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Abstract: The availability of standardized guidelines regarding the use of electronic fetal monitoring
(EFM) in clinical practice has not effectively helped to solve the main drawbacks of fetal heart rate
(FHR) surveillance methodology, which still presents inter- and intra-observer variability as well
as uncertainty in the classification of unreassuring or risky FHR recordings. Given the clinical
relevance of the interpretation of FHR traces as well as the role of FHR as a marker of fetal wellbeing
autonomous nervous system development, many different approaches for computerized processing
and analysis of FHR patterns have been proposed in the literature. The objective of this review is to
describe the techniques, methodologies, and algorithms proposed in this field so far, reporting their
main achievements and discussing the value they brought to the scientific and clinical community.
The review explores the following two main approaches to the processing and analysis of FHR
signals: traditional (or linear) methodologies, namely, time and frequency domain analysis, and less
conventional (or nonlinear) techniques. In this scenario, the emerging role and the opportunities
offered by Artificial Intelligence tools, representing the future direction of EFM, are also discussed
with a specific focus on the use of Artificial Neural Networks, whose application to the analysis of
accelerations in FHR signals is also examined in a case study conducted by the authors.

Keywords: fetal heart rate; fetal heart rate variability; biomedical signal processing and analysis;
linear FHRV indices; nonlinear FHRV indices; artificial neural networks

1. Introduction

Electronic fetal monitoring (EFM), commonly known as cardiotocography (CTG), was
developed in the 1960s with the aim of assessing a fetus’s health before and/or during
labor. The fetal status is assessed through the monitoring of fetal heart rate (FHR) and
uterine contractions simultaneously. Many research works can be found around this issue;
however, this topic is still important and interesting since biomedical research aims to
continuously improve diagnostic techniques. Moreover, despite its widespread use, there
is not yet a final shared consensus about neither the best recording procedure (even if
photoplethysmography seems to be very promising) [1] nor the best signal processing
technique [2].

FHR evaluation is crucial in clinical environments because it does not only reflect the
behavior of the cardiovascular system but can also provide indirect information about the
status of the Autonomous Nervous System (ANS), which controls the circadian rhythms,
and indications about the neural development of the fetus [3–5]. Moreover, during labor,
it can help to identify hypoxia, which can lead to newborn acidemia. In particular, the
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variability of the FHR (FHRV) has an intimate relationship with the development and
functioning of the ANS since a large proportion of FHRV can be explained on the basis of
centrally mediated fluctuations in the parasympathetic and sympathetic tone [6].

Many different techniques can be adopted to measure the FHR [1], from fetal Electro-
cardiography (fECG) to fetal Phonocardiography (fPCG) and fetal Magnetocardiography
(fMCG). Among them, CTG is still the most widespread, and it is considered the gold
standard at the end of the pregnancy; furthermore, it is worth remembering that, in some
countries, it represents a legal report. CTG is a non-invasive and simple tool that allows
the simultaneous recording of both FHR and uterine contractions (UC) using Doppler
ultrasound and pressure sensors. However, a common problem in the CTG and, more
generally, in the EFM, is the poor inter- and intra-observer reliability as well as the high
rates of false positives due to the visual interpretation of FHR recordings, which can lead
to unnecessary operative deliveries and cesarean sections [1,3]. Therefore, many semiau-
tomatic or automatic algorithms have been developed for the analysis of CTG traces in
order to exploit all the potential hidden in the FHR and UC signals and extract reliable and
useful information to improve the diagnostic efficacy [7–11].

Concerning FHR and FHRV assessment, many approaches are available. The tech-
niques in the time and frequency domain are the most ‘traditional’ ones. However, very
soon, it was understood that these techniques were not sufficient to highlight nonlin-
ear phenomena underlying the FHRV physiology. Thus, nonlinear techniques began
to be explored in the 1990s. Very briefly, it is possible to state that firstly, chaotic and
fractal analyses were employed [12–14]. Then, since the 2000s, a great effort has been de-
voted to the study of entropy by proposing different methodologies and measures [15–17].
Finally, artificial neural network (ANN) and support vector machines (SVM) have been
adopted, mainly for signals classification, i.e., for distinguishing and grouping FHR traces
mainly according to the health status of the fetus (e.g., in order to distinguish between
healthy and pathological signals) [18–21]. Simultaneously, other domain transformations,
such as wavelet and Hilbert [3,22,23] and other techniques, such as Poincaré maps, Sym-
bolic Dynamics (SD), Autoregressive models (AR), and others, have been applied for FHR
analysis [24–30].

In spite of this wide availability of techniques and approaches for FHRV assessment,
only weak predictive indications about fetal hypoxia and neonatal injuries can be achieved
through the algorithms and methodologies developed so far [17]. In addition, while there
are multiple, and also recent, examples of literature studies that review and discuss the
available methodologies and metrics used both in research and in clinical practice to analyze
the heart rate variability (HRV) of adult subjects [31–34], the field of fetal heart monitoring,
despite a few examples of works focused on the neonatal and perinatal medicine [35,36],
still lacks a comprehensive overview of the techniques employed in the analysis of FHRV.

In this work, a review of the most widespread signal processing techniques proposed
in the literature to improve the analysis of FHRV, and hence the diagnosis of healthy fetal
status, is carried out, regardless of the recording technique. An overview of the classical
methods employed for FHR analysis is provided, then the so-called nonlinear techniques
are analyzed. A summary of the most representative studies and the main results achieved
by both traditional and nonlinear techniques is also given. Moreover, advantages, draw-
backs, and predictive power of the reviewed methodologies are reported, and perspectives
in the use of innovative alternative approaches rising from the field of Artificial Intelligence
(AI), with particular regard to machine learning techniques, are discussed.

Finally, for some methodologies, new results obtained by the authors by means of
the computerized analysis of CTG signals included in a database recorded in a clinical
environment, and already employed for previous publications [37–39], will be shown.

2. Methods
2.1. Eligibility Criteria and Information Sources

The inclusion criteria are:
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• Date of publication not older than 1990;
• Date of publication not newer than 2020;
• Kind of FHR recording and processing technique explicitly cited;
• Details about obtained results clearly reported.

To explore the main signal processing techniques currently employed, we have first
consulted the Web of Science database (by Clarivate Analytics) as the main source of
information. Then, we integrated the search by including additional references from
multiple sources (Scopus, PubMed, Google Scholar).

2.2. Search Strategy

The search was performed by using the following main keywords: FHR, FHR vari-
ability, FHRV, nonlinear FHRV indices, linear FHRV indices.

The review focused on the following techniques for FHRV analysis, which emerged
during the search and were ordered and examined according to their relevance and fre-
quency of occurrence:

• Time domain analysis;
• Frequency domain analysis;
• Fourier Transform, Fast Fourier Transform (FFT), Short Time Fourier Transform (STFT);
• Autoregressive models;
• Wavelet transform (WT);
• Entropy indices;
• Symbolic Dynamics;
• Fractal analysis;
• Detrended Fluctuation Analysis (DFA);
• Poincaré maps;
• Hilbert and Hilbert–Huang transform;
• Complexity of Lempel Ziv (LZ);
• Markov models;
• Lyapunov exponent;
• Lomb method;
• Matching Pursuit (MP).

After describing the literature review, we put the lights on a further methodology
for FHR analysis, which has received stronger attention mostly in recent years, namely,
the Artificial Neural Networks (ANNs). Although they were not part of the basic search
criteria, they were included as a cutting-edge methodology in this field.

2.3. Selection Process

Figure 1 shows a schematic representation of the selection process.
Among the 372 papers considered, 192 were excluded during the screening phase due

to accessibility reasons or because they were out of the review scope. Then, 180 full-text
papers were assessed for eligibility, and among them, 88 were excluded because they were
not informative enough for the purpose of this review, or because they were too similar to
other works by the same authors, or because they represented techniques not sufficiently
described, or again because they concerned too-particular cases or focus on animal models
rather than human fetuses. Finally, 92 studies were included in the qualitative synthesis.
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Figure 1. Diagram describing the study selection process.

2.4. Characteristics of the Screened Studies

In Figures 2 and 3, histograms of the most employed FHR processing and analysis
techniques according to Web of Science database are shown. Even if the search considered
papers since 1990, for the sake of readability, in both the figures, we report only the time
interval 2000–2020.
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Figure 2. Number of publications identified through the Web of Science database grouped on the
basis of the technique used for FHR processing and analysis (for better readability, only the time
interval from 2000 to 2020 is shown).

Figure 3. Annual distribution of the number of publications identified through the Web of Science
database (for better readability, only the five most employed techniques in the period 2000–2020
are shown).

