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Abstract: In order to reduce the influence of the optical window on the image quality of a hypersonic
visible light optical remote sensor, we propose a method of adding a double-layer semicircular
honeycomb core microstructure with flexible support of a high temperature elastic alloy between
a window glass and a frame to reduce the influence of complex thermal stress on the surface accuracy
of the optical window. An equivalent model of a semicircular honeycomb structure was established,
the elastic parameters of the semicircular honeycomb sandwich microstructure were derived by
an analytical method, and a numerical verification and finite element simulation were carried out.
The results show that the equivalent model is in good agreement with the detailed model. The optical-
mechanical-thermal integrated simulation analysis of the optical window assembly with flexible
supporting microstructure proves that the semicircular honeycomb sandwich flexible supporting
structure has a positive effect on stress attenuation of the window glass and ensures the wave
aberration accuracy of the transmitted optical path difference of the optical window (PV < 0.665 λ,
RMS < 0.156 λ, λ = 632.8 nm). Combined with the actual optical system, the optical performance of the
window assembly under the flexible support structure is verified. The simulation results show that
the spatial frequency of the modulation transfer function (MTF) of the optical system after focusing is
not less than 0.58 in the range of 0–63 cycle/mm and the relative decline of MTF is not more than 0.01,
which meet the imaging requirements of a remote sensor. The study results show that the proposed
metal-based double-layer semicircular honeycomb sandwich flexible support microstructure ensures
the imaging quality of the optical window under ultra-high temperature conditions.

Keywords: hypersonic remote sensor; honeycomb composite structure; imaging quality; flexible
support; optical window; integration analysis

1. Introduction

In recent years, aerial remote sensors have been applied more and more widely in
military and civil fields, such as military detection, geographic mapping, data acquisition,
weather forecasting, etc. [1–3]. With the rapid development of aerial remote sensor tech-
nology, flight altitudes have reached tens of kilometers, and flight speeds have reached
several Mach numbers. In this type of high-altitude and ultra-high speed flight condition,
a complex air flow field is formed around aircraft, which puts forward more stringent
requirements for the image quality of an aerial remote sensor [4]. The optical window is
used to maintain the aerodynamic shape of the aircraft, provide an optical path for the
internal photoelectric load, and isolate the external environment, and is directly exposed to
the complex flight environment during aerial photography. The friction between a window
glass and the atmosphere results in a significant amount of thermal load, which leads
to additional stress and morphological changes on the surface of the window, and its
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mechanical and optical properties are seriously affected. Therefore, the imaging perfor-
mance of the optical window is one of the key technologies restricting the application of
a photoelectric load on hypersonic aerial remote sensors [5,6]. In order to meet the image
quality requirements of aerial remote sensors under hypersonic flight conditions, it is
necessary to rationally design the flexible supporting microstructure of the optical window
to reduce the deformation of the window glass and to ensure the resolution and imaging
quality of the remote sensor [7].

Researchers have conducted extensive studies on the structural design and imaging
performance of the optical window. Aiming at the optical window of a large aperture
ground-based telescope in the working temperature range of −35–40 ◦C, Q.P. Zhang et al.
proposed an auxiliary support form of an intermediate ring belt based on an ordinary ring
belt support, which could effectively improve the support efficiency, reduce the thickness
and quality of a window, and reduce the window’s absorption rate of incident light [8].
M.L. Xu analyzed the optical window structure components of a space camera, and used
the sealing gasket and the sealant layer (the applicable temperature range of the sealant
material was from−65 to 250 ◦C) as the intermediate support structure of the window glass
to improve the airtightness of the entire window assembly [9]. On the basis of subsonic
flight conditions, Y.W. Li carried out an optical-mechanical-thermal integrated analysis
of the optical window of an aerial remote sensor. The window support structure used
a non-metallic rubber ring (the applicable temperature range of the rubber ring was from
−100 to 300 ◦C), which reduced the deformation of the window glass and met the imaging
requirements of the remote sensor [10]. According to the aerodynamic thermal effect and
aerodynamic thermal radiation effect of optical window, L.Q. Dong et al. used the finite
element analysis method to analyze the thermo-optic effect, elasto-optical effect, and ther-
mal deformation of the optical window, and concluded that a non-uniform temperature
gradient had a significant influence on the transmission optical path difference of the win-
dow, and the imaging quality of the optical system was reduced [11]. R. Zhang conducted
a steady-state and transient simulation analysis of the optical window of a space solar
telescope, and the temperature variation of the window component was ensured within
a normal range by the thermal compensation method of electric heating [12]. Y.P. Zhang
studied the influence of the optical path difference of deformed optical window in an
aerodynamic thermal environment on the light transmission, calculated and analyzed the
temperature field and stress field of the window, and discussed the effect of thermal load
and atmospheric pressure on the transmission optical path difference of the window [13].
In addition, Y.L. Ding and others also performed an optimization analysis and verification
on the parameters of optical window components, including materials, support forms, etc.,
and solved the technical problems faced by optical window applications with flying speeds
below Mach 3 [14].

