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Abstract: Similarity learning using deep convolutional neural networks has been applied extensively
in solving computer vision problems. This attraction is supported by its success in one-shot and zero-
shot classification applications. The advances in similarity learning are essential for smaller datasets
or datasets in which few class labels exist per class such as wildlife re-identification. Improving the
performance of similarity learning models comes with developing new sampling techniques and
designing loss functions better suited to training similarity in neural networks. However, the impact
of these advances is tested on larger datasets, with limited attention given to smaller imbalanced
datasets such as those found in unique wildlife re-identification. To this end, we test the advances in
loss functions for similarity learning on several animal re-identification tasks. We add two new public
datasets, Nyala and Lions, to the challenge of animal re-identification. Our results are state of the art
on all public datasets tested except Pandas. The achieved Top-1 Recall is 94.8% on the Zebra dataset,
72.3% on the Nyala dataset, 79.7% on the Chimps dataset and, on the Tiger dataset, it is 88.9%. For the
Lion dataset, we set a new benchmark at 94.8%. We find that the best performing loss function across
all datasets is generally the triplet loss; however, there is only a marginal improvement compared to
the performance achieved by Proxy-NCA models. We demonstrate that no single neural network
architecture combined with a loss function is best suited for all datasets, although VGG-11 may
be the most robust first choice. Our results highlight the need for broader experimentation and
exploration of loss functions and neural network architecture for the more challenging task, over
classical benchmarks, of wildlife re-identification.

Keywords: Proxy-NCA; similarity learning; triplet-loss; semi-hard negative mining

1. Introduction

Wildlife monitoring and re-identification have evolved from capture-recapture, radio
frequency identification to image-based automated re-identification using animal biometric
features. Capture-and-recapture was dominant in the early to late 1990s when population
estimation experiments extended over a year; first, animals were captured and marked
then recaptured periodically to obtain a count [1]. Capture-recapture poses challenges
where animal/human confrontation is unnecessary when the studies involve animals such
as Lions. Ariff and Ismail [2] state that the RFIDs technology emerged as an alternative
since using RFIDs removes the need to recapture. Individuals can, as a result, be identified
from a distance. However, Schacter and Jones [3] discuss that implanting RFID tags alters
the physiology and behaviour of the host animal. These behavioural changes can lead
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to ill-health and other effects that negatively impact the conservation of wild animals.
Further, RFIDs have high costs associated with the deployment and maintenance of these
systems [4]. Recent studies aim to replace RFID technologies with image-based biometric
systems [5].

Animal biometric re-identification using images originated in domesticated animal
applications and has gradually transitioned towards wild animal species [6]. Research in
image-based biometric re-identification of animals was prompted by recent advances in
human biometric projects using deep neural networks [7]. However, often images of wild
animals are occluded by tree branches, contain background or are intentionally camou-
flaged [8]. The work of Verma and Gupta [9] shows that the deep neural networks can
detect the animal existence in an image in what is termed animal background verification.

The era of image-based biometric re-identification is dominated by a search for better
neural network architectures, better parameters, and better approaches ranging from deep
neural networks for classification to deep neural networks for similarly learning, with the
latter being the main focus of recent research. Deep neural networks for similarity learning
involve selecting pair/triplet sampling techniques, ranking loss functions, and model
evaluation metrics. However, these approaches are often evaluated on larger datasets
with thousands of data points and tens of instances per individuals/class, all relatively
well-balanced [10,11]. As a result, there remains a gap in knowledge concerning the efficacy
of the increased complexity of recently proposed methods on smaller unbalanced datasets
with fewer instances per class. The survey by Kaya and Bilge [12] depicts a summary
of these advances in similarity learning and discusses varying model performances on
different datasets.

The current research investigates how different design choices in deep similarity
learning affect model performance on fine-grained biometric re-identification tasks in wild
animals. Specifically, the current research focuses on comparing recent advances in loss
functions and neural network architecture. The models are evaluated using Recall@1 and
mean average precision at R (MAP@R) [13]. Our main contribution is to demonstrate that
there is no single neural network architecture combined with a loss function that is best
suited for animal re-identification. In particular, we:

• highlight the need for increased research into loss functions and neural network
architecture specifically for wildlife re-identification;

• improve on the state-of-the-art results in numerous animal re-identification tasks;
• contribute two new benchmark datasets with results;
• provide minor support for a choice of triplet loss with a VGG-11 backbone as an initial

architecture and loss.

