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Abstract: Stereo matching networks based on deep learning are widely developed and can obtain
excellent disparity estimation. We present a new end-to-end fast deep learning stereo matching
network in this work that aims to determine the corresponding disparity from two stereo image
pairs. We extract the characteristics of the low-resolution feature images using the stacked hourglass
structure feature extractor and build a multi-level detailed cost volume. We also use the edge of the
left image to guide disparity optimization and sub-sample with the low-resolution data, ensuring
excellent accuracy and speed at the same time. Furthermore, we design a multi-cross attention model
for binocular stereo matching to improve the matching accuracy and achieve end-to-end disparity
regression effectively. We evaluate our network on Scene Flow, KITTI2012, and KITTI2015 datasets,
and the experimental results show that the speed and accuracy of our method are excellent.

Keywords: stereo matching; depth image; computer vision; cost volume; disparity regression

1. Introduction

The binocular camera plays a significant role in autonomous driving, target detection,
and other fields. It has a series of advantages such as a much lower price than LIDAR, better
performance, and fewer errors [1,2]. We can use the binocular camera to achieve excellent
depth estimation from a pair of corrected left and right images. Then we can estimate the
3D geometry to carry out the next stage of 3D target recognition, 3D reconstruction, and
other tasks [3]. The core of stereo vision is stereo matching technology, which is a classic
in computer vision. It is a difficult and vital step to estimate the depth by calculating the
relationship between the left and right images to pixels [4].

The purpose of stereo matching is to find the corresponding pixels from the binocular
images [5]. The pixel point (x, y) is in the left image; the same pixel point is (x − d, y) in
the right. Through disparity d, the depth D of the pixel is fB/d, where f is the focal length
of the camera and B is the baseline distance between the center of two cameras [6,7].

For many years, people have applied deep learning to stereo matching [8]. Using
the network to learn parameters and predict the disparity image, people continue to find
and solve problems in stereo matching [9]. In stereo vision, there is sometimes the loss of
texture details, periodically repeated features, and other conditions in flat areas because of
the effects of camera shooting and ambient light. If not effectively processed, it is easy to
produce wrong matching [10,11]. At the same time, to ensure the accuracy of the case, we
should reduce the complexity of the implementation and calculation as far as possible.

In our research, we adopt some ideas from GA-Net [12] and Stereo-Net [13]. However,
a large amount of 3D convolution and complex optimization in GA-net lead to slow
speed, and the parallax estimation of Stereo-Net is not effective enough to know the
rich 3D information. By contrast, our network is faster and more accurate. As shown in
Figures 1 and 2, we design an end-to-end stereo matching network (MCA-Net) and achieve
effective results. Our network advantages are as follows:
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(1) We designed a multi-cross attention module and added it to the feature extractor, and
we increased the ability of feature extraction and improved the matching accuracy.

(2) Compared to the single-level construction method, we used a multi-level cost volume
construction and achieved a better disparity estimation.

(3) Due to the high complexity and the time consumption of 3D convolutions, we
improved the feature extraction network of the stacked hourglass. We used low-
resolution features to construct the cost volume, which reduces the amount of com-
puting data of the 3D convolution network and improves the speed significantly.
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Figure 1. Visualization of disparity prediction results using our network on Scene Flow dataset. The
first column is RGB images, the second column is disparity images estimated by our method, and the
last column is the pseudo-color disparity images for showing them more clearly.

2. Related Work

Many traditional classical stereo matching methods and stereo matching networks
based on deep learning have been proposed for many years [13,14]. The stereo matching
networks include the two-step stereo matching network and the end-to-end matching
network without post-processing.

Two-step network: The researchers worked on the same idea as the steps of traditional
methods to separate stereo matching from parallax optimization and added post-processing
after matching by the neural network [15]. Classic stereo matching network MC-CNN [16]
uses pixel matching and the shared weight dual network to extract image features to predict
another view similar to the corresponding image block at the center of each pixel. We
obtain the estimated disparity images after aggregating and calculating the cost difference.
Content CNN [17] is similar to MC-CNN [16], which only loses a small amount of accuracy
but can speed up the calculation of binocular disparity images. Traditional SGM [18] is
used in practice widely. We obtain excellent disparity estimation by semi-global aggrega-
tion. Therefore, based on traditional SGM [18], SGM-Net [19] uses a convolutional neural
network to calculate penalty terms and achieves a better effect. On the other hand, some
researchers proposed new post-processing methods. TDSR [20] uses hierarchical segmen-
tation by the waterfall and robust regression models to propagating disparity values as
a post-processing step for any stereo-matching algorithm. Post-processing is a necessary
step, but these networks have almost been replaced by end-to-end networks.