It can be seen that although researchers have carried out extensive studies on the
imaging performance analysis and support structure design of optical window, they have
mainly focused on the ranges of subsonic and supersonic and the flexible support struc-
ture based on non-metallic materials was used in the optical window, and few studies
have analyzed the supporting structure of the optical window of a hypersonic remote
sensor [15–17]. In this study, the optical window studied was mounted on a hypersonic
aerial remote sensor with a flying speed of Mach 6 and a flying height of 20 km. The
temperature of the outer surface of the optical window reached 800 ◦C due to aerodynamic
thermal effects during operation. Under ultra-high temperature conditions, non-metallic
super-elastic materials may soften, melt, and thermally oxidize, which may cause material
performance failure. Therefore, the non-metallic flexible support structure and related
technologies are no longer applicable. Therefore, it is necessary to select high-temperature
resistant metal materials as the intermediate flexible support structure to reduce the com-
plex thermal stress of the window glass. A honeycomb sandwich structure is a special form
of laminated composite materials, which achieves the structural advantages of the entire
system by using the performance characteristics of each component. A sandwich structure
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has outstanding characteristics such as light weight, high specific strength, adjustable
in-plane stiffness, and stable high temperature performance. It has been widely used in
main load-bearing structural parts such as wings, fuselage, and tail, but it is rarely used in
flexible support structures. The semicircular ring-shaped honeycomb sandwich structure
is a typical transverse-isotropic material, which has low in-plane rigidity, so that it can
obtain greater elastic deformation, and also has good performance of vibration and noise
reduction, heat insulation, and sound insulation [18,19].

The purpose of this study is to solve the problem that the thermal stress cannot be
released due to the mismatch of the linear expansion coefficient of the visible optical
window assembly of a hypersonic aerial remote sensor, which leads to the degradation
of the imaging quality. A scheme of adding a high-temperature elastic alloy double-layer
semicircular honeycomb sandwich flexible support microstructure between a window
glass and a frame is proposed to reduce the influence of complex stress on the surface
accuracy of the optical window and ensure the image quality of the remote sensor. The
remainder of this paper is organized as follows: In Section 2, we establish the semicircular
honeycomb sandwich flexible support structure and theoretically derive the equivalent
model of elastic parameters of the semicircular honeycomb structure; in Section 3, we use
static knowledge, dynamic modal analysis, and finite element simulation methods to verify
the correctness of the equivalent model of the flexible support structure; in Section 4, we
carry out a thermal-mechanical coupling simulation analysis on the overall components of
the optical window, and the window surface deformation data are obtained and imported
into the optical software by Zernike polynomial fitting, and the wave aberration and MTF
value are used to evaluate the effectiveness of the semicircle honeycomb flexible support
structure on the attenuation of the additional thermal stress of the window; finally, in
Section 5, we analyze the data and summarize the work of this study.

2. Theoretical Model Analysis

A circular honeycomb sandwich structure has a flexible design and versatility. In order
to accurately describe a circular honeycomb sandwich structure, especially a semicircular
sandwich layer, a large number of elements must be divided into a finite element model.
Therefore, even a very simple model requires a lot of time to solve. According to this reason,
the theory of equivalence emerges, whose main goal is to make the complex sandwich
structure equivalent to a transverse-isotropic plate, so that the whole circular honeycomb
sandwich structure can be regarded as a layered material [20,21].

The double-layer semicircular honeycomb sandwich support structure is shown in
Figure 1. The double-layer semicircular cell elements are evenly distributed and externally
tangent to each other, and the cross-section coincides with the surface of the two panels.
The macroscopic elastic properties of the honeycomb structure are obtained from the
properties of the smallest repeating unit in the honeycomb model. An analysis unit from
the double-layer honeycomb structure is taken as the research object. According to the
contact characteristics of the semicircular cell of the analysis unit, the contact points are
connected by straight lines to form a regular triangular shape equivalent model. Therefore,
assuming that the flexible support structure of the double-layer semicircular honeycomb
sandwich layer can be enclosed by such right isosceles triangle cells, and the force form
and direction of contact between semicircular cells are approximately equal to the force
characteristics of triangular cells. According to the geometric relationship of the analysis
unit model, we can get the ratio (relative density m) of the density ρs of the honeycomb
sandwich of the equivalent model and the density ρk of the honeycomb wall material
as follows:

m =
ρs

ρk
=

π

4
· t

R
·
(

2− t
R

)
(1)
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Figure 1. Double-layer semicircular honeycomb sandwich support structure and analysis unit. (R, t, h, respectively,
represent the radius, wall thickness, and height of the circular honeycomb sandwich core).