It is worth performing some observations. Figure 3 shows that, according to the
records found in the Web of Science database, the Lomb method is among the less used
together with MP, Markov models, and Lyapunov exponents; indeed, despite its suitability
for the processing of uneven series, the Lomb method is quite complex and time-consuming.
Besides, the Poincaré method, which is enumerated among the most widespread tech-
niques for the analysis of heart rate variations in adult subjects, is little applied to the
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analysis of FHR. Finally, Fourier analysis, due to its shared and recognized importance
and simplicity, is considered apart from the more general frequency domain analysis.
Instead, Figure 2 puts in evidence that the number of publications using the Fourier analy-
sis keeps almost constant over the years. As far as fractal analysis and DFA, they have not
been uniformly employed within the considered timespan, and the number of publications
has not increased over time. On the contrary, the use of WT and entropy indices has seen a
considerable rise, especially in recent years.

2.5. Characteristics of the Included Studies

The following Table 1 shows a qualitative synthesis with the characteristics of the most
representative studies included in this review grouped according to the adopted approach:
(i) time domain measurements; (ii) frequency domain analysis; (iii) nonlinear methods.
A fourth category named ‘other methods’ has also been used to include less-widespread
or less-common techniques for FHRV analysis. Finally, as previously mentioned, the last
category is focused on the use of ANNs in the field of FHR monitoring. It is worth noting
that, despite being less employed in the FHRV domain, the Poincaré maps have been
included among the main nonlinear methods for their historically recognized value as
powerful indices of HRV in adults.

Table 1. Most representative studies included in the qualitative synthesis of the review.

Approach Technique Acronym Reference

Time domain measurements

General Description - [7–10,40]
Short-Term Variability STV

[9,22,25,41–45]
Long-Term Variability LTV

Interval Index II
Long-Term Irregularity LTI

Frequency domain analysis

General Description - [5,6,17,46–48]
Fast Fourier Transform FFT

[5,11,38,46,48–52]Short Time Fourier Transform STFT
Autoregressive Models AR [6,24,26,46,49,53,54]

Wavelet Transform WT [22,23,55,56]

Nonlinear methods

General Description - [12,17,57–59]

Entropy Indices
ApEn 1

[17,60–68]SampEn 2

MSE 3

Symbolic Dynamics SD [4,27,28,69–73]
Fractal Analysis - [14,74–76]

Detrended Fluctuation
Analysis DFA [68,77,78]

Poincaré Maps SD1 4
[25,79]

SD2 5

Other methods

Hilbert–Huang Transform HHT [80–82]
Lomb Method - [83–85]

Matching Pursuit MP [13,86]
Lyapunov Exponents - [87,88]

Hidden Markov Models HMM [89]
Lempel Ziv Complexity LZ [90–92]

Artificial Intelligence Artificial Neural Networks ANNs [19,20,57,93–104]
1 Approximate Entropy. 2 Sample Entropy. 3 Multiscale Entropy. 4 Standard deviation 1, perpendicular to the line-of-identity (Poincaré
maps). 5 Standard deviation 2, along the line-of-identity (Poincaré maps).

Based on the analysis carried out, it is possible to state that, regardless of the methods
exploited in isolated cases, the most employed signal processing techniques for FHR signals
are: Fourier analysis, through different implementations; AR models; wavelet transform,
continuous or discrete; sample entropy; and other ‘nonlinear’ techniques, such as Poincaré
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plots, fractal analysis, and others. Generally, since most of the methodologies analyzed
have been developed in the context of studies on adult subjects, the starting point to
conduct the HR analysis is the construction of the so-called ‘tachogram’, i.e., the sequence
of durations of the inter-beat intervals (RR), meant as the distance between two following
R peaks on the electrocardiogram [105], whereas when the analysis is carried out on fetuses
and the signals are provided by cardiotocographs, the FHR is directly available.

3. State of the Art

In the following, we will provide the key information and relevant results about the
use of the above-mentioned methodologies in the literature.

3.1. Time Domain Indices

The main processes, developed in the time domain, try to implement the FHR analysis
in a way similar to that used by a physician who follows specific guidelines (for example,
FIGO guidelines or others [106–109]) and medical terminologies. In particular, FHR base-
line, accelerations, and decelerations are searched. To this aim, a variety of methods have
been proposed using specialized algorithms [7–10,40]. Another approach concentrates on
the derivation of indices from the FHR signal that is able to characterize the condition of
the fetus, such as statistical metrics, able to quantify different facets of the FHRV, which
are promoted by different autonomic sources. The most used ones are the mean and
standard deviation of the FHR signal. Moreover, other indices are also used: the short-term
variability (STV), which quantifies FHR variability over a very short time scale, usually on
a beat-to-beat basis; the long-term irregularity (LTI), which is usually computed on a 3-min
segment of RR sequence; and the Interval Index (II), which is, together with the LTI, is an
index to quantify the long-term variability in the FHR [25].

According to Cesarelli et al. [41], there is no agreement on the formula to quantify the
STV. Therefore, here we propose three formulas available in the literature. The first one is
proposed by Organ et al. [42]:

n

∑
i=1

|F(i + 1)− F(i)|
n

(1)

where n is number of beats in 30 s, F(i) is the instantaneous FHR expressed in beats
per minute (bpm) and obtained as 60,000/T(i), with T(i) representing the instantaneous
inter-beat intervals expressed in milliseconds.

The second one is proposed by Redman [43]:

1
15

15

∑
m=1
|R(m + 1)− R(m)| (2)

with R(m) calculated as:

R(m) =
r

∑
i=1

|T(i + 1)− T(i)|
r

(3)

where r is the number of RR intervals in 3.75 s. It is worth highlighting the meaning of the
factor 1/15 preceding the summation, which reflects the number of subintervals in 60 s as
reported in [41].

The third one is proposed by Cesarelli et al. [41], and it is computed as the standard
deviation of the FHR: [

1
n− 1

n

∑
i=1

(
F(i)− F

)2
]1/2

(4)

where n is the number of beats in 60 s and F is the mean of the FHR signal.
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As far as the LTI and the II indices are considered, the following formulas in Equations
(5) and (6) are proposed by Esposito et al. [44]:

LTI = m24(j) =
√

T2
24(j) + T2

24(j + 1) (5)

defined as the interquartile range (1/4; 3/4) of the distribution of the modal m24(j) com-
puted on a 3 min segment of inter-beat sequence T24(i) (with i = 1, . . . , 72).

II =
std[T24(i + 1)− T24(i)]

STV
(6)

calculated as the coefficient of variation between the differences of all FHR values in 1 min
of inter-beat sequence T24(i) in ms (with i = 1, . . . , 23), taken each 2.5 s.

It is worth noting that usually, the STV is not directly used as a classifier but rather as
a fetal well-being parameter and, therefore, as a reference measurement for the assessment
of other indices. However, Pardey et al. [9] showed that STV correlates well with the
development of metabolic acidemia and intrauterine death and could be used as a useful
indicator in FHR monitoring. In addition, they state that a reduction in STV is superior
to decelerations as a predictor of outcome and more comprehensive than umbilical artery
Doppler velocimetry. In the same work, they also report that, in the absence of a sinusoidal
rhythm, STV and long-term variability (LTV) are strongly correlated, while a low-frequency
sinusoidal rhythm increases the LTV more than the STV.

While STV appears to be a valuable predictive antenatal tool, its effectiveness is
influenced by frequencies oscillations and, in some cases, cannot distinguish the low FHR
variations of healthy fetuses during quiet sleep from the low variations of compromised
fetuses, as reported in the study of Cattani et al. [22]. On the other hand, long-term
variability indices can be harder to quantify numerically.

Finally, as emerged from a recent systematic review on the role of STV in fetal growth
restriction [45], there is not enough evidence supporting an association between STV and
short- or long-term fetal and neonatal outcome, and more studies comparing STV and
visual CTG examinations are needed before STV can be effectively used as a prognostic
index in the clinical practice.

3.2. Frequency Domain Analysis

The frequency domain analysis quantifies the extent of contribution of each frequency
component to the overall heart rate fluctuation. Basically, frequency domain analysis
involves the calculation of the spectral energy content of each frequency component
through a power spectral analysis (PSA).

PSA is exploited as a predictive tool in adult cardiac functions, and it has also been
used to analyze the FHRV. Compared to time domain measurements, PSA is not only an
index of the frequency distribution but, since power is a function of amplitude, it is also a
measure of the degree of heart rate variations [6].

