive Robotics, San Jose, CA, USA). Compared with the original ver-
sion, we use Raspberry Pi 4B+ as the microcontroller unit (MCU) to conveniently deploy
the ANN-based policy with Pytorch, and use the MPU9250 gyro (TDK, Tokyo, Japan) to
collect the orientation of the robot trunk. In the real-world experiment, the MPU9250 is
raised to 20 cm higher from the motors, as shown in Figure 3C, because Z-axis data can
be affected by magnetic fields. For the real Doggo, the observations (i.e., 𝑝𝑝𝑗𝑗, 𝑣𝑣𝑗𝑗, 𝑡𝑡𝑗𝑗 and
𝑞𝑞𝐵𝐵) are obtained from real sensors, in which 𝑝𝑝𝑗𝑗 and 𝑞𝑞𝐵𝐵 are collected from magnetic ro-
tary encoders AS5047P and the gyro MPU9250, 𝑣𝑣𝑗𝑗 is the differential 𝑝𝑝𝑗𝑗, and 𝑡𝑡𝑗𝑗 is esti-
mated using the current 𝐼𝐼𝑗𝑗 for motor 𝑗𝑗 measured by ODrive through equation 𝑡𝑡𝑗𝑗 =
8.27 ∗ 𝐼𝐼𝑗𝑗/𝐾𝐾𝐾𝐾, where 𝐾𝐾𝐾𝐾 = 340 for the motors MN5212. The embedded system architec-
ture and data flow of the customized experimental setup are shown in Figure 5.

Figure 4. The variation in the tilt angle and Euler angle of the bench, and the displacement of the
prismatic joints.

During the training process, the phase interval ε is set to 90
◦
, while the velocity δ is

100◦/s. Actuated prismatic joints of the bench receive a position command about direction
and amplitude at each time step, and the disturbance frequency can be adjusted via the
time interval at which the commands are sent. Once the robot overturns in the dynamic
environment, the ongoing training episode terminates and the next episode begins after
auto-resetting. To determine whether the robot falls down, we set a termination criterion
θz,Robot > π/2 for each training episode.

The policy in this work is trained for 3000 epochs, and each epoch is divided into
two parts: exploration (1000 steps) and evaluation (3000 steps). The exploration and
evaluation processes provide a large number of samples for policy updates, and the SAC
framework updates the policy based on these samples at the end of each epoch. On our
computer with an E5-2430v3 CPU and a GTX 1080 GPU, the training lasts for 49.98 h, of
which only approximately 9.67 h are used for calculation; the rest of the time is used for
rendering and sample generation.

Sensors 2021, 21, 5907 9 of 21

3. Verification Environment

The self-balancing control policy is formed after the training process. The trained
policy is deployed in simulated and real robots for validating under multiple conditions
for the balance control tasks. In the simulator, the training environment can still be
reused for validating, while under real conditions, our method is implemented on a
customized physical Stanford Doggo, as shown in Figure 3A. Stanford Doggo achieves
high performance of motor position control at low cost through the combination of eight
MN5212 brushless motors (T-motor, Nanchang, China), eight AS5047P magnetic rotary
position sensors (ams AG, Premstätten, Austria) and four open-source motor drive boards
ODrive V3.5 48V (ODrive Robotics, San Jose, CA, USA). Compared with the original
version, we use Raspberry Pi 4B+ as the microcontroller unit (MCU) to conveniently deploy
the ANN-based policy with Pytorch, and use the MPU9250 gyro (TDK, Tokyo, Japan) to
collect the orientation of the robot trunk. In the real-world experiment, the MPU9250 is
raised to 20 cm higher from the motors, as shown in Figure 3C, because Z-axis data can
be affected by magnetic fields. For the real Doggo, the observations (i.e., pj, vj, tj and
qB) are obtained from real sensors, in which pj and qB are collected from magnetic rotary
encoders AS5047P and the gyro MPU9250, vj is the differential pj, and tj is estimated using
the current Ij for motor j measured by ODrive through equation tj = 8.27 ∗ Ij/KV, where
KV = 340 for the motors MN5212. The embedded system architecture and data flow of the
customized experimental setup are shown in Figure 5.

Sensors 2021, 21, x FOR PEER REVIEW 10 of 22

Figure 5. Embedded system architecture of experimental setup.

The customized 3-DoF test bench is also manufactured for the real experiment, on
which the prismatic joints are realized by vertically installed ball screw units, as shown in
Figure 3B. Under the control of an Arduino Due MCU, ball screws are actuated to enable
the platform to shift along the Z-axis and tilt around the X- and Y-axes. The upper plate
of the bench is made of lightweight materials to reduce inertia and increase flexibility.
Another MPU9250 (Gyro B in Figures 3 and 5) is installed on the bottom surface of this
plate to record the tilt angle of the test bench, which does not interact with the control
algorithm.

Although the trained policy is obtained from only one disturbance condition, various
disturbance configurations are used to evaluate its performance in different conditions. In
all the experiments, the robots are divided into three groups: One is the experimental
group (EG), i.e., the robot using the control policy presented in this paper, the other one
is the control group (CG), i.e., the robot without any control policy, and the other one is
the robot using the method proposed in [19], which is called REF19 in the paper. The robot
joints in CG are fixed to the initial angular position, as shown in Figure 3C.

In order to quantitatively analyze the experimental data, herein, we define indicators
𝜂𝜂𝑃𝑃𝑃𝑃 and 𝜂𝜂𝐶𝐶𝐶𝐶, as the balance efficiencies which represent the reduction ratios of the tilt
amplitude of controlled robots compared with those of the platform of test bench (PF) and
those of the uncontrolled CG, and can be calculated by Equations (9)–(12). 𝜂𝜂𝑃𝑃𝑃𝑃 and 𝜂𝜂𝐶𝐶𝐶𝐶
describe the balancing ability of policies from different perspectives. Moreover, if the tilt
angle of external disturbance or uncontrolled robot is known, we can use the correspond-
ing balance efficiency to estimate the tilt angle after adopting this policy to estimate
whether it is worth trying to implement this policy on actual application conditions.
𝜃𝜃𝑧𝑧,𝑅𝑅𝑅𝑅𝑏𝑏𝑅𝑅𝑡𝑡 can be replaced by 𝜃𝜃𝑧𝑧,𝐸𝐸𝐶𝐶 and 𝜃𝜃𝑧𝑧,𝑅𝑅𝐸𝐸𝑃𝑃19 to calculate the balance efficiencies for ro-
bots that using the policies presented in this paper and [19].

𝜂𝜂𝑃𝑃𝑃𝑃 = �𝜃𝜃𝑧𝑧,𝑃𝑃𝑃𝑃
−𝜃𝜃𝑧𝑧,𝑟𝑟𝑅𝑅𝑏𝑏𝑅𝑅𝑡𝑡�/𝜃𝜃𝑧𝑧,𝑃𝑃𝑃𝑃 (9)

𝜂𝜂𝐶𝐶𝐶𝐶 = �𝜃𝜃𝑧𝑧,𝐶𝐶𝐶𝐶
−𝜃𝜃𝑧𝑧,𝑟𝑟𝑅𝑅𝑏𝑏𝑅𝑅𝑡𝑡�/𝜃𝜃𝑧𝑧,𝐶𝐶𝐶𝐶 (10)

𝜂𝜂𝑃𝑃𝑃𝑃����� = �𝜃𝜃𝑧𝑧,𝑃𝑃𝑃𝑃������−𝜃𝜃𝑧𝑧,𝑟𝑟𝑅𝑅𝑏𝑏𝑅𝑅𝑡𝑡����������/𝜃𝜃𝑧𝑧,𝑃𝑃𝑃𝑃������ (11)

Figure 5. Embedded system architecture of experimental setup.