End-to-end network: Because there are many steps in a two-step network and the
method is complicated, many end-to-end deep learning matching networks have since
sprung up. These networks add post-processing steps to the network, as does our network.
For the first time, GC-Net [21] extended 3D features to 4D features and extracted context
information from matching cost volume by 3D convolution on the disparity dimension
without additional post-processing or regularization operations, and it obtained end-to-end
sub-pixel accuracy estimation. Based on the cost volume, the Spatial Pyramid Pooling
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module and stacked hourglass 3D convolutional layer are added into PSM-Net [22] to
improve the prediction effect. There were many efforts and ideas proposed by researchers
to improve accuracy. Edge-Stereo [23] breaks the current situation that the end-to-end
binomial vision network extended on the disparity aggregation network and proposed
a new network that uses the contextual information pyramid and multi-task learning
for prediction. Seg-Stereo [24] adds a semantic segmentation network to integrate the
segmented semantic features with feature graphs, making full use of image structural
information to improve the prediction accuracy of disparity images. They performed
well in both unsupervised and supervised modes. Deep Pruner [25] is different from
other complete cost spaces constructed from zero to the maximum disparity range. Patch
Match [26] closes the matching search range of each pixel according to the preliminary
disparity calculated in advance. In this way, we obtain a sparse cost space using the image-
guided optimization module to improve the performance. The cost space obtained through
adaptive pruning contains fewer parameters and is more efficient in cost aggregation.
GA-Net [12] takes the weight of SGM [18] as part of the network prediction, learns the
custom parameters, and uses the optimized aggregation network to improve the accuracy
of disparity estimation. CSPN [27] can not only predict depth but also complete depth. We
obtain more accurate and precise results by optimizing the relationship between each point
and the prediction of adjacent points. Based on the linear model of the cyclic neural network,
SDR [28] refines the disparity plane by learning the correlation matrix between adjacent
pixels and using global and local two-level optimization. SSPCV-NET [29] improves the
aggregation cost by using multi-scale feature information to form a pyramid cost in the end-
to-end neural network. With the development of self-supervised learning, PV Stereo [30]
builds multi-scale cost measurements and updates disparity estimation at high resolution
by using cyclic units and generates reliable semi-density disparity images that supervise
training and perform self-supervised stereo matching.

In stereo matching methods, the difficult difficulty is the mutual exclusion of accuracy
and speed. With the 3D convolution was proposed by GC-Net, most stereo matching
networks have used it to achieve better disparity estimation. Generally, the 3D convolution
layers help to obtain a more detailed feature extraction. However, it has paid a high time
cost, and the real-time cannot be satisfied. Two ideas are most common to improve the
running speed: one is to find an alternative to 3D convolution, and the other is to reduce
the resolution to reduce the calculation.

AA-Net [31] uses the same scale aggregation module (ISA) and the cross-scale aggre-
gation module (CSA) to replace the 3D convolution commonly used in the stereo matching
model. It uses the new multi-scale 2D convolutions instead of 3D convolution to reduce
dimensions and improve speed. What is more, Stereo-Net [13] reduced the calculation
amount and the running time by reducing the input resolution. It has a lightweight struc-
ture, fewer network parameters, and less training time. The relatively rough disparity
uses the low-resolution input after the sub-sampling, and the residual network is graded
and optimized by adding the pixel information of the left and right original images. We
combined the two methods and put forward the new method to balance between precision
and speed, reducing the number of 3D convolution layers as far as possible. We used the
multi-cross attention module to extract features better and the multi-level cost volume to
integrate features better. At the same time, we reduced the resolution of the input features
and used edge-guided refinement to improve resolution and obtain better results without
more 3D convolution layers. Compared with other networks, our network has advantages
in the balance between precision and speed.