2. Related Work
2.1. Animal Biometrics and Computer Vision

Wildlife biometric identifiers are distinctive and measurable characteristics used to
label and describe individual animals within the population. Animal biometrics is the
field that studies visual and behavioural features that discriminate species and individuals
within species in the animal kingdom [14]. Identifying species is a coarse-grained task
using mutual features across individuals, whereas individual re-identification is a fine-
grained task reliant on distinct features among individuals. Fine-grained re-identification
requires expert knowledge to distinguish between individuals in a species who might
share many mutual features [15]. According to Kühl and Burghardt [16], the features used
varies among species since a specific set of criteria needs to be met before features become
a biometric feature candidate, namely [17]:

Universality: all the individuals in the population must have such a feature;
Uniqueness: two or more individuals should have a different form of the same feature.
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The use of biometric re-identification through images to identify animals became
popular because there are few disturbances in animals’ natural habitat as the animal image
data are collected via camera traps. Computer vision experts researched different areas
in the systems developed for re-identification through images [18]. The broader areas of
research included improving model deployment flexibility and overall experiment design,
from the sampling of training data points up to more robust ways of evaluating model
performance.

2.2. Classification vs. Similarity Learning

According to Krizhevsky et al. [19], two main approaches employed in computer
vision using deep convolutional neural networks (DCNN) are classification and simi-
larity learning. Chen et al. [20] and Li et al. [21] demonstrate that (DCNN) produced
state-of-the-art performance in solving ImageNet data tasks. Systems that emerged from
classification-driven tasks were DeepID [22] which achieved an accuracy of 99.15% in
human re-identification using face images. In classification tasks, the top layers of the
DCNNs are responsible for assigning N-way class probabilities via an activation function,
namely: soft-max or sigmoid. Models trained for N-way classification cannot be used if
the number of classes in the dataset increases, retraining the model becomes necessary, this
reduces the real-world deployment of these models as training deep neural networks may
take several days [23]. As a result of this, there is an interest in finding ways of avoiding
costly retraining, and research on similarity learning models has gained traction [24].

2.3. Similarity Learning

Similarity learning does not include an output layer that assigns class probability [25].
Instead, a similarity models’ output layer produces an embedding of the input image into a
representative feature space. A similarity learning model has two identical neural networks
called Siamese neural networks. These networks are trained with back-propagation to
optimise a ranking loss function. Each neural network produces an embedding through
back-propagation, and the network’s weights are updated to minimise the loss [26].

A similarity learning model is trained to learn a representative feature vector of an
object from an image signal. The feature vector is generated so that dis/similar real-world
objects are dis/similar in the embedding space. The application of similarity learning
dates back to early 1990s where Bromley et al. [27] used similarity learning in automating
signature verification [28]. Schroff et al. [29] discussed the successes of similarity learning
in the re-identification of human beings using facial images. There are a significant number
of loss functions adopted in experiments for training similarity learning models, namely
contrastive loss, triplet loss, and Proxy-NCA [30–32].

2.4. Sampling Techniques for Pairwise Training

Schroff et al. [29] contended that for effective training of similarity learning models
on triplet loss, it is essential to select meaningful pairs/triplets. Several research efforts
produced the following pair mining schemes:

2.4.1. Hard Negative Mining

Hard negative mining is selecting image pairs; xa and xn that have most similar
embedding vectors, yet they belong to different classes C(xa) 6= C(xn):

xs = argmin
d

d( f (xa), f (x))x : C(xa) 6= C(x), (1)

where xs is the candidate sample, f is a function that produces the embedding vectors for
both xa and xn, and d is a distance measure [33]. The measure of how close two embedding
vectors are is based on the hyper-parameter: margin or α. Where a triplet selection is
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needed, it is expected that the distance between an anchor image and a positive image be
less than the distance between anchor image and negative image:

d( f ((xa, f (xp))) + α < d( f (xa, f (xn))). (2)

2.4.2. Semi-Hard Negative Mining

Schroff et al. [29] argue that the Hard-negative pair mining technique can lead to
bad generalisation and model collapse. An alternative to Hard-negative pair mining was
proposed; known as Semi-hard negative, where the distance between the anchor and
negative example images is allowed to lie within the margin α but still far from the distance
between positive and anchor examples Equation (3):

d( f ((xa, f (xp))) < d( f (xa, f (xn)). (3)

The semi-hard negative triplet mining and triplet loss minimisation produced superior
performance in human re-identification from face images [29]. Several additional mining
techniques include easy positive mining, easy negative mining, and hard positive mining.
Details on these techniques are discussed by Xuan et al. 2020 [33].

Previous works have shown that even with the best performing architecture, these
mining techniques and loss functions are not consistent across all datasets. The DenseNet-
201 neural network produced 75.5% for the chimpanzee dataset and 92.2% accuracy for the
octopus dataset [34]. Another observation is that researchers decide on different metrics
to measure their models’ performance; some report accuracy, others Recall@k, and some
mean average precision MAP, making it challenging to compare [12,35].

2.5. Challenges in Deep Metric Learning

Roth et al. [35] highlighted the challenges of comparing works in metric learning.
These challenges are a result of the varying objectives the researchers are addressing in
their work. Some researchers are seeking to improve the architecture setup [36], others
are aiming to obtain better objective functions (loss functions), while others introduce
new algorithms to solve problems. Kim et al. [37] proposed an efficient facial expression
recognition algorithm. However, it is difficult to ascertain that the improvements come
from the proposed algorithm or design choices, namely: feature extraction methods,
choice of optimiser function or the selected network architecture. The concerns expressed
by Musgrave et al. [13] are to the effect that experiments should be compared fairly by
isolating the contributing factor to the observed performance improvements. One way
to isolate the contributing factor is by applying the same algorithm to different neural
network architectures across various animals to confirm that improvements come from the
proposed factor.