The customized 3-DoF test bench is also manufactured for the real experiment, on
which the prismatic joints are realized by vertically installed ball screw units, as shown in
Figure 3B. Under the control of an Arduino Due MCU, ball screws are actuated to enable
the platform to shift along the Z-axis and tilt around the X- and Y-axes. The upper plate of
the bench is made of lightweight materials to reduce inertia and increase flexibility. Another
MPU9250 (Gyro B in Figures 3 and 5) is installed on the bottom surface of this plate to
record the tilt angle of the test bench, which does not interact with the control algorithm.

Although the trained policy is obtained from only one disturbance condition, various
disturbance configurations are used to evaluate its performance in different conditions.

Sensors 2021, 21, 5907 10 of 21

In all the experiments, the robots are divided into three groups: One is the experimental
group (EG), i.e., the robot using the control policy presented in this paper, the other one is
the control group (CG), i.e., the robot without any control policy, and the other one is the
robot using the method proposed in [19], which is called REF19 in the paper. The robot
joints in CG are fixed to the initial angular position, as shown in Figure 3C.

In order to quantitatively analyze the experimental data, herein, we define indicators
ηPF and ηCG, as the balance efficiencies which represent the reduction ratios of the tilt
amplitude of controlled robots compared with those of the platform of test bench (PF) and
those of the uncontrolled CG, and can be calculated by Equations (9)–(12). ηPF and ηCG
describe the balancing ability of policies from different perspectives. Moreover, if the tilt
angle of external disturbance or uncontrolled robot is known, we can use the corresponding
balance efficiency to estimate the tilt angle after adopting this policy to estimate whether it
is worth trying to implement this policy on actual application conditions. θz,Robot can be
replaced by θz,EG and θz,REF19 to calculate the balance efficiencies for robots that using the
policies presented in this paper and [19].

ηPF = (θz,PF − θz,robot)/θz,PF (9)

ηCG = (θz,CG − θz,robot)/θz,CG (10)

ηPF =
(
θz,PF − θz,robot

)
/θz,PF (11)

ηCG =
(
θz,CG − θz,robot

)
/θz,CG (12)

4. Evaluation in Simulation and Real-World Experiments
4.1. Simulation Results and Analysis

In this part, some experiments carried out under the conditions that the disturbance
parameters are the same as the training environment, that the disturbance parameters are
different from the training environment, and that the physical parameters of the robot are
changed, as well as the boundary test at the end of this part.

Firstly, this policy is verified in the same condition as the training environment
(δ = 100

◦
/s and ε = 90

◦
), performing an effective suppression on the tilt angle of Z-axis in

the simulator. The tilt angles of PF, CG, EG and REF19 when the test bench runs at that
condition are shown in Figure 6. Among the curves, the curve of PF shows how the external
disturbance changes, and that of CG shows how the uncontrolled robots are affected by
the disturbance, while those of EG and REF19 show how the self-balance robots behave
against the changing external disturbance.

Sensors 2021, 21, x FOR PEER REVIEW 11 of 22

𝜂𝜂𝐶𝐶𝐶𝐶����� = �𝜃𝜃𝑧𝑧,𝐶𝐶𝐶𝐶������−𝜃𝜃𝑧𝑧,𝑟𝑟𝑅𝑅𝑏𝑏𝑅𝑅𝑡𝑡����������/𝜃𝜃𝑧𝑧,𝐶𝐶𝐶𝐶������ (12)

4. Evaluation in Simulation and Real-World Experiments
4.1. Simulation Results and Analysis

In this part, some experiments carried out under the conditions that the disturbance
parameters are the same as the training environment, that the disturbance parameters are
different from the training environment, and that the physical parameters of the robot are
changed, as well as the boundary test at the end of this part.

Firstly, this policy is verified in the same condition as the training environment (δ =
100°/s and ε = 90°), performing an effective suppression on the tilt angle of Z-axis in the
simulator. The tilt angles of PF, CG, EG and REF19 when the test bench runs at that con-
dition are shown in Figure 6. Among the curves, the curve of PF shows how the external
disturbance changes, and that of CG shows how the uncontrolled robots are affected by
the disturbance, while those of EG and REF19 show how the self-balance robots behave
against the changing external disturbance.

Figure 6. Tilt angles 𝜃𝜃𝑧𝑧 of PF, CG, EG and REF19 when δ = 100°/s and ε = 90°: Time-domain variations of tilt angles
(left); Balance performance at varying tilt angles of PF (right).

It can be seen in Figure 6 that when no balance control policy is implemented, the tilt
angle of the robot is larger than that of the test bench, which is caused by inertia. After
applying the policy obtained by our method, the tilt amplitude of the robot is significantly
suppressed: when tested under the same conditions as the training environment (δ =
100°/s and ε = 90°), the average tilt angles are 7.21° in CG (𝜃𝜃𝑧𝑧,𝐶𝐶𝐶𝐶������ = 7.21°) and 1.55° in
EG (𝜃𝜃𝑧𝑧,𝐸𝐸𝐶𝐶������ = 1.55°), while that of the bench is 5.25° (𝜃𝜃𝑧𝑧,𝑃𝑃𝑃𝑃������ = 5.25°), which can be seen in
Table 1. That is, in terms of mean values, the implementation of this policy reduces the
influence of external disturbance on the balance by 71% compared with the test bench
(𝜂𝜂𝑃𝑃𝑃𝑃����� = 71%), while compared with CG, it is reduced by 79% (𝜂𝜂𝐶𝐶𝐶𝐶����� = 79%), which can be
seen in Table 2.

Table 1. Average tilt angles 𝜃𝜃𝑧𝑧� under 18 vibration conditions (°).

𝛅𝛅 (°/𝐬𝐬)
𝛆𝛆 = 𝟒𝟒𝟒𝟒° 𝛆𝛆 = 𝟗𝟗𝟗𝟗° 𝛆𝛆 = 𝟏𝟏𝟏𝟏𝟗𝟗°

𝜽𝜽𝒛𝒛,𝑷𝑷𝑷𝑷������� 𝜽𝜽𝒛𝒛,𝑪𝑪𝑪𝑪������� 𝜽𝜽𝒛𝒛,𝑹𝑹𝑹𝑹𝑷𝑷𝟏𝟏𝟗𝟗����������� 𝜽𝜽𝒛𝒛,𝑹𝑹𝑪𝑪������� 𝜽𝜽𝒛𝒛,𝑷𝑷𝑷𝑷������� 𝜽𝜽𝒛𝒛,𝑪𝑪𝑪𝑪������� 𝜽𝜽𝒛𝒛,𝑹𝑹𝑹𝑹𝑷𝑷𝟏𝟏𝟗𝟗����������� 𝜽𝜽𝒛𝒛,𝑹𝑹𝑪𝑪������� 𝜽𝜽𝒛𝒛,𝑷𝑷𝑷𝑷������� 𝜽𝜽𝒛𝒛,𝑪𝑪𝑪𝑪������� 𝜽𝜽𝒛𝒛,𝑹𝑹𝑹𝑹𝑷𝑷𝟏𝟏𝟗𝟗����������� 𝜽𝜽𝒛𝒛,𝑹𝑹𝑪𝑪�������
50 4.11 5.27 2.21 2.08 5.45 6.87 3.20 2.32 6.94 8.08 3.69 2.53
80 4.01 5.06 2.75 1.87 5.34 6.94 3.07 1.50 6.70 8.22 3.72 2.29

100 4.01 5.13 2.52 1.78 5.25 7.21 3.02 1.55 6.59 8.07 4.08 2.27
120 3.74 4.89 2.38 1.67 5.74 7.13 3.27 2.20 6.63 8.45 3.87 2.23
160 4.03 6.10 3.17 1.80 6.38 8.86 4.25 2.25 6.69 9.02 3.83 2.04
200 3.72 5.96 2.53 1.67 6.39 8.13 3.55 2.16 6.75 8.85 3.99 2.13

Figure 6. Tilt angles θz of PF, CG, EG and REF19 when δ = 100
◦
/s and ε = 90

◦
: Time-domain variations of tilt angles (left);

Balance performance at varying tilt angles of PF (right).