Similar to the adults’ HRV, even if with different ranges, in the FHRV analysis, it
is usual to consider three frequency bands: Very Low Frequency (VLF: 0–0.05 Hz), Low
Frequency (LF: 0.05–0.2 Hz), associated with the sympathetic control and vasomotor
activity; and High Frequency (HF: 0.2–1 Hz), driven by respiration and mediated by vagal
activity. Despite the availability of the above-mentioned band definitions, no agreements
still exist in the literature about the precise range of values for each spectrum band, as
already outlined in a previous review [5]. In addition, in some works [17,47,48], a different
spectral band is sometimes considered, associated with fetal movements and the mechanical
influences of the maternal breathing, the Movement Frequency (MF: 0.15–0.5 Hz).

The ratio between LF and HF, or the sum HF + MF, when the latter is used, represents
an index of the balance between cardiac physiological control components (by the two
branches of ANS) and fetus activity level (sympatho–vagal balance).
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The most used methods to estimate the power spectral density (PSD), obtained by
calculating powers and peak frequencies for the different frequency bands, can be di-
vided into [46]: non-parametric techniques, e.g., Fourier-transform-based, and parametric
techniques, e.g., Autoregressive (AR) models.

A brief description of the mentioned methods is given in the following paragraphs.

3.2.1. Fast Fourier Transform and Short-Time Fourier Transform

The Fourier analysis is the most important and widespread methodology in the
analysis of FHRV. Standard Fourier analysis basically consists of a decomposition of the
signal into sinusoids.

Since the FHR signal is inherently a sampled variable, the discrete Fourier transform
(DFT) allows the expression of the original FHR sequence in the discrete frequency domain.
A widely used algorithm to compute the DFT is the FFT. The FFT works well on a short
time scale as the stationarity of the FHRV signal is an essential requirement (often a
signal segment of 32 s is chosen [39,50]). However, in the presence of non-stationary
RR sequences, the hypotheses underlying the spectral analysis methods are no longer
valid. Therefore, among various techniques for time-frequency analysis in non-stationary
conditions developed so far, the STFT represents a variation of the Fourier transform
particularly suitable for dealing with non-stationarity. The STFT breaks the signal into
specific periods of constant length and applies the Fourier transform individually on each
of these parts of the signal. The STFT is given as:

X(τ, ω) = STFT{x(t)} =
∫ +∞

−∞
x(t)w(t− τ)e−jtωdt (7)

In the above formula, the signal to be transformed x(t) is multiplied by a windowing
function w(t) (usually a Hanning or Gaussian function), and the resulting signal is locally
transformed as the windowing function shifts along the time axis. A two-dimensional
function X(τ, ω) is then obtained, which is the Fourier Transform of x(t)w(t − τ) and
represents phase and magnitude of the original signal x(t) over time and frequency [49].

In the 2000s, the frequency domain has been highly employed with some significant
results [48,51]. Indeed, Rantonen et al. [48] adopted the FFT to compute the FHRV in
fetuses with cord arterial base deficit (8–12 mmol/L) and found a linear correlation between
mid-frequency (0.07–0.13 Hz) spectral densities and the cord arterial base deficit values;
this fact suggests that changes in the autonomic nervous cardiac control, reflected by
a decreased FHRV, can occur in fetuses at risk of complications. Van Laar et al. [51]
used the STFT and showed that fetal behavioral state and gestational age could cause
considerable variability in the FHRV spectrum, with an increase in LF (0.04–0.15 Hz) and HF
(0.4–1.5 Hz) power in near- and post-term fetuses during active sleep compared to quiet
sleep. More recently, Cömert et al. [52] proposed a prognostic model for predicting fetal
hypoxia, called image-based time-frequency (IBTF), based on the combination of STFT and
grey level co-occurrence matrix (GLCM), where the STFT spectrograms are converted into 8-
bit grayscale images whose characteristics (contrast, correlation, energy, and homogeneity)
are used to classify FHR signals. The model was embedded in an open access software
for CTG analysis [11] developed by the authors and showed promising accuracy (77.81%),
sensitivity (76.83%), and specificity (78.27%) in recognizing hypoxic fetuses.

Still recently, the analysis of FHR in the frequency domain has been employed to study
the evaluation of ANS and to investigate its development as a function of the gestational
age. Obtained results, among others, showed that the LF/HF ratio in the normal pregnancy
group slightly decreases over the gestational period [46]. This result is in accordance with
the previous results of the authors [5].
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3.2.2. Autoregressive Models

A different method of FHR analysis can be found in AR models, which allow better
identification of discrete frequency oscillations for time series and have been widely applied
to the analysis of HRV and FHRV [24,46,49].

An AR series is expressed by the following equation:

x(n) = −
p

∑
k=1

ak ∗ x(n) + e(n) (8)

where x(n) is the input signal, p is the model order, ak are the AR model parameters, and
e(n) is the error, which is a zero-mean white Gaussian noise [49].

Despite their large use, the effective use of AR models mainly lies in the appropriate
choice of the order of the model. Since the use of low-order AR models could prevent a
comprehensive representation of the FHR signal properties, a high-order AR model could
be preferred. Indeed, due to higher degrees of freedom, high-order AR models can better
fit the time series.

Among the numerous criteria to estimate the appropriate model order, Akaike’s
Information Criterion (AIC) [110] is one of the most used. It determines the order of the
AR model as the one that minimizes the following function:

AIC(p) = N∗ ln σ2
p + 2 ∗ p (9)

where N is the number of data points and σp
2 is the mean squared error calculated as:

σ2 =
1
N

N−1

∑
p=1

e2(n) (10)

In their study, Bracale et al. [26] analyzed 50 real CTG recordings through AR models
with orders ranging from 4 to 14 and chose the best order using the AIC function and
the whiteness test. Once the AR coefficients are known, they calculated the PSD of the
FHRV as:

S( f ) =
σ2T∣∣∣1−∑

p
k=1 ake−j2π f kT

∣∣∣2 (11)

where T is the sampling period [26,49]. Their analysis confirmed eight as the optimum
order to estimate the PSD of the FHRV for all signals under study.

While AR models provide better identification of discrete frequency oscillations for
non-stationary and relatively short data records (30 s–60 s duration is usually an acceptable
range), Fourier analysis, when applied to relatively stationary data records of more than
250 s, allows searching for very-low-frequency oscillations and performs better as an
amplitude estimator when reporting the percent power in various frequency bands [6].

Already in 1989, Ansourian et al. [53] presented a digital analysis using AR power
spectral estimation with an optimized Burg algorithm, which showed to provide good
modeling of short-time series, potentially useful in the monitoring of fetal breathing move-
ment, and a higher resolution than classical FFT, despite the increased computational
complexity. Far later, in 2001, Cazares et al. [54] used an AR model of uterine activity (UA)
to estimate the power at the contraction frequency. Results on 12 intrapartum UA traces
were compared with the visual inspection of experts and confirmed that the proposed
tenth-order AR model, with an agreement percentage of 62%, could be a helpful confi-
dence index for the automated assessment of UA, potentially reducing errors made in the
identification of uterine contractions. More recently, Fuentealba et al. [24] proposed a time-
varying AR model to analyze the spectral dynamical changes in the FHR signal over time.
They showed that certain time domain alterations could cause significant dynamical
frequency domain changes and, in particular, that decelerations leave singular spectral
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traces, whose characteristics could help to distinguish between normal and pathological
fetal conditions.

3.2.3. Wavelet Transform

WT is used to analyze non-stationary signals or signals containing multiple compo-
nents, thus being particularly useful for processing medical and biological signals [23].

In the case of FHR, it proved to be helpful in investigating the long-term non-stationary
behavior of FHR [55].

The algorithm consists of the convolution of ‘local’ wavelike functions, namely,
wavelets, with the signal under study, as reported in the following equation [23]:

Ws(a, b) =
∫ +∞

−∞
s(t)ψ∗a,b(t)dt (12)

where s(t) is the time domain signal, * is the complex conjugate, and ψa,b(t) is the mother
wavelet, scaled by a factor of a (a > 0) and dilated by the factor b, defined as:

ψa,b(t) =
1√
a

ψa,b

(
t− b

a

)
(13)

The appropriate selection of the type and width of the mother wavelet, i.e., by choosing
one that matches the shape of the original signal at a specific scale and location, will give an
effective transformation of the signal. However, this aspect can be critical in determining
the performance of the analysis [111–113].

A WT is usually adopted to estimate the signal energy distribution through the
calculation of the standard deviation of the wavelet coefficients in different frequency
ranges of the FHR [55]. This allows the possibility of choosing the appropriate scale in the
wavelet transform (smaller scales correspond to more rapid variations and therefore to
higher frequencies) while ignoring the contribution of the other scales [56].