3. Network Architecture

In a neural network, the feature extraction layer can obtain information from the
original image and is a vital step in network structure. The more abundant features, the
better the effect of network learning will be. The stackable hourglass feature extractor
in the classical Stereo matching network GA-Net [12] is effective. However, due to the
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complexity of its network structure, although it maintains a high accuracy, its speed is
slow and cannot meet the demand of real-time performance. The other classical Stereo-
Net [13] is a real-time high-speed matching network. The problem is that the speed of
3D convolution is low and can be solved by using guided up-sampling of low-resolution
disparity images effectively. However, it costs a loss of precision. As shown in Figure 2, we
built an end-to-end stereo matching network. The input and output are the RGB images
and the disparity images in the network. We set the stacked hourglass structure for feature
extraction, and the down-sampling can improve the speed of operation. The multi-cross
attention and the multi-level cost volume improve accuracy and offset the accuracy loss
caused by sub-sampling to obtain better disparity estimation.
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Figure 2. Our network structure. It consists of a feature extraction layer with multi-cross attention, multi-level cost volume
layer, 3D convolutional layer, and edge-guided optimization network. First, the input is the left and right matching image
pairs with the correction of the input pole line. The next layer is a stacked hourglass feature extractor that provides a
down-samping low-resolution feature image. The features of the binocular images are fully extracted by this layer with
shared weight [32], and two corresponding feature images of the binocular are obtained. At the same time, the purple part
is the multi-cross attention module, which is placed before the convolutional layer of the feature extractor to improve the
ability. Then we combine the left and the right feature images into a whole through a multi-level cost volume layer. The two
feature images form a multi-level cost volume of 96 channels to improve the accuracy. Next, the raw disparity predictions
are regressed by the cost volume through the 3D convolutional layer. Finally, we optimize the efficient disparity image by
the edge guidance of the RGB image through the optimization network.

3.1. Features Extraction

We used a stacked hourglass structure as the feature extractor. With the residual
network proposed, many feature extraction networks are made of multiple convolutional
layers. Compared with the ordinary network, the residual network has a promotion and
causes less loss of information. More information can be extracted through it. Thus, we
stacked the hourglass structure to make full use of the multi-scale features of different sizes
and different channel convolution kernels. It is utilized to extract characteristic information
of cyclical ways. At the same time, we connected the structure. We attached the copy of
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the same size and fusion to make full use of contexts, which increases the complexity and
obtains better scale information.

Our stacked hourglass feature extractor is shown in the green box in the upper
right corner of Figure 2. The image goes through layer-by-layer 2D convolution, and the
alternating process of down-sampling and up-sampling is carried out to form the shape
of an hourglass and stacks together. The number of channels also changes regularly with
the size in this process. The same number of channels and the similar-sized features at the
upper and lower ends of the hourglass are added together to form a residual structure.
Finally, a low-resolution feature image is sampled after completing feature extraction of
the image to realize low-resolution input of 3D convolution.

3.2. Multi-Cross Attention Module

The attention module works well for feature extraction [33,34]. In order to improve
the speed, our network uses low-resolution feature image input with eight times down-
sampling, which will lead to a loss of precision. Therefore, we designed a multi-cross
attention network to improve the capability of the feature extractor adequately. As men-
tioned in the CC-Net [35] literature, the cross-concern module for each pixel can collect
the context information of all pixels on its cross path, as shown in Figure 3. With further
looping operations, each pixel can eventually capture the image dependencies.
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Figure 3. Diagram of three approaches to attentional context aggregation. The white and blue grids
are different attention modules. The green grids are original feature images that changed through the
attention modules. (a) A common non-local block with a global feature aggregation [36]. For each
pixel, the aggregated result is obtained through intensive mapping with different weight allocations.
(b) A Criss-cross Attention block [35]. The different weights are assigned in the horizontal and
vertical directions serially. (c) A Multi-Cross Attention block that is different from (b). We adopted
the structure in horizontal and vertical directions in parallel and separately to aggregate features
more adequately. At the same time, we retained the residual connection to achieve a better feature
aggregation effect.

For the stereo matching process, we prefer the original information, because it is
closer to the real. Therefore, we designed multi-cross attention that is more suitable for
the matching network. Due to the pole that has been corrected before the stereo matching,
the matching pixels should be on the same horizontal line. At the same time, we still
needed the vertical features to integrate the context information fully because of possible
errors. Therefore, we used the horizontal and vertical intersecting attention modules to
deepen the extraction of detailed features. We extracted feature information several times
through multiple cycles in parallel, which is different from the sequential connection of
CC-Net [35]. We found the Multi-Cross Attention module does not reduce computational
effort compared to the Criss-Cross Attention module and showed the experimental results
in the later chapters that the speed of the two attention modules is similar. However, in
terms of structure, we expanded a new branch horizontally and replaced serial with the
parallel process, which achieved better results under the same time consumption. The
network structure is more concise and maintains the original context of the association.
The structure of our network is shown in Figure 4.