Sensors 2021, 21, 5907 11 of 21

It can be seen in Figure 6 that when no balance control policy is implemented, the tilt
angle of the robot is larger than that of the test bench, which is caused by inertia. After
applying the policy obtained by our method, the tilt amplitude of the robot is signifi-
cantly suppressed: when tested under the same conditions as the training environment
(δ = 100

◦
/s and ε = 90

◦
), the average tilt angles are 7.21

◦
in CG (θz,CG = 7.21

◦
) and 1.55

◦

in EG (θz,EG = 1.55
◦
), while that of the bench is 5.25

◦
(θz,PF = 5.25

◦
), which can be seen

in Table 1. That is, in terms of mean values, the implementation of this policy reduces
the influence of external disturbance on the balance by 71% compared with the test bench
(ηPF = 71%), while compared with CG, it is reduced by 79% (ηCG = 79%), which can be
seen in Table 2.

Table 1. Average tilt angles θz under 18 vibration conditions (◦).

δ (
◦
/s)

ε = 45
◦

ε = 90
◦

ε = 120
◦

θz,PF θz,CG θz,REF19 θz,EG θz,PF θz,CG θz,REF19 θz,EG θz,PF θz,CG θz,REF19 θz,EG

50 4.11 5.27 2.21 2.08 5.45 6.87 3.20 2.32 6.94 8.08 3.69 2.53
80 4.01 5.06 2.75 1.87 5.34 6.94 3.07 1.50 6.70 8.22 3.72 2.29

100 4.01 5.13 2.52 1.78 5.25 7.21 3.02 1.55 6.59 8.07 4.08 2.27
120 3.74 4.89 2.38 1.67 5.74 7.13 3.27 2.20 6.63 8.45 3.87 2.23
160 4.03 6.10 3.17 1.80 6.38 8.86 4.25 2.25 6.69 9.02 3.83 2.04
200 3.72 5.96 2.53 1.67 6.39 8.13 3.55 2.16 6.75 8.85 3.99 2.13

Table 2. Average balance efficiencies ηPF and ηCG of EG under 18 vibration conditions (%).

δ (
◦
/s)

ε = 45
◦

ε = 90
◦

ε = 120
◦

ηPF ηCG ηPF ηCG ηPF ηCG

50 49.37 60.47 57.47 66.31 63.58 68.71
80 53.49 63.15 71.89 78.38 65.85 72.17
100 55.52 65.26 70.54 78.53 65.56 71.89
120 55.32 65.85 61.72 69.19 66.36 73.61
160 55.32 70.48 64.70 74.56 69.46 77.36
200 55.18 72.03 66.21 73.45 68.48 75.88

While applying the policy presented by [19], the tilt amplitude of the robot is about
twice of ours: when tested under the same conditions, the average tilt angles are 3.02

◦

in REF19 (θz,REF19 = 3.02
◦
), which can also be seen in Table 1. The balance efficiencies of

REF19 under such a condition are ηPF = 42.41% and ηCG = 58.06%, respectively, which
can be seen in Table 3.

Table 3. Average balance efficiencies ηPF and ηCG of REF19 under 18 vibration conditions (%).

δ (
◦
/s)

ε = 45
◦

ε = 90
◦

ε = 120
◦

ηPF ηCG ηPF ηCG ηPF ηCG

50 46.33 58.14 41.20 53.35 46.19 54.29
80 31.32 45.57 42.45 55.72 44.41 54.69
100 37.07 50.81 42.41 58.06 38.15 49.49
120 36.30 51.28 42.96 54.08 41.60 54.18
160 31.23 47.96 33.33 51.99 42.81 57.58
200 32.02 57.57 44.46 56.35 40.92 54.94

To evaluate the policy under more disturbance conditions which are different from
the training scenario, we implement the two policies in the conditions of δ = 50

◦
/s, 80

◦
/s,

100
◦
/s, 120

◦
/s, 160

◦
/s and 200

◦
/s. Figure 7 visualizes the balance performance under the

aforementioned 18 conditions in simulation. It can be seen that the tilt angles are generally
suppressed to less than 2.5◦ by our method when the test bench runs at tilt angles from 2◦

Sensors 2021, 21, 5907 12 of 21

to 12◦. Compared with REF19, the policy obtained by our method has an obviously better
performance in almost all the scenarios.

Sensors 2021, 21, x FOR PEER REVIEW 13 of 22

Figure 7. Balance performance under 18 vibration conditions.

The experimental results indicate that this policy can effectively handle disturbance
in all of these conditions. The mean values of the tilt angles 𝜃𝜃𝑧𝑧� and balance efficiencies
𝜂𝜂𝑃𝑃𝑃𝑃����� and 𝜂𝜂𝐶𝐶𝐶𝐶����� in these scenarios are summarized in Tables 1–3. Under 18 vibration scenar-
ios, this control policy can keep the average tilt angle of the robot at approximately 2 de-
grees and offset the disturbance from the test bench by 49.37% to 71.89%, while the REF19
group 31.23% to 46.33%. Compared with CG, this approach reduces the influence of ex-
ternal disturbance by 60.47% to 78.53%, while the REF19 group is reduced by 45.57% to
58.14%.

To further describe the performance of the trained control policy under the afore-
mentioned 18 conditions, and to compare them with those of REF19, the distributions of
the balance efficiencies relative to PF and CG are shown in Figures 8 and 9.

(a) (b)

Figure 7. Balance performance under 18 vibration conditions.

The experimental results indicate that this policy can effectively handle disturbance in
all of these conditions. The mean values of the tilt angles θz and balance efficiencies ηPF
and ηCG in these scenarios are summarized in Tables 1–3. Under 18 vibration scenarios,
this control policy can keep the average tilt angle of the robot at approximately 2 degrees
and offset the disturbance from the test bench by 49.37% to 71.89%, while the REF19 group
31.23% to 46.33%. Compared with CG, this approach reduces the influence of external
disturbance by 60.47% to 78.53%, while the REF19 group is reduced by 45.57% to 58.14%.

To further describe the performance of the trained control policy under the aforemen-
tioned 18 conditions, and to compare them with those of REF19, the distributions of the
balance efficiencies relative to PF and CG are shown in Figures 8 and 9.

In Figures 9 and 10, the distributions of efficiencies of both groups are more dispersed
when the phase interval is ε = 45

◦
than those when ε = 90

◦
and 120

◦
. A possible reason for

this is that the relatively smaller phase interval results in a smaller inclination and a larger
displacement of the platform along the Z-axis during the vibration process. Moreover,
a smaller tilt angle causes more overlaps between the tilt angle curves of EG and those
of the test bench, which can be seen in Figure 7, thus affecting the calculation results.
Nevertheless, the lowest balance efficiencies ηPF and ηCG (when ε = 45

◦
and δ = 50

◦
/s)

of our method still reach 49.37% and 60.47%, respectively, while those of REF19 are of its
highest values 46.33% and 58.14% here.

In addition, we find that this policy provides effective balance control even if changing
the body mass or scaling the observed velocities and torques through the proportional
coefficients ev and et. We compare the performance under the scaled mass, velocities and
torques, with a baseline which represents the performance under the initial parameter
setting (m = 3 kg, ev = 1.0 and et = 1.0). The experimental data are visualized in Figure 10.
The results show that the scaled mass has little effect on the balance performance of the
policy, while scaled velocity and torque have relatively larger effects when test bench runs
at smaller tilt angles but similar performance with baseline at larger tilt angles. Overall,

Sensors 2021, 21, 5907 13 of 21

the obtained policy can effectively suppress the tilt angles to around 2◦ even under scaled
velocity and torque conditions.