Wavelet transform has been employed in order to predict perinatal outcome [22] or
to discriminate normal pregnancies from pregnancies complicated by gestational hyper-
tension or gestational diabetes [23]. Both studies demonstrated that the use of parameters
extracted from the wavelet domain contributes to revealing hidden information from
FHR signals.

Vasios et al. [55] proposed an automated method to support the early diagnosis of
fetal hypoxia using WT and self-organizing-map neural networks to analyze and classify
FHR and fetal pulse oximetry signals. The application of WT allowed proper processing of
the FHR signal, avoiding the problem of long-term non-stationary behavior as well as the
extraction of the FHR power at different scale levels, which were used as input to the neural
networks together with the pulse oximetry data. The classification performances showed
good sensitivity (83%) and specificity (96%) in the categorization of the FHR patterns.
The problem of fetal hypoxia was also addressed by Salamaleki et al. [56], who adopted the
same system previously described by Vasios et al. [55] and confirmed that computerized
analysis of FHR and pulse oximetry based on the combination of WT and ANN could give
promising results in terms of both sensitivity (83.3%) and specificity (97.9%) for intrapartum
diagnosis of hypoxic fetuses.

3.3. Nonlinear Techniques

Time and frequency analyses of FHR showed to be useful in the assessment of FHRV.
However, significant limitations can be found in these so-called linear methods. On the
one hand, time domain indices mainly rely on descriptive statistical measurements of the
FHR signal, not being able to infer the physiological processes controlling the variation in
the heart rhythm. On the other, frequency domain approaches showed to be sensitive to
artifacts and do not allow the inspection of non-periodic trends embedded in the variability
signal, leaving a shadow on the complex mechanisms underlying the variability of the
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FHR signal and thereby preventing a proper comprehension of the fetal health status and a
reliable risk stratification. In addition, there is agreement on the fact that, similar to the
adults’ HRV, the characterization of the FHRV through linear techniques is fundamentally
limited in its power to describe the nonlinear structure of the underlying sympatho–vagal
interactions [27,114,115].

The investigation of such hidden phenomena [12], whose understanding is fundamental
to thoroughly describe the variability of biological signals such as the FHR, has been carried
out using alternative methodologies, conventionally defined as ‘nonlinear techniques’, which
include algorithms and approaches, applied alone or in combination with traditional time and
frequency domain analyses, that aim to quantify non-periodic contributions to the variability of
FHR signals and to classify them accordingly [17,57–59,116,117].

3.3.1. Entropy Measurements

The quantification of regularity and irregularity or randomness in the heartbeat
fluctuations can be achieved by using entropy measurements, which allow inferring the
level of complexity in time series such as FHR. Among them, the most used for FHRV
estimation are Approximate Entropy (ApEn), Sample Entropy (SampEn), and Multiscale
Entropy (MSE).

Approximate entropy (ApEn) quantifies the independent statistical irregularities in
the time series data [65,66,68,118], i.e., the ‘extent of randomness’ in sequences or time
series [61]. Mathematically, the ApEn(m,r) measures ‘the negative logarithmic likelihood that
runs of patterns, which are close (within tolerance r) for k–1 observations, remain close on the next
incremental comparison’ [61].

In the case of FHR, this translates into the comparison of distances between m-
dimensional RR patterns found in the r-neighborhood and the RR patterns obtained by
increasing the number of vector components by one [61]. It is worth noting how, according
to [119], the choice of those parameters for the calculation of the ApEn is a crucial factor.

The lower the ApEn, the higher the regularity and predictability of the signal [120],
potentially allowing the distinction between a wide variety of systems: deterministic,
stochastic, chaotic, etc. [63,118,121,122]. While the main advantage lies in the applicability
to small and noisy datasets [118], the consistency of the taken measurements is highly
dependent on the length of the time series [123]. This limitation can be overtaken by using
SampEn, which is independent of the size of the dataset and adopts a simplified algorithm
to detect similarities among signal trends [123,124]. Despite this, SampEn appears to be
sensitive to predetermined parameters [125].

In general, the interpretation of entropy values can be difficult since variations in
entropy can be due to signal artifacts (e.g., outliers) rather than changes in regularity [67,126].

The Approximate Entropy method ApEn was used in the analysis of FHR by Signorini
et al. in 2003 [17,67]. The authors compared spectral parameters of Autoregressive models
and nonlinear algorithms. The study was performed on 14 normal fetuses, 8 cases of gesta-
tional diabetes, and 13 fetuses with intrauterine growth retardation pregnancy. The analysis
showed a significant difference between the groups under study, and the computed spectral
parameters proved the ability to distinguish among normal and pathological subjects [17].

Lim Jongil used ApEn to assess fetal stress and lack of oxygen, as well as the metabolic
and respiratory acidosis in women at the end of their pregnancy. The FHR of singleton
fetuses >37 weeks with at least half an hour of records of CTG monitoring before delivery
were analyzed. It was found that the indices ApEn and SampEn are significantly different
in relation to the stage of labor during which these are measured [62].

ApEn and SampEn have been used to analyze the variability of the parameters in the
time domain of 46 MCG fetal recorded in the range of 21–38 weeks by Moraes et al. [64].
They demonstrated the advantage of SampEn over ApEn in overcoming the limitations
related to the length of the recordings and the lack of consistency in the quantification of
the regularity of the signals.
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The identification of antepartum fetal distress was performed by Magenes et al. in
2004 [60] through multiparametric analysis using approximate entropy (ApEn) and SVM,
a method of supervised learning for pattern regression and classification. In the study
performed on 70 cases (35 healthy and 35 pathological), the combined analysis through
ApEn and SVM showed good accuracy (78%), specificity (78%), and sensitivity (79%) in
distinguishing the two groups.

3.3.2. Symbolic Dynamics Analysis

SD consists of transforming the inter-beat intervals time series into a series of ‘abstract’
symbols so that the signal’s samples are reduced to a few possible patterns of symbols, i.e.,
strings of consecutive symbols named ‘words’, then grouped in subgroups or ‘families’ [70].

An example of the methodology, as applied in the analysis of the HRV of adult subjects,
is provided by Cysarz et al. [127], where, starting from a series of interbeat intervals RR(i)
(i = 1, . . . , N), a binary symbolic series S(i) was created using the differences ∆RR(i) = RR(i)
− RR(i − 1) between successive inter-beat intervals, and applying the following rule:

S(i) =
{

0 i f ∆RR(i) ≥ 0
1 i f ∆RR(i) < 0

(14)

Hence, decelerations of the instantaneous heart rate are symbolized by 0 s and accel-
erations by 1 s. Then, from the binary series S(i), short binary sequences can be extracted
simply by taking k consecutive symbols.

In this way, it is possible to simplify the study and classification of the dynamic of the
system [128]. As for other nonlinear techniques, the use of this type of analysis could be
helpful when used together with traditional methods in order to improve the reliability of
the risk stratification. Indeed, the SD proved to be able to identify complex fluctuations in
the heart rate better than traditional methods [70]. On the other hand, it should be taken
into account that the choice of the alphabet of symbols and the criteria to form words of
symbols can influence the obtained results and that the codification into symbols can cause
loss of information and be influenced by the presence of outliers [129,130].

Van Leuween et al. [70] used SD and ApEn to categorize short segments of the FHR
signals with respect to their degree of regularity and quantified the changes in regularity
and irregularity over time. Their results proved an increase in the short-term complexity
of the FHR over the gestational age due to the development of behavioral states, not only
related to the HR but also to the motility, hemodynamics, metabolism, and response to
stimulation. Such states and the transitions between them increase both irregular and
regular HR patterns, which can be detected and properly interpreted using the proposed
complexity measure.

In previous works [4,27,71,72], FHRV analysis through the SD was carried out, and
this technique was compared with other traditional indices. Results showed how the SD is
a more reliable measure than frequency domain parameters in assessing fetal development
during the course of pregnancy, in accordance with the above-reported results. In addition,
the ease of use and implementation of the methodology allows immediate interpretation
of the CTG traces. Furthermore, in a recent work, it has been proved how SD analysis of
healthy fetuses near to term is a powerful tool in classifying CTG traces according to their
degree of variability [4] as well as to the type of delivery (spontaneous and cesarean) [27].