As shown in Figure 4, we construct a lightweight attention module that is memory-
friendly. “I is the input of the attention module, “K” is the auxiliary branch, “H ” is the
vertical branch, and “W” is the horizontal branch. The input of the module I ∈ <C×H×W is
regularized dimension to I ′ ∈ <Cγ×H×W by convolution, where γ is the co-efficient used
for dimension reduction. There are three branches, Hi ∈ <Cγ1×H×W , Ki ∈ <Cγ2×H×W , and
Wi ∈ <Cγ3×H×W , where γ1 = γ3. K is split and transposed into K1 ∈ <W×Cγ2×H and
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K2 ∈ <H×Cγ2×W. Then, we integrate Hi
1 and Wi

1 by similar matrix multiplication as follows
(Equation (1)):

Hi
1
〈
<W×H×H〉 = Hi

〈
<Cγ1×H×W

〉
× K1

〈
<W×Cγ2×H

〉
∞

Wi
1
〈
<H×W×W〉 = Wi

〈
<Cγ3×H×W

〉
× K1

〈
<W×Cγ2×H

〉 (1)

where Hi
1
〈
<W×H×H〉 is the resulting value of the first vertical branch of layer i whose size

is W × H × H. At the same time, Hi
〈
<Cγ1×H×W

〉
is the original value of the first vertical

branch of layer i whose size is Cγ1 × H ×W and K1

〈
<W×Cγ2×H

〉
is the original value of

the first auxiliary branch of layer i whose size is W × Cγ2 × H. The W branch is the same
as the H branch.

Continuing the deep processing, we obtained the horizontal and vertical characteristics
of the deep layer at i= 1, . . . , s. And s is the number of levels; we chose s = 1. Finally,
the characteristics of the two branches will increase dimension to the size of the original.
We received the final characteristics of attention weighting parameters I1 ∈ <C×H×W for
feature extraction.
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Figure 4. Our Multi-Cross attention module. We extracted features deeply in horizontal and vertical direction multi-cross.
We set the “H_attention” as the vertical direction, the “W_attention” as the horizontal direction, and the “K_attention”
as the auxiliary branch. The input eigenvector has height H, width W, and the number of channels C. With the gradual
enrichment of cross operations, the feature extraction is strengthened fully, and the superiority of attention weight is
gradually embodied. Finally, an efficient attention module is constructed with several multipliers and fusion operations in
horizontal and vertical directions. This process is illustrated in the upper left block diagram. The final output is the same
size as the input.
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3.3. Multi-Level Cost Volume

In the previous step, the feature images of the binocular image pairs can be obtained.
Because they are low-resolution features after the sub-sampling, the time consumed in
calculation is reduced. Next, we built the cost volume to fuse the left and the right feature
images extracted from the twin network. As shown in Figure 5, some other networks use
single feature combinations to connect the x, y characteristics. We can find the context
information fully, where x and y represent the features extracted from the left and right
images. Three build methods are shown from top to bottom in Figure 5. The first one is
to connect x and y directly according to the channel to get the simple fusion of the two
eigenvectors. This method is simple to implement and lacks less information. The second
is to use the winner-takes-all idea. The minimum disparity of Euclidean distance between
two eigenvectors is selected. To a certain extent, this approach can be close to the optimal
result, but the fault tolerance is very low, and some original information will be lost. The
last option uses the uniqueness of the stereo matching network and only finds the disparity
deviation in an image just along the polar. Therefore, we obtain more accurate disparity
information by constructing the cost volume using x − y from the left and right feature
images after learning the weights by sharing the twin networks.
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As mentioned in other research, asymmetry representation is usually well-realized, so
we used the multi-level information to construct the multi-level cost volume. By combining
the two effective construction modes, the context information is not lost and enriched,
and the prior knowledge of stereo matching is fully utilized to get closer to the optimal
disparity information, as is shown in Figure 6.
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Figure 6. Our Multi-Level Cost Volume. For the original information, there is a limit to the distribu-
tion method of retaining and removing. Through the experiment in the following chapters, we chose
the construction form in the yellow box on the right of the figure to build a multi-level cost volume
by combining the original x and y features and the differential fusion.