Experiments under more stringent conditions are conducted to see what kind of
disturbance may cause a falling failure. According to our observation of the balancing
process, three stages appear with the increase in environmental difficulty: self-balance,
unstable jump, and fall, respectively. In fast (increasing at 5◦/s) and mild (increasing
at 1◦/s) disturbance conditions, we find that at about 25◦, the trained policy produces
unstable performance.

Sensors 2021, 21, x FOR PEER REVIEW 13 of 22

Figure 7. Balance performance under 18 vibration conditions.

The experimental results indicate that this policy can effectively handle disturbance
in all of these conditions. The mean values of the tilt angles 𝜃𝜃𝑧𝑧� and balance efficiencies
𝜂𝜂𝑃𝑃𝑃𝑃����� and 𝜂𝜂𝐶𝐶𝐶𝐶����� in these scenarios are summarized in Tables 1–3. Under 18 vibration scenar-
ios, this control policy can keep the average tilt angle of the robot at approximately 2 de-
grees and offset the disturbance from the test bench by 49.37% to 71.89%, while the REF19
group 31.23% to 46.33%. Compared with CG, this approach reduces the influence of ex-
ternal disturbance by 60.47% to 78.53%, while the REF19 group is reduced by 45.57% to
58.14%.

To further describe the performance of the trained control policy under the afore-
mentioned 18 conditions, and to compare them with those of REF19, the distributions of
the balance efficiencies relative to PF and CG are shown in Figures 8 and 9.

(a) (b)

Figure 8. Distributions of balance efficiencies of EG under 18 conditions: (a) ηCG; (b) ηPF.

Sensors 2021, 21, x FOR PEER REVIEW 14 of 22

Figure 8. Distributions of balance efficiencies of EG under 18 conditions: (a) 𝜂𝜂𝐶𝐶𝐶𝐶; (b) 𝜂𝜂𝑃𝑃𝑃𝑃.

(a) (b)

Figure 9. Distributions of balance efficiencies of REF19 under 18 conditions: (a) 𝜂𝜂𝐶𝐶𝐶𝐶; (b) 𝜂𝜂𝑃𝑃𝑃𝑃.

In Figures 9 and 10, the distributions of efficiencies of both groups are more dispersed
when the phase interval is ε = 45° than those when ε = 90° and 120°. A possible rea-
son for this is that the relatively smaller phase interval results in a smaller inclination and
a larger displacement of the platform along the Z-axis during the vibration process. More-
over, a smaller tilt angle causes more overlaps between the tilt angle curves of EG and
those of the test bench, which can be seen in Figure 7, thus affecting the calculation results.
Nevertheless, the lowest balance efficiencies 𝜂𝜂𝑃𝑃𝑃𝑃����� and 𝜂𝜂𝐶𝐶𝐶𝐶����� (when ε = 45° and δ =
 50 °/s) of our method still reach 49.37% and 60.47%, respectively, while those of REF19
are of its highest values 46.33% and 58.14% here.

Figure 9. Distributions of balance efficiencies of REF19 under 18 conditions: (a) ηCG; (b) ηPF.

Sensors 2021, 21, 5907 14 of 21

Sensors 2021, 21, x FOR PEER REVIEW 14 of 22

Figure 8. Distributions of balance efficiencies of EG under 18 conditions: (a) 𝜂𝜂𝐶𝐶𝐶𝐶; (b) 𝜂𝜂𝑃𝑃𝑃𝑃.

(a) (b)

Figure 9. Distributions of balance efficiencies of REF19 under 18 conditions: (a) 𝜂𝜂𝐶𝐶𝐶𝐶; (b) 𝜂𝜂𝑃𝑃𝑃𝑃.

In Figures 9 and 10, the distributions of efficiencies of both groups are more dispersed
when the phase interval is ε = 45° than those when ε = 90° and 120°. A possible rea-
son for this is that the relatively smaller phase interval results in a smaller inclination and
a larger displacement of the platform along the Z-axis during the vibration process. More-
over, a smaller tilt angle causes more overlaps between the tilt angle curves of EG and
those of the test bench, which can be seen in Figure 7, thus affecting the calculation results.
Nevertheless, the lowest balance efficiencies 𝜂𝜂𝑃𝑃𝑃𝑃����� and 𝜂𝜂𝐶𝐶𝐶𝐶����� (when ε = 45° and δ =
 50 °/s) of our method still reach 49.37% and 60.47%, respectively, while those of REF19
are of its highest values 46.33% and 58.14% here.

Figure 10. Balance performance under modified mass, velocities and torques.

In both cases, the policy achieves efficient balancing control until the test bench tilts to
25◦. The difference is that after reaching 25◦ quickly, the robot shows a larger unstable jump
gait with a lag of about 2 s until it falls, as shown in Figure 11. In the mild condition, the
robot’s reaction is much calmer, it tilts with the test bench and behaves a mildly unstable
jump, until the test bench reached about 33◦ when it falls, as shown in Figure 12.

Sensors 2021, 21, x FOR PEER REVIEW 15 of 22

Figure 10. Balance performance under modified mass, velocities and torques.

In addition, we find that this policy provides effective balance control even if chang-
ing the body mass or scaling the observed velocities and torques through the proportional
coefficients 𝑒𝑒𝑣𝑣 and 𝑒𝑒𝑡𝑡. We compare the performance under the scaled mass, velocities
and torques, with a baseline which represents the performance under the initial parameter
setting (m =3 kg, 𝑒𝑒𝑣𝑣 = 1.0 and 𝑒𝑒𝑡𝑡 = 1.0). The experimental data are visualized in Figure
10. The results show that the scaled mass has little effect on the balance performance of
the policy, while scaled velocity and torque have relatively larger effects when test bench
runs at smaller tilt angles but similar performance with baseline at larger tilt angles. Over-
all, the obtained policy can effectively suppress the tilt angles to around 2° even under
scaled velocity and torque conditions.

Experiments under more stringent conditions are conducted to see what kind of dis-
turbance may cause a falling failure. According to our observation of the balancing pro-
cess, three stages appear with the increase in environmental difficulty: self-balance, un-
stable jump, and fall, respectively. In fast (increasing at 5°/s) and mild (increasing at 1°/s)
disturbance conditions, we find that at about 25°, the trained policy produces unstable
performance.

In both cases, the policy achieves efficient balancing control until the test bench tilts
to 25°. The difference is that after reaching 25° quickly, the robot shows a larger unstable
jump gait with a lag of about 2 s until it falls, as shown in Figure 11. In the mild condition,
the robot’s reaction is much calmer, it tilts with the test bench and behaves a mildly un-
stable jump, until the test bench reached about 33° when it falls, as shown in Figure 12.

Figure 11. Three stages in the balance process when the platform tilts at the velocity of 5 °/s. Figure 11. Three stages in the balance process when the platform tilts at the velocity of 5◦/s.

Sensors 2021, 21, 5907 15 of 21
Sensors 2021, 21, x FOR PEER REVIEW 16 of 22

Figure 12. Three stages in the balance process when the platform tilts at the velocity of 1 °/s.

4.2. Real-World Experiment Results and Analysis
Four episodes of EG and CG experiments from the front and lateral sides are rec-

orded to intuitively demonstrate the balancing process. The t0 moment in the horizontal
axis is the initial state of each experiment, and t1, t2, t3, and t4 represent several moments
in the sequence.

In Figure 13, from the camera view, the balancing performance of this policy can be
clearly seen when the test bench tilts to the left and right at moments t1 and t3. At mo-
ments t2 and t4, the test bench tilts to the front and back, whether the robot leans forward,
backward or remains balanced can be inferred by whether its abdomen or back is exposed.

(a)

Figure 12. Three stages in the balance process when the platform tilts at the velocity of 1◦/s.