Musgrave et al. [13] clarified that before metric learning projects claim superior perfor-
mance over previous works, there should be a fair comparison. This comparison includes
keeping all parameters the same to identify what contributes to the improvement. Com-
paring experiments where different neural network architectures and different model
parameters are used is seen as problematic. Roth et al. [35] and Schroff et al. [29] agree
that changing the embedding dimension size has an effect on model performance. Similar
observations were made by Wang et al. [38] where the embedding sizes were tuned to find
an optimum size that results in good performance while keeping all parameters of the
model the same. This discussion highlights that a simple change of the output embedding
size can create an unfair comparison if the objective was to compare, say, for instance,
loss functions.

Another area that can create unfair comparisons is selecting loss optimiser functions
and their hyper-parameters, such as the learning rate. It may not be incorrect to find a neural
network architecture, an optimiser, and hyper-parameters that yield good performance
in solving a task. However, a requirement should be transparency in the choices and
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omissions made by researchers. If future works make similar comparisons, the objectives
need to be stated, and all other design choices must be kept consistent.

2.6. Animal Biometrics Using Image Features

Deep metric learning has received significant attention for solving image-based prob-
lems. The gradual use of neural networks on wild animals datasets is reflected in the survey
conducted by Schneider et al. [39]. In the re-identification of animals, van Zyl et al. [8] used
deep metric learning to identify individuals in Zebra and Nyala datasets. ResNet-50 pre-
trained on ImageNet dataset was used as the DCNN backbone architecture, the contrastive
loss approach was employed to output embedding vectors of 40 dimensions. The training
pairs were randomly sampled. The datasets used in the experiments were comparatively
smaller: 820 Zebra data points of 84 classes (individuals), and the Nyala was 1945 data
points of 474 classes. Schneider et al. [34] presented a comparative study between AlexNet,
VGG-19, DenseNet-201, ResNet-152 and Inception-V3 in re-identification of Chimpanzees,
Whale, Fruitfly and Tiger. The mean average precision achieved by DenseNet-201 DCNN
trained on triplet loss in the Chimpanzees dataset was 93.2%.

Qiao et al. [40] used the Inception-V3 convolutional neural network to extract dis-
criminating features from images of farm cattle. A Long short term memory (LSTM) was
used to extract temporal features from video sequences that capture variations in gait
among other temporal features of an individual in the cattle dataset. The Inception-V3
was pre-trained on ImageNet. There were 8780 images of 41 individuals. The classification
layer was reduced to 41-dimensions, representing the number of classes in the dataset. The
loss function used during training was categorical cross-entropy loss.

Other researchers looked at the re-identification of individuals from Panda face images.
Hou et al. [41] collected and experimented on 25 individual Pandas each with about 4300
images. The total number of data points was 65,000. VGGNet was trained with the top
fully connected layer of 25-dimension, a soft-max activation function was used to assign
class probabilities. The reported metric is the accuracy of 95% for detecting individuals
from the test dataset and 78.7% on detecting unknown individuals in the dataset.

Korschens and Denzler [15] investigated the use of ResNet-50 neural network architec-
ture, pre-trained on ImageNet, in the re-identification of individuals in an elephant dataset.
Earlier layers of ResNet-50 were fine-tuned instead of fine-tuning the top layer. The features
generated by ResNet-50 were used to fit an SVM classifier model. The elephant dataset
had just over 2000 data points split into 75% training and 25% test set. The reported top-10
accuracy was 79%. Korschens and Denzler [15] did not investigate shallower variants of
the ResNet architecture or alternative convolutional neural network architectures.

Nepovinnykh et al. [42] adapted a Deeplab [20] model that was trained on triplet loss
to re-identify individuals in a ringed seals population. Deeplab was pre-trained on Pascal
VOC dataset [43], no pair sampling technique was discussed in the Deeplab system. The
top-5 accuracy reported was 87%. The accuracy reported was on a hold-out test data of
2000 points, with 46 individual seals.

The current work expands on previous wildlife re-identification by using a similarity
learning approach coupled with searching for optimal loss functions, sampling techniques,
and convolutional neural networks architecture. The specific species considered are indi-
viduals in a lion population and individuals in a Nyala population. The only prior study
to the authors’ knowledge working on a Lion dataset focused on annotating lion images to
depict the lion’s activity [44].

Further, we note the threat to the world population of Lions demands that conservation
efforts be enhanced [45]. Norouzzadeh et al. [46] stated that conservationists will leverage
automated counting and tracking animals to report on biodiversity reliably, with less
human effort and fewer disruptions on the habitat of wild animals.