Since the patterns in FHR fluctuations change with gestation age, it can be assumed
that maternal–fetal cardiac coupling may also evolve with maturation. Therefore, in their
work, Khandoker et al. [69] investigated the nature of nonlinear interaction of maternal–
fetal heart rate phase synchronization using a modified version of the SD, namely, high-
resolution Joint Symbolic Dynamics (HRJSD). They estimated the degree of short-term
cardiovascular coupling in growing fetuses. The HRJSD approach is characterized by
three symbols, a threshold (individual dynamic physiological variability) for time series
transformation, and 8 coupling pattern families (resulting in 64 different coupling patterns),
which quantify patterns of the autonomic regulation. They concluded that HRJSD is a
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helpful tool for measuring the degree of fetal-maternal coupling, which could be a clinical
marker of healthy prenatal development and fetal cardiac anomalies.

More recently, Montalvo-Jaramillo et al. [28] investigated the analytical value of SD
in fetuses at term during low-risk labor, exploring the relationship between symbolic
parameters (such as the percentage of no variations between three successive symbols,
reflecting sympathetic modulations, and the probability of low variability with a threshold
of 4 ms, usually associated with a low variability), and classic linear indices of FHRV,
with particular attention to the PNN5, which is a time domain index representing the
percentage of differences between successive normal (i.e., after removal of abnormal beats)
inter-beat intervals exceeding 5 ms. The latter is defined as the percentage of differences
between adjacent RR intervals larger than 5 ms, which is a time domain index employed to
assess fetal development [73]. They confirmed that the SD could be a potential source of
clinical biomarkers to differentiate the fetal autonomic cardiac condition at different stages
of pregnancy.

3.3.3. Fractal Analysis

Another method for the evaluation of FHRV is fractal analysis. The analysis of the
fractal dimension allows calculating the degree of irregularity of a system by splitting it
into a number of fundamental units (fractals) having the same shape at different scales of
observation [14]. For those physiological signals which do not show a characteristic time
scale, which is the case of a signal y(t) which has the same statistics (mean, variance, etc.)
of its scaled version y(at) [131], the fractal analysis represents a measure of the invariance
of the signal at different time scales.

In the case of FHR, the use of fractal analysis helped not only in the discrimination
between pathological and normal FHR traces but also in the investigation of the nature
of those long-range correlations in FHR fluctuations being manifested from around the
twenty-fourth gestation week, which is a particularly relevant period from a physiological
point of view since it coincides with major developments in the functional maturation of
the ANS [14,76]. Nevertheless, it is worth highlighting that this analysis is more suited to
time series of normal-to-normal interbeat intervals from long-term recording [132].

In their study, Di Rienzo et al. [74] used fractal analysis to identify pathological fetuses
from 20 min noisy CTG traces. They performed the fractal analysis and were able to reliably
differentiate between healthy fetuses and distressed ones. The potential of fractal features
has also been proven by Felgueiras et al. [14], who compared them with traditional STV
indices and demonstrated the better classification performance (error rate between 7%
and 16%) of fractal dimensions over STV values in discriminating between pathological
and normal FHR traces. Among different available algorithms to compute fractal features
from FHR signals, Hopkins et al. [75] showed how most of the proposed fractal techniques
offer significant improvement over simple standard deviation for the classification of
compromised versus normal FHR traces. However, they also observed that no algorithm
could completely separate all cases at all times, and that a clear separation can only be
guaranteed in the longer term, making these features less suitable for real-time monitoring.

3.3.4. Detrended Fluctuation Analysis

The DFA is a technique that helps in extracting nonlinear contributions in a signal. It is
typically applied by segmenting the signal into short windows or blocks and by calculating
two coefficients, α1 and α2, which measure the correlation between inter-beat intervals in
the short and long term of a ‘detrended’ signal [133], i.e., after the elimination of continuous
and linear components from the signal itself. The method has been widely exploited to
carry out a correlation analysis in biomedical signals since it is able to remove external
interference (noise) and thereby analyze only the intrinsic characteristics of the signal.
Over other conventional fractal methods, DFA permits the detection of long-range cor-
relations embedded in raw non-stationary time series [78,134] and quantification of self-
similarities in time series [68].
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However, the process of signal segmentation can produce two undesirable effects [135]:
(i) if the signal length is not a multiple of the window length, at least one block will have
fewer samples than the others unless we remove samples from the signal; (ii) when one
block is considerably shorter than the others, then the energy of the signal within that block
will be much lower than the rest of the signal, and discontinuities will be observed in the
detrended signal. These two issues generally occur in the calculation of the α2 coefficient,
which usually requires the use of large windows [77,136]. In addition, the DFA requires a
high computational load, a minimum signal length of 8000 samples, and it is more suited
to normal-to-normal interbeat intervals time series [130,134,137].

Despite the small number of studies on the applications of the DFA to the study
of FHR, it is worth mentioning the work of Echeverrìa et al. [78], who evaluated the
suitability of an enhanced DFA method for studying FHRV series and found that the
enhanced DFA technique is able to highlight the presence of long-term fractality in FHRV,
occurring at around 24 weeks of gestation, when well-known manifestations of fetal neural
maturation arise.

3.3.5. Poincaré Maps

Poincaré maps analysis is a graphical technique to obtain a quantitative and qualitative
two-dimensional representation of the HRV and gather information about the heart’s
behavior. A scatter plot is drawn by plotting the value of each inter-beat interval, RR(n
+ 1), against the preceding one, RR(n), and the obtained plot’s shape (namely, a cloud of
points) can be then attributed to a specific pattern. Three indices can be calculated from
the map to quantify the differences in the HRV [138]: (i) the standard deviation of the
variability of RR intervals in the short term (minor axis of the cloud, SD1); (ii) the standard
deviation of the variability of RR intervals in the long-term (major axis of the cloud, SD2);
(iii) the axis ratio (SD1/SD2). The technique does not require continuous time series nor
a normal distribution of the data. It provides an easily and immediately readable visual
representation of the results and can be carried out also on a relatively short signal length
(3–5 min is sufficient for FHRV analysis) [79].

A signal duration of 3–5 min is sufficient for FHRV analysis. However, the visual inter-
pretation can lead to subjective evaluations [139,140], and the time-sequence information is
lost in Poicaré plots, which only provide distributional information. Thus, the same plot
can be generated by data sets with different underlying dynamics [141].

Poincaré maps are mostly employed to analyze HRV in adults, but some studies [25,79]
also aimed at using Poincaré maps to determine the degree of chaos/uncertainty in the
FHR variability and to evaluate dynamic changes in the FHR and dispersion of inter-beat
intervals in healthy and pathological fetuses. Indeed, Mooney et al. [79] observed that the
FHR pattern is chaotic and that this chaotic structure is maintained in short intervals of
3–5 min with dispersion in the variability that increases for shorter periods of observation.

For this study, we calculated the Poincaré SD1 and SD2 on a database of 187 FHR
signals from real CTG traces of healthy fetuses between 24 and 42 weeks of gestation and
found a correlation between both the computed Poincaré indices and the gestation period,
as shown in Figure 4.
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Figure 4. Trends of Poincaré indices according to the pregnancy period: (a) regression graphs of Poincaré SD1 parameter as
a function of the gestational week; (b) regression graphs of Poincaré SD2 parameter as a function of the gestational week.
For each graph, trend lines (dashed), fitting lines (solid), and R-squared values (R2) are reported.

The determination coefficient (R2) of 0.75, obtained for both regression lines displayed
in Figure 4, demonstrates how the Poincaré indices moderately reflect the growth and
development of the fetus over the course of pregnancy.

3.3.6. Hypothesis Tests Based on Surrogate Data

Before concluding the examination of nonlinear techniques, it is worth underling
that they can sometimes lead to wrong conclusions about the behavior of the system
due to heart rhythm fluctuations that are erroneously interpreted as caused by nonlinear
dynamics. Therefore, in order to obtain more robust interpretations from the nonlinear
analysis of the heart rate variations, the testing with surrogate data becomes an essential
part of many of the above-mentioned methods, ensuring that the results are not achieved
fortuitously, but they reflect actual properties and dynamics of the system under study.
The tests with surrogate data allow determining if the output of the nonlinear analysis
is related to deterministic nonlinear or stochastic linear properties of the signal [142].
Briefly, a surrogate is a dataset artificially generated by modifying certain features from
the original signal. If the difference between the results obtained from the original signal
and those obtained from the series surrogate is statistically significant, the hypothesis
that the original series is generated by a stochastic process cannot be excluded [131].
The effectiveness of this method is highly dependent on the choice of the surrogates, which
should be constructed preserving the properties of the original signal and should have the
same spectral and cross-spectral characteristics as the original data. This can be obtained
through randomization of the phases as follows:

• The two series (original and surrogate) are Fourier transformed;
• A random number uniformly distributed between 0 and 2π is generated and added

to both phases of the Fourier transforms of the two series to preserve their difference
(cross-spectrum);

• The two series are then anti-transformed.