4.2. Real-World Experiment Results and Analysis

Four episodes of EG and CG experiments from the front and lateral sides are recorded
to intuitively demonstrate the balancing process. The t0 moment in the horizontal axis
is the initial state of each experiment, and t1, t2, t3, and t4 represent several moments in
the sequence.

In Figure 13, from the camera view, the balancing performance of this policy can
be clearly seen when the test bench tilts to the left and right at moments t1 and t3. At
moments t2 and t4, the test bench tilts to the front and back, whether the robot leans
forward, backward or remains balanced can be inferred by whether its abdomen or back
is exposed.

To evaluate the performance of the real robot, we collect and analyze the data of EG
and CG when the motor period T is 10 s and 20 s, respectively. In each period, motors of
the test bench run sinusoidally in accordance with a certain phase interval. However, since
the tilt value θz is always a positive value, the variation period of θz is approximately half
of motor period T. This is why the tilt angles of the test bench change in periods of 5 s and
10 s in Figures 14 and 15, respectively.

Sensors 2021, 21, x FOR PEER REVIEW 16 of 22

Figure 12. Three stages in the balance process when the platform tilts at the velocity of 1 °/s.

4.2. Real-World Experiment Results and Analysis
Four episodes of EG and CG experiments from the front and lateral sides are rec-

orded to intuitively demonstrate the balancing process. The t0 moment in the horizontal
axis is the initial state of each experiment, and t1, t2, t3, and t4 represent several moments
in the sequence.

In Figure 13, from the camera view, the balancing performance of this policy can be
clearly seen when the test bench tilts to the left and right at moments t1 and t3. At mo-
ments t2 and t4, the test bench tilts to the front and back, whether the robot leans forward,
backward or remains balanced can be inferred by whether its abdomen or back is exposed.

(a)

Figure 13. Cont.

Sensors 2021, 21, 5907 16 of 21Sensors 2021, 21, x FOR PEER REVIEW 17 of 22

(b)

Figure 13. Snap-shots in real-world experiments: (a) Lateral view; (b) Front view.

To evaluate the performance of the real robot, we collect and analyze the data of EG
and CG when the motor period T is 10 s and 20 s, respectively. In each period, motors of
the test bench run sinusoidally in accordance with a certain phase interval. However, since
the tilt value 𝜃𝜃𝑧𝑧 is always a positive value, the variation period of 𝜃𝜃𝑧𝑧 is approximately
half of motor period T. This is why the tilt angles of the test bench change in periods of 5
s and 10 s in Figures 14 and 15, respectively.

Figure 14. Tilt angles 𝜃𝜃𝑧𝑧 of PF, EG and CG in real-world experiments when T = 10 s: Time-domain variations of tilt angles
(left); Balance performance at varying tilt angles of PF (right).

Figure 13. Snap-shots in real-world experiments: (a) Lateral view; (b) Front view.

Sensors 2021, 21, x FOR PEER REVIEW 17 of 22

(b)

Figure 13. Snap-shots in real-world experiments: (a) Lateral view; (b) Front view.

To evaluate the performance of the real robot, we collect and analyze the data of EG
and CG when the motor period T is 10 s and 20 s, respectively. In each period, motors of
the test bench run sinusoidally in accordance with a certain phase interval. However, since
the tilt value 𝜃𝜃𝑧𝑧 is always a positive value, the variation period of 𝜃𝜃𝑧𝑧 is approximately
half of motor period T. This is why the tilt angles of the test bench change in periods of 5
s and 10 s in Figures 14 and 15, respectively.

Figure 14. Tilt angles 𝜃𝜃𝑧𝑧 of PF, EG and CG in real-world experiments when T = 10 s: Time-domain variations of tilt angles
(left); Balance performance at varying tilt angles of PF (right).

Figure 14. Tilt angles θz of PF, EG and CG in real-world experiments when T = 10 s: Time-domain variations of tilt angles
(left); Balance performance at varying tilt angles of PF (right).

Sensors 2021, 21, x FOR PEER REVIEW 17 of 22

(b)

Figure 13. Snap-shots in real-world experiments: (a) Lateral view; (b) Front view.

To evaluate the performance of the real robot, we collect and analyze the data of EG
and CG when the motor period T is 10 s and 20 s, respectively. In each period, motors of
the test bench run sinusoidally in accordance with a certain phase interval. However, since
the tilt value 𝜃𝜃𝑧𝑧 is always a positive value, the variation period of 𝜃𝜃𝑧𝑧 is approximately
half of motor period T. This is why the tilt angles of the test bench change in periods of 5
s and 10 s in Figures 14 and 15, respectively.

Figure 14. Tilt angles 𝜃𝜃𝑧𝑧 of PF, EG and CG in real-world experiments when T = 10 s: Time-domain variations of tilt angles
(left); Balance performance at varying tilt angles of PF (right).

Figure 15. Tilt angles θz of PF, EG and CG in real-world experiments when T = 20 s: Time-domain variations of tilt angles
(left); Balance performance at varying tilt angles of PF (right).

As seen in Figures 14 and 15, due to its own inertia, θz,CG is generally larger than θz,PF.
In terms of EG, although the robot also tilts with the test bench to a certain extent, the
amplitudes are obviously decreased, which indicates an effective suppression of external

Sensors 2021, 21, 5907 17 of 21

disturbance. In addition, when T = 20 s, this proposed controller performs more smoothly
than that when T = 10 s.

Figure 16 shows the comparison of the balance performance curves, in which it can be
seen that in terms of each tilt angle θz,PF this controller demonstrates a similar balancing
ability even though the vibration frequency changes, and most of the time the vibration
amplitude can be suppressed to about 1.5◦ even though the test bench tilts to about 7◦.

Sensors 2021, 21, x FOR PEER REVIEW 18 of 22

Figure 15. Tilt angles 𝜃𝜃𝑧𝑧 of PF, EG and CG in real-world experiments when T = 20 s: Time-domain variations of tilt angles
(left); Balance performance at varying tilt angles of PF (right).

As seen in Figures 14 and 15, due to its own inertia, 𝜃𝜃𝑧𝑧,𝐶𝐶𝐶𝐶 is generally larger than
𝜃𝜃𝑧𝑧,𝑃𝑃𝑃𝑃. In terms of EG, although the robot also tilts with the test bench to a certain extent,
the amplitudes are obviously decreased, which indicates an effective suppression of ex-
ternal disturbance. In addition, when T = 20 s, this proposed controller performs more
smoothly than that when T = 10 s.

Figure 16 shows the comparison of the balance performance curves, in which it can
be seen that in terms of each tilt angle 𝜃𝜃𝑧𝑧,𝑃𝑃𝑃𝑃 this controller demonstrates a similar balanc-
ing ability even though the vibration frequency changes, and most of the time the vibra-
tion amplitude can be suppressed to about 1.5° even though the test bench tilts to about
7°.

Figure 16. Comparison of balance performance when T = 10 s and T = 20 s in real-world experi-
ments.

According to the mean values in Table 4, when T = 10 s, balance efficiencies 𝜂𝜂𝑃𝑃𝑃𝑃����� and
𝜂𝜂𝐶𝐶𝐶𝐶����� reach 61.89% and 66.21%. When T = 20 s, they are 57.89% and 61.83%, respectively.

Table 4. Tilt angles 𝜃𝜃𝑧𝑧 in real-world experiments (°).