Sensors 2021, 21, 6109 6 of 16

2.7. Loss Functions
2.7.1. Pairwise Loss

Contrastive loss is the original pairwise loss function that takes a pair of image samples,
and a class indicator function. The training follows a feed-forward with back propagation,
learning embedding vectors that maximise the embedding distance if the images are from
a different class, and minimises the distance if the images belong to the same class [30].

Triplet loss, an improvement on contrastive loss shown in Figure 1, takes three images:
an anchor image xa

i , a positive image xp
i and a negative image xn

i . The network learns to
minimise the Euclidean distance between the embedding of anchor and positive image,
and increases the distance between the anchor and negative image simultaneously by
minimising:

N

∑
i

⌈
‖ f (xa

i )− f
(

xp
i

)
‖2

2 − ‖ f (xa
i )− f (xn

i ) ‖2
2 +α, 0

⌉
, (4)

where α is a hyper-parameter forcing a minimum distance between images of different
class. A graphical view of the triplet loss training is given in Figure 1.
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The triplet loss and contrastive loss functions are regarded as pairwise losses
since they are computed considering the similarities of pairs. The triplet loss approach,
coupled with semi-hard pair sampling, resulted in state-of-the-art performance in human
face re-identification in experiments [29]. As reflected in subsection 2.6 triplet loss and
contrastive loss have been applied in animal re-identification tasks by Nepovinnykh et al.
2020 [42] and van Zyl et al. 2020 [8]. The pairwise loss functions demand that meaningful
pairs are found during the training phase. Due to the inefficiencies of pair-mining,
researchers explored ways to avoid mining training pairs by developing class-aware loss
functions [47].

2.7.2. Class Distribution based Loss

Wang and Isola 2020 [48] and Chen and Li 2020 [49] also acknowledged the limita-
tions of pairwise loss functions like contrastive loss, however instead of formulating a
completely new loss functions proposed a distribution aware variant of the contrastive
loss function.

Figure 1. Triplet Network with d the dimension of the embedding.

The triplet loss and contrastive loss functions are regarded as pairwise losses since
they are computed considering the similarities of pairs. The triplet loss approach, coupled
with semi-hard pair sampling, resulted in state-of-the-art performance in human face
re-identification in experiments [29]. As reflected in Section 2.6, triplet loss and contrastive
loss have been applied in animal re-identification tasks by Nepovinnykh et al. [42] and van
Zyl et al. [8]. The pairwise loss functions demand that meaningful pairs are found during
the training phase. Due to the inefficiencies of pair-mining, researchers explored ways to
avoid mining training pairs by developing class-aware loss functions [47].

2.7.2. Class Distribution Based Loss

Wang et al. [48] and Chen et al. [49] also acknowledged the limitations of pairwise
loss functions such as contrastive loss; however, instead of formulating a completely new
loss functions, they proposed a distribution aware variant of the contrastive loss function.
Rippel et al. [50] proposed a deviation from pairwise losses to what Wang et al. [38]
termed class aware losses. The proposed loss function, Magnet loss, considers class clusters
that are updated during training. These clusters capture intra-class variations but also
penalise inter-class overlaps. This approach ensures that clusters of the same class attract
and clusters of different classes repulse. This approach is different from the pairwise loss
functions that do not consider clusters but individual pairs. Rippel et al. [50] note that
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the Magnet loss function demands that partially pre-trained models be used; through
fine-tuning deeper layers as opposed to fine-tuning top layers.

A similar approach of deviating from pairwise losses to class-aware losses is discussed
by Movshovitz-Attias et al. [51]. An adaptation of NCA [52] is presented called Proxy-NCA,
with a deliberately constructed small set of data points P referred to as proxies to a point x.
The assumption is that a point in P is sufficiently close to x in terms of a distance d and as
such can be a substitute for x. This point called the proxy of x is given by:

p(x) = argmin
p

d(x, p), (5)

where p ∈ P. ε is the proxy approximation error and is given by the maximum error using
all data points in P:

ε = max d(x, p(x)). (6)

In the case where class labels are available, the proxies are selected using class labels.
The ranking loss is minimised amongst a data point anchor x with two proxies p(y), p(z)
where p(y) is a proxy of x with data points of the same label, and p(Z) is a proxy of the
data point with a different label from the anchor. In each training iteration, sample P
containing (x, y, Z) is selected from the training dataset, and

l = − log

(
exp(−d(x, p(y)))

∑p(z)∈p(Z) exp(−d(x, p(z)))

)
(7)

is minimised. This approach removes the need to mine training pairs. Proxy-NCA was
used with inception network architecture in image retrieval tasks for datasets: Cars196 [53]
and Stanford Products dataset, where better performance is observed with a margin
improvement of 21.7% when compared with the same model trained on triplet loss and
semi-hard mining technique [51]. Teh et al. [47] adapted the Proxy-NCA to Proxy-NCA++
which incorporates maximising a proxy probability instead of minimising a proxy distance.
Increasing the proxy probability has the same effect of attracting a data point to its positive
data points proxy-set and repels data points of different proxies. Teh et al. [47] further
proposed a scaling factor to be applied in the proxy loss function in order to scale the
distribution of probability across classes. We do not consider Proxy-NCA++ further in this
research.