3.4. 3D Convolution

3D Convolution plays a vital role in stereo matching networks. It can directly learn
features of 4D cost volume, effectively avoiding the loss of information [36–38]. However,
3D convolutions cost a lot and take a lot of time. Therefore, we tried to minimize the use of
3D convolutions and used the above multi-level cost volume construction to reduce the
loss of information instead of using more 3D convolutions. Our network only uses six 3D
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convolutions. We ensured an excellent effect, reduced the consumption of computation,
and improved the speed.

3.5. Edge-Guided Refinement

An effective disparity optimization method is proposed in Stereo-Net [13]. The authors
fused the estimated low-resolution depth image with the original high-resolution color
image and improved the resolution of the disparity image through multiple guidance.
As a reference, the disparity image is also optimized by edge guidance in our network.
As shown in Figure 7, through the RGB images, we added detailed information to low-
resolution images layer by layer and added or subtracted inappropriate predicted values
from rough disparity images to achieve the modification of detailed information and
texture information. The disparity effect is improved.
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Figure 7. Our edge-guided refinement network. The RGB image is used to guide the 2D convolution
process of the raw disparity image with two layers, and the expansion convolution is used to enhance
the fusion effect. In this way, the fine disparity image is obtained in the end.

In the refinement network, we input the initial rough disparity image outputted by
3D convolution. We needed to realize up-sampling through guided optimization to change
the size of the disparity image to the size of the original image. During this process, the
expansion convolution and up-sampling overlap are used to form a pyramid. Different
scales of the original image are used to recover the information of different scales of
the prediction graph. The expansion co-efficient is set as 1, 2, 4, 8, 1, 1, without batch
normalization or activation. The output disparity is fused with the originally predicted
disparity to improve the effect gradually and restore the high-frequency details.

After 3D convolutions, we obtained the initial disparity images P′ ∈ <1×H×W whose
size is 1× H ×W. We refined the edges of the initial disparity images by guiding the RGB
image I ∈ <3×H×W whose size is 3× H ×W. The pixels in the detailed disparity images
P ∈ <1×H×W were obtained after refining by

P(xi, yi) = ψ(P′ (xi, yi), I(xi, yi)) (2)

where ψ is the fusion operation of images with two different numbers of channels. The re-
sults are better than the initial disparity images with iterations. xi and yi are the coordinate
value of pixels in the image pairs.
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3.6. Loss Function

We trained our deep learning network with smooth Huber loss (L1 loss) in a fully
supervised manner. Smoothed L1 loss is robust in the position of disparity discontinuity.
Compared with L2 loss, Smoothed L1 loss can reduce the noisy sensitivity and weaken the
influence of outliers effectively. It is used as the basis for loss in deep learning networks
widely. Smooth L1 loss is as follows:

SmoothL1 =

{
0.5x2 |x| < 1
|x| − 0.5 |x| ≥ 1

(3)

The loss function of each pixel is as follows:

Li =
k

∑
k=1

SmoothL1(γ(dk
i − d̂i)) (4)

where γ is the robust co-efficient, i is the serial number, and k is the number of iterations
of disparity optimization. The larger k is, the more times of guiding optimization are,
and the more detailed the disparity is. dk

i is the predicted disparity obtained after the
disparity optimization, and d̂i is the ground truth disparity corresponding to the same
pixel of dk

i . The difference value of the two is super-placed by the robust co-efficient to
form the whole loss function. Based on this, we continued to iterate and finally find the
optimal disparity estimation.

4. Experimental Evaluation

In this section, we test our performance on different data sets. Quantitative and
qualitative test results are used to measure the learning ability of our algorithm. We
introduce our experimental data platform in 4.1. In 4.2, we conduct ablation studies on our
multi-level cost volume and multi-cross attention modules. We use the direct training on
KITTI2015 in this section. In 4.3, we evaluate the accuracy and speed of our network on
Scene Flow, KITTI2012, and KITTI2015, respectively, by comparing other networks.

4.1. Dataset and Setup

We implemented our approach in Pytorch and using Adam (β1 = 0.9, β2 = 0.999) as
the optimizer. Pytorch is a deep learning framework. Adam is an optimization algorithm
that can iteratively update the weight of a neural network based on the training data. We
trained our model on 1 NVIDIA GPU with a batch size of 2. The learning rate starts at
0.001. When finetuning the model, the learning rate is 0.0001 after 300 epochs. For all
datasets, the input images are normalized with ImageNet mean and standard deviation
statistics. We kept these hardware parameters and software parameters of each training
and test experiment consistent and comparable with each other. We used random color
augmentation and vertical flipping and set the maximum disparity as 192 pixels.