T = 10 s T = 20 s

𝜽𝜽𝒛𝒛,𝒎𝒎𝒎𝒎𝒎𝒎 𝜽𝜽𝒛𝒛��� 𝜽𝜽𝒛𝒛,𝒎𝒎𝒎𝒎𝒎𝒎 𝜽𝜽𝒛𝒛,𝒎𝒎𝒎𝒎𝒎𝒎 𝜽𝜽𝒛𝒛��� 𝜽𝜽𝒛𝒛,𝒎𝒎𝒎𝒎𝒎𝒎
PF 0.34 4.54 8.56 0.17 4.94 9.96
CG 0.25 5.12 10.37 0.04 5.45 11.43
EG 0.06 1.73 4.01 0.04 2.08 4.46

Figure 17 shows the density distribution of the balance efficiency with the tilt angle
of the test bench 𝜃𝜃𝑧𝑧,𝑃𝑃𝑃𝑃 when working at T = 10 s. When 𝜃𝜃𝑧𝑧,𝑃𝑃𝑃𝑃 is more than 2°, the balance
efficiencies 𝜂𝜂𝑃𝑃𝑃𝑃 and 𝜂𝜂𝐶𝐶𝐶𝐶 are mostly distributed in the range of 50% to 90% and concen-
trate around 75% when the test bench runs at the tilt angle of approximately 8°. The neg-
ative value of balance efficiency in the figure emerges when the 𝜃𝜃𝑧𝑧,𝑅𝑅𝑅𝑅𝑏𝑏𝑅𝑅𝑡𝑡 is greater than
𝜃𝜃𝑧𝑧,𝐵𝐵𝐵𝐵𝑛𝑛𝐵𝐵ℎ. As shown in Figure 17, when the test bench runs at the tilt angle of approximately

Figure 16. Comparison of balance performance when T = 10 s and T = 20 s in real-world experiments.

According to the mean values in Table 4, when T = 10 s, balance efficiencies ηPF and
ηCG reach 61.89% and 66.21%. When T = 20 s, they are 57.89% and 61.83%, respectively.

Table 4. Tilt angles θz in real-world experiments (◦).

T = 10 s T = 20 s

θz,min θz θz,max θz,min θz θz,max

PF 0.34 4.54 8.56 0.17 4.94 9.96
CG 0.25 5.12 10.37 0.04 5.45 11.43
EG 0.06 1.73 4.01 0.04 2.08 4.46

Figure 17 shows the density distribution of the balance efficiency with the tilt angle
of the test bench θz,PF when working at T = 10 s. When θz,PF is more than 2◦, the balance
efficiencies ηPF and ηCG are mostly distributed in the range of 50% to 90% and concentrate
around 75% when the test bench runs at the tilt angle of approximately 8◦. The negative
value of balance efficiency in the figure emerges when the θz,Robot is greater than θz,Bench.
As shown in Figure 17, when the test bench runs at the tilt angle of approximately 1.5◦, a
negative balance efficiency emerges, and the balance efficiency at this time distributes from
−50% to 90%, which indicates that the controller cannot always be sensitive to a slight
inclination. According to Equations (9) and (10), if the tilt angle curve of EG has a slight
overlap with that of PF or CG when θz,PF or θz,CG is a small tilt angle, an exaggeratively
negative balance efficiency is obtained because of the tiny denominator. As can be seen
from Figure 14 to Figure 15, when such an overlap occurs, the tilt angle of the test bench
and that of the robot are at a small angle of near-balance. Therefore, although the negative
balance efficiency has a negative impact on the calculation of equilibrium efficiency, it has
little impact on the actual performance of the self-balancing policy.

Sensors 2021, 21, 5907 18 of 21

Sensors 2021, 21, x FOR PEER REVIEW 19 of 22

1.5°, a negative balance efficiency emerges, and the balance efficiency at this time distrib-
utes from −50% to 90%, which indicates that the controller cannot always be sensitive to a
slight inclination. According to Equations (9) and (10), if the tilt angle curve of EG has a
slight overlap with that of PF or CG when 𝜃𝜃𝑧𝑧,𝑃𝑃𝑃𝑃 or 𝜃𝜃𝑧𝑧,𝐶𝐶𝐶𝐶 is a small tilt angle, an exagger-
atively negative balance efficiency is obtained because of the tiny denominator. As can be
seen from Figures 14 to 15, when such an overlap occurs, the tilt angle of the test bench
and that of the robot are at a small angle of near-balance. Therefore, although the negative
balance efficiency has a negative impact on the calculation of equilibrium efficiency, it has
little impact on the actual performance of the self-balancing policy.

(a) (b)

Figure 17. Density distribution of balance efficiencies when T = 10 s: (a) 𝜂𝜂𝑃𝑃𝑃𝑃; (b) 𝜂𝜂𝐶𝐶𝐶𝐶.

When working under the condition T = 20 s, the density distribution of the balance
efficiency is shown in Figure 18. The most concentrated distribution is still in the area with
the largest 𝜃𝜃𝑧𝑧,𝑃𝑃𝑃𝑃. When 𝜃𝜃𝑧𝑧,𝑃𝑃𝑃𝑃 reaches more than 6°, the balance efficiency concentrates at
approximately 60% and 75%, respectively. However, when 𝜃𝜃𝑧𝑧,𝑃𝑃𝑃𝑃 decreases by almost 1°,
the controller also cannot always be sensitive to such a slight inclination.

(a) (b)

Figure 18. Density distribution of balance efficiencies when T = 20 s: (a) 𝜂𝜂𝑃𝑃𝑃𝑃; (b) 𝜂𝜂𝐶𝐶𝐶𝐶.

The trained policy is also validated in a disturbance environment of random chang-
ing Eulerian angles, to see whether it is qualified to achieve sim-to-real transfer in more
general scenarios. It can be seen in Figure 19 that, the policy in general still has a good
balance performance, although there is a small overlap in the inclination curves when a
sudden shock occurs. In this process, the average tilt angles of PF and EG are 4.30° and
1.84°, which means 57.27% suppression of external disturbance, which can be seen in Ta-
ble 5.

Figure 17. Density distribution of balance efficiencies when T = 10 s: (a) ηPF; (b) ηCG.

When working under the condition T = 20 s, the density distribution of the balance
efficiency is shown in Figure 18. The most concentrated distribution is still in the area with
the largest θz,PF. When θz,PF reaches more than 6◦, the balance efficiency concentrates at
approximately 60% and 75%, respectively. However, when θz,PF decreases by almost 1◦,
the controller also cannot always be sensitive to such a slight inclination.

The trained policy is also validated in a disturbance environment of random changing
Eulerian angles, to see whether it is qualified to achieve sim-to-real transfer in more general
scenarios. It can be seen in Figure 19 that, the policy in general still has a good balance
performance, although there is a small overlap in the inclination curves when a sudden
shock occurs. In this process, the average tilt angles of PF and EG are 4.30◦ and 1.84◦,
which means 57.27% suppression of external disturbance, which can be seen in Table 5.

Sensors 2021, 21, x FOR PEER REVIEW 19 of 22

1.5°, a negative balance efficiency emerges, and the balance efficiency at this time distrib-
utes from −50% to 90%, which indicates that the controller cannot always be sensitive to a
slight inclination. According to Equations (9) and (10), if the tilt angle curve of EG has a
slight overlap with that of PF or CG when 𝜃𝜃𝑧𝑧,𝑃𝑃𝑃𝑃 or 𝜃𝜃𝑧𝑧,𝐶𝐶𝐶𝐶 is a small tilt angle, an exagger-
atively negative balance efficiency is obtained because of the tiny denominator. As can be
seen from Figures 14 to 15, when such an overlap occurs, the tilt angle of the test bench
and that of the robot are at a small angle of near-balance. Therefore, although the negative
balance efficiency has a negative impact on the calculation of equilibrium efficiency, it has
little impact on the actual performance of the self-balancing policy.

(a) (b)

Figure 17. Density distribution of balance efficiencies when T = 10 s: (a) 𝜂𝜂𝑃𝑃𝑃𝑃; (b) 𝜂𝜂𝐶𝐶𝐶𝐶.