2.8. Motivation

The emerging loss functions that are aimed at replacing the pairwise loss are tested
on larger datasets such as Stanford Cars [54] and CUB-200 [55]. The effectiveness of the
proposed class-aware loss functions remains unknown for smaller, highly unbalanced
datasets. We compare models trained on class-aware loss function with models trained on
traditional pairwise loss functions. To provide fair comparisons, we conducted experiments
taking into account the challenges identified in Section 2. We widen the scope of our
experiments by investigating the effect of changing the loss function across six datasets,
applied to five different neural network architectures.

3. Materials and Methods

The structure of experiments followed in deep neural networks projects is depicted
in Figure 2. The boundaries indicate areas where design choices are made that affect the
resulting models’ performance. The sampling section is only relevant when pairwise loss
functions are used, such as triplet loss. We ran each experiment 10 times for the train
and test set. Each training experiment consists of 30 epochs, and one epoch uses 5-fold
cross-validation to update the model weights. Our experiments are compared using two
loss functions: Triplet-loss and Proxy-NCA, on six animal datasets discussed further below.



Sensors 2021, 21, 6109 8 of 16

3.1. Data

We carry out experiments using Lion face data collected from the Mara Masia project
in Kenya (http://livingwithlions.org/mara/browse/all/all/) (accessed on 27 October
2019). We also trained our models on the Nyala dataset collected from South African nature
reserves. Both of these datasets, Nyala and Lions have relatively few (7) examples per
an individual. In addition, we conducted experiments with publicly available datasets,
namely Tai Zoo Chimpanzee [56], Zebra [57], Panda [58] and Tiger [59] datasets to compare
our approach with previous works. Table 1 shows the total data points each dataset has,
total individuals in the dataset, and average samples per individual. The neural network
architectures we trained were VGG, ResNet, and DenseNet. We followed a zero-shot
train-test split, such that all classes in the test set did not form part of the training set.

Sampling DCNN backbone

Semi-hard Neg.
1281.VGG

2.ResNet
3.DenseNet

Euclidean

D

1.Triplet
2.Proxy-NCA

Loss

Figure 2. Experiment setup starts with training pairs selection; then, DCNN is the network architec-
ture chosen for a particular experiment, the output of DCNN is an embedding vector of dimension D
and distance metric measured with ranking loss function being minimized.

Table 1. Sample Size (N), Individuals (I) and Mean Examples (#) per Individual in Full and
Train/Test Sets.

Animal N I E[#/I] Split N I

Lion 750 98 7.7 ± 4.0 Train 594 79
Test 156 19

Nyala 1934 274 7.1 ± 5.1 Train 1213 179
Test 729 95

Zebra 2460 45 54.7 ± 7.3 Train 1989 36
Test 471 9

Chimp 5078 78 65.1 ± 17.0 Train 3908 62
Test 1170 16

Panda 6462 218 29.64 ± 8.0 Train 5546 174
Test 916 44

Tiger 3651 182 20.1 ± 15.0 Train 1887 107
Test 1764 75

3.2. Neural Network Architectures

The VGG network architecture came as an improvement to a neural network architec-
ture developed by Krizhevsky et al. [19]. Simonyan and Zisserman [60] constructed VGG
as a stack of convolutional layers that use smaller filters of [3× 3] size as opposed to the
previous neural networks that used filters of varying sizes. In the VGG network, all hidden
layers have a ReLU activation function to induce non-linearity. Three fully connected
layers, two of these layers have a dimension of 4096, and the last layer with dimension
1000 to capture the classes found in the ImageNet dataset. The Soft-max activation function
is applied to the last layer to capture class probabilities. The VGG comes in two commonly

http://livingwithlions.org/mara/browse/all/all/
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used variants, and one variant has 11 layers (VGG-11), eight convolutional layers, and
three fully connected layers. VGG-19, on the other hand, is 19 layers deep (16 convolutional
layers and three fully connected layers).

He et al. [61] proposed a different convolutional neural network setup (ResNet) to
overcome vanishing gradients. He et al. [61] suggested that instead of having stacked
layers, some deeper layers are skipped. The motivation for skipping is based on the
assumption that if the deeper layers suffer from a vanishing gradient, then earlier layers
should have learned an optimal mapping. The output of the earlier layers is used to learn a
residual mapping, and this mapping is added on deeper layers preserving the information
learned before a possible vanishing gradient occurs. The ResNet architecture comes in
numerous variations, namely: ResNet-34, ResNet-50, ResNet-101 and ResNet-152, where
the number indicates total layers in the residual neural network.