Scene Flow [39]: A large-scale synthetic dataset containing three sub-sets, FlyingTh-
ings3D, Monkaa, and Driving; contains everyday objects flying along random 3D paths,
animated short films, and vehicular driving images similar to the KITTI dataset. Data sets
provide a complete disparity image as ground truth. There are 35,454 training images and
4370 test images in the data set, H = 540, and W = 960.

KITTI2012 [40]: A small dataset of real-world street-view related to automatic driving
obtained by lidar. It contains 194 pairs of stereo images with ground truth for training and
195 pairs of stereo images without ground truth for testing, H = 376, and W = 1240. We
further divided the 194 pairs of training set data into 160 pairs for training and 34 pairs for
validation to evaluate our training effectiveness.

KITTI2015 [41]: KITTI2015 is similar to KITTI2012 and is also a small data set of real-
world street views obtained by lidar related to autonomous driving. The dataset contains
200 pairs of stereo images with ground truth that can be used for training and 200 pairs of
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stereo images without ground truth for testing, H = 376, and W = 1240. We further divided
the 200 pairs of training set data into 160 pairs for training and 40 pairs for verification to
evaluate the effectiveness of our training. Due to the small amount of data, we first used
Scene Flow to train ten epochs and then used it as a pre-training model to finetune.

4.2. Ablation Experiments

In order to test the effectiveness of our multi-level cost volume, we proposed an
ablation study to compare the effects of conventional construction methods and our con-
struction methods on network results to prove our design choice. It is a vital idea for us.
We did not use the pre-training model and directly trained KITTI2015 without checkpoints.
Small data sets tend to over-fit, so using small data sets can effectively find the problem of
over-fitting synchronously. At the same time, we can quickly find whether the network
is effective at the initial stage of the experiment. We can quickly judge and analyze the
model through the first over-fitting location without further adjusting the learning rate.
The best experimental results of each network are chosen as the final results for mutual
comparison. In addition, we did not use low-resolution inputs to compare more obviously
in the ablation experiment. Therefore, our results in this section are slower but more
accurate than the experimental results in the following.

4.2.1. Multi-Level Cost Volume

We only changed the dimension and did not add other efficient modules in the
experiment. As shown in Table 1, there are four ways to construct cost volume. Dimension
32 (MCA Net-32) is x − y. Dimension 64 (MCA Net-64) is x and y. Dimension 96 (MCA
Net-96) is x, y and x − y. Dimension 128 (MCA Net-128) is x, y, x − y, and x + y. The
over-fitting position is the number of epochs in which the over-fitting phenomenon occurs
for the first time. EPE is the mean disparity error in pixels. Avg error rate is the average
percentage of the pixel whose EPE is more than one or three pixels. Run-time is the running
time of a single variable under our keep-consistent setting.

The experiment in Table 1 and Figure 8 shows that training KITTI2015 using the
32-dimensional construction method has no effect directly or temporarily, and it is weak in
extracting features from a small dataset. If there is a lack of a pre-training model, the feature
extraction ability is missing. The structure of x − y discards a lot of effective information,
so it makes it impossible to get results. Although there is only less loss in running time, the
64-dimensional construction quickly reaches over-fit and produces worse results. The 128-
dimensional construction not only slows downtime but also increases EPE and Avg Error
Rate values. Therefore, the 96-dimensional construction gives the best results with only
0.08s of extra time. Compared to the ordinary structure, its EPE decreased by about 0.3%,
and Avg Error Rate decreased by about 2.88% in all regions. Its EPE decreased by about
0.24%, and Avg Error Rate decreased by about 1.96% in non-occluded regions. At the same
time, the result shows that too many dimensions can weaken the effect. Our network builds
the 96-dimensions cost volume that increases contextual information without bringing
heavy redundancy and increasing the burden of the network.

Table 1. Multi-level cost volume ablation experiment on KITTI2015.

Model Over-Fitting
Location EPE(%) Avg Error Rate

(Threshold = 3) (%)
Run-Time

(s)

All Noc All Noc

MCA Net-32 - - - - - -
MCA Net-64 120 1.75 1.53 9.54 8.37 0.42
MCA Net-96 300 1.45 1.29 6.90 6.41 0.50

MCA Net-128 250 1.42 1.27 7.50 6.64 0.54



Sensors 2021, 21, 6016 12 of 16

Sensors 2021, 21, x FOR PEER REVIEW 12 of 16 
 

 

Table 1. Multi-level cost volume ablation experiment on KITTI2015. 