When working under the condition T = 20 s, the density distribution of the balance
efficiency is shown in Figure 18. The most concentrated distribution is still in the area with
the largest 𝜃𝜃𝑧𝑧,𝑃𝑃𝑃𝑃. When 𝜃𝜃𝑧𝑧,𝑃𝑃𝑃𝑃 reaches more than 6°, the balance efficiency concentrates at
approximately 60% and 75%, respectively. However, when 𝜃𝜃𝑧𝑧,𝑃𝑃𝑃𝑃 decreases by almost 1°,
the controller also cannot always be sensitive to such a slight inclination.

(a) (b)

Figure 18. Density distribution of balance efficiencies when T = 20 s: (a) 𝜂𝜂𝑃𝑃𝑃𝑃; (b) 𝜂𝜂𝐶𝐶𝐶𝐶.

The trained policy is also validated in a disturbance environment of random chang-
ing Eulerian angles, to see whether it is qualified to achieve sim-to-real transfer in more
general scenarios. It can be seen in Figure 19 that, the policy in general still has a good
balance performance, although there is a small overlap in the inclination curves when a
sudden shock occurs. In this process, the average tilt angles of PF and EG are 4.30° and
1.84°, which means 57.27% suppression of external disturbance, which can be seen in Ta-
ble 5.

Figure 18. Density distribution of balance efficiencies when T = 20 s: (a) ηPF; (b) ηCG.

Sensors 2021, 21, x FOR PEER REVIEW 20 of 22

Figure 19. Real experiments under a relatively random disturbance condition.

Table 5. Tilt angles 𝜃𝜃𝑧𝑧 in real-world experiments (°).

 𝜽𝜽𝒛𝒛,𝒎𝒎𝒎𝒎𝒎𝒎 (°) 𝜽𝜽𝒛𝒛��� (°) 𝜽𝜽𝒛𝒛,𝒎𝒎𝒎𝒎𝒎𝒎 (°) 𝜼𝜼𝑷𝑷𝑷𝑷����� (%)
PF 0.02 4.30 9.30 \
EG 0.04 1.84 5.66 57.27

5. Conclusions
In this study, a balance control policy is obtained through training with a maximum-

entropy RL framework in a simulated dynamic environment, and validated in simulation
and on a real robot, which avoids some drawbacks in the design process of conventional
balance control models.

Compared with conventional methods which require tedious tuning, our method
significantly simplified the design process. In our method, the learned balance control
policy can be obtained by training in a simulator using an animated dynamic environment
and simplified virtual robot models. There is no human involvement needed in the train-
ing process, and the engineer can carry out other work during the training. Moreover, for
robots with different structures, only corresponding robot models are needed for training.
These advantages greatly enhance the reusability and universality of the design process
and improve the design efficiency of the balance controller.

In addition, this paper establishes an end-to-end implicit mapping of robot proprio-
ception to action commands and proposes an ANN-based balance controller. Conven-
tional balance control models generate action commands through the mathematical mod-
els constructed by engineers after analyzing the structure of the robot, and complete each
action based on analytical models. Those hierarchical models need to be executed sequen-
tially. In contrast, our policy can be deployed to parallel computing architecture, such as
the tensor processing unit, which can greatly lower the computational time complexity
and achieve an intuitive response speed in theory.

The proposed controller is validated in simulation and real-world experiments with
the customized Stanford Doggo, respectively. The proposed balance controller effectively
reduces the impact of external disturbance brought by the dynamic environment on robot
balance. When tested under 18 conditions in the simulator, the policy reduces the external
disturbance by 47.69% to 72.19% compared to the control group by 60.72% to 78.90% in
terms of the median of tilt amplitude. When applied directly to the real robot, the effect is
similar to that in the simulation environment: on the customized 3-DoF test bench, the
average tilt angle can be reduced by 57.89% to 66.21% under regularly generated disturb-
ances, and by 57.27% under a randomly generated disturbance.

However, the controller has a bounded input of 25° disturbance, and enhancing the
difficulty of training curriculum might be one of the solutions to make it learn more to
react in that condition. Moreover, it is not always sensitive when the test bench runs at a
small tilt angle of less than 1.5°. Although at small tilt angles, both the test bench and the

Figure 19. Real experiments under a relatively random disturbance condition.

Sensors 2021, 21, 5907 19 of 21

Table 5. Tilt angles θz in real-world experiments (◦).

θz,min (◦) θz (◦) θz,max (◦) ηPF %

PF 0.02 4.30 9.30 \
EG 0.04 1.84 5.66 57.27

5. Conclusions

In this study, a balance control policy is obtained through training with a maximum-
entropy RL framework in a simulated dynamic environment, and validated in simulation
and on a real robot, which avoids some drawbacks in the design process of conventional
balance control models.

Compared with conventional methods which require tedious tuning, our method
significantly simplified the design process. In our method, the learned balance control
policy can be obtained by training in a simulator using an animated dynamic environment
and simplified virtual robot models. There is no human involvement needed in the training
process, and the engineer can carry out other work during the training. Moreover, for
robots with different structures, only corresponding robot models are needed for training.
These advantages greatly enhance the reusability and universality of the design process
and improve the design efficiency of the balance controller.

In addition, this paper establishes an end-to-end implicit mapping of robot proprio-
ception to action commands and proposes an ANN-based balance controller. Conventional
balance control models generate action commands through the mathematical models con-
structed by engineers after analyzing the structure of the robot, and complete each action
based on analytical models. Those hierarchical models need to be executed sequentially. In
contrast, our policy can be deployed to parallel computing architecture, such as the tensor
processing unit, which can greatly lower the computational time complexity and achieve
an intuitive response speed in theory.

The proposed controller is validated in simulation and real-world experiments with
the customized Stanford Doggo, respectively. The proposed balance controller effectively
reduces the impact of external disturbance brought by the dynamic environment on robot
balance. When tested under 18 conditions in the simulator, the policy reduces the external
disturbance by 47.69% to 72.19% compared to the control group by 60.72% to 78.90% in
terms of the median of tilt amplitude. When applied directly to the real robot, the effect
is similar to that in the simulation environment: on the customized 3-DoF test bench,
the average tilt angle can be reduced by 57.89% to 66.21% under regularly generated
disturbances, and by 57.27% under a randomly generated disturbance.

However, the controller has a bounded input of 25◦ disturbance, and enhancing the
difficulty of training curriculum might be one of the solutions to make it learn more to react
in that condition. Moreover, it is not always sensitive when the test bench runs at a small
tilt angle of less than 1.5◦. Although at small tilt angles, both the test bench and the robot
can be regarded as balance, some applications will demand higher accuracy and balance
efficiency. For this reason, future studies can be concentrated on improving the balancing
performance at small tilt angles by some techniques such as adding torque control and
acceleration perception and improving the network structures. In addition, research on
more complex tasks, such as self-balancing when walking in dynamic environments, will
be conducted based on this work.

Author Contributions: Conceptualization, H.S.; Formal analysis, T.F.; Funding acquisition, C.H.;
Methodology, H.S.; Project administration, C.H.; Resources, T.F.; Software, H.S.; Supervision, C.H.;
Validation, H.S. and Y.L.; Visualization, T.F.; Writing—original draft preparation, H.S.; Writing—
review and editing, H.S. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by Sichuan Science and Technology Program, grant number
2021YFS0065.

Sensors 2021, 21, 5907 20 of 21

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Raibert, M.H.; Brown, H.B. Experiments in balance with a 2D one-legged hopping machine. J. Dyn. Syst. Meas. Control Trans.

ASME 1984, 106, 75–81. [CrossRef]
2. Raibert, M.H.; Brown, H.B.; Chepponis, M. Experiments in balance with a 3D one-legged hopping machine. Int. J. Robot. Res.