Huang et al. [62] suggested DenseNet, which is an alternative of both VGG and ResNet
architectures. VGG and ResNet are based on the premise that a prior layer’s output is fed
into the next layer as input. DenseNet, on the other hand, suggests a densely connected
architecture where the next layer is fed with output from all other preceding layers. The
positive effect of having densely connected neural layers is that the dense connections have
a regularisation effect, a good thing for smaller datasets where over-fitting is prevalent.
DenseNet also comes in several variants, such as DenseNet-121, DenseNet-201. It is worth
noting that the number of layers is not fixed to 121 and 201. Some DenseNet can have N
layers and are referred to as DenseNet-N.

3.3. Training

We split our data into 80% training and 20% test set. Table 1 contains the total data
points in both the train and hold-out test set. The 80% train set was split into 5-folds in
each training epoch. All the backbone architectures used were pre-trained on ImageNet,
and these were used as feature extractors as opposed to fine-tuning all layers. We replaced
the 1000-class output layer from ImageNet with a 128-dimensional embedding layer for
one set of our experiments. On another set, we searched for an optimal output layer size.

We trained for 30 epochs minimising the Proxy-NCA loss. The Proxy-NCA loss
parameters need an optimiser; we used the Adam optimiser with default parameters
β1 = 0.9, ε = 10−3 and β2 = 0.999. The learning rate was set to 0.0001. The same
parameters were used in triplet loss experiments. However, the additional parameter in
triplet loss, the margin was kept at 0.2. A semi-hard negative sampling technique was
used on batch examples selected randomly from the training set. We ran ten train-test
iterations and the results reported are the average performance metrics of the ten test runs
with confidence intervals as done in [13].

3.4. Metrics Measured

A recently developed benchmark PyTorch library [63] was used to measure all the
metrics reported in our experiments. During the model evaluation, we used hold-out test
data containing classes that were not seen during the training phase. To compare with the
previous works, we computed the Recall@1. We also measured the mean average precision
at R (MAP@R) given in Equation (8) by:

MAP@R =
1
R

R

∑
i=1

P(i), (8)

where P(i) is precision at i if the ith neighbour is a true positive otherwise P(i) is 0. MAP@R
is the mean average precision computed over R nearest neighbours of the query image
retrieved by the model of Musgrave et al. [13]. We did not find papers that reported on
MAP@R for the datasets we used in our experiments.
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3.5. Embedding Dimension Size

For each dataset, we verified if using 128-dimension embedding for the output layer
is justified. We tested three embedding dimension sizes at 64, 128 and 512. We kept all
other network parameters constant, from sample size up to the loss function parameters
and only altered the dimension of the layer before the output layer. The results for each
dataset with varying embedding layer dimensions are shown in Table 2 and justify the use
of 128 across all experiments.

Table 2. DenseNet-201 Proxy-NCA loss, performance search for optimal output embedding dimen-
sion D.

MAP@R%
Dataset D-64 D-128 D-512

Chimp 8.4 ± 0 9.1 ± 1 9.1 ± 0
Nyala 38.0 ± 1 38.6 ± 1 38.5 ± 1
Zebra 29.8 ± 2 29.6 ± 1 30.6 ± 2
Lion 48.8 ± 2 50.6 ± 1 50.5 ± 2
Tiger 21.6 ± 3 23.2 ± 2 23.0 ± 3
Panda 27.5 ± 1 28.4 ± 2 28.1 ± 1

4. Results

As reflected in Table 2, for each dataset, we run preliminary experiments where we
searched for the best size of the output embedding vector that results in improved model
performance. All the results we present were generated using optimal embedding size
for each dataset as found from the preliminary investigation. We present our results for
the neural network architectures and datasets used in the experiments. We run a pair of
experiments for each neural network backbone: triplet loss vs. Proxy-NCA loss across all
datasets. The aim is to observe the effect of each loss function when the dataset, network
backbone, and parameters are kept constant.

Table 3 presents Recall@1 and Table 4 presents mean average precision at R (MAP@R).
In our tables, we further show what body parts the images of the individual animals
contained. The Lions, Panda, and Chimpanzees datasets have faces, while Nyala, Tiger,
and Zebra datasets contained the body side (flanks). We report the average of ten train-test
runs with statistical significance obtained by doing a two-sided t-test at 95% confidence
level. The results in bold in Table 3, and Table 4 are the best performing method. In the
same tables, the results in grey are those that are not statically significantly different from
the best. Table 5 is extracted from Table 4 where we highlight the best-performing methods
concerning both the mean and standard deviations.
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Table 3. Recall@1: triplet loss semi-hard mining vs. Proxy-NCA for training classes. Bold indicates
the best performing method, and grey highlights results that are not statistically significantly different
from the best.