The surrogate data test is commonly used in combination with other nonlinear tech-
niques (fractal analysis, entropy measurements, etc.) [131,143].
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3.3.7. Overview of Advantages and Disadvantages of the Reviewed Techniques

The following table summarizes the main advantages and disadvantages of the major
techniques of FHRV analysis explored in this review so far. It is worth underlining that,
since the main results obtained by applying these methods to the analysis of the FHRV
have been already described in the previous paragraphs, in Table 2, we focus more on the
technical benefits and drawbacks of each method.

Table 2. Main pros and cons of the most used techniques for the analysis of FHRV.

Approach Technique Main Pros Main Cons

Time domain
measurements

General considerations
Despite their widespread use and recognized clinical value, time domain indices rely mainly
on descriptive statistical measurements of the FHR and, therefore, they do not allow inferring

the physiological processes controlling the variation in the heart rhythm.

STV
It correlates well with the development of

metabolic academia, and it is recognized as a
valuable antenatal monitoring tool.

There is no agreement on the formula used to
calculate the STV, and its effectiveness can be

influenced by frequency oscillations.

LTV It shows good sensitivity to sinusoidal
fluctuations in the heart rhythms. It can be complex to quantify numerically.

Frequency
domain analysis

General considerations

Even though frequency domain indicators are widely employed and studied in the literature,
particularly for their capability of investigating periodic trends in the heart rate fluctuations, it
should be taken into account that these parameters are sensitive to artifacts and, since the heart

is not a periodic oscillator, do not allow the inspection of non-periodic trends or transient
changes embedded in the variability signal. In addition, power spectral indices are not able to

characterize nonreciprocal changes of sympathetic and parasympathetic modulations.

Fourier Transform

It is relatively simple and does not require
high computational power; therefore, it is

widely employed in the literature.
Specific conditions such as the cord arterial
base deficit and changes in the behavioral
state as well as in the gestational age cause

variations in the FHRV spectrum.

The stationarity of the FHRV signal is an
essential requirement.Limitations in
describing the nonlinear structure of

sympatho–vagal interactions.
The length of data segments influences the

frequency resolution.

AR models
They provide better identification of discrete
frequency oscillations for non-stationary and

relatively short time series.

The determination of the optimal order of the
AR model is not trivial, and a wrong choice
can compromise the reliability of the model.

WT

It allows proper processing of the FHR signal,
avoiding the problem of long-term

non-stationary behavior
as well as the extraction of the FHR power at

different scale levels.
It uses short windows at high frequencies

and long windows at low frequencies,
thereby obtaining more precise spectral

components and enabling a multi-resolution
time-frequency representation of the signal.

There is still a lack of a gold standard
procedure for the use of WT in the analysis of
heart rate variations, even in the analysis of
HRV in adults. In particular, it is not clear

how the mother wavelet impacts the results
and if results obtained using different mother

wavelets can be compared.
The performance can be unsatisfactory when
more than one spectral component is present.

Despite its better tunability compared to
Fourier Transform, the time and frequency
resolutions of wavelet transform cannot be

arbitrarily good.
Despite the undoubted theory advantages of

the WT over traditional time-domain and
frequency-domain analysis methods, there

seem to be no direct comparisons with
nonlinear techniques of FHRV analysis.

Nonlinear
methods

Entropy indices
(general considerations)

Entropy measurements provide a global index of the overall regularity of the time series under
study, but they are not able to detect the dynamics that generate such behavior.

In particular, entropy values should be interpreted carefully since they are not always a result
of differences in regularity or complexity of the time series, but they can be an effect of the

presence of outliers that affect the variance in the heart rate signal.

ApEn It allows inferring the level of complexity of
the FHR signal.

Results are highly dependent on the signal
length and lack relative consistency since the

algorithm also counts self-matches, thus
introducing a bias in the results.

The choice of the optimal parameters for the
calculation of the ApEn is difficult.

SampEn

Similar to ApEn, it allows quantifying the
complexity of a time series, but it eliminates
self-matches, requires lower computational

time, and it is largely independent of the
signal length.

The choice of the parameters to calculate the
SampEn is critical, and there are no

guidelines nor a gold standard on their use
and optimization.

It appears to be more sensitive than ApEn to
noise and non-normal beats.
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Table 2. Cont.

Approach Technique Main Pros Main Cons

SD

The signal’s samples are reduced to a few
possible patterns of symbols, thereby

simplifying the study and the classification of
the underlying dynamics of the system.

The choice of the alphabet of symbols and the
criteria to form words of symbols is complex,

and a standard has not been achieved yet.
The symbolization can cause loss of

information and can be influenced by the
presence of outliers.

Fractal analysis

It allows calculating the degree of irregularity
of the system by splitting it into a number of
fundamental units (fractals) with the same

shape at different scales of observation.

Algorithms for a reliable application of
fractal analysis are not optimized for

real-time monitoring.
It is preferred for the analysis of time series of

normal-to-normal interbeat intervals from
long-term recording.

DFA

Useful for removing external interference
(signal noise).

Over other conventional fractal methods, it
permits the detection of long-range

correlations embedded in raw non-stationary
time series.

The signal segmentation can produce two
undesirable effects: (i) if the signal length is
not a multiple of the window length, at least
one block will have fewer samples than the
others; (ii) when one block is considerably
shorter than the others, discontinuities will

be observed in the detrended signal.
A minimum signal length of 8000 samples

and normal-to-normal interbeat intervals are
requirements to apply the DFA.

High computational load prevents the
application of long series of data.

Poincaré maps

They provide an easily and immediately
readable visual representation of the results.
A signal duration of 3–5 min is sufficient for

FHRV analysis.

Visual interpretation can lead to subjective
evaluation.

SD1 and SD2 indices do not provide much
additional information compared to

time-domain measurements.
Temporal information, which is crucial for

the detection of nonlinear dynamics, is lost in
traditional Poincaré analyses that focus on

mere statistical indices extracted from a
cumulative distribution of points.

As we already mentioned, since most of the methodologies analyzed here have been
firstly developed in studies on adult subjects and then applied to fetuses, most of the
technical pros and cons reported in Table 2 are shared between FHRV and HRV.

As far as time and frequency domain parameters, the main drawback, widely rec-
ognized in both adults [111,112,115,144–147] and fetuses [4,5,17,27,114], consists of the
scarce capability of investigating nonlinear physiologic dynamics of the system. A major
limitation that is observed for both linear and nonlinear techniques is related to the lack
of standardization and optimization (e.g., in the case of STV, AR models, WT, entropy
indices, and SD). Another limitation that is shared between some linear and some nonlinear
approaches is the dependency on signal characteristics, such as length (e.g., in the case
of Fourier transform, entropy indices, DFA). Finally, some nonlinear methodologies are
limited due to the complexity of the adopted algorithms (e.g., in the case of fractal analysis
and DFA) or because they provide too synthetic indicators, thereby causing loss of relevant
information (e.g., in the case of SD and Poincaré maps).

3.4. Other Methods for FHR Analysis

Other methods for processing and analyzing heart rate variations are also present in
the literature, although their applications to the analysis of heart rate variations in fetuses
are limited. Despite that, we believe that it is worth exploring the contributions brought by
these additional techniques to the analysis of FHR signals, being aware that the obtained
findings may need further validation and study in the context of FHRV.

3.4.1. Hilbert and Hilbert–Huang Transform

The Hilbert transform (HT) consists of the convolution of a signal x(t) with the function
1/(πt), and it is expressed as:

H(t) =
1
π

∫ +∞

−∞

(
x(τ)
t− τ

)
dτ
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Despite HT being successfully applied several times to solve problems in the field of
signal and image processing, only a few applications to the analysis of FHR are present in
the literature [3,80–82,148].

Similarly, the Hilbert–Huang transform (HHT) was developed as a tool for the analysis
of nonlinear and non-stationary data. The key of HHT is the empirical mode decomposition
(EMD), consisting in the decomposition of a dataset into a finite small number of intrinsic
mode functions (IMF), i.e., symmetrical signals with a unique local frequency (mono-
component signal), which possesses a well-behaved Hilbert transform [149,150].

Compared with the traditional Fourier transform and WT, the EMD has no specified
bases, meaning that its bases are adaptively produced depending on the signal to be
decomposed. The obtained Hilbert spectrum of the generated IMFs provides a time–
frequency distribution with sharp identification of the spectral components of the HR
signal [149]. However, most of the studies using HT or HTT are limited to the analysis of
HRV in adults.