1984, 3, 75–92. [CrossRef]
3. Raibert, M.H. BigDog, the rough-terrain quadruped robot. IFAC Proc. Vol. 2008, 17, 10822–10825. [CrossRef]
4. Xu, Z.; Gao, J.; Liu, C. Stability analysis of quadruped robot based on compliant control. In Proceedings of the 2016 IEEE

International Conference on Robotics and Biomimetics, Qingdao, China, 3–7 December 2016; pp. 236–241.
5. Raibert, M.H.; Chepponis, M.; Brown, H.B. Running on four legs as though they were one. IEEE J. Robot. Autom. 1986, 2, 70–82.

[CrossRef]
6. Stephens, B.J.; Atkeson, C.G. Dynamic balance force control for compliant humanoid robots. In Proceedings of the 2010 IEEE/RSJ

International Conference on Intelligent Robots and Systems, Taipei, China, 18–22 October 2010; pp. 1248–1255. [CrossRef]
7. Khorram, M.; Moosavian, S.A.A. Push recovery of a quadruped robot on challenging terrains. Robotica 2016, 35, 1–20. [CrossRef]
8. Dini, N.; Majd, V.J.; Edrisi, F.; Attar, M. Estimation of external forces acting on the legs of a quadruped robot using two nonlinear

disturbance observers. In Proceedings of the 4th RSI international conference on robotics and mechatronics (ICRoM), Tehran,
Iran, 26–28 October 2016; pp. 72–77.

9. Dini, N.; Majd, V.J. Sliding-Mode tracking control of a walking quadruped robot with a push recovery algorithm using a nonlinear
disturbance observer as a virtual force sensor. Iran. J. Sci. Technol. Trans. Electr. Eng. 2020, 44, 1033–1057. [CrossRef]

10. Fahmi, S.; Mastalli, C.; Focchi, M.; Semini, C. Passive Whole-Body Control for Quadruped Robots: Experimental Validation over
Challenging Terrain. IEEE Robot. Autom. Lett. 2019, 4, 2553–2560. [CrossRef]

11. Henze, B.; Roa, M.A.; Ott, C. Passivity-based whole-body balancing for torque-controlled humanoid robots in multi-contact
scenarios. Int. J. Robot. Res. 2016, 35, 1522–1543. [CrossRef]

12. Peng, X.; Abbeel, P.; Levine, S.; Van de Panne, M. DeepMimic: Example-Guided Deep Reinforcement Learning of Physics-Based
Character Skills. ACM Trans. Graph. 2018, 35, 143. [CrossRef]

13. Fujimoto, S.; Van Hoof, H.; Meger, D. Addressing Function Approximation Error in Actor-Critic Methods. In Proceedings of the
35th International Conference on Machine Learning (ICML 2018), Stockholm, Sweden, 10–15 July 2018.

14. Tsounis, V.; Alge, M.; Lee, J.; Farshidian, F.; Hutter, M. DeepGait: Planning and Control of Quadrupedal Gaits Using Deep
Reinforcement Learning. IEEE Robot. Autom. Lett. 2020, 5, 3699–3706. [CrossRef]

15. Heess, N.; Dhruva, T.B.; Srinivasan, S.; Lemmon, J.; Merel, J.; Wayne, G.; Tassa, Y.; Erez, T.; Wang, Z.; Eslami, S.M.; et al.
Emergence of locomotion behaviours in rich environments. arXiv 2017, arXiv:1707.02286.

16. Hwangbo, J.; Lee, J.; Dosovitskiy, A.; Bellicoso, D.; Tsounis, V.; Koltun, V.; Hutter, M. Learning agile and dynamic motor skills for
legged robots. Sci. Robot. 2019, 4, eaau5872. [CrossRef] [PubMed]

17. Tan, J.; Zhang, T.; Coumans, E.; Iscen, A.; Bai, Y.; Hafner, D.; Bohez, S.; Vanhoucke, V. Sim-to-Real: Learning agile locomotion for
quadruped robots. In Proceedings of the 14th Robotics: Science and Systems (RSS 2018), Pennsylvania, PA, USA, 26–30 June 2018;
p. 10. [CrossRef]

18. Lee, J.; Hwangbo, J.; Wellhausen, L.; Koltun, V.; Hutter, M. Learning quadrupedal locomotion over challenging terrain. Sci. Robot.
2020, 5, eabc5986. [CrossRef] [PubMed]

19. Lee, C.; An, D. Reinforcement learning and neural network-based artificial intelligence control algorithm for self-balancing
quadruped robot. J. Mech. Sci. Technol. 2021, 35, 307–322. [CrossRef]

20. Schulman, J.; Levine, S.; Moritz, P.; Jordan, M.; Abbeel, P. Trust region policy optimization. In Proceedings of the 32nd International
Conference on Machine Learning (ICML 2015), Lille, France, 6–11 July 2015; pp. 1889–1897.

21. Schulman, J.; Wolski, F.; Dhariwal, P.; Radford, A.; Klimov, O. Proximal policy optimization algorithms. arXiv 2017,
arXiv:1707.06347.

22. Lillicrap, T.P.; Hunt, J.J.; Pritzel, A.; Heess, N.; Erez, T.; Tassa, Y.; Silver, D.; Wierstra, D. Continuous control with deep
reinforcement learning. In Proceedings of the 4th International Conference on Learning Representations (ICLR 2016), San Juan,
Puerto Rico, 2–4 May 2016.

23. Barth-Maron, G.; Hoffman, M.W.; Budden, D.; Dabney, W.; Horgan, D.; Tb, D.; Muldal, A.; Heess, N.; Lillicrap, T. Distributed
distributional deterministic policy gradients. In Proceedings of the 6th International Conference on Learning Representations
(ICLR 2018), Vancouver, Canada, 30 April–3 May 2018.

24. Haarnoja, T.; Zhou, A.; Abbeel, P.; Levine, S. Soft actor-critic: Off-policy maximum entropy deep reinforcement learning with a
stochastic actor. In Proceedings of the 35th International Conference on Machine Learning (ICML 2018), Stockholm, Sweden,
10–15 July 2018; pp. 1861–1870.

http://doi.org/10.1115/1.3149668
http://doi.org/10.1177/027836498400300207
http://doi.org/10.3182/20080706-5-KR-1001.01833
http://doi.org/10.1109/JRA.1986.1087044
http://doi.org/10.1109/IROS.2010.5648837
http://doi.org/10.1017/S0263574716000394
http://doi.org/10.1007/s40998-019-00283-7
http://doi.org/10.1109/LRA.2019.2908502
http://doi.org/10.1177/0278364916653815
http://doi.org/10.1145/3197517.3201311
http://doi.org/10.1109/LRA.2020.2979660
http://doi.org/10.1126/scirobotics.aau5872
http://www.ncbi.nlm.nih.gov/pubmed/33137755
http://doi.org/10.15607/rss.2018.xiv.010
http://doi.org/10.1126/scirobotics.abc5986
http://www.ncbi.nlm.nih.gov/pubmed/33087482
http://doi.org/10.1007/s12206-020-1230-0

Sensors 2021, 21, 5907 21 of 21

25. Coumans, E.; Bai, Y. PyBullet, a Python Module for Physics Simulation for Games, Robotics and Machine Learning. 2019.
Available online: http://pybullet.org (accessed on 20 July 2020).

26. Kau, N.; Schultz, A.; Ferrante, N.; Slade, P. Stanford doggo: An open-source, quasi-direct-drive quadruped. In Proceedings of the
2019 IEEE International Conference on Robotics and Automation (ICRA 2019), Montreal, Canada, 20–24 May 2019; pp. 6309–6315.
[CrossRef]

http://pybullet.org
http://doi.org/10.1109/ICRA.2019.8794436

	Introduction
	Materials and Methods
	Policy Training Details
	Observations and Actions
	Reward Function
	Policy Network
	Maximum-Entropy RL Policy Training Algorithm

	Automatic Disturbance Curriculum

	Verification Environment
	Evaluation in Simulation and Real-World Experiments
	Simulation Results and Analysis
	Real-World Experiment Results and Analysis

	Conclusions
	References