2.1. In-Plane Equivalent Elastic Modulus and Poisson’s Ratio

Firstly, the Cartesian coordinate system is established as shown in the figure. When the
cell element of the honeycomb sandwich layer is subjected to the X-direction unidirectional
plane stress, σ1, the equivalent force of the triangle analysis unit is shown in Figure 2. We
can obtain the tensile force, Fx, of the unit as:

Fx = σ1 · h · 2R (2)

Figure 2. Stress situation of equivalent unit subjected to stress in the X direction: (a) The stress of the whole equivalent
element; (b) the force distribution of equivalent cell walls; (c) the force on one cell wall of the equivalent element.

The cell wall of AB is regarded as a flexible beam, combined with the deformation
coordination condition that the rotation angle at point B is zero, and according to the
relevant knowledge of mechanics, we obtain:

θ Fx
2 B =

Fx
2 · sin

(
π
4
)
· L2

2Ek I
, θMB =

M · L
Ek I

(3)

where I = ht3

12 is the moment of inertia of the section, Ek I is the bending stiffness, and Ek is
the elastic modulus of the honeycomb cell material.

Because θ Fx
2 B = θMB, we can obtain:

M =

√
2FxL
8

(4)

The deflection of the AB cell wall perpendicular to the direction of AB caused by force
Fx
2 and bending moment M is as follows:

δAB1 =
ML2

2Ek I
−

Fx
2 sin

(
π
4
)

L3

3Ek I
=

√
2FxL3

4Ekht3 (5)
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The axial deformation of the AB cell wall is as follows:

δAB2 =
Fx
2 · cos

(
π
4
)
· L

Ekht
=

√
2FxL

4Ekht
(6)

In this case, the effective strain in the X and Y directions becomes:

ε1 =
2(δAB1 sin θ + δAB2 cos θ)

2L cos θ
=

√
2FxL2

4Ekht3

(
1 +

t2

L2

)
(7)

ε2 =
(δAB2 sin θ − δAB1 cos θ)

L sin θ
= −
√

2FxL2

4Ekht3

(
1− t2

L2

)
(8)

Then, the equivalent Poisson (µ1) ratio and the equivalent in-plane elastic modulus
(Ecx) in the X direction are:

µ1 = − ε2

ε1
=

1− t2/L2

1 + t2/L2 =
1− t2/2R2

1 + t2/2R2 (9)

Ecx =
σ1

ε1
=

√
2Ekt3

RL2(1 + t2/L2)
=

√
2

2
· Ek ·

(
t
R

)3
· 1

1 + t2/2R2 (10)

Similarly, the equivalent Poisson (µ2) ratio and the equivalent in-plane elastic modulus
(Ecy) in the Y direction can be derived. The analysis method is similar to the above, as
shown in Figure 3.

Figure 3. Stress situation of equivalent unit subjected to stress in the Y direction: (a) The stress of the whole equivalent
element; (b) the force distribution of equivalent cell walls; (c) the force on one cell wall of the equivalent element.

Then, the equivalent Poisson (µ2) ratio and the equivalent in-plane elastic modulus
(Ecy) in the Y direction are:

µ2 = − ε1

ε2
=

1− t2/L2

1 + t2/L2 =
1− t2/2R2

1 + t2/2R2 (11)

Ecy =
σ2

ε2
=

√
2Ekt3

RL2(1 + t2/L2)
=

√
2

2
· Ek ·

(
t
R

)3
· 1

1 + t2/2R2 (12)

2.2. In-Plane Equivalent Shear Modulus

When the analysis unit is subjected to shear stress, τ, the force analysis of the equiv-
alent analysis element model is shown in Figure 4. In order to satisfy the force balance
of each node, the following assumptions are made: (1) Assume that there is no relative
displacement among the three nodes A, B, and C. (2) The corners of all nodes are equal.
(3) The shear deformation of each side in the model is produced by its own rotation and
bending deformation.
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Figure 4. When subjected to shear stress, the force of equivalent element: (a) The stress of the whole equivalent element;
(b) the force distribution of equivalent cell walls; (c) the force on one cell wall of the equivalent element.