Top-1/Recall@1

Faces Flanks
Architecture Loss Lions Chimps Pandas Nyala Zebra Tiger

VGG-11 Triplet 66.5 ± 2 79.0 ± 1 91.2 ± 1 68.7 ± 2 94.6 ± 0 88.9 ± 1
P-NCA 68.2 ± 3 78.9 ± 1 89.3 ± 2 68.4 ± 2 93.8 ± 2 87.0 ± 1

VGG-19 Triplet 70.2 ± 2 70.6 ± 0 86.3 ± 2 72.3 ± 0 82.8 ± 1 86.3 ± 2
P-NCA 71.3 ± 3 66.3 ± 0 90.9 ± 0 69.2 ± 3 82.7 ± 0 84.4 ± 1

ResNet-18 Triplet 67.8 ± 1 79.2 ± 2 90.0 ± 0 64.9 ± 2 94.8 ± 1 87.1 ± 1
P-NCA 66.8 ± 3 77.9 ± 0 90.1 ± 1 64.1 ± 0 93.6 ± 2 84.8 ± 1

ResNet-152 Triplet 63.2 ± 2 71.2 ± 1 87.6 ± 3 61.0 ± 3 80.7 ± 0 76.5 ± 2
P-NCA 61.0 ± 1 69.5 ± 1 83.4 ± 0 59.7 ± 0 79.1 ± 3 75.5 ± 2

DenseNet-201 Triplet 70.1 ± 1 79.7 ± 2 89.6 ± 1 67.1 ± 2 89.1 ± 0 85.0 ± 1
P-NCA 69.5 ± 3 78.2 ± 2 90.7 ± 1 66.3 ± 1 87.5 ± 0 85.6 ± 1

Prior Research - - 77.5 ± 0 92.1 ± – 72.1 ± 0 72.6 ± 0 86.3 ± 0

Table 4. MAP@R: triplet loss semi-hard mining vs. Proxy-NCA on training classes. Bold indicates
the best performing method, and grey highlights results that are not statistically significantly different
from the best.

MAP@R

Faces Flanks
Architecture Loss Lions Chimps Pandas Nyala Zebra Tiger

VGG-11 Triplet 16.5 ± 2 12.9 ± 2 32.0 ± 2 11.2 ± 0 16.8 ± 1 22.8 ± 1
P-NCA 17.7 ± 1 13.8 ± 3 31.8 ± 1 11.0 ± 1 16.5 ± 0 22.9 ± 2

VGG-19 Triplet 18.0 ± 2 11.7 ± 1 25.0 ± 0 10.8 ± 1 16.7 ± 2 21.8 ± 1
P-NCA 17.7 ± 0 12.0 ± 2 28.7 ± 0 9.7 ± 3 16.4 ± 3 20.0 ± 1

ResNet-18 Triplet 18.5 ± 0 11.2 ± 2 26.3 ± 1 9.9 ± 2 19.0 ± 0 24.6 ± 4
P-NCA 19.0 ± 1 11.5 ± 1 24.9 ± 0 9.5 ± 1 18.2 ± 1 21.7 ± 2

ResNet-152 Triplet 17.3 ± 2 10.1 ± 0 26.9 ± 1 8.2 ± 0 12.1 ± 3 12.5 ± 3
P-NCA 17.1 ± 0 9.4 ± 3 20.3 ± 1 9.0 ± 2 11.9 ± 2 11.0 ± 1

DenseNet-201 Triplet 20.8 ± 1 9.9 ± 2 31.1 ± 1 11.0 ± 2 15.9 ± 2 22.3 ± 1
P-NCA 20.2 ± 2 11.6 ± 3 28.4 ± 2 10.4 ± 1 16.0 ± 1 23.2 ± 3

Table 5. Model performance Feature Extractor loss optimal-dimension top layer. Bold indicates the
best performing method, and grey highlights results that are not statistically significantly different
from the best.

MAP@R

Faces Flanks
Architecture Lions Chimps Panda Nyala Zebra Tiger
VGG-11 17.7 ± 1 13.8 ± 3 32.0 ± 2 11.2 ± 0 16.7 ± 2 22.8 ± 1
ResNet-18 19.0 ± 1 11.2 ± 2 26.3 ± 1 9.9 ± 2 19.0 ± 0 24.6 ± 4
DenseNet-201 20.8 ± 1 11.6 ± 3 31.1 ± 1 11.0 ± 2 16.0 ± 1 23.2 ± 3

5. Discussion
5.1. Class Aware vs. Pairwise Loss

The observations made from our results are that the pairwise loss function performs
better than the class aware loss function. However, the difference in performance between
the loss functions is marginal. This trend is observed across all the datasets and neural
networks we investigated. To illustrate this point, DenseNet-201 trained on triplet loss
achieved the best performance of 79.7% on the Chimpanzees dataset, while DenseNet-201
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trained on Proxy-NCA on the Chimpanzees dataset obtained 78.2%. The second trend is
that the best performance is not always achieved by the same neural network architecture
and loss function across all datasets. For the Tiger and Panda datasets, VGG-11 trained on
triplet loss achieved 88.9% and 91.2%, respectively. In the Lion dataset, VGG-19 Proxy-NCA
obtained the best performance of 71.3%. Musgrave et al. [13] who studied three datasets
Cars-196, CUB-200 and Stanford online products made the same observations. While we
cannot directly compare our work with the results presented by Musgrave et al. [13], we
also found that it is not always that Proxy-NCA will outperform the pairwise loss function.