In 2005, Ortiz et al. [151] applied EMD to extract HF (>0.3 Hz) components of
FHRV data belonging to 10 fetuses at term with four different fetal activity conditions.
They analyzed the effect of the fetal breathing or corporal movement on non-stationary
FHR time series and observed that the mean HF power increases during abrupt and large
accelerations or decelerations periods, regardless of the occurrence of fetal breathing and
corporal movements. A multivariate extension of the EMD was proposed by Saleem
et al. [30] to calculate robust features from FHR and uterine contraction signals in order
to classify fetal states leading to ‘vaginal’ vs. ‘cesarean section’ delivery. The features
extracted with this methodology were then used as input to machine learning algorithms,
with the best classifier showing 91.8% sensitivity and 95.5% specificity. Recently, Marques
et al. [3] proposed a system for computerized CTG based on HT. They combined HT with an
adaptive threshold technique to detect fiducial points on CTG traces. The method showed
good predictivity (around higher than 90%) for FHR accelerations and decelerations as
well as uterine contractions.

3.4.2. Lomb Method

With the Lomb method, an unevenly sampled signal is transformed, projecting the
signal onto one element of an orthonormal base that minimizes the mean squared error
energy e(ci). The coefficient c(i), representing the transformed signal x(t), is that which
minimizes the following function [83,152]:

e(ci) =
∫ +∞

−∞
(x(t)− c(i)bi(t))

2dt

which is the squared differences between the signal x(t) and its projection onto an orthogo-
nal basis bi(t), defined as:

c(i) =
∫ +∞

−∞
x(t)bi(t)dt

Using this method, it is not necessary to interpolate noisy or ectopic beat detection,
thus avoiding the spectrum distortion produced with Fourier- or AR-based
techniques [83,152]. Despite this, the methods have slower computational speed compared
to FFT or other Fourier-based methods [153]. In the HRV analysis, the Lomb periodogram
proved to be a more appropriate spectral estimation tool for unevenly sampled time series
compared to traditional Fourier methods since no explicit data replacement is made (or
model assumed), and the PSD is calculated from only the known values [154].

In the FHRV, the Lomb method confirmed its suitability to the analysis of unevenly
sample data and demonstrated to be insensitive to missing points and useful in the PSD
estimation from CTG signals, especially if applied in combination with additional tech-
niques [83,84].

Romano et al. [85] and Cesarelli et al. [83] used the Lomb method to estimate the PSD
of the FHRV and the SVB index on simulated FHR traces to show how an inappropriate
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storage rate of CTG data can lead to an erroneous estimation of some important clinical
parameters, such as the SVB. They confirmed that the interpolation process and the use of
different storage rates significantly affected the PSD estimation and demonstrated that the
evaluation of SVB on evenly spaced FHR series provides overestimated values.

3.4.3. Matching Pursuits

In order to extract additional FHR characteristics that previous spectral analyses
cannot reveal, the MP method has been proposed. It is a modified version of the WT
method, which creates time–frequency representations of the signal energy without cross-
terms. The FHR signal is decomposed into waveforms selected from a dictionary of time-
frequency atoms, which are the dilations, translations, and modulations of a single-window
function, g(t), defined as [86]:

gγ(t) =
1√

s
g
(

t− u
s

)
eiηt (15)

where η is the frequency modulation, u is the translation, s is the scaling parameter, and γ
is the set of parameters.

The MP proved to overcome the limitations of both Fourier and WT transform. Indeed,
while classical Fourier and WT transform are not particularly suitable to represent non-
stationary signals and narrow-frequency band signals, respectively, MP showed great
potential in identifying multiple periodicities in highly non-stationary signals such as
FHR [13].

In their work, Akay et al. [13] showed the high sensitivity of the MP in detecting
perturbations in the normal dynamic pattern of FHR signals, such as sinusoidal fluctuations
of multiple frequencies or burst-type activities, and in estimating the complex regulatory
systems involved in the FHR control.

Moreover, Salamalekis et al. used the MP method for the analysis of FHR signal
power in the VLF and LF frequency ranges to detect fetal hypoxia during labor [86].
They estimated the power of the FHR signal in four frequency ranges: Very Low Frequency
(VLF) range (<0.04 Hz), Low Low Frequency (LLF) (0.04–0.08 Hz), Low Frequency (LF)
(0.08–0.15 Hz), and High Frequency (HF) (>0.15 Hz), and found that the LLF recognizes
the cases with lower cord arterial pH (sensitivity 78.5%, specificity 52.3%), while the VLF
recognizes the cases with lower pH (72.2% and 59%) and the cases of non-reassuring FHR
(sensitivity 64.2%, specificity 53.1%). The sensitivity and specificity of the VLF parameter
were 72.2% and 59%, respectively, in recognizing the cases with low pH and 64.2% and
53.1% in recognizing non-reassuring FHR.

3.4.4. Lyapunov Exponents

The spectrum of Lyapunov exponents is one of the most useful tools for the study
of the dynamics of nonlinear systems. Lyapunov exponents are estimates of the average
speed of convergence or divergence of the exponential trajectory of a dynamic system near
an attractor. Therefore, they are used to classify the asymptotic behavior of a dynamic
system and to determine the stability of quasi-periodic and chaotic regimes as well as
the equilibrium points and periodic solutions of a given vector. More generally, they can
provide a qualitative and quantitative characterization of the dynamic behavior of a system.
Lyapunov exponents can be measured for both continuous- and discrete-time systems, and
the positivity of these indices reveal the presence of chaotic behavior in the system, i.e.,
small differences in the initial conditions can produce enormously different trajectories of
the system. The numeric value of the Lyapunov exponent gives a precise indication of the
time after which the system dynamics become unpredictable [29,87].

Despite the Lyapunov exponent being infrequently used in the analysis of FHRV, some
interesting results are reported by Kikuchi et al. [88], who calculated the largest Lyapunov
exponent from 119 FHR traces of healthy normal fetuses, and found no significant changes
according to gestational age. On the other hand, compared to healthy fetuses, they observed
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significantly lower values in 69 FHR traces of IUGR (Intra Uterine Growth Restriction)
fetuses (p < 0.001).

3.4.5. Hidden Markov Models

Another nonlinear technique can be found in the Hidden Markov Models (HMMs),
which have been applied to the analysis of electrocardiograms in recent decades.
Basically, HMM is a statistical modeling technique that represents a complex system
using a probability density function that varies according to the state of an underlying
Markov chain. The term ‘hidden’ comes from the fact that the states of the model cannot
be directly determined from observations [155].

Georgoulas et al. [89] used two HMMs together with traditional time domain and
frequency domain analyses to extract a set of parameters for the automatic classifica-
tion of FHR tracings belonging to hypoxic and normal fetuses. They compared HMMs
characterized by a different number of hidden states and obtained the maximum overall
classification rate of 83% for seven hidden states, with high classification rates both for
normal (85%) and abnormal (81%) cases.

3.4.6. Complexity of Lempel Ziv

The complexity of LZ is a method of symbolic sequence analysis that measures the
complexity of finite length time series and has been employed for the classifications of heart
rate patterns [156]. The input of the algorithm is constituted by a finite sequence of symbols
(string) belonging to a previously defined alphabet. Sometimes, the input string contains
some parts (sub-strings), which are repeated several times. The idea of the algorithm is that
of exploiting these repetitions to obtain a compression of the signal. The analysis concerns
the rate of occurrence of specific subsets of strings and the calculation of the LZ complexity,
whose values are larger at the increasing complexity of the time series.

In their studies, Ferrario et al. [91] compared traditional parameters that are derived
from the FHR signals with ApEn, SampEn, and LZ. They showed that the LZ was the
only index providing significant differentiation between healthy fetuses and fetuses with
intrauterine growth restriction (IUGR). Again, Ferrario et al. [90] computed LZ and the
multiscale entropy to analyze CTG traces from normal (17), severe IUGR (23), and non-
severe IUGR (19) fetuses between the twenty-seventh and thirty-fourth week of gestation,
finding that the proposed indices are able to identify the actual IUGRs and separate them
from the physiological fetuses (sensitivity = 77.8%; accuracy = 82.4%). The capability of LZ
to distinguish between normal and IUGR fetuses has been confirmed by Magenes et al. [92]
in further work.

Despite the above-mentioned results, to the best of our knowledge, the LZ seems to
be applied only to support the discrimination of IUGR fetuses, and most of the studies are
carried out from the same research groups.