First, take the moment of point A′ on the BC line which is vertically projected by
node A in Figure 4b, then ∑ MA′ = 0, we can obtain:

FL sin
(π

4

)
− 2NL cos

(π

4

)
= 0 (13)

It is concluded that:
N =

F
2

(14)

Take the moment of node A in Figure 4c, then ∑ MA = 0, we can obtain:

2M +
F
2

L · sin
(π

4

)
− N · L · cos

(π

4

)
= 0 (15)

The conclusion is:
M = 0 (16)

Therefore, the shear deformation of each side in the equivalent analysis element is
only the bending deformation, and the deflection δAB of the AB cell wall caused by the
force F

2 is:

δAB =
F
2
· sin

(π

4

)
· L3

3EI
(17)

Then, the shear strain γxy and shear stress τ are:

γxy =
δAB

L
=

F
2 · sin

(
π
4
)
· L3

3Ek I

L
=

√
2FL2

12Ek I
(18)

τ =
F

2hL · cos
(

π
4
) =

F√
2hL

(19)

According to the shear of Hooke’s law, the above formulas are used, and the shear
modulus Gxy in the semicircular honeycomb surface can be obtained as:

Gxy =
τ

γxy
=

F√
2hL√

2FL2

12Ek I

=
6Ek I
hL3 =

√
2

8
· Ek · (

t
R
)

3
(20)

According to the above derivation, Ecx = Ecy = E, µ1 = µ2 = µ, and satisfy
Gxy = E

2(1+µ)
. Therefore, it is verified that the elastic constants of the semicircular honey-

comb sandwich in the two main directions mentioned above are the same, and the ideal
semicircular double-layer honeycomb structure is laterally anisotropic macroscopically,
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and isotropic in the X-Y plane. For the Cartesian coordinate system, the macroscopic
stress–strain relationship of a double-layer semicircular honeycomb is as follows:

 σx
σy
τxy

 =


Ecx

1−µ1µ2

µ1Ecy
1−µ1µ2

0
µ2Ecx

1−µ1µ2

Ecy
1−µ1µ2

0
0 0 Gxy


 ε1

ε2
γxy

 (21)

3. Finite Element Analysis and Verification of Equivalent Mode

Assuming that the double-layer semicircular honeycomb flexible support structure is
as shown in Figure 5, the thin plates on both sides and the circular honeycomb core are made
of nickel-based high temperature elastic alloy material (GH4099), which has excellent high
temperature durability and high temperature creep performance; the physical properties
are shown in Table 1. The thickness of the thin plate is m, the wall thickness of the
semicircular honeycomb core is t, the radius of the circular honeycomb is R, and the height
is h [22].

Figure 5. The double-layer semicircular honeycomb flexible support structure: (a) Isometric view;
(b) top view.

Table 1. Material parameters of GH4099 at 800 ◦C.

Density ρk (g/cm3) Elastic Modulus Ek (Gpa) Poisson’s Ratio µk

8.47 178 0.33

In order to verify the correctness and validity of the analytical expression of the
equivalent model of the double-layer semicircular cell, we used the commercial finite
element software ABAQUS to carry out the finite element analysis. In the mechanical
simulation analysis of a honeycomb structure, it is generally considered that the fine
modeling method can accurately characterize the structural characteristics and actual defor-
mation state of a honeycomb plate. Therefore, we used the method of comparing the fine
modeling with the equivalent modeling to verify the accuracy of the equivalent model of
a double-layer semicircular honeycomb. The double-layer semicircular honeycomb sand-
wich layer is equivalent to the transverse anisotropic sandwich panel of the corresponding
size. Six groups of different relative thicknesses (the ratio of the wall thickness to the radius
of the honeycomb core layer) were used as data for the comparative analysis. According to
the equivalent formula of the honeycomb core derived in the previous section, the physical
properties of the intermediate layer can be obtained as shown in Table 2. It can be seen from
Table 2 that as the relative thickness decreases, the in-plane elastic modulus and Poisson’s
ratio of the equivalent model both decrease.

In the equivalent model, the coupling between the equivalent core plate and the upper
and lower panels adopts the classic laminate theory. The faceplate and the core layer
both adopt C3D8R (eight-node linear hexahedral element) three-dimensional stress solid
element, and the core layer is given equivalent mechanical parameters and material prop-
erties. The finite element analysis model is shown in Figure 6a. In the fine modeling, the
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three-dimensional stress solid element (C3D8R) is also used for the panel and honeycomb
thin wall, and the connection methods are all tie connections. The finite element analysis
model is shown in Figure 6b.