Model Over-Fitting 
Location 

EPE(%) Avg Error Rate 
(threshold = 3) (%) 

Run-Time 
(s) 

  All Noc All Noc  
MCA Net-32 - - - - - - 
MCA Net-64 120 1.75 1.53 9.54 8.37 0.42 
MCA Net-96 300 1.45 1.29 6.90 6.41 0.50 

MCA Net-128 250 1.42 1.27 7.50 6.64 0.54 

 
Figure 8. The rendering of the multi-level cost volume ablation experiment on KITTI2015. (a1) and 
(a2) are the ground truth, (b1) and (b2) are the result of the prediction of cost volume constructed 
in 32 dimensions, and (c1) and (c2) are in 96 dimensions, (d1) and (d2) are in 128 dimensions. As 
you can see, for the car in the left box, the shape in (b1) and (d1) is not fitting, and the car in (c1) is 
the similar shape. For the trunk in the right box, there are still unclear edges and target truncations 
in (b2) and(d2), the shape that best fits the true depth image in (c2). 

4.2.2. Multi-Cross Attention Module 
We set a single-variable ablation method to test the effectiveness of our multi-cross 

attention module. We used the network without adding multi-level cost volume to con-
duct experiments on the network structure with and without adding multi-cross attention 
module. In the same way as the previous experiment, we judged the location of over-
fitting and selected the best final results for comparison. 

The experiment in Table 2 and Figure 9 shows that our network can effectively en-
hance the ability of convolution to extract features. “-cut” means the model without any 
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Figure 8. The rendering of the multi-level cost volume ablation experiment on KITTI2015. (a1,a2) are
the ground truth, (b1,b2) are the result of the prediction of cost volume constructed in 32 dimensions,
and (c1,c2) are in 96 dimensions, (d1,d2) are in 128 dimensions. As you can see, for the car in the left
box, the shape in (b1,d1) is not fitting, and the car in (c1) is the similar shape. For the trunk in the
right box, there are still unclear edges and target truncations in (b2,d2), the shape that best fits the
true depth image in (c2).

4.2.2. Multi-Cross Attention Module

We set a single-variable ablation method to test the effectiveness of our multi-cross
attention module. We used the network without adding multi-level cost volume to conduct
experiments on the network structure with and without adding multi-cross attention
module. In the same way as the previous experiment, we judged the location of over-fitting
and selected the best final results for comparison.

The experiment in Table 2 and Figure 9 shows that our network can effectively enhance
the ability of convolution to extract features. “-cut” means the model without any attention
module. “-cca” means an attentional module in the original article, which gets poor results.
The run-time consumption is only less than 0.2% with our attention module, but the
results reduced the EPE by about 24% and the Avg Error Rate by about 19% than before
on KITTI2015.

Table 2. Multi-cross attention module ablation experiment on KITTI2015.

Model Over-Fitting
Location EPE (%) Avg Error Rate

(Threshold = 3) (%)
Run-Time

(s)

All Noc All Noc

MCA Net-cut 300 1.65 1.47 7.73 6.49 0.5049
MCA Net-cca 300 1.80 1.66 8.25 7.23 0.5132
MCA Net-mca 325 1.24 1.05 6.27 5.18 0.5050
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Figure 9. The results of the multi-cross attention module ablation experiment on KITTI2015. After
adding the MCA module, the edge details of the railing have been added, and the background and
foreground have become more distinct. At the same time, the shape radian of the car on the right
side is obtained more obviously. The yellow points are right points as well as the red points are error
points. The number of red points decreases after adding our module.

4.3. Results of Experiments

Scene Flow: There is a large amount of data in Scene Flow, and there is usually no
over-fitting problem in it. Therefore, the results of direct training of 10 epochs are compared
here with other networks. The results are shown in Table 3. Our network has a smaller
number of 3D convolutions than GA-NET-7, and the error rate is reduced by 0.79%. The
Avg Error Rate of our network is only 0.31% lower than GA-NET-11, but the number of 3D
convolutions is four fewer. We reduced the burden of the network effectively. Compared
to Stereo-Net, PSM-Nest, and GC-Net, the accuracy is significantly higher.