A study carried out by Chen et al. [64] on the Panda dataset obtained Recall@1 of
92.1% on unseen classes. However, a major preprocessing step involved hand annotation
locating the Panda face in the images, so that background and occlusions are removed from
each image before using the image for training. While the proposed algorithm yielded good
results, we demonstrate that VGG-11, trained on triplet loss function, compares well with
the method proposed by Chen et al. [64]. VGG-11 triplet loss obtained 91.2 ± 1% on raw
Panda images depicted in Figure 3, without a need to apply extensive preprocessing steps.
We observe that removing background may create challenges when identifying Pandas in
their natural habitat. On the Tiger dataset, Schneider et al. [34] found that DenseNet-201
triplet loss achieved a Recall@1 of 86.3%, we replicated these results, our DenseNet-201
obtained 85.0% ± 1; however, we found that VGG-11 trained on triplet loss performs better
at 88.9%. A sample of retrieved images from animal flanks is shown in Figure 4.

Figure 3. Faces: The first image is the query, with five nearest neighbours: blue border is true positive
and red border is false positive image.

Figure 4. Flanks: The first image is the query, with five nearest neighbours: blue border is true
positive and red border is false positive image.
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5.2. Backbone Architectures

Investigating the best performing backbone architectures was not the primary objec-
tive of the research. Still, it is interesting to note from Table 4 that if one were to select
a single backbone, then VGG-11 with Triplet loss would give one the most consistently
robust results followed by DenseNet-201 also with triplet loss.

5.3. Flanks vs. Faces

We test out various architectures in combination with different loss functions and
different embedding sizes to see if some generalised lessons exist for animal faces versus
flanks. We find no obvious commonality, which leads us to hypothesise that perhaps
pre-training on ImageNet was sufficient. To this end, we explored fine-tuning the models
using datasets on flanks for flanks and faces for faces but found no benefit for transfer
learning. Further, we find that using more advanced/complex or suited towards faces
Neural Network architectures leads to no statistically significant improvements.

6. Conclusions

Recent works in metric learning have focused on loss function design, intending to
substitute the pairwise loss functions. Comparing these loss functions across datasets in
individual re-identification of wild animals; Lions, Chimpanzees, Zebra, and Nyala, we
find that the performance gains are marginal. More often, the triplet loss models produced
better results.

Our work shows the proposed improvements in the design of deep neural networks
for similarity learning experiments. From how training samples are selected to how loss
functions are optimised, there cannot be one solution that is best suited for all datasets.
Each dataset presents a unique challenge to the model, and hence, there is a need to look
for the best possible design for each dataset continuously. The models trained on the
triplet loss function achieved better Recall@1 across datasets. It is worth pointing out that
the Proxy-NCA loss removes the need to search for an optimal sampling technique. This
removal cannot be overlooked as it simplifies experimental design. In the future, it may be
necessary to investigate a combination of model parameters and a specific loss function to
improve models’ information retrieval capabilities.

Author Contributions: Conceptualization, N.D. and T.L.v.Z.; methodology section was written by
N.D.; code and experiments were done by N.D. writing—original draft preparation, N.D.; writing—
review and editing, T.L.v.Z.; supervision, T.L.v.Z. All authors have read and agreed to the published
version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Zebra data publicly available at: https://code.google.com/archive/
search?q=stripes%20dataset (accessed on 12 November 2019); Chimpanzees data publicly available
at http://www.inf-cv.uni-jena.de/chimpanzee_faces.html (accessed on 12 November 2019); Tiger
data publicly available at https://cvwc2019.github.io/challenge.html (accessed on 11 June 2021);
Panda data available on request from https://researchdata.ntu.edu.sg/ (accessed on 16 May 2021);
Lion data publicly available at https://github.com/tvanzyl/wildlife_reidentification (accessed on 29
October 2019); Nyala data publicly available at https://github.com/tvanzyl/wildlife_reidentification
(accessed on 24 October 2019).

Acknowledgments: We would like to thank the Nedbank Research Chair for the support provided to
us while we undertook this research. We also extend our appreciation to Sara Blackburn for allowing
us to collect and pre-process the Lion dataset from the living with lions website.

Conflicts of Interest: The authors declare no conflict of interest.

https://code.google.com/archive/search?q=stripes%20dataset
https://code.google.com/archive/search?q=stripes%20dataset
http://www.inf-cv.uni-jena.de/chimpanzee_faces.html
https://cvwc2019.github.io/challenge.html
https://researchdata.ntu.edu.sg/
https://github.com/tvanzyl/wildlife_reidentification
https://github.com/tvanzyl/wildlife_reidentification


Sensors 2021, 21, 6109 14 of 16

Abbreviations
The following abbreviations are used in this manuscript:

DCNN Deep Convolutional Neural Network
P-NCA Proxy Neighbourhood Component Analysis
Proxy-NCA Proxy Neighbourhood Component Analysis
MAP Mean Average Precision
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