Table 2. Equivalent physical properties of honeycomb core layers with different relative thicknesses.

Structural Parameters t
R ρ (g/cm3) E1 (MPa) G12 (MPa) µ12

t = 0.1 mm, R = 1.5 mm 0.067 0.8574 37.21 9.32 0.9956
t = 0.15 mm, R = 1.5 mm 0.100 1.2639 125.24 31.47 0.9900

t = 0.1 mm, R = 2 mm 0.050 0.6486 15.56 3.93 0.9975
t = 0.15 mm, R = 2 mm 0.075 0.9604 52.95 13.27 0.9944
t = 0.1 mm, R = 2.5 mm 0.040 0.5215 8.05 2.01 0.9984

t = 0.15 mm, R = 2.5 mm 0.060 0.7743 27.14 6.80 0.9964

Figure 6. Finite element model of honeycomb sandwich structure: (a) Equivalent modeling method; (b) fine modeling method.

3.1. Static Deformation Analysis

According to the stress environment of the honeycomb support structure in the actual
window components, six degrees of freedom of all nodes on the bottom surface of the
honeycomb panel at the B end were constrained in the static analysis. Tie constraints were
used to connect the rigid body instigators on the upper surface of the A end honeycomb
plate, and the in-plane shear load Px (force along the X-axis) and in-plane pressure load
Py (force along the Y-axis) were uniformly applied, respectively. When using different
modeling methods, the displacements of honeycomb panels under various static working
conditions can be calculated, as shown in Table 3. Among them, in the Px and Py working
conditions, the displacement is the average displacement component of all nodes on the
lower surface of the A end honeycomb panel along the direction of force loading.

According to the data in Table 3, compared with the fine modeling method, the
displacement error of the proposed equivalent modeling method is less than 2% under each
working condition, and the maximum displacement error is only 1.88%, which indicates
that the equivalent method has high accuracy in static analysis, and further verifies that
the analytical method and the finite element method have a high degree of consistency
in calculating equivalent parameters. A change in the relative thickness has an obvious
influence on the elastic parameters of the honeycomb structure, and with a decrease in the
relative thickness, the overall stiffness of the honeycomb structure is weakened, and the
flexibility is enhanced. At the same time, it is also noticed that the calculated data of the
equivalent model under each working condition are larger than the result of the fine model,
which indicates that the stiffness of the model is weakened to a certain extent during the
equivalence process.
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Table 3. Deformation of a honeycomb sandwich structure under static conditions.

Working Condition
of Value

Relative
Thickness (t/R)

Displacement/mm Relative
Error/%Fine Modeling Equivalent Modeling

Px = 1000 N

0.100 2.342 × 10−2 2.381 × 10−2 1.67
0.075 6.244 × 10−2 6.312 × 10−2 1.09
0.067 1.026 × 10−1 1.038 × 10−1 1.17
0.060 1.297 × 10−1 1.321 × 10−1 1.85
0.050 2.103 × 10−1 2.135 × 10−1 1.52
0.040 4.146 × 10−1 4.201 × 10−1 1.33
0.033 7.285 × 10−1 7.369 × 10−1 1.15

Py = 1000 N

0.100 1.226 × 10−2 1.249 × 10−2 1.88
0.075 3.928 × 10−2 4.001 × 10−2 1.86
0.067 6.068 × 10−2 6.159 × 10−2 1.50
0.060 8.579 × 10−2 8.681 × 10−2 1.19
0.050 1.375 × 10−1 1.399 × 10−1 1.75
0.040 2.791 × 10−1 2.838 × 10−1 1.68
0.033 7.281 × 10−1 7.396 × 10−1 1.58

3.2. Dynamic Modal Analysis

In order to verify whether the equivalent modeling method proposed in this study
can accurately reflect the dynamic characteristics of the honeycomb sandwich, the modal
analysis of the fine modeling method and the equivalent modeling method are carried
out [23]. Table 4 shows the first-order modal analysis results of fine modeling and equiva-
lent modeling of six groups of different relative thicknesses.

Table 4. First-order modal simulation results of fine modeling method and equivalent modeling method.