Table 3. Test results on Scene Flow.

Model Avg Error Rate (Threshold = 1) (%) Num of 3D Conv Layers

PSM-Net [22] 12.10 25
GC-Net [21] 15.60 19

GA-Net-11 [12] 10.80 11
GA-Net-7 [12] 11.90 7
Our MCA Net 11.11 6
Stereo-Net [13] 41.12 4

KITTI2012 and KITTI2015: There are only 160 pieces of training data here, so after
training the Scene Flow ten times, we took the weight as the pre-training model, fine-tuned
KITTI2015 and KITTI2012, and compared the obtained results with other network results.
The results are shown in Table 4. The error rate is not at a minimum, but our network
uses the minimum amount of 3D convolution, and the effect is close to that of a network
with a lot of 3D convolution with less running time. Compared with Stereo-Net, the Avg
Error Rate is reduced significantly. Compared to GC-Net, our network not only reduces
the number of 3D convolutions by more than a third but also reduces the time by half.
Compared to MC-CNN, our network is faster and better. Although the accuracy of our
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network decreased by approximately less than 0.2%, the speed increased by half compared
to GA-Net-15 and 70% compared to SSPCV-Net.

The experiment in Tables 3 and 4 shows that our network can keep the accuracy
accurate and ensure the speed is efficient.

Table 4. Test results on KITTI2012 and KITTI 2015.

Model Num of 3D
Conv Layers

Avg Error Rate
(Threshold = 3) (%) Run-Time(s)

All Noc

2012 2015 2012 2015

MC-CNN [16] - 3.63 3.88 2.43 3.33 67
GC-Net [21] 19 2.30 2.67 1.77 2.45 0.9

SSPCV-Net [29] - 1.90 2.11 1.47 1.91 0.9
GA-Net-15 [12] 15 1.80 1.93 1.36 1.73 1.5
Our MCA Net 6 1.96 2.05 1.53 1.85 0.45
Stereo-Net [13] 4 6.02 4.83 4.91 4.30 0.015

Figure 10 shows that our network works well for a wide variety of regions. There
is little similarity between the pixels in low texture regions, but we can still estimate the
image effectively. We can achieve flat surfaces without spots in flat regions and estimate the
approximate contour in occluded regions. For the discontinuous region, we can estimate
the texture of the object clearly.

Sensors 2021, 21, x FOR PEER REVIEW 14 of 16 
 

 

our network decreased by approximately less than 0.2%, the speed increased by half com-
pared to GA-Net-15 and 70% compared to SSPCV-Net.  

The experiment in Tables 3 and 4 shows that our network can keep the accuracy ac-
curate and ensure the speed is efficient. 

Table 4. Test results on KITTI2012 and KITTI 2015. 

Model 
Num of 3D Conv 

Layers 
Avg Error Rate 

(threshold = 3) (%) Run-Time(s) 

  All Noc  
  2012 2015 2012 2015  

MC-CNN [16]  - 3.63 3.88 2.43 3.33 67 
GC-Net [21]  19 2.30 2.67 1.77 2.45 0.9 

SSPCV-Net [29]  - 1.90 2.11 1.47 1.91 0.9 
GA-Net-15 [12]  15 1.80 1.93 1.36 1.73 1.5 
Our MCA Net 6 1.96 2.05 1.53 1.85 0.45 
Stereo-Net [13] 4 6.02 4.83 4.91 4.30 0.015 

Figure 10 shows that our network works well for a wide variety of regions. There is 
little similarity between the pixels in low texture regions, but we can still estimate the 
image effectively. We can achieve flat surfaces without spots in flat regions and estimate 
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5. Conclusions

We designed an efficient real-time end-to-end stereo matching network. In addition
to the difficulties of occlusion areas, low textured regions, etc., the typical problem is the
mutual exclusion of precision and speed. Three-dimensional convolution is beneficial to
improve the effect, but it has more loss in speed. Therefore, we proposed our network to
reduce the number of 3D convolutions. At the same time, we adopted lower resolution
feature image input to reduce the computational amount to improve the speed. In order to
maintain accuracy, we added a multi-cross attention module into the specific characteristic
of the hourglass extractor and used a multi-level cost volume. Furthermore, the thin
edge-guided network structure fills in the detailed information and improves the accuracy
of the disparity regression. Compared with other networks, the speed and accuracy of our
network are both higher, and the effectiveness of the network is proved by our experiments.
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