3.4.7. Principal Dynamic Models

The Principal Dynamic Models (PDM) method is another technique employed to
identify and quantify nonlinear components of heart rate fluctuations. It describes the
dynamics of a system as a hierarchy of nonlinear systems, and the signal is transformed
using Volterra–Wiener kernels based on the expansion of Laguerre polynomials (k0, k1, ....):

y(n) = k0 +
M−1

∑
m=0

k1(m)x(n−m) +
M−1

∑
m1=0

M−1

∑
m2=0

k2(m1, m2)x(n−m1)x(n−m2) + . . . (16)

where x(n) is the input, y(n) is the output, and M is the memory of the system.
Though the PDM is applied to characterize nonlinear physiological systems, it is

not suitable for analyzing the non-stationary RR series, as for traditional PSD calculation
methods [149]. In addition, most studies using PDM are limited to the analysis of HRV
in adults.
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3.5. Artificial Neural Networks for the Classification of FHR Signals

Despite the wide range of techniques for the analysis of FHR traces and their extensive
employing for the investigation of the FHRV behavior, and the fact that CTG is recognized
as an important ante- and intrapartum monitoring tool to assess fetal wellbeing, there is no
consensus, nor an established gold-standard, agreed by the scientific community for the
interpretation of CTG traces, nor for the classification of FHR recordings [19]. This is one of
the main reasons for the still-growing demand for the computer-aided study of FHRV and
automated classification of FHR signals.

As an emerging trend, also in the healthcare sector, ANN proved its potential and
showed interesting and promising results in the analysis of FHR, thanks to its powerful
pattern recognition and classification capabilities.

Already between the 1990s and the 2000s, some researchers attempted the use of
ANN to study FHR signals from CTG recordings. In 1994, Marques de Sa’ et al. [93]
presented two multilayer perceptron ANN models for the estimation and classification
of the FHR baseline. They obtained promising results in terms of accuracy, with 97.7%
correctly classified cases in the training set and 90% correctly classified cases in the test set.
Promising results, in the same year, were also obtained by John Liszka-Hackzell [94],
who proposed two types of ANNs, namely, the back-propagation network and the self-
organizing map network, to categorize different types of CTG traces according to the
presence of accelerations/decelerations, baseline, beat-to-beat variability, presence of tachy-
cardia/bradycardia. Subsequently, in 1995, other studies aimed at evaluating the potential
of ANNs in the interpretation and of nonstress test results [95,96], showing encouraging
achievements in the discrimination between normal and abnormal nonstress tests, with
almost 60% agreement between the ANN model and human experts in the classification of
abnormal FHR records [95].

In the early 2000s, Magenes et al. [97] showed that relatively simple ANN architectures,
trained with a limited number of cases, can act as good nonlinear classifiers of fetal
pathological states. Tests on 25 normal, 5 diabetes, and 6 IUGR cases gave an error of 5.5%.
In the following years, other works explored the capability of different ANN models to
discriminate between normal, suspicious, and pathological conditions from the pattern
of CTG data [94,98,99], with some ANN models showing better performances over other
classification techniques, such as discriminant analysis and decision tree, even in the
prediction of fetal distress [100].

Later, between 2015 and 2018, further studies compared different ANN models among
them and with other machine-learning-based approaches for the classification of CTG
recordings. The best models showed accuracy, sensitivity, and specificity of at least 80%
each [19], with ANN models having better performances than other algorithms. In particu-
lar, Yılmaz [101] focused on three different types of ANNs and achieved the best results
with a generalized regression neural network. Cömert et al. [102] showed the better per-
formance of ANNs over SVM, random forest, radial basis function network, and extreme
learning machine, as also confirmed in a further study [103]. The same authors also showed
that the combined use of both linear and nonlinear features as input parameters of the
ANN model could increase the accuracy in the prediction of fetal distress [57].

More recently, ANNs have been compared with other data mining algorithms not only
in terms of accuracy but also with regard to time consumption, demonstrating that an ANN
model can be a good choice for classifying CTG traces since it can provide high accuracy
at a reasonable computational time [104]. Furthermore, in 2019, Zhao et al. [20] used
convolutional neural networks to predict fetal asphyxia, demonstrating the effectiveness of
the proposed tool, which showed accuracy, sensitivity, and specificity up to 98.34%, 98.22%,
and 94.87%, respectively.

4. Discussion

Despite the huge research efforts made in improving the analysis of FHRV through
automatic computerized analysis of FHR signals, a gold standard has not been achieved
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yet. Instead, the availability of a plethora of methods for FHRV analysis, ranging from
linear to nonlinear approaches, makes it even more difficult to make direct comparisons
between the results obtained with different techniques and starting from different datasets
and hypotheses.

On the contrary, the examined literature revealed the fundamental difficulties in the
implementation of both traditional and nonlinear methods, mainly consisting of: (i) noisy
nature of physiological signals; (ii) finite length of the data series; (iii) non-stationarity of
the signals.

Thus, the overall take-home message would suggest combining both linear and
nonlinear FHRV indices in order to reach a more comprehensive interpretation of the
physiological phenomena driving the FHR fluctuations. Such a combined approach, using
both nonlinear and traditional analytic methods, showed promising results in adult HRV
as well as in fetuses [17,57–59,116,117]. This reflects what has already been shown in adult
subjects by Voss et al. [130,157], who suggested that the combination of different HRV
parameters from both time and frequency domains as well as from nonlinear dynamics
can improve diagnostic precision in the analysis of HRV. Moreover, this statement is also
in agreement with further studies on FHRV, which showed that the choice of the optimal
linear/nonlinear parameter combination could improve the classification between healthy
and IUGR fetuses [158] and, in general, could be more effective in classifying FHR patterns
and assessing ANS maturation [64,159,160].

Indeed, the combination of linear and nonlinear techniques could be helpful not only
in overcoming peculiar limitations of a single specific approach but also in investigating
hidden dynamics and complex relationships between the FHR and the fetal ANS func-
tioning, behavior, and development. However, such an integrated approach, based on
the rational combination of the above-described methodologies, is still far from being
standardized, and the various attempts made in this direction provide encouraging but
limited and non-definitive results.

According to our opinion and the recent literature, a promising alternative approach is
one involving methodologies from the AI field, more specifically referring to machine learn-
ing techniques, which currently appear to be the future of medical diagnostics; indeed, from
their first introduction in the medical arena, they showed encouraging results in the analy-
sis of FHRV. In particular, a support vector machine (SVM), alone or in combination with
other linear and/or nonlinear techniques, was also used to predict the risk of metabolic
acidosis [161], to evaluate the fetal health state [21], and to detect fetal hypoxia [52].
With the objective to differentiate vaginal vs. cesarean delivery and normal vs. pathologi-
cal pregnancy, multiple machine algorithms were applied in combination [30,162,163].
Moreover, ANN proved to be useful for the automatic classification of FHR record-
ings [18,19,102] and for predicting fetal acidemia conditions [20].

Furthermore, despite this extensive use of AI algorithms in FHR analysis, the majority
of the studies do not incorporate responses of the fetus to UCs [30], which could be
an additional useful factor to assess, together with FHR, especially in the context of
CTG monitoring.

The huge potential of AI in medicine and, above all, its recognized capability of de-
tecting very complex input–output relationships could be seen not only as the future of the
automatic FHR analysis but also as the possible union ring between linear and nonlinear
FHRV indices, i.e., a tool to integrate and connect the information provided by multi-
ple methodologies in order to give a better, more meaningful, and more comprehensive
interpretation of the FHRV.

5. Conclusions

In this work, a review of linear and nonlinear methods for the analysis of FHRV has
been carried out, providing an overview of the basic principles, the main pros and cons, and
some of the relevant results achieved in the literature. The results of the examined studies
revealed that none of the techniques available were demonstrated to be absolutely better
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than the others. Instead, a combination approach, using both traditional and nonlinear
FHRV indices, is employed in many of the reviewed works, with promising but not
yet definitive results. On the one hand, the application of different indices can bring
more information, enhancing and improving the understanding of the complex dynamics
involved in the control of the fetal heart rhythm; on the other hand, the proposed combined
approaches lack integration and standardization. The latter creates a gap between the
possibility of measuring several features of the FHR signal and the capability of obtaining
a comprehensive, correct, and shared interpretation of the FHR dynamics, able to convert
the collected data into information that could be useful for gynecologists and healthcare
professionals in determining the health status of the fetus.

The frontiers paved by the use of AI in the diagnostics field could fill this gap by
using traditional and nonlinear FHR features as an input to advanced machine learning
algorithms that can improve the classification accuracy, enabling more reliable diagnostic
information by distinguishing between healthy and pathological fetuses. This approach
could increase the degree of integration between the most relevant analytic methods and,
possibly, give an answer to the unmet clinical need of automatic analysis of FHR traces.
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