Relative Thickness
(t/R)

Frequency/Hz
Relative Error/%

Modal Displacement Vector

Fine Modeling Equivalent Modeling Fine Modeling Equivalent Modeling

0.100 6191.43 6058.19 2.15

0.075 4513.19 4391.43 2.70

0.0667 3386.20 3260.25 3.72

0.060 2404.19 2358.03 1.92

0.050 2113.96 2060.37 2.54

0.040 1502.17 1441.96 4.01
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The data in Table 4 show that the maximum difference in the first-order fundamental
frequency of the six groups of fine modeling and equivalent modeling with different
relative thicknesses is 4.01%. From the deformation cloud chart, it can be seen that the
mode shapes of the fine modeling method and the equivalent modeling method are
basically the same, which indicates that the equivalent modeling method derived in this
study meets the accuracy requirements of the analysis in the dynamic analysis of the
semicircular honeycomb sandwich structure, and the modal characteristics of the sandwich
structure can be well preserved. At the same time, it can be seen that using the equivalent
modeling method proposed in this study, the calculated fundamental frequency data of the
first-order modal are slightly smaller than those of the fine modeling method, indicating
that the equivalent modeling method deduced in this study weakens the stiffness of the
semicircular honeycomb sandwich structure to a certain extent.

In addition, in the simulation analysis, when using the equivalent modeling method
proposed in this study to analyze the statics and the first mode, the calculation process
(CPU time) is only 2 s, which is much less than the 10 s of the fine modeling method. It
can be seen that the equivalent modeling method proposed in this study has significant
advantages in computational efficiency.

4. Analysis of Window Component and Verification of the Flexible Support Structure

In the actual working process of the hypersonic remote sensor, the strong interaction
between the outer surface of the optical window and the air flow generates aerodynamic
heat, and the temperature of the outer surface of the window increases sharply, resulting
in the nonlinear temperature gradient of the axial and radial direction of the window
glass, causing deformation of the window glass and the supporting elements [24,25].
Due to the mismatch of the thermal expansion coefficients, the window produces contact
stress, which directly leads to a change in the internal and external surface shapes of the
window. The double-layer semicircular honeycomb sandwich flexible support structure
can effectively reduce the contact thermal stress, and ensure the wave aberration accuracy
of the window transmission optical path difference and the optical performance of the
remote sensor system.

In this section, based on the ABAQUS finite element software, the thermal-mechanical
coupling simulation analysis of the window assembly with flexible support structure is
performed, and the deformation data of the inner and outer surfaces of the window are
obtained. A Zernike polynomial is used to fit the data as the base function. The Zernike
polynomial coefficients are substituted into the optical analysis software ZEMAX to analyze
the image quality, and the wave aberration of the transmitted optical path difference and
the MTF value of the optical system are used to evaluate the effectiveness of the double-
layer semicircular honeycomb flexible support structure to attenuate the additional thermal
stress of the window.

The actual optical window component adopts a single-layer window structure with
the advantages of a simple structure, small size, and light weight, as shown in Figure 7.
The window glass is made of sapphire material with low density, high elastic modulus,
and high thermal conductivity, surrounded by a high temperature elastic alloy honeycomb
sandwich flexible support structure, and finally the window glass and supporting structure
are fixed on the C/SiC composite frame with a pressing plate [26,27].

Figure 7. Schematic diagram of optical window assembly.
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4.1. Optical-Mechanical Thermal Integration Analysis

The window components with equivalent flexible support structure are imported into
the ABAQUS software, and the heat flux on the outer surface of the window glass obtained
by aerodynamic thermal analysis is taken as the working condition of thermal analysis.
The window temperature field distribution cloud diagram and the thermal deformation
displacement cloud diagram when the temperature difference between the inside and
outside of the window glass is maximum are obtained, as shown in Figure 8. According to
Figure 8a, the maximum temperature of the outer surface of the window glass will reach
800 ◦C, and the middle temperature is higher than the edge temperature. As can be seen
from Figure 8b, the deformation in the middle of the window glass is greater than that at
the edge, and the window changes from a plane to a curved surface and bulges outward.

Figure 8. The thermal-structural coupled analysis of the window components: (a) Cloud diagram
of the window glass temperature distribution; (b) deformation displacement cloud diagram of the
window glass (the direction of window light is Z direction).

According to the simulation results of the window glass deformation, the wave aber-
ration values of transmitted optical path difference of each simulation point are calculated,
the Zernike polynomials on the inside and outside surfaces of the window glass are fitted
by the least square method, the coefficients of the first 24 Zernike polynomials are obtained
(as shown in Figure 9), and the rigid body displacement is separated (as shown in Table 5).
The transmission optical path difference wave aberration values (PV, RMS) of the window
glass caused by honeycomb flexible support structure with different relative thicknesses
are calculated, as shown in Figure 10.

We can see that with a decrease in the relative thickness of the honeycomb support
structure, the aberration of the transmitted optical path of the window glass gradually
decreases. Due to the large temperature difference between the inner and outer surfaces
of the window glass, the displacement of the rigid body in the Z direction is relatively
large, and the displacement of the rigid body in the other directions is relatively small.
When the relative thickness is 0.100, the transmitted optical path difference RMS = 0.1555 λ,
which is less than λ/6 (λ = 632.8 nm), which meets the design requirements of the optical
system, indicating that the flexible support structure has a good effect on the thermal stress
attenuation of the window.
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Figure 9. Zernike coefficients of the first 24 items of the inner and outer surface shape of the window glass with honeycomb
structure of different relative thicknesses: (a) Inner surface; (b) outer surface.

Table 5. Rigid body displacement of the window glass with different relative thicknesses of honeycomb structure.

t/R ∆ x/(mm) ∆ y/(mm) ∆ z/(mm) θx/(◦) θy/(◦) θz/(◦)

0.100 9.86185 × 10−7 1.79315 × 10−7 6.02882 × 10−1 7.95334 × 10−8 −6.93202 × 10−8 −8.20848 × 10−9

0.075 8.64046 × 10−7 1.37336 × 10−7 1.65878 × 10−1 1.52910 × 10−8 −9.39628 × 10−9 −1.35976 × 10−8

0.067 1.42106 × 10−6 1.44291 × 10−7 4.97727 × 10−1 7.33628 × 10−8 −8.91852 × 10−8 2.36528 × 10−8

0.060 1.56238 × 10−6 1.44926 × 10−7 4.66811 × 10−1 8.63635 × 10−8 −1.04217 × 10−7 3.21196 × 10−8

0.050 1.36385 × 10−6 1.75820 × 10−7 4.17189 × 10−1 8.58669 × 10−8 −1.06514 × 10−7 8.96065 × 10−9

0.040 1.16356 × 10−6 3.33384 × 10−7 3.72572 × 10−1 1.48376 × 10−7 −1.21973 × 10−7 −6.45510 × 10−8

Figure 10. Wave aberration of the transmitted optical path difference of the window glass with honeycomb structure of
different relative thicknesses: (a) RMS value of transmitted optical path difference; (b) PV value of transmitted optical
path difference.
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4.2. Optical Performance Evaluation

The Zernike coefficient and rigid body displacement caused by thermal deformation
of window glass are assigned to the optical system, and the influence of flexible support
structures with different relative thicknesses on the imaging performance of optical window
under thermal mechanical coupling is calculated. Figure 11 shows the MTF values of the
three fields of view at a frequency of 63 cycle/mm before and after the introduction of the
deformed window glass in the optical system.

Figure 11. Cont.
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Figure 11. MTF values of the three fields of view before and after the additional deformation window
of the optical system at a frequency of 63 cycle/mm: (a) Axial field of view; (b) 0.7 field of view; (c)
full field of view.

As can be seen from Figure 11, after the introduction of deformed window glass, the
MTF values of the three fields of view slightly increase or decrease, but the range of change
is very small, and the maximum decrease of MTF is less than 0.073, which meets the design
requirements of the optical system. It is also noted that with a decrease in the relative
thickness, the change of MTF value decreases gradually, indicating that the honeycomb
flexible support structure has a good effect on the thermal stress release of window glass.
According to the analysis of optical performance, the double-layer semicircular honeycomb
flexible support structure has little influence on the deformation of the window glass,
which can be approximated as a positive lens with very small focal power outside the cabin.
After introducing it into the optical system, it causes the aberration of some fields of view
to increase, but at the same time it may also compensate the aberration in some directions
of other fields of view, so that the MTF value shows a slight change trend of increasing
and decreasing in different fields of view after the introduction of deformed window glass.
However, due to the small change value, the image quality of the optical system does not
change significantly after focusing, which meets the image quality requirements of the
remote sensor.

5. Discussion

According to the analysis of the above six groups of honeycomb structures with
different relative thicknesses, from the perspective of the static analysis, when the relative
thickness of the honeycomb structure decreases, the elastic modulus of the honeycomb
sandwich decreases, the flexibility increases, and the ability to attenuate the complex
thermal stress of window glass becomes stronger. However, from the perspective of
the dynamic analysis, the smaller the relative thickness of the honeycomb structure, the
lower the density of the honeycomb core, which leads to a reduction in the stiffness
of the supporting structure, insufficient bearing capacity, and a decrease in the natural
frequency. In severe cases, the aerial remote sensor will not be able to image, and even
destroys the window components. From the perspective of the imaging performance
analysis, when the relative thickness of the honeycomb structure decreases, the smaller
the influence of the support structure on the wave aberration of the transmission optical
path difference of the window glass, the better the imaging quality of the remote sensor.
Therefore, the honeycomb sandwich support structure needs to have good deformability
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to reduce the thermal stress of the window, and also needs to have a certain bearing
capacity. According to the above simulation results, the vibration frequency of aircraft,
and the overall size requirements of window components, we choose the size parameter of
double-layer semicircular honeycomb with a relative thickness of 0.05 as the best flexible
support structure. At this time, after the window glass is deformed, the standard Zernike
fitting residual surface diagram of the inner and outer surfaces to remove the rigid body
displacement is shown in Figure 12, and the wave aberration of the transmitted optical
path difference of the window glass is shown in Figure 13. As can be seen from Figure 13,
the temperature field and the stress field cause the transmitted optical path difference of
the window glass to form a slope on four corners, and the optical path difference at the
center of the window is less than that at the edge.

Figure 12. Standard Zernike phase fitting residual surface shape of the inner and outer surfaces after the window glass is
deformed: (a) The inner surface; (b) the outer surface.

Figure 13. Residual surface shape of the transmitted optical path difference of window glass.

The spatial frequency of modulation transfer function (MTF) of the optical system
before and after window glass deformation is 0.59 and 0.55 at 63 cycle/mm, respectively,
as shown in Figure 14. The spatial frequency of the optical system modulation transfer
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function (MTF) of the deformed window glass after system focusing is 0.58 at 63 cycles/mm,
as shown in Figure 15. Therefore, the image quality of the optical system before and after
the introduction of deformable window glass has no obvious change after focusing, which
meets the requirements of image quality.

Figure 14. MTF curves of the optical system: (a) All fields without deformation; (b) all fields based on deformation effect.

Figure 15. MTF curves of the optical system after focusing.

6. Conclusions

Because the flight speed of aerospace vehicles has increased significantly, the imaging
performance requirements of photoelectric payloads have also become higher and higher.
Aiming at the optical window of a hypersonic remote sensor, in this study, a method is
proposed for adding a double-layer semicircular honeycomb sandwich flexible support
structure between a window glass and a frame, which solves the problem that the optical
system is unable to image due to thermal deformation of the window glass under ultra-high
temperature conditions. The following conclusions can be drawn from the analysis results:

(1) On the basis of the element cell model, the in-plane elastic parameters of the equivalent
model of double-layer semicircular honeycomb are derived analytically, and verified
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numerically by finite element analysis. From the perspective of statics, comparing the
relative thickness of six groups of different honeycomb sandwiches, the relative error
of the static deformation of the theoretical fine model and the equivalent model is less
than 2%. From the perspective of dynamics, the relative errors of the first-order modal
fundamental frequency of the fine model and the equivalent model are both less than
4.01%. The correctness of the theoretical expression of the equivalent model is verified.
At the same time, it is pointed out that as the relative thickness decreases, the elastic
modulus and Poisson’s ratio in the plane of the semicircular honeycomb sandwich
are both reduced. The elastic modulus and Poisson’s ratio in the two main directions
of the semicircular honeycomb sandwich are the same, that is, it is an isotropic plane
in the X-Y plane.

(2) On the basis of the integrated analysis of the optical window components with flexible
supported microstructure with honeycomb sandwich, the thermal deformation data
of the inner and outer surface of the window glass were obtained according to the heat
flux of the outer surface of the window as the thermal boundary condition. According
to a Zernike polynomial, the least square method was used to fit the deformation data
to determine the coefficient of the Zernike polynomial, which was substituted into the
optical software ZEMAX to analyze the imaging performance. It is calculated that the
wave aberration PV and RMS values of the transmitted optical path difference of the
optical window caused by the honeycomb flexible support structure with different
relative thicknesses are less than 0.665 λ and 0.156 λ (λ = 632.8 nm), which meets
the system design requirements. The MTF values of each field of view of the optical
system after the introduction of window glass deformation are greater than 0.55
(63 cycle/mm), and the decreases MTF values are less than 0.073, which meets the
design requirements of the optical system. Finally, the flexible support structure with
relative thickness of 0.05 is discussed, and the MTF value of each field of view of
the deformed window glass after focusing by the optical system is greater than 0.58
(63 cycle/mm), and the image quality of the aerial remote sensor has no significant
change, which meets the imaging requirements.

The design and analysis results show that the double-layer semicircular honeycomb
sandwich flexible support microstructure proposed in this study, which is applied to
the support structure design of a hypersonic remote sensor optical window, effectively
reduces the thermal stress and deformation of window glass, ensures the imaging quality
of photoelectric load, and provides a new solution for the support structure design of
a hypersonic optical window.
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